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NONLINEAR PRINCIPAL COMPONENT ANALYSIS
AND RELATED TECHNIQUES

JAN DE LEEUW

1. I

Principal Component Analysis (PCA from now on) is a multivariate data

analysis technique used for many different purposes and in many different

contexts. PCA is the basis for low rank least squares approximation of a

data matrix, for finding linear combinations with maximum or minimum

variance, for fitting bilinear biplot models, for computing factor analysis

approximations, and for studying regression with errors in variables. It is

closely related to simple correspondence analysis (CA) and multiple corre-

spondence analysis (MCA), which are discussed in Chapters XX and YY

of this book.

PCA is used wherever large and complicated multivariate data sets have to

be reduced to a simpler form. We find PCA in microarray analysis, medical

imaging, educational and psychological testing, survey analysis, large scale

time series analysis, atmospheric sciences, high-energy physics, astronomy,
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2 JAN DE LEEUW

and so on. Jolliffe [2002] is a comprehensive overview of the theory and

applications of classical PCA.

2. L PCA

Suppose we have measurement of n objects or individuals on m variables,

collected in an n × m matrix X = {xi j}. We want to have an approximate

representation of this matrix in p-dimensional Euclidean space. There are

many seemingly different, but mathematically equivalent, ways to define

PCA. We shall not dwell on each and every one of them, but we consider

the one most relevant for the nonlinear generalizations of PCA we want to

discuss.

Our definition of PCA is based on approximating the elements of the data

matrix X by the inner products of vectors in Rp. We want to find n vectors

ai corresponding with the objects and m vectors b j corresponding with the

variables such that xi j ≈ a′ib j. The elements of the n × p matrix A are

called component scores, while those of the m × p matrix B are component

loadings.

We measure degree-of-approximation by using the least squares loss func-

tion

(1) σ(A, B) =
n∑

i=1

m∑
j=1

(xi j − a′ib j)
2.
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PCA is defined as finding the scores A and the loadings B that minimize this

loss function. Another way of formulating the same problem is that we want

to find p new unobserved variables, collected in the columns of A, such that

the observed variables can be approximated well by linear combinations of

these unobserved variables.

It is well known, since Householder and Young [1938], that the solution of

this problem can be found by first computing the singular value decompo-

sition X = KΛL′, then truncating the singular value decomposition by only

keeping the largest p singular values Λp and corresponding singular vectors

Kp and Lp, and then by setting Â = KpΛ
1/2
p S and B̂ = LpΛ

1/2
p T , where S

and T are any two non-singular matrices of order p satisfying S T ′ = I. The

minimum value of the loss function is equal to

(2) σ(Â, B̂) =
m∑

s=p+1

λ2
s(X),

where the λs(X) are the ordered singular values of X (so that λ2
s are the

ordered eigenvalues of both X′X and XX′).

We illustrate this with an example, similar to the box problem in Thurstone

[1947, Page 140]. We use 20 rectangles and describe them in terms of seven

variables (the base, the height, the diagonal, the area, the circumference, the

ratio of base to height, and the ratio of height to base). The data matrix,

in which base and height are uncorrelated, is given in Table 1. The PCA
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model fits excellently in two dimensions (99.6% of the sum of squares is

“explained”). A plot of the data and the fitted values is in Figure 1.

The representation in Figure 2 nicely reproduces the V-shape of the base-

height plot. In this plot we have followed the biplot conventions from Gower

and Hand [1996], in which loadings are plotted as directions on which we

can project the scores. We see, for example, that the last ten rectangles have

the same projection on the circumference direction, and that the base/height

and height/base directions are very similar, because these two variables have

a high negative correlation of −0.74.

3. L S N PCA

3.1. Introduction. When we talk about nonlinear PCA in this chapter, we

have a specific form of nonlinearity in mind. PCA is a linear technique,

in the sense that observed variables are approximated by linear combina-

tions of principal components. It can also be a bilinear technique, in the

sense that elements of the data matrix are approximated by inner products,

which are bilinear functions of component scores and component loadings.

The nonlinearities in the forms of PCA that we discuss are introduced as

nonlinear transformations of the variables, and we still preserve the basic

(bi)linearity of PCA. We do not discuss techniques in which the observed
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variables are approximated by nonlinear functions of the principal compo-

nents.

Nonlinear PCA is used, for instance, if we do not have actual numerical

values as our data but each variable merely ranks the objects. The proto-

typical example of data of this form are preference rank orders, in which

the variables are actually individuals ranking a number of objects in order

of preference. In other examples, similar to MCA, variables are categorical

and partition the objects into a finite number of sets or categories. Binary

variables (true/false, yes/no, agree/disagree, and so on) are a very common

special case of both ordinal and categorical variables. And in yet other ex-

amples variables may have numerical values but we want to allow for the

possibility of computing transformations to improve the fit of the bilinear

model.

We have seen in the previous section that we evaluate fit of PCA in p di-

mensions by computing the sum of squares of the residual singular values

X (or the sum of the residual eigenvectors of the product moment matrix

X′X). This makes it natural to look for transformations or quantifications

of the variables that minimize the same criterion. Thus we do not merely

minimize loss over component scores A and component loadings B, but also

over the admissible transformations of the columns of X. The loss function
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becomes

(3) σ(A, B.X) =
n∑

i=1

m∑
j=1

(xi j − a′ib j)
2

and we minimize, in addition, over x j ∈ X j, where X j ⊆ R
n are the ad-

missible transformations for variable j. By using (2), this is the same as

finding

(4) min
x j∈X j

m∑
s=p+1

λs(X).

This form of nonlinear PCA, in the special case of monotone transforma-

tions, has been proposed by, among others, Lingoes and Guttman [1967];

Roskam [1968]; Kruskal and Shepard [1974].

The notion of admissible transformation needs some additional discussion.

We have already mentioned the class of monotone transformations as an

important example. But other examples can also be covered. We could, for

instance, allow low-order polynomial transformations for all or some of the

variables. Or, combining the two ideas, monotone polynomials. We could

also look for convex or concave transformations, increasing or not. Or for

low-order splines on a given knot sequence, which again may or may not

be restricted to be monotone. For categorical variables with a small number

of categories we may simply allow the class of all possible transformations,

which is also known as the class of quantifications in which category labels
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are replaced by real numbers. Nonlinear PCA has been extended to these

wider classes of admissible transformations by Young et al. [1978]; Gifi

[1990].

All the special cases of transformations so far are covered by the general

restriction that the transformed variable must be in a convex cone K in Rn.

Convex cones are defined by the conditions that x ∈ K implies αx ∈ K for

all real α ≥ 0 and x ∈ K and y ∈ K implies x + y ∈ K . It is easy to see that

all classes of transformations discussed above are indeed convex cones. In

fact some of them, such as the low-order polynomials and splines, are linear

subspaces, which are special cones for which x ∈ K implies αx ∈ K for all

real α.

It is also clear that if a transformation x is in one of the cones mentioned

above, then a positive linear function αx+βwith α ≥ 0 is in the cone as well.

As a consequence of this we need to normalize our transformations, both to

identify them and to prevent the trivial solution in which all transformations

are identically set to zero. Another way of saying this is that we redefine our

cones to consist only of centered vectors, and we want all transformations x

to be on the unit sphere S = {x ∈ Rn | x′x = 1}. Thus the sets of admissible

transformations X j are of the form K j ∩ S, where K j is a convex cone of

centered vectors.
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The normalizations we use imply that the product moment matrix X′X is

actually the correlation matrix of the variables. Thus the optimization prob-

lem for nonlinear PCA in p dimensions is to find admissible transformations

of the variables in such a way that the sum of the n− p smallest eigenvalues

of the correlation matrix is minimized, or, equivalently, such that the sum

of the p largest eigenvalues is maximized. We write our nonlinear PCA

problem in the final form as

(5) max
x j∈K j∩S

p∑
s=1

λs(R(X))

where the real-valued function φ is defined as the sum of the p largest eigen-

values of the correlation matrix R(X).

This seems a natural and straightforward way to generalize PCA. Allowing

for nonlinear transformations of the variables makes it possible to concen-

trate more variation in the first few principal components. Instead of looking

at high-dimensional projections we can look at low-dimensional projections

together with plots of the non-linear transformations that we compute [De

Leeuw and Meulman, 1986].

3.2. Aspects. Instead of tackling the problem (5) directly, as in done in

most earlier publications, we embed it in a much larger family of problems

for which we then construct a general algorithm. Let us look at problem (5)

in which we maximize any convex function φ of the correlation matrix. Not
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just the sum of the p largest eigenvalues, but any convex function. We call

any convex real valued function defined on the space of correlation matrices

an aspect of the correlation matrix [De Leeuw, 1988, 1990].

Of course we first have to show that, indeed, the sum of the p largest

eigenvalues is a convex function of the correlation matrix. For this we

use the very useful lemma that if f (x, y) is convex in x for every y, then

g(x) = maxy f (x, y) is also convex in x. The sum of the p largest eigenval-

ues of a matrix R is the maximum of tr K′RK over all n × p matrices K

with K′K = I. Thus the aspect is the pointwise maximum of a family of

functions linear, and thus convex, in R, and the lemma applies.

We take the opportunity to give some additional examples of convex aspects

that illustrate the great generality of our approach. A very simple aspect is

the sum of the correlation coefficients. It doesn’t use eigenvalues to mea-

sure how closely variables are related, but it does measure the strength of

the overall relationships. Related aspects are the sum of even powers of the

correlation coefficients, or the sum of odd powers of the absolute values of

the correlation coefficients. Observe that the sum of squares of the correla-

tions coefficients is actually equal to the sum of squares of the eigenvalues

of the correlation matrix. Because the sum of the eigenvalues is a constant,

maximizing the sum of squares is the same as maximizing the variance of
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the eigenvalues. This aspect gives another way to concentrate as much of

the variation as possible in the first few principal components.

3.3. Algorithm. The algorithm we propose is based on the general princi-

ple of majorization, which we explain in Appendix A. Using convexity of

the aspect φ, and the fact that a convex function is always above its tangents,

gives the inequality

(6) φ(R(X)) ≥ φ(R(Y)) +
∑∑
1≤i, j≤n

∂φ

∂ri j

∣∣∣∣∣∣
R=R(Y)

(x′i x j − y′iy j)

for all matrices X and Y of normalized admissible transformations. The

normalization ensures that the diagonal terms in the double sum on the right

disappear.

Each step in the majorization algorithm requires us to maximize the right-

hand side of (6). We do this by block relaxation, that is by maximizing over

one transformation at the time, keeping the other transformations fixed at

their current values [De Leeuw, 1994]. Thus in each iteration we solve m

of these optimal scaling problems, transforming or quantifying each of the

variables in turn.

By separating out the part of (6) that depends only on x j, we find that each

optimal scaling problem amounts to solving a least squares problem of the
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form

(7) min
x j∈K|∩S

(x j − x̃(k)
j )′(x j − x̃(k)

j ).

Here x̃(k)
j is the current target, defined by

x̃(k)
j =
∑
`< j

g(k, j)
j` x(k+1)

` +
∑
`> j

g(k, j)
j` x(k)

` ,

and the matrices G(k, j) are the partial derivatives, evaluated while updating

variable j in iteration k. Thus

g(k, j)
j` =

∂φ

∂r j`

∣∣∣∣∣∣
R=R(x(k+1)

1 ,··· ,x(k+1)
j−1 ,x(k)

j+1··· ,x
(k)
m )

.

The formula looks complicated, but the only thing it does is keep track of

the iteration indices. If we have an expression for the partial derivatives,

and a way to solve the least squares problem in (7), then we have a simple

and general way to maximize the corresponding aspect. From the software

point of view, we can write a high level algorithm that uses subroutines to

compute aspects and their partial derivatives as arguments.

If the aspect we use is the sum of the correlation coefficients, then all el-

ements of G(k, j) are equal to +1, and thus the target is just the sum of all

variables (except for the one we are updating). If the aspect is a single cor-

relation coefficient in the matrix, say r j`, then the target when updating x j

will be x`, and vice versa. In the general case we have to recompute the
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correlations and the partials after updating each variable. This may be ex-

pensive computationally. If our aspect is the classical nonlinear PCA sum

of the p largest eigenvalues, for instance, then

∂φ

∂R
= KK′,

with K the normalized eigenvectors corresponding with the p largest eigen-

values of R. Computing the partials means solving an eigenvalue problem.

De Leeuw [1990] discusses some (minor) variations of the algorithm which

allow for updating all variables before recomputing the correlations and the

partial derivatives.

It is also shown in De Leeuw [1990] that (7) can be minimized by first pro-

jecting on the cone, thus ignoring the normalization constraint, and then

normalizing afterwards. Generally, such cone projection problems are sim-

ple to solve. In the categorical case, for instance, we merely have to com-

pute category averages. In the monotone case, we must perform a monotone

regression to project the target on the cone [De Leeuw, 2005]. In the poly-

nomial case, we must solve a polynomial regression problem.

3.4. Relation with Multiple Correspondence Analysis. MCA is a spe-

cial case of our general aspect approach. It corresponds with maximizing

the largest eigenvalue of the correlation matrix (and with the case in which

all variables are categorical). As shown in Chapter XX, MCA solves the
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generalized eigen-problem for the Burt matrix. This corresponds with find-

ing the stationary values of the Rayleigh quotient

λ(a) =

∑m
j=1
∑m
`=1 a′jC j`a`

m
∑m

j=1 a′jC j ja j

Change variables by letting a j = α jy j, where y′jC j jy j = 1. Then

λ(α, y) =
α′R(y)α
mα′α

,

where R(y) is the correlation matrix induced by the quantifications in a.

Clearly

max
y

max
α
λ(α, y) = max

y
λmax(R(y)),

which is what we wanted to show.

Thus the dominant MCA solution gives us the quantifications maximizing

the largest eigenvalue aspect. And the largest eigenvalue of the induced

correlation matrix is the largest eigenvalue of the MCA problem. But what

about the remaining MCA solutions ? They provide additional solutions of

the stationary equations for maximizing the largest eigenvalue aspect, cor-

responding with other non-global minima, local maxima, and saddle points.

As was pointed out very early on by Guttman [1941], the first MCA solution

should be distinguished clearly from the others, because the others corre-

spond with suboptimal solutions of the stationary equations. In fact, each

MCA eigenvector a has its own associated induced correlation matrix. And
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each MCA eigenvalue is an eigenvalue (and not necessarily the largest one)

of the correlation matrix induced by the corresponding MCA eigenvector.

It goes without saying that simple correspondence analysis or CA is the spe-

cial case in which we only have two variables, and both are categorical. The

correlation matrix has only one non-constant element, and all reasonable as-

pects will be monotone functions of that single correlation coefficient. Max-

imizing the aspect will give us the maximum correlation coefficient, and the

CA solutions will be the transformations solving the stationary equations of

the maximum correlation problem.

3.5. Relation with Multiple Regression. Multiple regression and PCA

are quite different techniques, but nevertheless there are some important re-

lationships. Consider the PCA problem of maximizing the sum of the m−1

largest eigenvalues of the correlation matrix. This is the same, of course, as

minimizing the smallest eigenvalue, and thus it can be interpreted as look-

ing for a singularity in the transformed data matrix. This is generally known

as principal component regression, and its dates back to Pearson [1901]. It

is a form of regression analysis, except that in the usual regression analysis

we single out one variable as the criterion and define the rest as the predic-

tors and we measure singularity by finding out if the criterion is in the space

spanned by the predictors.
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More precisely, the squared multiple correlation coefficient of variable j

with the remaining m − 1 variables can be written as

φ(R(X)) = max
β

1 − β′Rβ

where the vector β is restricted to have β j = 1. By the lemma we used

before, this is a convex function of R, which can be maximized by our

majorization algorithm. The partials are simply

∂φ

∂R
= −ββ′.

This can be easily extended to the sum of all m squared multiple correlation

coefficients of each variable with all others, which has been discussed in the

context of factor analysis by Guttman [1953] and others.

3.6. Relation with Structural Equation Modeling. So far, we have writ-

ten down our theory for the case in which we are maximizing a convex

aspect. Of course exactly the same results apply for minimizing a concave

aspect. Some aspects are more naturally discussed in this form.

Consider, for example, the determinant of the correlation matrix. Minimiz-

ing the determinant can also be thought of as looking for a singularity, i.e.

as yet another way of approaching regression. The representation

log ‖R‖ = min
Γ&0

log ‖Γ‖ + tr Γ−1R − m,
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where Γ & 0 means we require Γ to be positive semi-definite, shows that the

logarithm of the determinant is a concave function of the correlation matrix.

Also

∂φ

∂R
= R−1,

which means that the target for updating a variable is its image, in the sense

of Guttman [1953], the least squares prediction of the variable from all oth-

ers. Minimizing the determinant can be done by sequentially projecting

images on cones of admissible transformations.

In the same way, the aspect

φ(R(X)) = min
θ

log ‖Γ(θ)‖ + tr Γ−1(θ)R(X)

is the maximized multinormal log-likelihood of a parametric model for the

correlations. Such aspects are commonly used in structural equation model-

ing (SEM) of correlation matrices. The aspect is concave in R, with partials

Γ−1(θ̂), which means our algorithm applies by solving a parametric max-

imum likelihood problem (using a SEM program such as LISREL, EQS,

AMOS, or CALIS) in each step. We then transform the variables, and reap-

ply maximum likelihood. Exploratory and confirmatory factor analysis are

special cases of this general setup.
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3.7. Bilinearizability. There is more that can be said about the relation-

ship between MCA and the correlation aspects of nonlinear PCA. Most of

the theory is taken from De Leeuw [1982]; Bekker and De Leeuw [1988];

De Leeuw [1988]; De Leeuw et al. [1999].

Let us start by looking at the condition of bilinearizability of regressions.

This means that we can find transformation of the variables (in our class of

admissible transformations) such that all bivariate regressions are exactly

linear. In the case of m categorical variables with Burt table C this means

that the system of bilinearizability equations

(8) C j`y` = r j`C j jy j

has a solution, normalized by y′jC j jy j = 1 for all j. The corresponding

induced correlation matrix R(y) has m eigenvalues λs and m corresponding

normalized eigenvectors αs. We can now define the m vectors a js = α jsy j,

and we find
∑m

l=1 C j`a`s =
∑m

l=1 C j`y`α`s = C j jy j
∑m

l=1 r j`α`s = λsα jsC j jy j =

λsC j ja js. In other words, for each s the vector as defines a solution to the

MCA problem, with eigenvalue λs, and each of these m solutions induces

the same correlation matrix.

Bilinearizability has some other important consequences. A system of trans-

formations that linearizes all regressions solves the stationary equations for

any aspect of the correlation matrix. Thus in a multivariate data matrix with
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bilinearizability, it does matter which aspect we choose, because they will

all give the same transformations. Another important consequence of bilin-

earizability is that the standard error of the correlation coefficients computed

by maximizing an aspect have the same standard errors as the correlation

coefficients computed from known scores. This means we can apply the

asymptotically distribution free methods of SEM programs to optimized

correlation matrices, and they will still compute the correct tests and stan-

dard errors if the data are bilinearizable (or a sample from a bilinearizable

distribution).

3.8. Complete Bilinearizability. It may be the case that there is a second

set of transformations y j that satisfy the equations (8). Again, such set

generates m additional MCA solutions, all inducing the same correlation

matrix. Moreover y′jC j jy j = 0 for all j so the second set is orthogonal to

the first for each variable separately. And there may even be more sets.

If bilinearizability continues to apply, we can build up all MCA solutions

from the solutions to (8) and the eigenvectors of the induced correlation

matrices. Another way of thinking about this is that we solve
(

m
2

)
simple

CA problems for each of the subtables of the Burt matrix. Equation (8)

then says that if we have complete bilinearizability we can patch these CA

solutions together to form the MCA solution.
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More precisely, suppose C is a Burt matrix and D is its diagonal. We have

complete bilinearizability if there are matrices K j such that K′jC j jK j = I for

each j and K′jC j`K` is diagonal for each j and `. Remember that the direct

sum of matrices stacks the matrices in the diagonal submatrices of a large

matrix, which has all its non-diagonal submatrices equal to zero. If K is

the direct sum of the K j, then K′DK = I while E = K′CK has the same

structure as the Burt matrix, but all submatrices E j` are now diagonal. This

means there is a permutation matrix P such that P′K′CKP is the direct sum

of correlation matrices. The first correlation matrix contains all (1, 1) ele-

ments of the E j`, the second correlation matrix contains all (2, 2) elements,

and so on. By making L the direct sum of the matrices of eigenvectors

of these correlation matrices, we see that L′P′K′CKPL is diagonal, while

L′P′K′DKPL = I. Thus the matrix KPL contains all the MCA solutions

and gives a complete eigen decomposition of the Burt matrix.

This may be somewhat abstract, so let’s give a very important example.

Suppose we perform an MCA of a standard multivariate normal, with cor-

relation matrix Γ. Because all bivariate regressions are linear, linear trans-

formations of the variables are a bilinearizability system, with correlation

matrix Γ. But the quadratic Hermite-Chebyshev polynomials are another
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bilinearizability system, with correlation matrix Γ(2), the squares of the cor-

relation coefficients, and so on. Thus we see that applying MCA to a multi-

variate normal will give m solutions consisting of polynomials of degree d,

where the eigenvalues are those of Γ(d), for all d = 1, 2, · · ·.

In standard MCA we usually order the eigenvalues, and look at the largest

ones, often the two largest ones. The largest eigenvalue for the multivariate

normal is always the largest eigenvalue of Γ, but the second largest eigen-

value can be either the second largest eigenvalue of Γ or the largest eigen-

value of Γ(2). If the second largest eigenvalue in the MCA is the largest

eigenvalue of Γ(2), then for each variable the first transformation will be

linear and the second will be quadratic, which means we will find horse-

shoes [Van Rijckevorsel, 1987] in our scatterplots. There is an example

in Gifi [1990, page 382–384], where two-dimensional MCA takes both its

transformations from Γ, which means it finds the usual nonlinear PCA so-

lution.

Our analysis shows clearly what the relationships are between MCA and

nonlinear PCA. In PCA we find a single set of transformations, and a corre-

sponding induced correlation matrix which is optimal in terms of an aspect.

In MCA we find multiple transformations, each with its own corresponding

induced correlation matrix. Only in the case of complete bilinearizability
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(such as obtains in the multivariate normal) can we relate the two solutions

because they basically the same solution. MCA, however, presents the so-

lution in a redundant and confusing manner. This gives a more precise

meaning to the warning by Guttman [1941] that the additional dimensions

beyond the first one in MCA should be interpreted with caution.

3.9. Examples of Nonlinear PCA. The first example of a nonlinear PCA

is from Roskam [1968, p. 152]. The Department of Psychology at the Uni-

versity of Nijmegen has, or had, 9 different areas of research and teaching.

Each of the 39 psychologists working in the department ranked all 9 areas

in order of relevance for their work. The areas are given in Table 3, and the

data in Table 2. Think of this example as 9 observations on 39 variables. We

first perform a linear PCA on the rank numbers, which is sometimes known

as Tucker’s Preference Analysis [Tucker, 1960]. The first two eigenvalues

of R/m are 0.374 and 0.176, which means the first two principal compo-

nents capture 55% of the variation in the rank numbers. We now optimize

the sum of the first two eigenvalues over all monotone transformations of

the 39 variables. The eigenvalues increase to 0.468 and 0.297, and thus

the two principal components capture 76.6% of the transformed rank num-

bers. For completeness we also note that maximizing the largest eigenvalue
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gives 0.492 and maximizing the sum of the first three eigenvalues bring the

percentage of captured variance up to 87.2%.

If we look at the plots of eigenvectors (scaled by the square roots of the

eigenvalues) for the two-dimensional solution in Figures 3 and 4 we see that

the linear PCA produces groupings which are somewhat counter-intuitive,

mostly because there is so much variation left in the third and higher dimen-

sions. The grouping in the nonlinear PCA is much clearer. Psychologists

in the same area are generally close together, and there is a relatively clear

distinction between qualitative and quantitative areas.

A second data set are the GALO data, taken from Peschar [1975]. The ob-

jects (individuals) are 1290 school children in the sixth grade of elementary

school in the city of Groningen (Netherlands) in 1959. The four variables

are Gender, IQ, Advice, and SES. IQ has been categorized into 9 ordered

categories. In “Advice” the sixth-grade teachers categorizes the children

into seven possible forms of secondary education. In “SES” the parent’s

profession is categorized in six categories.

We use these data to maximize a large number of different aspects of the

correlation matrix. All variables are categorical, and no monotonicity or

smoothness constraints are imposed. Results are in Table 4 in which we

give the four eigenvalues of the correlation matrix, and in the final column
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the induced correlation between IQ and Advice. The largest possible eigen-

value is 2.157 and the smallest possible one is 0.196. The regression type

solutions, seeking singularities, tend to give a small value for the smallest

eigenvalue. In general the pattern of eigenvalues is very similar for the dif-

ferent aspects, suggesting approximate bilinearizability. We give the trans-

formations for the aspect that maximizes the largest eigenvalue in Figure 5.

We can also use this example to illustrate the difference between MCA and

nonlinear PCA. Figure 6 has the two principal components from an MCA

solution. The components come from different correlation matrices, one

corresponding with linear transformations and one corresponding with qua-

dratic ones. Thus the component scores form a horseshoe. The nonlinear

PCA solution for the same data is shown in Figure 7. Both components

come from the correlation matrix induced by the transformations in Fig-

ure 5. We see a completely different plot, without horseshoe, in which the

discrete parallel strips of points come about because the dominant variables

IQ and Advice only have a small finite number of values.

4. L N PCA

In the remainder of this chapter we discuss an entirely different way to

define and fit nonlinear PCA. It does not use least squares, at least not to

define the loss function. The notion of correlation between variables is not
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used in this approach, because we do not construct numerical quantified or

transformed variables.

Suppose the data are categorical, as in MCA, and coded as indicator ma-

trices. The indicator matrix Z j for variable j has n rows and k j columns.

Remember that
∑k j

`=1 zi j` = 1 for all i and j. As in MCA we represent both

the n objects and the k j categories of variable j as points ai and b jl in low-

dimensional Euclidean space.

We measure loss by using the deviance, or the negative log-likelihood,

∆(A, B) = −
n∑

i=1

m∑
j=1

k j∑
`=1

zi j` log πi j`(A, B),

where

πi jl(A, B) =
exp(η(xi, y j`))∑k j

ν=1 exp(η(xi, y jν)
.

For the time being we do not specify the combination rule η and we develop

our results for a prefectly general combination rule. But to make matters

less abstract, we can think of the inner product η(ai, b j`) = a′ib j`, or the

negative distance η(ai, b j`) = −‖ai − b j`‖.

4.1. Algorithm. To minimize the loss function we use quadratic majoriza-

tion [Böhning and Lindsay, 1988; De Leeuw, in press]. We need the first

and the second derivatives of the deviance with respect to the ηi j`. Here

ηi j` = ηi j`(A, B) is used interchangeably with η(ai, b j`). Simple computation
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gives

∂∆

∂ηi j`
= πi j` − zi j`

and

∂2∆

∂ηi j`∂ηi jν
= πi j`δ

`ν − πi j`πi jν.

It follows that for each (i, j) the matrix of second derivatives, which is of

order k j, has a largest eigenvalue less than or equal to 1
2 . Thus, from a Taylor

expansion at η(Ã, B̃),

(9) ∆(A, B) ≤ ∆(Ã, B̃)+

+

n∑
i=1

m∑
j=1

k j∑
`=1

(πi j`(Ã, B̃) − zi j`)(η(ai, b j`) − η(ãi, b̃ j`))+

+
1
4

n∑
i=1

m∑
j=1

k j∑
`=1

(η(ai, b j`) − η(ãi, b̃ j`)2.

By general majorization theory explained in Appendix A, it suffices to min-

imize the right hand side of (9) in each iteration. This is equivalent, by

completing the square, to minimizing

(10a)
n∑

i=1

m∑
j=1

k j∑
`=1

[ηi j`(A, B) − τi j`(Ã, B̃)]2

where the current target is defined by

(10b) τi j`(Ã, B̃) = ηi j`(Ã, B̃) − 2[zi j` − πi jl(Ã, B̃)].
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Thus we can solve the logistic nonlinear PCA problem by using iterative

least squares. If we know how to fit ηi j`(A, B) to a matrix by least squares,

then we can also fit it logistically. In iteration k we compute the current

target τ(A(k), B(k)) by (10b), and then we minimize (or at least improve) the

least squares loss function (10a) to find A(k+1) and B(k+1).

This implies immediately that for the inner product or bilinear composi-

tion rule η we can use iterated singular value decomposition, while for the

negative distance rule we can use iterated least squares multidimensional

unfolding. Observe, however, that the target values in (10b) may very well

be negative, which can be a problem for some multidimensional scaling al-

gorithms. In De Leeuw [in press] it is shown how the approach can easily

be extended to deal with probit, instead of logit, loss functions.

4.2. Perfect Fit. In general it will not be possible to find a perfect solution

with zero deviance. We discuss under what conditions such a solution does

exist. Consider the system of strict inequalities

(11) η(ai, b j`) > η(ai, b jν)

for all (i, j, `, ν) for which zi j` = 1. In other words, for all i and j the largest

of the η(ai, b jν) must be the the one corresponding to category ` for which

zi j` = 1.
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Suppose system (11) has a solution (Â, B̂), and suppose our combination

rule η is homogeneous in the sense that η(λai, λb j`) = λrη(ai, b j`) for some

positive power r. Then by letting λ go to infinity we see that πi j`(λÂ, λB̂)

goes to one for all zi j` equal to one, and thus ∆(λÂ, λB̂) goes to zero. We

have a perfect solution, but with all points at infinity. While generally (11)

will not be solvable, we can perhaps expect some points to move to infinity

in the actual solutions we compute.

4.3. Geometry of Combination Rules. In our further analysis we concen-

trate on the particular combination rule using negative distance η(ai, b j`) =

−‖ai − b jl‖. System (11) says that we want to map objects and categories

into low-dimensional space in such a way that each object is closest to the

category point that it falls in.

This can be illustrated nicely by using the notion of a Voronoi diagram [Ok-

abe et al., 2000]. In a Voronoi diagram (for a finite number, say p, points)

space is partitioned into p regions, one for each point. The cell containing

the point s is the locus of all points in space that are closer to point s than

to the other p− 1 points. Voronoi cells can be bounded and unbounded, and

in the Euclidean case they are polyhedral and bounded by pieces of vari-

ous perpendicular bisectors. Using the b j` we can make a Voronoi diagram

for each variable. Our logistic PCA, for this particular combination rule,
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says that each object point ai should be in the correct Voronoi cell for each

variable.

This type of representation is closely related to representation of categorical

data in Guttman’s MSA-I, discussed by Lingoes [1968]. It should also be

emphasized that if the data are binary, then the Voronoi diagram for a vari-

able just consist of a single hyperplane partitioning space into two regions.

System (11) now says that the “yes” responses should be on one side of the

hyperplane and the “no” responses should be on the other side. This is a

classical version of nonlinear PCA, dating back to at least Coombs and Kao

[1955], and used extensively in political science [Clinton et al., 2004].

As in Gifi [1990], we can construct variations on the basic technique by

imposing constraints on the y j`. If we constrain them, for example, to be on

a straight line through the origin by setting y j`s = z j`a js then the bisecting

hyperplanes will all be perpendicular to this line and for each variable the

space will be divided into parallel strips or bands. Objects should be in the

correct strip. This is the form of nonlinear PCA we already discussed in the

least squares context, except that loss is measured on probabilities instead

of correlations.

4.4. Examples. There is a example analyzing 20 "aye" and "nay" votes in

the US Senate in De Leeuw [in press]. The 20 issues voted on are, of course,
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binary variables, which means the two Voronoi cells for each variable are

half-spaces. In this section we will analyze a slightly more complicated

data set, using the GALO data.

The four GALO variables have a total of 24 categories, and there are 1290

individuals. Thus the metric unfolding analysis in each majorization step

must fit 30960 distances, using targets τ that can easily be negative. If

we make all distances zero, which can obviously be done by collapsing all

points, then the deviance becomes 1290∗(log 2+log 9+log 6+log 7) = 8550.

This is, in a sense, the worst possible solution, in which all probabilities are

equal.

We have written some software to optimize our loss functions. It has not

been tested extensively, but so far it seems to provide convergence. It

starts with the MCA solution. Remember that in MCA [Michailidis and

De Leeuw, 1998] we want the ai to be close in the least squares sense to the

category centroids b j`, or in the graph drawing interpretation [De Leeuw

and Michailidis, 1999] we want the category stars to be small. It seems

reasonable to suppose that small stars will correspond with points in their

corresponding Voronoi cell. The MCA solution starts with a negative like-

lihood of 8490 and improves this to 8315.
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In Figure 8 we draw the Voronoi cells for IQ (observe they are all open).

The category points for IQ are almost on a circle (the horseshoe closes

somewhat), starting first the lowest IQ category at the bottom center, and

then proceeding clockwise to the higher categories. We present this solution

somewhat tentatively, because both theory and algorithm are new and will

require much research and refinement. It is clear, however, that at least

in principle the basic theory and algorithms of Gifi [1990], which cover

MCA, nonlinear PCA, and various forms of nonlinear canonical analysis,

can be extended to logit and probit loss functions that optimize aspects of

probabilities instead of aspects of correlation coefficients.
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A A. M

In a majorization algorithm the goal is to minimize a function φ(θ) over

θ ∈ Θ, with Θ ⊆ Rp. Majorization requires us to construct a function ψ(θ, ξ)

defined on Θ × Θ that satisfies

φ(θ) ≤ ψ(θ, ξ) for all θ, ξ ∈ Θ,(12a)

φ(θ) = ψ(θ, θ) for all θ ∈ Θ.(12b)

Thus, for a fixed ξ, ψ(•, ξ) is above φ, and it touches φ at the point (ξ, φ(ξ)).

We then say that ψ(θ, ξ) majorizes φ(θ) at ξ.

There are two key theorems associated with these definitions.

Theorem A.1. If φ attains its minimum on Θ at θ̂, then ψ(•, θ̂) also attains

its minimum on Θ at θ̂.

Proof. Suppose ψ(θ̃, θ̂) < ψ(θ̂, θ̂) for some θ̃ ∈ Θ. Then, by (12a) and (12b),

φ(θ̃) ≤ ψ(θ̃, θ̂) < ψ(θ̂, θ̂) = φ(θ̂), which contradicts the definition of θ̂ as the

minimizer of φ on Θ. �

Theorem A.2. If θ̃ ∈ Θ and θ̂ minimizes ψ(•, θ̃) over Θ, then φ(θ̂) ≤ φ(θ̃).

Proof. By (12a) we have φ(θ̂) ≤ ψ(θ̂, θ̃). By the definition of θ̂ we have

ψ(θ̂, θ̃) ≤ ψ(θ̃, θ̃). And by (12b) we have ψ(θ̃, θ̃) = φ(θ̃). Combining these

three results we get the result. �
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These two results suggest the following iterative algorithm for minimizing

φ(θ). Suppose we are at step k.

Step 1: Given a value θ(k) construct a majorizing function ψ(θ, θ(k)).

Step 2: Set θ(k+1) = argmin
θ∈Θ

ψ(θ, θ(k)).

Step 3: If |φ(θ(k+1)) − φ(θ(k)| < ε for some predetermined ε > 0 stop;

else go to Step 1.

In order for this algorithm to be of practical use, the majorizing function

ψ needs to be easy to minimize, otherwise nothing substantial is gained by

following this route.

We demonstrate next how the idea behind majorization works with a simple

artificial example, chosen for its simplicity. Consider φ(θ) = θ4 − 10θ2, θ ∈

R. Because θ2 ≥ ξ2+2ξ(θ−ξ) = 2ξθ−ξ2 we see that ψ(θ, ξ) = θ4−20ξθ+10ξ2

is a suitable majorization function. The majorization algorithm is θ+ = 3
√

5ξ.

The algorithm is illustrated in Figure 9. We start with θ(0) = 5. Then

ψ(θ, 5) is the dashed function. It is minimized at θ(1) ≈ 2.924, where

ψ(θ(1), 5) ≈ 30.70, and φ(θ(1)) ≈ −12.56. We then majorize by using the

dotted function ψ(θ, θ(1)), which has its minimum at about 2.44, equal to

about −21.79. The corresponding value of φ at this point is about −24.1.

Thus we are rapidly getting close to the local minimum at
√

5, with value

25. The linear convergence rate at this point is 1
3 .
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We briefly address next some convergence issues (for a general discussion

see the book by Zangwill [1969]). If φ is bounded above below on Θ,

then the algorithm generates a bounded decreasing sequence of function

values φ(θ(k)), which thus converges to φ(θ∞). For example, continuity of φ

and compactness of Θ would suffice for establishing the result. Moreover

with some additional mild continuity considerations [De Leeuw, 1994] we

get that ||θ(k) − θ(k+1)|| → 0, which in turn implies, because of a result by

Ostrowski [1966], that either θ converges to a single point or that there

is a continuum of limit points (all with the same function value). Hence,

majorization algorithms, for all practical purposes, find local optima.

We make two final points about this class of algorithms. It is not neces-

sary to actually minimize the majorization function in each step, it suffices

to decrease it in a systematic way, for instance by taking a single step of

a convergent “inner” iterative algorithm. And the rate of convergence of

majorization algorithms is generally linear, in fact it is equal to the size of

the second derivatives of the majorization function compared to the size of

the second derivatives of the original function [De Leeuw and Michailides,

(in preparation)].
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A B. S

There are quite a number of software options for performing the various

forms of nonlinear PCA explained in this chapter. PRINQUAL in SAS [1992]

can optimize sums of the largest eigenvalues, as well as the sum of correla-

tions and the determinant aspect. Categories [Meulman and Heiser, 1999]

has CATPCA, which optimizes the classical eigenvalue criteria. In the R con-

tributed packages we find the function homals from the homals package,

which can perform nonlinear PCA for categorical variables with or with-

out ordinal constraints using the many options inherent in the Gifi system.

There are also programs for nonlinear PCA in the Guttman-Lingoes pro-

grams [Lingoes, 1973].

We are currently preparing the gifi package for R, which which will have

functions to optimize arbitrary aspects of the correlation matrix and to the

the nonlinear PCA of rank orders we applied in the Roskam example. It will

also have the PREHOM program discussed by Bekker and De Leeuw [1988],

which finds complete bilinearizable systems of scores of they exist, and the

LINEALS program discussed by De Leeuw [1988]. The R code is available

from the author.

Code for the logistic (and probit) versions of PCA in R is also available, in

preliminary form, and will eventually be wrapped into a separate package.
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The binary version has been tested quite extensively [Lewis and De Leeuw,

2004], and can be compared with similar programs for IRT analysis written

mostly by educational statisticians and for roll-call analysis written mostly

by political scientists.



36 JAN DE LEEUW

R

P. Bekker and J. De Leeuw. Relation between Variants of Nonlinear Prin-

cipal Component Analysis. In J.L.A. Van Rijckevorsel and J. De Leeuw,

editors, Component and Correspondence Analysis. Wiley, Chichester,

England, 1988.

D. Böhning and B.G. Lindsay. Monotonicity of Quadratic-approximation

Algorithms. Annals of the Institute of Statistical Mathematics, 40(4):

641–663, 1988.

J. Clinton, S. Jackman, and D. Rivers. The Statistical Analysis of Roll Call

Data. American Political Science Review, 98:355–370, 2004.

C.H. Coombs and R.C. Kao. Nonmetric Factor Analysis. Engineering Re-

search Bulletin 38, Engineering Research Institute, University of Michi-

gan, Ann Arbor, 1955.

J. De Leeuw. Multivariate Analysis with Optimal Scaling. In S. Das Gupta

and J. Sethuraman, editors, Progress in Multivariate Analysis, Calcutta,

India, 1990. Indian Statistical Institute.

J. De Leeuw. Principal Component Analysis of Binary Data by Iterated Sin-

gular Value Decomposition. Computational Statistics and Data Analysis,

in press.

J. De Leeuw. Block Relaxation Methods in Statistics. In H.H. Bock,

W. Lenski, and M.M. Richter, editors, Information Systems and Data



NONLINEAR PCA 37

Analysis, Berlin, 1994. Springer Verlag.

J. De Leeuw. Monotonic Regression. In Brian S. Everitt and David C. How-

ell, editors, Encycxlopedia of Statistics in Behavioral Science, volume 3,

pages 1260–1261. Wiley, 2005.

J. De Leeuw. Multivariate Analysis with Linearizable Regressions. Psy-

chometrika, 53:437–454, 1988.

J. De Leeuw. Nonlinear Principal Component Analysis. In H. Caussinus Et

Al., editor, COMPSTAT 1982, Vienna, Austria, 1982. Physika Verlag.

J. De Leeuw and J.J. Meulman. Principal Component Analysis and Re-

stricted Multidimensional Scaling. In W. Gaul and M. Schader, editors,

Classification as a Tool of Research, Amsterdam, London, New York,

Tokyo, 1986. North-Holland.

J. De Leeuw and G. Michailides. Block Relaxation and Majorization Algo-

rithms in Statistics. Springer, (in preparation).

J. De Leeuw and G. Michailidis. Graph Layout Techniques and Multidi-

mensional Data Analysis. In T. Bruss and L. LeCam, editors, Festschrift

for Thomas S. Ferguson. Institute of Mathematical Statistics, 1999.

J. De Leeuw, G. Michailidis, and D. Y. Wang. Correspondence Analysis

Techniques. In S. Ghosh, editor, Multivariate Analysis, Design of Exper-

iments, and Survey Sampling. Marcel Dekker, 1999.

A. Gifi. Nonlinear multivariate analysis. Wiley, Chichester, England, 1990.



38 JAN DE LEEUW

J.C. Gower and D.J. Hand. Biplots. Number 54 in Monographs on Statistics

and Applied Probability. Chapman and Hall, 1996.

L. Guttman. The Quantification of a Class of Attributes: A Theory and

Method of Scale Construction. In P. Horst, editor, The Prediction of

Personal Adjustment. Social Science Research Council, New York, New

York, 1941.

L. Guttman. Image Theory for the Structure of Quantitative Variables. Psy-

chometrika, 18:277–296, 1953.

A.S. Householder and G. Young. Matrix Approximation and Latent Roots.

American Mathematical Monthly, 45:165–171, 1938.

I.T. Jolliffe. Principal Component Analysis. Springer Series in Statistics.

Springer Verlag, Second edition, 2002.

J.B. Kruskal and R.N. Shepard. A Nonmetric Variety of Linear Factor Anal-

ysis. Psychometrika, 39:123–157, 1974.

J. Lewis and J. De Leeuw. A General Method for Fitting Spatial Models of

Politics. Technical report, UCLA Department of Statistics, 2004.

J.C. Lingoes. The Guttman-Lingoes Nonmetric Program Series. Mathesis

Press, 1973.

J.C. Lingoes. The Multivariate Analysis of Qualitative Data. Multivariate

Behavioral Research, 3:61–94, 1968.



NONLINEAR PCA 39

J.C. Lingoes and L. Guttman. Nonmetric Factor Analysis: a Rank Reducing

Alternative to Linear Factor Analysis. Multivariate Behavioral Research,

2:485–505, 1967.

J. J. Meulman and W.J. Heiser. SPSS Categories 10.0. SPSS Inc., Chicago,

Illinois, 1999.

G. Michailidis and J. De Leeuw. The Gifi system for Descriptive Multivari-

ate Analysis. Statistical Science, 13:307–336, 1998.

A. Okabe, B. Boots, K. Sugihara, and S.N. Chiu. Spatial Tessellations.

Wiley, second edition, 2000.

A. M. Ostrowski. Solution of Equations and Systems of Equations. Aca-

demic Press, New York, N.Y., 1966.

K. Pearson. On Lines and Planes of Closest Fit to Systems of Point is Space.

Philosophical Magazine (6), 23:559–572, 1901.

J. L. Peschar. School, Milieu, Beroep. Tjeek Willink, Groningen, The

Netherlands, 1975.

E.E.CH.I. Roskam. Metric Analysis of Ordinal Data in Psychology. PhD

thesis, University of Leiden, 1968.

SAS. SAS/STAT Software: Changes and Enhancements. Technical Report

P-229, SAS Institute Inc., Cary, North Carolina, 1992.

L.L. Thurstone. Multiple Factor Analysis. University of Chicago Press,

Chicago, Illinois, 1947.



40 JAN DE LEEUW

L.R. Tucker. Intra-individual and Inter-individual Multidimensionality. In

H. Gulliksen and S. Messick, editors, Psychological Scaling: Theory and

Applications. Wiley, 1960.

J.L.A. Van Rijckevorsel. The Application of Fuzzy Coding and Horseshoes

in Multiple Correspondence Analysis. PhD thesis, University of Leiden,

The Netherlands, 1987. Also published in 1987 by DSWO-Press, Leiden,

The Netherlands.

F.W. Young, Y. Takane, and J. De Leeuw. The Principal Components

of Mixed Measurement Level Multivariate Data: an Alternating Least

Squares Method with Optimal Scaling Features. Psychometrika, 45:279–

281, 1978.

W. I. Zangwill. Nonlinear Programming: a Unified Approach. Prentice-

Hall, Englewood-Cliffs, N.J., 1969.



NONLINEAR PCA 41

base height diag area circf b/h h/b
1 1 1.41 1 4 1.00 1.00
2 2 2.82 4 8 1.00 1.00
3 3 4.24 9 12 1.00 1.00
4 4 5.66 16 16 1.00 1.00
5 5 7.07 25 20 1.00 1.00
6 6 8.49 36 24 1.00 1.00
7 7 9.90 49 28 1.00 1.00
8 8 11.31 64 32 1.00 1.00
9 9 12.73 81 36 1.00 1.00

10 10 14.14 100 40 1.00 1.00
11 10 14.87 110 42 1.10 0.91
12 9 15.00 108 42 1.33 0.75
13 8 15.26 104 42 1.63 0.62
14 7 15.65 98 42 2.00 0.50
15 6 16.16 90 42 2.50 0.40
16 5 16.76 80 42 3.20 0.31
17 4 17.46 68 42 4.25 0.23
18 3 18.24 54 42 6.00 0.17
19 2 19.10 38 42 9.50 0.11
20 1 20.02 20 42 20.00 0.05

T 1. Rectangles
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SOC EDU CLI MAT EXP CUL IND TST PHY
1 1 5 7 3 2 4 6 9 8
2 1 3 2 7 6 4 5 8 9
3 1 6 5 3 8 2 4 7 9
4 1 5 4 7 6 2 3 8 9
5 7 1 4 3 6 8 2 9 5
6 6 1 2 5 3 7 8 4 9
7 2 1 4 5 3 8 6 7 9
8 4 1 2 8 3 5 9 6 7
9 4 1 3 5 7 6 8 2 9

10 3 1 2 4 6 8 9 7 5
11 4 1 8 3 7 6 2 5 9
12 3 2 1 5 6 8 7 4 9
13 2 9 1 6 8 3 4 5 7
14 2 7 1 4 3 9 5 6 8
15 7 2 1 3 5 8 9 4 6
16 5 7 8 1 3 9 4 2 6
17 5 9 8 1 2 7 6 3 4
18 9 6 5 1 3 7 8 2 4
19 9 6 7 2 1 8 3 4 5
20 8 3 7 2 1 9 4 5 6
21 7 2 8 5 1 9 6 4 3
22 8 7 6 3 1 9 2 5 4
23 8 6 5 2 1 9 4 7 3
24 8 7 5 2 1 9 6 4 3
25 7 3 6 2 1 9 8 4 5
26 4 7 9 5 1 8 2 3 6
27 5 6 8 2 1 9 4 7 3
28 1 8 9 2 3 7 6 4 5
29 2 5 6 4 8 1 7 3 9
30 2 5 4 3 6 1 8 7 9
31 5 3 2 9 4 1 6 7 8
32 4 5 6 2 8 7 1 3 9
33 5 7 9 3 2 8 1 4 6
34 6 3 7 2 8 5 1 4 9
35 8 5 7 4 2 9 1 3 6
36 2 6 5 4 3 7 1 8 9
37 5 8 9 2 3 7 1 4 6
38 8 7 3 4 2 9 5 6 1
39 5 6 7 2 4 9 8 3 1

T 2. Roskam Psychology Subdiscipline Data
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Area Plot Code
Social Psychology SOC

Educational and Developmental Psychology EDU
Clinical Psychology CLI

Mathematical Psychology and Psychological Statistics MAT
Experimental Psychology EXP

Cultural Psychology and Psychology of Religion CUL
Industrial Psychology IND

Test Construction and Validation TST
Physiological and Animal Psychology PHY

T 3. Nine Psychology Areas
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Aspect λ1 λ2 λ3 λ4 r23
Sum of Correlations 2.147 0.987 0.637 0.229 0.767
Sum of Squared Correlations 2.149 0.998 0.648 0.204 0.791
Sum of Cubed Correlations 2.139 0.934 0.730 0.198 0.796
Largest Eigenvalue 2.157 0.950 0.682 0.211 0.784
Sum of Two Largest Eigenvalues 1.926 1.340 0.535 0.198 0.795
Sum of Three Largest Eigenvalues 1.991 1.124 0.688 0.196 0.796
Squared Multiple Correlation with Advice 2.056 1.043 0.703 0.196 0.796
Sum of Squared Multiple Correlations 1.961 1.302 0.538 0.199 0.795
Determinant 2.030 1.220 0.551 0.199 0.796

T 4. GALO Example with Aspects
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Figure 1: Majorization

1

F 9. Majorization Example
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