UC Merced

Proceedings of the Annual Meeting of the Cognitive Science Society

Title

Spatial Alignment Enhances Comparison of Complex Educational Visuals

Permalink

https://escholarship.org/uc/item/8bk7f014

Journal

Proceedings of the Annual Meeting of the Cognitive Science Society, 41(0)

Authors

Matlen, Bryan Jee, Benjamin Simms, Nina et al.

Publication Date

2019

Peer reviewed

Spatial Alignment Enhances Comparison of Complex Educational Visuals

Bryan Matlen

WestEd, San Francisco, California, United States

Benjamin Jee

Worcester State University, Worcester, Massachusetts, United States

Nina Simms

Northwestern University, Evanston, Illinois, United States

Dedre Gentner

Northwestern University, Evanston, Illinois, United States

Abstract

Grasping relational concepts is facilitated by comparing their representations. Previously, Matlen et al (2014; under review) found that for simple visual figures, the comparison process was optimized when the visuals were placed in direct spatial alignment, such that the main axes of the visuals run perpendicular to their placement (e.g., horizontal figures placed vertically), relative to impeded spatial alignment, when the axes run parallel to their placement. In the present work, we tested this spatial alignment effect using complex naturalistic stimuli, consisting of skeletal structures. Participants identified anomalous bones by comparing a correct skeleton with a skeleton that had an incorrect bone. Participants were more accurate when skeletal structures were placed in direct (M=.90) relative to impeded (M=.84) alignment (pi.01). Given the relevance of these findings to education, we are formally coding visuals in middle-school science textbooks based on their spatial alignment and will present these results at the conference.