
UC Davis
UC Davis Previously Published Works

Title
A systematic study on parameter correlations in large-scale duplicate document 
detection

Permalink
https://escholarship.org/uc/item/8bj1v6wf

Journal
Knowledge and Information Systems, 14(2)

ISSN
0219-1377

Authors
Ye, Shaozhi
Wen, Ji-Rong
Ma, Wei-Ying

Publication Date
2008-02-01

DOI
10.1007/s10115-007-0071-9
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8bj1v6wf
https://escholarship.org
http://www.cdlib.org/


Under consideration for publication in Knowledge and Information
Systems

A systematic study on parameter
correlations in large scale duplicate
document detection 1

Shaozhi Ye †2, Ji-Rong Wen ‡ and Wei-Ying Ma ‡
† Department of Computer Science, University of California, Davis, CA, USA;
‡ Microsoft Research Asia, Beijing, P.R.China

Abstract. Although much work has been done on duplicate document detection (DDD)
and its applications, we observe the absence of a systematic study on the performance
and scalability of large-scale DDD algorithms. It is still unclear how various parameters
in DDD correlate mutually, such as similarity threshold, precision/recall requirement,
sampling ratio, and document size. This paper explores the correlations among several
most important parameters in DDD and the impact of sampling ratio is of most interest
since it heavily affects the accuracy and scalability of DDD algorithms. An empirical
analysis is conducted on a million HTML documents from the TREC .GOV collection.
Experimental results show that even using the same sampling ratio, the precision of
DDD varies greatly on documents with different sizes. Based on this observation, we
propose an adaptive sampling strategy for DDD, which minimizes the sampling ratio
with the constraint of a given precision requirement. We believe that the insights from
our analysis are helpful for guiding the future large scale DDD work.

Keywords: Duplicate Document Detection; Clustering; Sampling; Shingling

1. Introduction

Duplicate documents and mirrored web sites are phenomenal on the Web. For ex-
ample, it was reported that more than 250 sites mirrored the documents of Linux
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Document Project (LDP)3. Broder et al. clustered the duplicate and nearly-
duplicate ones in 30 millions documents and got 3.6 millions clusters containing
12.1 millions documents (Broder, Glassman, Manasse and Zweig, 1997). Bharat
and Broder reported that about 10% of web sites were mirrored to various extents
in a study involving 238,000 sites (Bharat and Broder, 1999).

Because of the high duplication of web documents, it is important to de-
tect duplicate and nearly-duplicate documents in many applications, such as
crawling (Fetterly, Manasse, Najork and Wiener, 2003), ranking (Wang and Kit-
suregawa, 2002) (Yi, Liu and Li, 2003), clustering (Zamir and Etzioni, 1998)
(Dean and Henzinger, 1999) , archiving and caching (Fetterly, Manasse and Na-
jork, 2004) (Mukherjea1, 2004). On the other hand, the tremendous volume of
web pages challenges the performance and scalability of DDD algorithms. For
instance, Google4 announced to have indexed eight billions web pages in April
2005. How can DDD algorithms scale up with the volume of Web and process
this amount of pages in acceptable time?

The exactly duplicate documents are easy to detect with the help of hash
functions. To detect the nearly-duplicate documents (i.e. there are some slightly
differences between these documents), however, requires much more complex
algorithms as well as much higher computation cost. Moreover, due to the update
latency and site template differences, most mirrored or copied documents are
nearly duplicates (Bharat and Broder, 1999). Therefore we focus on the nearly-
duplicate document detection and the DDD in the rest of this paper refers to
nearly-duplicate document detection unless explicitly stated.

As far as we know, Broder et al. for the first time proposed a DDD algorithm
for large-scale document sets in (Broder et al., 1997). Many applications and
following research, such as (Bharat and Broder, 1999), (Bharat, Broder, Dean
and Henzinger, 2000), (Fetterly, Manasse, Najork and Wiener, 2003), (Fetterly,
Manasse and Najork, 2003), and (Ye, Song, Wen and Ma, 2004), later adopted
this algorithm for its simplicity and efficiency.

While much work has been done on both DDD algorithms and their appli-
cations, little has been explored about the factors affecting their performance
and scalability. Meanwhile, to deal with the huge volume of data, all prior work
has to make some trade-offs in their implementations. How do these trade-offs
affect the result? Although there has been some empirical studies on document
clustering models such as (Zhong and Ghosh, 2005), to our best knowledge, no
previous work reports any systematic analysis on correlations among different
parameters in DDD, and none of them provides a formal evaluation of their
trade-off choices.

This paper studies several of the most important parameters in DDD and
their correlations. These parameters include similarity threshold, precision/recall
requirement, sampling ratio, and document size. Among them, sampling ratio
is of most interest, for it greatly affects the accuracy and scalability of DDD
algorithms.

To uncover the correlations among DDD parameters, an empirical analysis is
conducted in this paper. The TREC .GOV collection, which includes a million
web pages, is used as our testing dataset. Although the volume of this collection is
much smaller than the whole Web, we believe that this collection to some extent

3 http://www.linuxdoc.org
4 http://www.google.com
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represents the Web well for DDD algorithms (Soboroff, 2002). Experimental
results show that even using the same sampling ratio, the precision of DDD on
documents of different sizes varies greatly. To be more specific, small sampling
ratio greatly hurts the accuracy of DDD on small documents. For example, with
6.25% sampling ratio and 0.85 similarity threshold, the precision on documents
having fewer than 500 words is only 0.57 and the overall precision for the entire
document set is 0.70. Based on this observation, we propose an adaptive sampling
method for DDD which uses dynamic sampling ratio for different document size
with the constraint of given precision requirements. With our proposed method,
5.55% sampling ratio can achieve the precision of 0.85 for all documents with
0.85 similarity threshold. We believe that our analysis is helpful for guiding the
future DDD work.

The remainder of this paper is organized as follows. Section 2 reviews the
prior work on DDD. Section 3 introduces the DDD algorithm and the document
similarity metric used in this paper. Section 4 describes the experiment setup and
Section 5 presents the experimental results on parameter correlations. Based on
our observations, an adaptive sampling strategy is proposed in Section 6. Finally
we discuss the possible DDD applications in Section 7 and conclude this paper
with Section 8.

2. Prior Work

While there are some studies on document structure similarity (Li, Ng and Sun,
2005) and hyper link connectivity similarity (Dean and Henzinger, 1999), we
focus on the content similarity here. Based on the ways to calculate document
similarity, the prior work on duplicate document detection can be partitioned
into two categories, shingle based and term based algorithms, both of which can
be applied offline and online. We review these algorithms in this section.

2.1. Shingle Based Algorithms

Based on the concept of shingle, shingle based algorithms are widely used in
large scale DDD, such as (Brin, Davis and Garcia-Molina, 1995), (Heintze, 1996),
(Broder et al., 1997), (Shivakumar and Garcia-Molina, 1998), (Bharat and Broder,
1999), (Bharat et al., 2000), (Cho, Shivakumar and Garcia-Molina, 2000), (Fetterly,
Manasse and Najork, 2003), and (Ye et al., 2004). A shingle is a set of contiguous
terms in a document. Shingle based algorithms calculate the similarity between
two documents by the number of shingles they share.

Pairwise comparison results in O(N2) computation complexity, where N
denotes the number of documents, which is not feasible when dealing with
large scale document sets. Broder et al. proposed an O(N log (N/m)) algo-
rithm (Broder et al., 1997), where m denotes the size of the main memory,
which is employed by most large scale DDD work later. This algorithm can be
described as follows.

1. Each document is divided into shingles and a hash value is assigned to each
shingle. This step results in kN pairs of <hash(shingle), document ID>, where
k denotes the average shingles in a document.

2. Sorting the kN pairs got from the previous step by their hash values, shingles
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with the same hash value are grouped together. In this step, merge sort is em-
ployed to maximize the memory usage because the data volume is much larger
than the main memory capacity. This step dominates the whole algorithm with
O(N log (N/m)) running time.

3. Scanning the sorted <hash(shingle), document ID> list, the number of shared
shingles between any two documents can be counted, resulting in a list of
<document ID1, document ID2, number of shared shingles>.

4. Traversing the <document ID1, document ID2, number of shared shingles>
list, the similarity between any two documents sharing at least one shingle can
be calculated.

The most challenging step in Broder’s algorithm is to cluster the large amount
of shingles by their hash values. Moreover, to avoid the alignment problem, the
shingling is often processed with a sliding window, which increases the number
of shingles for each document (Section 3.1).

To accommodate large document collections, several sampling strategies have
been proposed to reduce the number of shingles to compare.

– Heintze selects shingles with the smallest N hash values for each document
and removes shingles with high frequencies (Heintze, 1996).

– Broder et al. sample one of 25 shingles by selecting the shingles whose hash
value is a multiple of 25 and choose at most 400 shingles for each docu-
ment (Broder et al., 1997). In this way they processed 30 millions web pages
in 10 days.

– Another more efficient alternative is also proposed in (Broder et al., 1997),
which combines several shingles into a supershingle and computes the hash
values of supershingles. Although the supershingle algorithm is much faster,
the authors noted that it does not work well for small documents and no
detailed results of this algorithm are reported.

– In (Shivakumar and Garcia-Molina, 1998) and (Cho et al., 2000), exact copies
are removed in advance and then every two or four lines of document are made
as a shingle. Although no sampling is explicitly reported, the large shingle size
may hurt the recall of DDD. And the line based shingling is also sensitive to
the document organization, for example, two HTML documents may be close
in content while different in line or paragraph outline.

– Fetterly et al. use five-gram as a shingle and sample 84 shingles for each doc-
ument (Fetterly, Manasse, Najork and Wiener, 2003) (Fetterly, Manasse and
Najork, 2003). Then the 84 shingles are clustered into six supershingles, in
other words, each supershingle contains 14 adjacent shingles. The documents
having two supershingles in common are clustered as nearly-duplicate docu-
ments. Fetterly et al. processed 150M web pages with this method.

We summarize some of the previous work in Table 1.
To deal with the large volume of data, almost all the previous work employs

sampling strategies, but none of them provides an analysis on how their sampling
strategies affect the accuracy of DDD algorithms. On the other hand, sampling
has to be used to keep up with the increasing volume of document sets to be
examined. Hence it is important to study the impact of sampling in DDD.
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Table 1. Parameters used in Prior Work
Work # Files Shingling Hash Similarity

Strategy Length Threshold
Broder97 30M 10-gram 40-bit 0.5

Shivakumar98, 24M entire document, 32-bit 25 or 15 shingles
Cho00 25M two or four lines in common

Fetterly03a 150M 5-gram 64-bit two supershingles
Fetterly03b in common

Sampling Ratio/Strategy
Broder97 1/25 and at most 400 shingles per document

Shivakumar98 and Cho00 N/A
Fetterly03a and 14 shingles per supershingle,

Fetterly03b six supershingles/document

2.2. Term Based Algorithms

Term based algorithms (Chowdhury, Frieder, Grossman and McCabe, 2002)
(Cooper, Coden and Brown, 2002) (Conrad, Guo and Schriber, 2003) use in-
dividual terms (words) as the basic unit, instead of continuous k-gram shingles,
i.e. they do not consider the relative position or ordering among words. Cosine
similarity between document vectors is used to calculate similarity between doc-
uments. Many information retrieval (IR) techniques, especially feature selection,
are used in these algorithms, which makes them much more complex than shingle
based algorithms. The largest set processed by term based algorithms contains
only about 500K web pages (Chowdhury et al., 2002).

Term based DDD algorithms work well for small-scale IR systems and most
of them also achieve good performance when used online. But for search engines
which need to answer over 100M queries everyday, online methods are not a
good choice because of their prohibitive computation cost. Meanwhile, in some
applications, we have to do DDD offline, for example, there may be no query
available for selecting subsets to perform online DDD. In this paper, we focus
on shingle based offline approaches and do not discuss more about term based
or online methods.

3. Algorithm

Although much work has been done on DDD algorithms and many applications
employ DDD techniques, there is no systematic analysis on how the parameters
in DDD correlate, such as accuracy, similarity threshold and sampling ratio. And
there is also no formal study on the accuracy and scalability of DDD. This paper
aims to explore these problems. We choose the method in (Broder et al., 1997)
for analysis since many DDD algorithms and applications follow it. We believe
our conclusions can also guide other DDD algorithms especially in sampling
strategies.

Broder’s algorithm has been introduced in Section 2.1. In this section, we
present the details of two basic issues in this algorithm, shingling and document
similarity.
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3.1. Sliding Window Shingling

Since the exactly duplicate documents, which have no differences between two
documents, are easy to identify by comparing the fingerprints (hashes) of the
whole document, this paper focuses on nearly duplicates, which have slightly
differences between two documents. To find the differences and calculate docu-
ment similarity, documents have to be broken into smaller pieces, i.e. shingles.

A contiguous subsequence in a document is called a shingle. Shingling is the
process to divide documents into shingles. First, each document is viewed as a
sequence of words and is transformed into a canonical sequence of tokens. This
canonical form ignores minor details such as formatting and HTML tags. Then
every document D is associated with a set of subsequences of token S(D, w), i.e.
shingles.

Given a document D, we define its w-shingling S(D,w) as the union of all
unique shingles with size w contained in D. For instance, the 3-shingling of “The
ones we don’t know we don’t know” is the set {“the ones we”, “ones we don’t”,
“we don’t know”, “don’t know we”, “know we don’t”}. Although the shingle “we
don’t know” appears twice, only one is kept.

Shingling with a fixed length sliding window avoids the alignment problem
between two documents with minor differences.

In our experiments, the shingle size w is set to 10, the same as (Broder
et al., 1997). Different shingle size affects the performance of DDD. Generally,
greater w results in higher precision and lower recall. In our own experiences,
although greater w produces fewer shingles for each document, greater w also
hurts the recall of DDD. So a moderate w is chosen to get a balance between
precision and recall (Heintze, 1996).

3.2. Document Similarity

We choose the resemblance in (Broder et al., 1997) as our document similarity
metric for its widely usage in DDD. We believe that the conclusions based on
this similarity metric can be easily extended to other similarity metrics.

The resemblance r of two documents A and B is defined as follows.

r(A,B) =
|S(A) ∩ S(B)|
|S(A) ∪ S(B)| . (1)

Where |S| represents the cardinality of set S, i.e. the number of elements (shin-
gles) in S.

According to its definition, the range of resemblance is [0, 1]. The smaller the
difference between two documents is, the greater their resemblance is. A similar-
ity threshold will be set based on application scenarios to determine whether two
documents are duplicate ones, i.e. if the resemblance between two documents is
greater or equal to the similarity threshold, they are identified as duplicate to
each other, otherwise not.
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Table 2. Summary of TREC .GOV Collection

HTML Documents 1,053,034

Total Size 12.9 GB

Average Document Size 13.2 KB

Average Words per Document 699

4. Experiment Setup

In this section, we describe our experiment setup, including the testing dataset,
preprocessing, the hash function, sampling strategies, and other implementation
issues.

4.1. Data Description

There are several datasets used in prior work, most of which are not publicly
available. (Chowdhury et al., 2002) chooses 2GB NIST web pages and TREC
disks 4&5 collections as their testing data, but these two sets contain only 240k
and 530k documents respectively. In this paper we choose the TREC .GOV
collection 5 as our experiment dataset, which contains about a million HTML
documents and is widely used in Web related research. Table 2 summarizes the
main properties of this dataset.

4.2. Data Preprocessing

Firstly each document is canonicalized by removing all the HTML formatting
information. Secondly, special characters, such as HT (Horizontal Tab), LF (Line
Feed) and CR (Carriage Return), are converted into spaces, and then continuous
spaces are replaced by one space. Thus each document is converted into a string
of words separated by single spaces.

Then the exactly duplicates are removed since we focus on detecting nearly-
duplicate documents. By calculating MD5 hash for each document, we cluster
exactly duplicate documents. For each cluster, only one document is kept as the
representative for the cluster and the other documents are removed. As a result,
94,309 documents are removed from the collection and the final set contains
958,725 documents.

Many studies show that the web document size follows the well known power
law distribution (Crovella, Taqqu and Bestavros, 1998). To see whether the power
law also applies to our final dataset, we rank the documents by their size, in terms
of words, shown as Figure 1.

Then to explore the impact of document size in DDD, documents are divided
into 11 groups based on the number of words they have, shown as Table 3.

5 http://ir.dcs.gla.ac.uk/test collections/govinfo.html
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Fig. 1. Document Size: Power Law Distribution

Table 3. 11 Groups of Documents

Group Words # Documents Shingles
ID in Document in Group in Group

0 0–500 651,983 118,247,397

1 500–1,000 153,741 105,876,410

2 1,000–2,000 78,590 107,785,579

3 2,000–3,000 28,917 69,980,491

4 3,000–4,000 14,669 50,329,605

5 4,000–5,000 8,808 39,165,329

6 5,000–6,000 5,636 30,760,394

7 6,000–7,000 3,833 24,750,365

8 7,000–8,000 2,790 20,796,424

9 8,000–9,000 1,983 16,770,544

10 >9000 7,775 93,564,410

4.3. Hash Function

To speed up the shingling process, 32-bit and 40-bit Rabin (Rabin, 1981) hash
functions are used in prior work (Broder et al., 1997) (Shivakumar and Garcia-
Molina, 1998) (Cho et al., 2000) (Bharat and Broder, 1999) (Bharat et al., 2000),
which can be computed efficiently with the sliding window shingling. However, for
large datasets with several millions of documents and several billions of shingles,
32-bit or 40-bit hash may produce many false positives, i.e. different shingles
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share the same hash value. A 40-bit perfect hash function has the probabil-
ity 1/2 to have a collision (false positive) with about 220 (a million) random
hashes (Bellare and Kohno, 2004). In this paper, we use the well known 128-
bit MD5 hash function (RFC 1321) for both document fingerprints and shingle
fingerprints, which generates many fewer false positives. A 128-bit perfect hash
requires 264 random hashes to have a collision with 1/2 probability.

4.4. Sampling

To study the impact of sampling ratio in DDD, the numerical hash value is used
to select (sample) shingles. For example, when the sampling ratio is 1/2, we run
two trials by selecting shingles with odd and even hash value respectively and
then calculate the average performance based on these two trials. Thus, when
the sampling ratio is 1/n, we run n trials by selecting the shingles with different
remainders divided by n, ranging from 0 to n−1, and then compute the average
performance of all n trials.

In our experiments, we count the number of both selected shingles and total
shingles and find that the actual selection ratio is consisted with the given sam-
pling ratio. Moreover, there are only slight differences between the performance
(in terms of precision/recall) of different trials with the same sampling ratio,
which also indicates that MD5 is a good hash function for this sampling task.

4.5. Implementation Issues

We implement Broder’s algorithm and run DDD experiments with different sim-
ilarity threshold and sampling ratio combinations for each group. Since the size
of groups varies greatly, we implement two versions of DDD. For small groups,
we use the map in STL (C++ Standard Template Library) to store shingles,
thus all the shingles are kept in memory. For large groups which may produce
more than 2GB shingles, we use the BTREE structure in BerkeleyDB6, which is
much slower than the map version because of disk I/O.

We use three machines with 4GB memory and 1TB SCSI disks, one with
Intel 2GHz Xeon CPU and the other two with 3GHz Xeon CPU. It took us two
weeks to run about 400 trials with different parameter combinations for each
trial.

Broder et al. (Broder et al., 1997) processed 30 millions web pages in 10 days.
There are two main acceleration trade-offs in their approach. First, they use
1/25 sampling ratio and at most 400 shingles are used for each document. They
also discard common shingles which are shared by more than 1,000 documents.
Secondly, they divide the data into pieces to fit the main memory. However,
(Broder et al., 1997) does not give the size of each piece. It just mentions that
“the final file containing the list of the documents in each cluster took up less
than 100Mbytes.” Thus we believe that the size of each piece can not be too large,
and small pieces hurt the recall of DDD since duplicates across different clusters
will be missed. Moreover, although the CPU speed has been greatly improved
since then, the speed of RAM and disk advances not so much. So our experiments

6 http://www.sleepycat.com
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are very time consuming although we use much more powerful hardware than
previous work.

5. Experimental Results

In this section, we present our experimental results and discuss the parame-
ter correlations among precision/recall, sampling ratio, similarity threshold, and
document size.

We use the non-sampling DDD result as the ground truth and compare the
sampling DDD result with this ground truth to calculate the precision/recall. The
non-sampling DDD means that all the shingles are kept and used to compute the
document similarity. The sampling DDD means that sampling is applied to the
shingle set for each document. If two documents are determined as duplicates
by sampling DDD while they are not determined as duplicates by non-sampling
DDD, it is a false positive pair.

Given a dataset S, PS denotes the duplicate document pairs detected by
non-sampling DDD, and P ′S denotes the duplicate document pairs detected by
sampling DDD, the precision of a trial (a run with a given parameter combina-
tion) is defined as follows.

Precision =
|P ′S ∩ PS |
|P ′S |

. (2)

And the recall of the trial is defined as follows.

Recall =
|P ′S ∩ PS |
|PS | . (3)

5.1. Precision

The experimental results of 1/4 and 1/16 sampling ratio are shown as Figure 2(a)
and Figure 2(b).

As shown in Figure 2(a), precision of DDD decreases with the increase of
similarity threshold. The curve of Group 0, documents having fewer than 500
words, decreases significantly. In Figure 2(b), the highest precision on Group 0
is lower than 0.8 as long as the similarity threshold is greater than 0.5. Also, the
precision on the groups with documents having fewer than 3,000 words drops
below 0.1 when the similarity threshold is higher than 0.95.

The low precision on groups with small documents indicates that small docu-
ments are sensitive to sampling and it is hard for them to achieve good precision
when small sampling ratio or high similarity threshold is required. On the other
hand, for groups with large documents, their precision is high and stable even
when the similarity threshold is high and sampling ratio is small. Our experi-
ments with sampling ratio 1/2 and 1/8 also show the similar properties as 1/4
and 1/16 sampling ratios.

In most previous work, small sampling ratios are used, which may greatly
hurt the precision of their results. For example, in (Broder et al., 1997), 1/25
sampling ratio is used, whose precision is no higher than 0.55 for 68% documents
in our dataset.
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Fig. 2. Precision with Different Similarity Thresholds

5.2. Recall

Generally, sampling ratio does not hurt recall because sampling only generates
false positives. While for small documents, recall may drop because some of the
documents have no shingle or not enough shingles sampled. Shown as Figure 3,
even with 1/16 sampling ratio, the minimum recall is higher than 0.6 and does
not drop much with the increasing similarity threshold.
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Fig. 3. Recall with Different Similarity Thresholds. Sampling Ratio: 1/16

5.3. Summary of Parameter Correlations

Here we summarize the correlations between precision and other parameters.

– Similarity Threshold: precision drops with the increase of similarity thresh-
old, especially when the threshold is higher than 0.95. When high similarity
threshold, greater than 0.95, is required, sampling ratio should be increased
to achieve a good precision.

– Sampling Ratio: precision drops with the decrease of sampling ratio, especially
for small documents containing fewer than 500 words. When dealing with small
documents, either similarity threshold should be decreased or sampling ratio
should be raised.

– Document Size: small documents are more sensitive to similarity threshold and
sampling ratio than large documents. Sampling ratio can be decreased when
dealing with large documents to reduce the shingles to compare.

6. Adaptive Sampling Strategy

Based on the observations in Section 5, we propose an adaptive sampling strategy
for large scale DDD in this section. The basic idea is to apply small sampling
ratio to large documents and large sampling ratio to small documents.

To show the power of our sampling strategy, we conduct the following ex-
periment. The TREC .GOV collection is partitioned into 11 groups as shown in
Table 3. For every group we minimize the sampling ratio out of (1/2, 1/4, 1/8,
1/16), subjected to given precisions ranging from 0.5 to 0.99, thus we minimize
the total shingles to process. For example, with the precision requirement 0.8
and similarity threshold 0.6, we choose 1/8 sampling ratio for Group 0 and 1/16
sampling ratio for the other 10 groups, which results in only 8% of the total shin-
gles to process. As shown in Figure 4, our algorithm greatly reduces the shingles
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to process and thus can deal with larger document sets than the previous unified
sampling strategy.

It is worth mention that although the smallest sampling ratio used in our
experiment is 1/16, smaller sampling ratios can be used. For example, with the
precision requirement 0.8 and similarity threshold 0.6, actually we can apply 1/8
sampling ratio to Group 0 and 1/32 sampling ratio to the other 10 groups, which
results in only 4.72% shingles to process. The optimal sampling ratios and group
divisions can be estimated by experiments on representative datasets or a subset
sampled from the dataset we want to examine.

Due to the well known power law distribution of web document size, small
documents consist of a large proportion of the whole document collection. For
instance, in the TREC .GOV dataset, the documents having fewer than 500
words consist of 68% in the whole collection. For higher precision we can not
do small sampling to these small documents, otherwise it would greatly hurt
the overall precision. Fortunately these small documents contribute only 17%
shingles, thus although large sampling ratio is applied to these documents, our
adaptive sampling strategy greatly reduces the total shingles by applying small
sampling ratio to large documents.

7. DDD Applications

Duplicate document detection techniques benefit many web applications due to
the high duplication of Web. We discuss some potential applications here.

– Archiving: By clustering duplicate documents, large scale search engines can
reduce their storage cost by keeping just one copy for each cluster. For exam-
ple, in the TREC .GOV collection, we find 9% exactly duplicate documents.
Moreover, TREC has removed 12.4% duplicate documents before they released
this collection. Thus there are more than 20% exactly duplicate documents in
this collection. Similar duplicate ratios are reported in (Broder et al., 1997)
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and (Cho et al., 2000). More storage space can be saved if nearly duplicate
documents are also clustered. Web cache systems can also archive more pages
in the same way.

– Crawling: As proposed in (Cho et al., 2000), DDD can be used to detect
duplicate groups of web pages or mirrors. Nearly duplicate detection is more
useful to detect different versions of mirrored web pages. Once these duplicate
documents are identified, we can avoid crawling them.

– Ranking: Ye et al. report that there are 5.5% duplicate entries in the search
results provided by several major search engines (Ye et al., 2004). By cluster-
ing the duplicated documents, the search results can be presented in a more
succinct way to make users’ information browsing more efficient.

– Noise Detection: Clustering duplicate documents also helps noise detection (Yi
et al., 2003). Many web sites try to mislead search engines to give high
rank to them, which is called web spam (Gyongyi and Garcia-Molina, 2005).
And Fetterly et al. indicate that there tends to be more duplicate in spam
pages(Fetterly et al., 2004).

8. Conclusion

Although much work has been done on duplicate document detection and many
applications employ this technique, little has been explored on its performance
and scalability. In this paper, a systematic study on parameter correlations in
DDD is conducted and several of the most important parameters of DDD are
analyzed.

Our experiment results show that small sampling ratio hurts the precision
of DDD, especially for small documents which consist of a major fraction of
the whole Web. Based on this observation, an adaptive sampling strategy is
proposed, which minimizes the sampling ratio of documents with constraint of
given precision thresholds, making DDD feasible to process large scale document
collections. We believe that the observations in this paper are helpful in guiding
the future DDD work.
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