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! : ABSTRACT
Approximaté eigen values and corresponding eigenrfunctions are‘found
for'a‘rather géneral homogeneous linear second-ordef,partial'differential
equation in two variables with homogeneous boundary conditions on a
rectangle. The bicubic spline formulation for the métrix method which
1

is used is analogous to the one-dimensional procedure previously described:

The construction'of the linearvsystem to be tréated paralleisvthat used

for solving the non-homogeneous problem.2

Numerical»examples'(including some with known analytic solutions)
are solved to illustrate the method. In particular, the Helmholtz

equation (so-called spatial wave equation) is solved and the results are .

compared with the exact solution.
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INTRODUCTION
We consider the following differential equation

auyy + buyy + cuy + duy + eu + A(fuy + guy + hu) = O (1)

defined on the'rectangle
R =[x, ] x [y, 7 o (2)
where a, b, ¢, d, e, f, g and h are known functions of x and y.

The following boundary conditions are imposed

gU + quy = O for x = X o (3)
Bu + Qux = O for x =X (4)
‘ fu + puy = 0 for y =y . v (5)
Tu + Euy =0 for y = ; (6)

where the "coefficients" are known functions of the pertinent single
variable (x or y). |

Obviously, Equations (1), (3), (4), (5) and (6) are satisfied by
the trivial solution u=0, however we seek values for x(eigenvalues)
such that-non—trivial solutions (eigenfunctions) exist. We approximate

such solutions by use of bicubic splines.

FORMULAT ION
As inireference 2, the interval [5, X] is partioned into m-1
subintervals of equal length
by = (X-x)/(m-1)

obtaining
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Similarly for [y, ¥] with n-1 subintervals

6y = (3-y)/(n-1)

X:yl,....ynz-_y.
We thus obtain on the rectangle (including its boundaries) a set of
grid-points v .
(xi5 y5) for i=1tom and j = 1 to n.

Then as in reference 2, convenient basic cubic splines in x and y

are chosen and a linear system constructed by applying the differential

.equation and boundary conditions at the grid-points. As in reference 1

we obtaip this form:

AR + \B& = 0 (7)
where the véctor Eahas és éompoﬁents, approximate normal‘derivatiVes at )
boundary grid-points, approximate solution values at all grid-points and
four Adummy vaiues (arﬁitrarily“zero) included for convenience in indexing.

Except in Qery pathological cases the matrix A will be non-singularv
and Equation (7) can ?e written in the form

(c-u1) =0 8)
where C = —A-lB'and‘pi= 1/x. We need then only find eigen values, W,
for the matrix and set |

| A= 1/n for p#O0.

thereby obtaining approximate eigen values for the differential system.

AN APPROXIMATE SOLUTION
For any real distinct approximate eigenvalue A¥*, obtained by the

process outlined above, we may (except in rare circumstances) obtain a
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corresponding approximate eigenfunction. We must sol?enthe homogeneous
linear system
D& = 0 o | (9)

where .
D =A 4+ \*B

Remembcring that the components of @ arc normal derivative values
and solution values except for four dummy components, we can usualiy
find a non—ﬁrivial solutiqn for Equation (9) by arbitrérily assigning a
value ;_(with discretion) to either a normal derivative or to the
solution at some grid-point. (Obviously we cannot assign the value 1 to
any of the dummy variables since they are arbitrarily zero.) This

solution consists of approximafe values for normal derivatives at bound-
ary grid-points and approximate solution values at all grid-points. 1In
accordance with reference 3, there is an optimal bicubic spline on R
.which assunés the above values. This bicubic spline can be used to
approximate the solution at any point in R. Obviously the bicubic

spline s thus obtained depends on the eigenvalue A* used. Note also that

s has continuous first and second derivatives on R.

: INTEGRAL RATIO PROCESS
As in reference (1), the approximation M may usually improved by L
an integral ratio process. We let

q - - _;4 s(asyy, + bs,, + csy + dsy + es)dxdy
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and use thé value Q thus obtained ag a new (usuall& improved) approxim-
ation for the eigenvalue. |

| Altﬁough the above infegrations can be perférﬁed analytically on
subrectangles and summed for the whole (s is a cubie.on any subinterval
of any gridline), it is usﬁally mdre convenient when using computers to
perform the integrations numericaliy first in one direction (say x) and
then in the other. For this process, the six point closed Newton-Cotes

quadrature applied to each subinterval seems adequate.

COMPUTER CODE

A eombuter code, YOVALU, has been writt;n in FORTRAN for the
CDC 7600 to.perform all the combutation necessary relating to the
previous sections. The code requires m=6 and n=6 which results in
matrices A, B, C and D consisting of 64 rows and 64 columns each.
' Because the dummy variables (U4 of these) and boundary conditions (24 of
these) produce only zero eigenvalues we obtain at ﬁost 36 non-zero
eigenvalues; . The code uses only real distinct eigenvalues for
computing'appfoximate solutions and for integrating to obtainvnew
eigenvalues.

| The cbmputef code also provides approximation for eigenfunctibnsii

and their derivatives on a fine (26 X 26) mesh.

The numerical results given in a later section were obtained by
use of this code. A listing and description.of the code may be obtained

from the authors.
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'ERkOR ANALYSIS
The bicubic spline approximate solution satiéfieslthe differential
equation at the grid-points when A* is used. However 1h general the
in£egral ratio process gives us an improved approximate'eigenvalhe§ Ax%,
This suggests a very simple measurement for the_errbr.of the approximatién:

eyx = [M - x| /x|

However the numerical integraiion requires interpolation for values
of the bicubic spline and'its derivatives on a finer meéh than the |
origiﬁal grid. If the solution were exact the fine sélution, v, should
satisfy the;differential equation. This fact suggests defining the error
by I

e E'avx* + vy, + cvy + dvy + ev o+ Nex(fvy + gvy + hv)

At each fine grid-point (xy, y,) we define ey, = e(xyx, ¥;). The following
error measures can be computed: i

max = 1Ax lex, !

e

eayv = [%‘4 % exsl/(no. of fine mesh points)

k,£

erel.max. = MaX |egp/[M*(fuy + guy + hu)l|
3 , ) o .
where the denominator is evaluated at (xk, yzj and the computation is

not performed if the denominator is zero.

'1/2.

€rel.av. = [j[ee / ff[)\**(fvx +oevy + hV)]e]
R R |

Each of these error measures is computéd by the code described in the

previous section and is given for the numerical examples in the next section.
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NUMERICAL EXAMPLES

Example 1.  The Helmholtz Equation

XX Yy

with boundary conditions:

u,_ +u. +Au=0 on [0, /2] X [0, 1]

u = 0 on alllboundaries
The system”can‘be solved analytically to obtain'éigénvalues
A =.(2j)2 + (kTQe j=1,2... k=1, 2...
ahd eigenfunctions | | |
~u = sin (2jx) sin (kmy)

Tabulated Results

J k ;iwl : A* N ey\¥ €max  ©av €rel.max ©rel.av.
1 1713.8696  14.3316 13.8696 .0333  .2265 .0039  .3498 .0120
21 .25;8696 28.3909  .25.8738 .0973  .7627 .0000 1.3343 .0L68
12 h3.ﬁ78u hg.o21h  43.4878 1272 1.38114.,0000 . 7169 .0617
3 1 b45.8696 57.2590  L46.0723 .2hk28 3.5853 .0518 5.5570 .1551
2 2 55.&78u 63.0806  -55.4964 .1367 1.1675 .0000 1.0205 .0605
L1 73.8696 ‘91;9h87 75.7803 .2134 &.1891 .0000 L.0702 .1Lk08
3 2 75.478h 102.538) 76,8600 .3341 1.290k .0000 3.1028 .2471

Example 2. Resonant Cavity

ux);/xl/2 + uyy/xl/2 - ux/x3/2 + hu/xl/2 =0. on [0, 1] x [0, 1] .

with boundary conditions:

|
(@)

U.X(O; Y) = 0. | ’ ux(l) Y) =

uy(x, 0) = 0. uy(x, 1) =

I
)

and
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u(O,>y) = 0. (This equation i% used instead 6f'the differentiél
equation fo?_x =‘O).
The system can be solved analytically to obtain eigenvalues:.
x=(¥92+(kﬂ2 for 5 =1, 2... and k=0, 1, 2...
where the 'r; are roots of the Bessel function, Jo,‘and eigenfunctions:

J
u = Jl(rjx) cos (kmy) o :

Tabulated Results
ik oon X N** ex*‘  Cmax ®av  Crel.max €rel.av
1 0 5.7832 5.8088 5.7841 .0043  .h956-  .0846 3.7283 .obbl
1 1 15.6528  16.oo7é 15.6538 .0226 .5158  .0000 1.3986 .0189
2 0 30.u#i3 32.8040 30.5656 .0732 16.0625 1.0429 2.9752 .1371
2 1 ho.3h09' 43,0024 Lo.4352 .0635 16.2160 .0000 2.2571 .1037
1 2 L5.2616 50.6969 45.2715 .1198 6.0658 1449 0.8959 .0586
2 2 69.5&97- 77.6921 70.0530 .1090 18.58u6 .1386 1.5693 .0707
30 7W.B8B70 90.8570 76,2650 11913 376.0620  33.1866 2.0250 .2&29

Example 3. Sample General Problem

. ‘ ' . ' )
(¥ + Dugx + (x + L)uyy + (siny)uy + (cosx)uy + e®u + AMux + uy + (x41) u)=0

on [0, 1] x [0, 1]
with boundafy conditions

i

u(0, y) - u (0, y) = 0.

u(ia'Y) - ux<l, Y) = 0.
u(x, 0) - uy (x, 0) = 0.
u(x, 1) - uy(x, 1) = 0.

Analytic solution unknown.
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Tabulated Results

£ \* R €y €max ~€av . ‘€rel.max = €rel.av

*

1 -527259.  6.6732
2% - 18656.  6.7393

.3 -1.3910 -1.3957 ,..6033 0514 . -.0008. ©  .0055 .0021
L 3.8230 ,3.75ﬁo 0183  2.4926 Loke  9.529 .0310
5  .23.0599  23.0586 . .00006 2863k, ~1894. 1&&.659 .5821
6 133.33 2.9818 -

7% 165.53 1.4847 |

*¥These values appear to be spurious

CONCLUS ION
The bicubic spline formulation for the matrix methodu appears to be
a useful approach to the problem of finding differential eigenvalues for

a rectangular domain. It possesses essentially the advantages over the

. finite-difference formulation as were outlined in Reference 1.

" The advantages of»ﬁhe matrix.method over minimization teéhniqdesvis )
that seve;al inSfead of one appro#im@te eigenvaiﬁe afe obtained and né
iteration is réguired'and that the integral ratio proceés can be,employea
for possible'improvement in the eigeﬁvalue approximation. The latter also
éan be used to detect,spurious values (See Example 3). |

In contrast to the one-dimensional case boundary conditions can
not be incorporétéd in the basic cubic splines, thus in éach variable
the digension_of the cubic épiine space for m points_ié m + 2 instead of
m. Coefficient matrices are correspondingly increased in size. For

example if m points in each variable are used we require three matrices
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of dimension M x M where M = (m+2)2. Even for the most modern (large
memory) computers, one cannot use a very fine mesh. Even for m=6, the
large size of the matrix for which eigenvalues are sough£ and the presence
of many zZero values (arising from boundary condition equations) may lead-?
to spurious results and affect the accuracy of those found acceptable.

The integral ratio procesé is most effective if the differential
equation is in self-adjoint form (Examples 1 and 2). »If not, it should
_be put in this_form if at all feasible. If this resulﬁs-in éingularity
special handling may be necessary (Example 2).

The list of error measures defined is suggestife rather than
exhaustive. Others may be.devised and the use of those presented is

somewhat discretionary. In our opinion, the most useful is e although

X
from results in Examples 1 and 2 ( where actual eigenvalués are known) this
measure may be faifly high with a reasonably good approximation for A.
Where this measure is very high (say greater than 1) as in Example 3

then the approximation is at least suspect if not actuélly spufious.
(Another SuSpiciéus circumstance is A** greater than A*). The other

error measures:relate more to the approximation of thé eigenfunction on

the fine mesh. The improvement of this approximatidn whilé retaining

the eigenvalue approximation may be considered in a later paper.
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