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ABSTRACT 
 

Current Aperture III-Nitride Edge-emitting Blue Laser Diode 

 

by 

 

Ludovico Megalini 

 

This work presents the first Nitride non polar Current Aperture Edge Emitting 

Blue Laser Diode (CA-LD) fabricated using the Photo-Electro-Chemical Etching 

(PECE) technique. 

The main features of this design are represented by the deep etching of the laser 

diode ridge through the active region, the controlled etching  of the active region by 

PECE and the increase of the p-contact area with respect to the active region area. 

Preliminary experiments manifest that CA-LD has similar threshold current density, 

slope efficiency and peak output power of the more commonly used shallow etch 

ridge design and it has also shown a reduction in the series resistance down to ~40% 

with respect to the shallow-etch LDs indicating the potential of the CA-LD design in 

high-efficient, high-power, high-frequency LD applications. 
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Introduction 

 

The need to satisfy the constant rising global energy demand in a sustainable way 

has become a worldwide issue of paramount importance: global warming, economic 

revival and even national security have indeed forced all the countries of the world to 

reduce their fossil fuel consumption and dependence in favor of seeking 

environmentally clean alternative energy resources and energy efficiency1,2 devices. 

Future energy demands is projected to increase considerably relative to value of 

2001: according to the scenario developed by the Intergovernmental Panel on 

Climate Change (IPCC), the world energy consumption rate would grow from the 

average value of 13.5TW in 2001 to ≈40.8TW in 2050 due to population and 

economic growth3, even in the face of substantial declines in energy intensity1. 

1 The scenario is based on moderate assumptions that means “business as usual”: 
neither overly conservative nor overly aggressive. 
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Among all the highly efficient energy devices, III-Nitride solar cells, LEDs and laser 

diodes stand out. 

Solar energy is by far the largest and more abundant of all the clean renewable 

energy resources all the clean renewable energy resources one: more energy from 

sunlight strikes the earth in one hour (4.3∙1020 J) than all of the energy currently 

consumed on the planet in one year (4.1∙1020 J in 2001). Indeed the sun energy, 

which comes from thermonuclear reaction, is an abundant, free, and nonpolluting 

source of energy with multiple possible applications. According to an analysis from 

McKinsey4, over the last two decades the cost of manufacturing and installing a solar 

PV system has decreased by about 20% with every doubling of installed capacity 

and considering the rising of oil and natural gas prices, the need to build new power 

plants to keep up with the growing demand and the regulation aiming to limit CO2 

emission, it has been esteemed that by ten years electricity generated from solar 

energy could cost to the end user as much as the one by fossil fuel in some countries5 

such Italy and California, as represented in Fig. 1. 
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Figure 1 The growing competitiveness of solar power [From 4] 

Although such analysis shows the feasibility of the solar energy as a valid and 

immediate energy resource, currently only 0.1% of electricity is provided by a solar 

source and the solar market has been suffering turmoil with big companies having 

many financial problems and even went to bankrupt6. The great challenge is to 

increase the efficiency of the solar cells and at the same time to reduce the $/W of 

the materials used to fabricate the panels. 

While solar cell play an important role in generating cheap and green energy, 

nitride solar cells have currently not penetrated the market; on the other hand LEDs 

and LDs are devices which exploit energy in a very highly efficient way and they 
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both have found a widespread use not only in consumer electronics but they have 

cornered the biggest and profitable market of the Solid State Lighting. 

Since the development of incandescent light bulbs in the late 1800s, various methods 

of producing light more efficiently have been investigated. Of these, light sources 

based on light-emitting diodes (LEDs) appear to have a considerable impact on 

issues such as energy consumption, environment and even the health of 

individuals7,8. Nowadays roughly 22% of the electricity generated in the United 

States is dedicated to lighting applications and it has been computed that if all 

conventional white light sources in the world were converted to the energy-efficient 

LED light sources, energy consumption could be reduced by around 1,000 TWh/yr, 

the equivalent of about 230 typical 500-MW coal plants, reducing greenhouse gas 

emission by about 200 million tons. White-light sources based on reliable and 

energy-efficient LEDs have only recently been made possible9 and until not so long 

time ago the only high-luminosity LEDs available emitted red light. In addition there 

are still several issues in producing white light from GaN based LEDs: in general 

white light is produced by a yellow- emitting phosphor combined with blue LEDs. 
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Figure 2 Historic development of the most common white-light sources [From 7] 

 

Laser Diodes (LDs) present even more advantages of LEDs: they have entered in 

widespread use as the laser source in many applications for high-density optical data 

storage (Blu-ray), medical and biomedical instrumentation, powerful tool to cut 

paper, etch leather or glass, or brand wood, chemical and biological agent detection 

to sterilization and advanced lithography. Such a huge variety of applications has 

been made possible by the flexibility these devices offer in tuning the wavelength 

and the space power distribution, differently from the case of the gas lamps for 

which emission wavelength is predetermined by fundamental transitions in gas or 

vapor. As example, the UV market alone is forecasted to be worth as much as $150 

million in 2016 up to 5 times its value in 2011, and even much bigger market would 

be represented by the pico-projector to be embedded in the mobile phones and in the 
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TVs. More recently, it has been suggested the use of LDs to replace LEDs in Solid 

State Lighting applications10. Currently, LEDs have a wall plug efficiency4 (wpe) 

more than twice higher than high performance c-plane blue LDs5 (~70% vs ~30% 

for LEDs and LD at a low and high input power density respectively). However, LDs 

may potentially outperform the LEDs because at high input power density 

(>6kW/cm2) are less affected by the efficiency droop typical of the LEDs, since all 

the parasitic nonradiative recombination processes are clamped at their lasing 

threshold values. Moreover, nonpolar/semipolar devices appear promising for higher 

performance and reliable LDs because of the elimination/mitigation of the intrinsic 

polarization field, which leads to the increase overlap of the carriers wavefunction, 

and the gain maximization along some proper crystal plane orientations.  However 

many problems ranging from material growth to device processing remain to be 

solved.  

Photo-Electro-Chemical Etch (PECE) is currently the only viable wet etching 

technique for the nitride system. As a wet etching technique, it produces a relatively 

gentle etch and it also offers several advantages, in particular the bandgap selectivity 

etch which allows more freedom in designing new devices with higher 

performances.  This technique has been used as powerful technique to help solving 

some of the processing issue and as a result to improve nitride-based device 

performance, in particular nitride LDs. 
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Chapter 1 

1.1 History of Nitride-based LDs 

 

The history of Nitride LDs is indissolubly related to Prof. Nakamura1.  

The first LDs were developed in 1962 on GaAs by Robert N. Hall at the General 

Electric research center and by Marshall Nathan at the IBM T.J. Watson Research 

Center, in the same year Nick Holonyak, Jr demonstrated the first LD emitting in the 

visible range. Continuous-wave (cw) lasing at room temperature was achieved in an 

AlGaAs/GaAs double-heterostructure laser in 1970. In June 1991 3M released the 

first ZnSe-CdZnSe based laser. Being the defect density in ZnSe very low, the 

majority of the groups focused their research efforts on ZnSe and II-VI. 
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In June 1992 a breakthrough happened: Nakamura, which at that time was working  

for Nichia, grew a single crystal InGaN layer and  in Sept 1992 he built first double 

hetero-structure based light emitting diode; the following year Nakamura 

demonstrated 1 candela InGaN based LED and at the same time Nichia announced 

its commercial blue LED. As LED’s were fabricated, stage was set for arrival of 

lasers. In Jan 1996 Nakamura reported first pulsed blue InGaN laser at room 

temperature and at the end of the same year he announced first continuous wave blue 

GaN based injection laser at room temperature. During 1996 – 1997, quite a few 

groups reported InGaN-based LDs under room-temperature (RT) pulsed or 

continuous-wave (CW) operation, a summary of those work is shown in table below:  

 

 

Table 1 Early development of III-V Nitride based Laser Diodes 
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After that there have been many break troughs in fabrication process as well as 

devices as listed below: 

 In 1999 Nichia announced commercial violet laser diodes.  
 

 In 2002 first planar hydride vapor phase epitaxy (HVPE) GaN was 
fabricated on a- plane  

 

 In 2005 first planar hydride vapor phase epitaxy (HVPE) GaN was 
fabricated on m-plane GaN  

 

 In 2005 Non polar laser diode on free-standing m-plane GaN 
substrates was demonstrated and high power a plane LED was 
demonstrated for first time.  

 

 In 2006, Nonpolar /semipolar mechanism was developed followed by 
High power m- plane and high power semipolar LED.  

 

 In March 2007, first demonstration of non polar m plane laser diode is 
made.  

 

So overall there has been tremendous development in this dynamic field in last 

few years and UCSB group has been amongst most dominant group in bringing up 

innovation and stimulation to this field. 

Such big research and industrial effort on GaN based LD is motivated by the 

superior properties of this material system which have indeed enabled the revolution 

in solid-state lighting and high-power/high-frequency electronics as well. 

 11 



 

1.2  A (very) short summary of Nitride system  

Compared other materials system, nitrides compounds have remarkable 

properties especially for lighting application because they offer a wide range of 

direct bandgaps from 0.7eV (InN) through 3.4eV (GaN) to 6.0eV (AlN) so they 

enable deep ultraviolet (λ < ~ 300nm or photon energy > ~ 4eV based on high Al 

content AlxGa1–xN quantum wells [QWs]), ultraviolet (λ < ~400 nm or photon 

energy > ~3.1 eV ), blue (λ ≈ 455nm or photon energy = 2.7 eV based on InyGa1–yN 

QWs), and green (λ ≈ 525 nm or photon energy = 2.4 eV) emitters based on InxGa1–

xN QWs, and longer wavelength light-emitting diodes (LEDs) and violet and blue 

laser diodes (LDs) as shown in Fig. 4 

 

Figure 3 The Nitride system [From 4] 
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In this work all the samples have been grown on bulk m-plane GaN substrates. This 

is one of the most used non-polar plane and it is meant to improve the performace of 

the GaN devices because it does not suffer of the polarization effects typical of c-

plane. Moreover, the LDs fabricated were all parallel to such c-axis in order to have 

with higher gain compared to the perpendicular direction 

This c-plane is represented in Fig 2b and it is essentially the growth direction of the 

wurtzite structure typical of GaN and represented in Fig. 2a along the (0001) 

direction. It is currently the most used for blue LED and it is a polar plane. 

Though commonly used for blue led and lasers, the c-plane has drawbacks, such as 

inducing electric fields that conspire to keep electrons and holes apart. The m-plane 

cuts across the crystal’s side: it doesn’t suffer from induced fields typical of the c-

plane, but the substrates are more costly than c-plane versions. Semipolar substrates 

are generally cut at some angle to the crystal axis: they do not produce strong fields 

and they seem to yield better lasers and LEDs than the m-plane substrates do but are 

mostly in R&D phase and currently they are very expensive. 
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Figure 4 Most commonly used GaN crystal planes 

 

Because the wurtzite structure is polar, GaN-based heterostructures have large 

internal electric fields due to discontinuities in spontaneous and piezoelectric 

polarization. For optoelectronic devices, such as light-emitting diodes and laser 

diodes, the internal electric field is generally deleterious as it causes a spatial 

separation of electron and hole wave functions in the quantum wells, which, in turn, 

likely decreases efficiency. Growth of GaN-based heterostructures in alternative 

orientations, which have reduced (semipolar orientations) or no polarization 

(nonpolar) in the growth direction, has been a major area of research in recent years, 

especially at UCSB. 

1.2.1 Key features of c-plane 

As anticipated above, the –c-axis is the direction along which it occurs parallel the 

spontaneous polarization caused by the hexagonal wurtzite structure which 
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noncentrosymmetric (that is it lacks of absence of inversion symmetry) and it has 

space group P63mc and point group 6mm. Bernardini et al. computed the 

spontaneous and piezoelectric polarization (caused by the strain or tensile stress) for 

GaN, AlN, InN and derivates showing that their polarization is a bulk property and 

can be determined quantum mechanically with knowledge of the phase of the 

valence electron wave functions. InGaN QW is compressively strained because of 

the large lattice mismatch between GaN and InN (∆a/a= 11%) and that induce 

piezoelectric polarization (PPZ) charges with an opposite sign to PSP  to appear at 

the respective interfaces. The resultant polarization is generally dominated by PPZ 

which induces the internal polarization field (Fpol) to point from the top interface to 

the bottom interface and whose strength is as high as 1.74MVcm−1 for blue 

In0.15Ga0.85N LEDs.These huge internal polarization-related electric fields cause 

band bending profile explained in terms of Quantum Confinement Stack Effect 

(QCSE) or quantum confined Franz Keldysh effect (QCFK). 

As a result, the following phenomena occur:  

(1) a decrease in oscillator strength of electron–hole 

(2) red-shift of the QW emission energy 

(3) blue-shift of the emission energy with an increase in excitation density 

due to the reduction in the effective field strength by the Coulomb 

screening. 
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                      Figure 5 QCSE in polar and non-polar planes [From 7] 

In particular spatial separation of electron and hole wave functions is detrimental for 

LEDs and LDs because it reduces the likelihood of a radiative recombination event8, 

which yields the desired photon thus increasing the likelihood of the injected 

electrons or holes to nonradiatively recombine and squandering this energy as heat 

so it increases the so-called “efficiency droop”9. 
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Chapter 2 

Nitride Photo-Electro-Chemical (PEC) Etch 

 

 III-Nitrides compounds (In-Ga-Al/N) are chemically more stable than other 

III-V semiconductors. Their extreme lack of chemical reactivity make this material 

system resistant to traditional wet etching and chemical etching technique1. 

Unfortunately InAlGaN compounds are not easily wet-etched by any known 

chemical etchants: due to its very high chemical bond stability (8.92 eV/atom), GaN 

has proved resistant to all the acids and bases, with some mild etch of the N-face in 

hot KOH as the following table shows. 
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Table 2 Etching results for Nitride wet etchants  

 

For this reason InAlGaN device etching has traditionally been done by dry etching 

technique, for example Reactive Ion Etching (RIE), Inductively Coupled Plasma 

etching (ICP), Electron Cyclotron Resonant Etching (ECR), Chemically Assisted Ion 

Beam Etching (CAIBE) and Magnetron-reactive Ion Etching (MIE). 

Currently all these etching methods for nitrides rely on Cl2- or sometime SF6-based 

physical dry etching. Although they allow a reasonable fast etching rate (up to few 

hundreds nm/min) and near-vertical sidewalls profile, these techniques have all two 

main big disadvantages.  
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First, they damage the device surface (most notably the p-GaN) and sidewalls and 

this damage is as higher as a high power – needed to have a reasonable etching rate –  

is used; such damage causes optical loss in optoelectronic devices, current loss in 

electronic devices and increase the surface recombination velocity which badly 

affect the device performance2.  

Surface recombination is modelled using SRH statistics2:  

 

Where N, P, Ni, as, V, vh, ve are the the electron, hole, intrinsic carrier 

concentration, surface are, volume, hole and electron surface velocity respectively. 

The last parameter is dependent on the material system as summarized below 

 

Surface recombination velocity vs (cm/s) 

InGaAs/GaAs (QW) ≈ 1 – 2 *10^5 

GaAs (Bulk) ≈ 4 – 6 *10^5 

InP (Bulk) < 10^4 

GaN (Bulk) ≈ 10^4 – 10^5 

Table 3 Surface recombination velocity for different material system 

2 The expression can be approximated as 𝑅𝑠𝑟 = 𝑎𝑆
𝑉
∙ 𝑣𝑠 ∙ 𝑁 at high level injection, 

regime where LDs typically operate  
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The device dimensions are also important and smaller devices are indeed affected 

more than bigger devices because the exposed surface area is bigger as depicted in 

Fig. 6 

 

Figure 6 [From 2] Comparison of surface area vs volume for different LD design 

Such dependence on device dimension is particularly important on edge emitting  

LDs which are meant to operate in single mode operation since in this case the 

maximum ridge width has to be < ~2um as from the equation:  

 

𝑤𝑟𝑖𝑑𝑔𝑒 ∙ �𝑛𝑟𝑖𝑑𝑔𝑒2 − 𝑛𝑒𝑡𝑐ℎ𝑒𝑑2 (𝑡) <
𝜆0
2

 

 

with λo, nridge, netched, wridge are the device emitted wavelength, the refractive index 

of the ridge, refractive index of the material surrounding the ridge and the ridge 

width as illustrated in Fig. 9 
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Figure 7 Effective index scheme for ridge LD 

Another important drawback is that dry etching technique are in general not material 

selective and more importantly they do not allow to  create undercut. 

Indeed, wet etching techniques offer the possibility of lateral or isotropic etch 

compositional and crystallographic-selective etching3 and they have been 

successfully applied to Si and other III-V semiconductors. Many studies have 

described the wet etching of InGaAsP compounds by mixtures of 

H2SO4:H2O2:H2O, C6H8O7:H2O2:NH4OH, HCL:H2O and other acids/bases to 

fabricate complex optoelectronic devices such VCSEL, buried aperture oxide laser, 

constricted mesa laser and also electronic device such as InGaAs FinFETs4-7. 

Currently the only viable wet etching technique for Nitride is the  Photo-Electro-

Chemical Etch (PECE).   
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2.1 PEC Etching 

 

PEC etching is a wet etching process and as such it offer all the advantages of the 

wet etching techniques. 

This technique had been successfully applied already to Si and many III-V 

compounds8. It consists in illuminating with a supra-bandgap light source a sample 

immersed into a electrolyte which results in the generation of electron/hole pairs.  

The semiconductor acts as anode, the metal deposited on the n-side acts as cathode 

and the conductive electrolytic medium which closes the circuit. The holes migrate 

to the surface which therefore becomes oxidized and finally etched by the 

electrolyte. In order to improve the photogenerated charges separation bias can be 

applied to the sample in such a way that it is reversed biased. 

In Fig. 10 it is depicted a schematic of the common setup for PEC 

 

Figure 8 Schematic of the PEC-Etch setup 
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Many different types of solutions of either acid and basic pH and of different 

molarities have been reported ranging from HF to etch Si after photo-creating SiO2 

to H3PO4, H2SO4, HCL and KOH.  

Along with the wet etching benefits, PEC etch offers other unique advantages:  

 
• Bandgap selectivity 
 

• Dopant selectivity 
 

• Defect selectivity 
 

• Crystallographic selectivity 
 

In addition, it has been reported that PECE can recover the sample from the dry 

etching damage9,10 as shown in Fig. 10 

 

Figure 9 Dry etching damage recovery after PECE wet etching [From 10] 
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The ability of the PECE to recover the damage produced by the dry etching damage 

is important both for electronic device and optoelectronics devices, especially for 

laser diodes. Indeed dry etching causes a degradation of the LD performance, both 

by increasing the device threshold current and by lowering the device slope 

efficiency as shown below: 

 

 

Figure 10 Change in threshold current vs surface recombination [From 11] 

 

2.2 PEC applied to Nitride  

Although the idea of anodic-etching GaN dates back to the early ’60s12, GaN 

photo-electrochemical etching has been successfully achieved only in the mid-90s’13. 

Several studies have reported the etching of n-type GaN producing whiskers and 

surface with different degrees of roughness depending essentially on the quality of 

template, light power intensity, bias applied and solution stirring14-16. Several 

electrolytes at different concentration have also been tested17 ranging from 
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H2SO4:H2O2 to KOH,  HF:HNO3 and HF:C2H5OH and KOH, with this last now 

established as the most commonly used electrolyte. In general, a low concentrated 

and a slowly stirred solution favor a smoother etched surface. A p-GaN/InGaN/n-

GaN p-i-n structure has been used to etch p-type GaN, which has been notoriously 

more difficult to PEC-etch because of the unfavorable band-bending at the interface 

p-semiconductor /electrolyte. By this mean, complex electronic and optoelectronics 

devices like CAVET transistors and microdisk lasers, porous GaN structures, 

photonic crystals embedded in GaN LEDs and more recently VCSEL fabricated in 

m-plane have been obtained18-20. 

Sacrificial GaN-based layers wet etching have been proved to be even more 

challenging. To the best knowledge of the authors, no good control of the lateral 

profile and at the same time of the selectivity has been reported for any GaN-based 

materials wet etching.  LEDs sidewalls roughening, etching of the active region and 

at the same time the n-side layer along the 10-10 crystal plane and of the p-side at an 

angle of 27° with respect to the 10-1-1 plane have been reported21,22, while sacrificial 

layers have been employed to remove the substrate23,24. In general, in all these 

studies a relatively high bias (up to 20V) has been applied, and the etching is usually 

achieved in two different times, with the actual etching  following the oxidation step 

(1um/h). Furthermore no control of the etch profile has been provided. Other 

groups25,26 have focused their attention on AlInN/GaN structure, where the AlInN 

layer has been selectively oxidized and etched from GaN with different 

oxidation/etching rates and microbridges, planar microcavities and microdisk lasers 
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have been reported. Metal mask have been used only as contact to bias the sample 

and their effect have only been studied to understand the enhancement of etching 

rate near their border and the trenching effects they had caused, this last phenomenon 

explained in terms of electron capture by the metal which therefore enhance the 

probability of the holes to oxidize the semiconductor and therefore its subsequent 

etch27. 

 

2.3 Control of the PEC-etched active region 

 

The first goals of this research have been: 

 

- PEC-Etching the active region embedded into a complex p-i-n structure. 

Previous works at UCSB have successfully shown the PEC-Etching of the 

active region embedded into a n-i-n structure. 

  

- Controlling the PEC-Etching, in particular it is important to stop the etching 

process at some desired point of the epitaxial structure. 

 

To these goals, we have grown several samples by MOCVD on free standing (FS) 

m-plane GaN template provided by Mitsubishi Chemical Corporation (MCC) 

according to the following structure: a low temperature nucleation layer, 200nm-
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800nm n-GaN, 50nm n-InGaN waveguide (~6% In), a series of InGaN/GaN MQWs, 

20nm AlGaN EBL, 50nm p-InGaN (~6% In), a p-GaN with a small p++-GaN  layer 

on top. N- and p- type doping levels are estimated to be in the order of 1019 and mid-

1017 respectively, the In composition of the MQW was ~15 – 18% based on PL 

measurements. By lithography we patterned stripes of different width and length 

which have been oriented either along the (0001) direction or along the 11-20 a-

direction, being the first orientation typically used to fabricate optoelectronics 

devices (the material gain is maximized), while the second orientation was chosen to 

study the different etching rate of the c+ and c- face along with the fact that 11-20 is 

a natural cleaving plane  for m-plane GaN. A thick SiNx/SiO2 (~1.5um) deposited 

by Advanced PECVD followed the deposition of a thick metal stack Pd/Au 

(200/5000A) deposited by ebeam evaporation. We created mesa structures by Cl2-

based RIE etching the stripes down through the p-GaN. The resulting structure was 

covered again with SiNx (~200nm) so that p-GaN surface if oxidized by the 

photogenerated holes overflowing from the quantum wells would not be exposed and 

therefore etched by the electrolyte solution29. On the backside of the samples we 

deposited 100/5000A Ti/Au layer for the n-contact. Finally the samples were then 

deeply etched again using the previously SiNx mask (self-aligned process) in order 

to expose the MQWs and part of the n-GaN layer. Before we proceeded with the 

actual PEC-etching step we have immersed the sample into a HCL solution under 

dark illumination for few minutes to remove the native oxide.  
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A short schematic of the flow process and the final structure of a sample before the 

PECE step is depicted in Fig. 13 

 

 

 

  

 

 

 

 

 

 

 

The PEC etching was performed by dipping the samples into a 1Mol KOH solution 

at room temperature, an external bias was applied only in the very first experiments. 

All the results presented in this thesis have been obtained with no bias applied. 

Figure 11 Schematic of the flow process 
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As light source to generate the excitons into the active region both a fluorescence 

microscope (Olympus Eclipse LV150, emission range: 380-420nm, light output 

power: 13.6 mW/cm2 as measured by a calibrated photodetector), a violet laser  

diode (λ = 405nm) and a broadband white lamp (Oriel, 68806 Basic Arc Lamp), with 

a GaN filter were used as it is illustrated. A schematic of the setup most commonly 

used in these experiments and photos of the final setup are presented in Fig. 14 

 

a)                 b) 
 

 

 

 

 

 

 

        

c)              d) 

     Figure 12 Setup used for PECE experiments 
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After etching, the samples were rinsed in DI water, N2-blow dried and characterized 

by optical microscope using a Nomarski filter for differential interference contrast 

(DIC) imaging (Olympus LG-PS2). A fluorescent microscope was used both to 

provide the light necessary to generate the electron-hole pairs needed for the PECE 

process to start and to monitor in-situ the 

proceeding of the active region etching by looking 

at the shrinking of the fluorescent region. The 

samples were etched until all the stripes did not lit 

up anymore as it can be seen in Fig 15b. 

                                                                             a) 

 

 

 

 

 

 

 

 

 

 

Figure 13 a) Details of a PECE stripe, b) multiple stripes etched 
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We proceeded in a similar way with the stripes that had on top the metal opaque 

mask meant to block the light and therefore the photogeneration of the electron/hole 

pairs needed to the PEC-etch process to start.  

After removing the metal and SiN mask by HF and Au etchant respectively, we 

observed a fluorescence region area which corresponded to the area covered by the 

opaque metal mask during the PEC etching, as observed in Fig. 

 

 

a)                                        b) 
 

 

c)                        d) 

 Figure 14 Fluorescent stripes a) before and after d) the PEC Etching 
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Finally we cleaved and analyzed the stripes with scanning electron microscopy (FEI 

Sirion and JEOL 7600F). The SEM images have revealed that the etching had indeed 

occurred at the MQWs and then it stopped at the edge of region where the light 

absorption was blocked by the opaque mask.  

 

 

 

 

 

 

 

 

a) b) 
 

 

 

 

 

 

 

 

     c) 

 Figure 15 SEM images of two stripe located close on the samples and PEC- etched at the same time, b) and c) 
details on the front face of the two stripes has evidenced that the PEC-Etch stopped very close to the edge of the 
opaque metal mask 
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We noticed that both the Ga (c+) face and the N (c-) face were PEC-etched. The N-

face is known to be more chemical reactive than the Ga-face and on the c-plane the 

N-face etches with typical crystallographic pyramidal-shape profile while the Ga 

face is essentially not etched at all. On other hand on m-plane the intrinsic 

polarization field pushes the hole towards the Ga face which as results etches even 

faster than the N-face. We measured the different etching rate of the Ga and N face 

and for different set of samples we calculated that Ga-face etched was 2.5x – 4x 

faster then the N-face. We recorderd various etching rate for different samples, 

although the epitaxial structure was similar, with etching rate ranging from few tens 

nm/min up to ~1.2um/min. We believe that such big difference in etching rate might 

be attributed to small fluctuations in the quality of the epitaxial structure. This cause 

may also be responsible for the fact that few stripes were not etched at all although 

they were close located to other stripes that etched correctly as Fig. 15 shows. 

Indeed PEC-etching is a technique very sensible to the material quality and 

uniformity. Defects and threading dislocations can cause a leakage current29 and act 

as effective recombination centers favoring the excitons recombination which in turn 

impede the etching. This is shown in Fig. 18 where local nano-regions (~100nm) 

have not been etched although the electrolyte could percolate through the small gap 

produced by the etched active region (~50nm).  

 

 

 

 34 



 

 

 

 

 

 

 

 

 

 

 

 

 

PEC etching relies indeed on three main competing mechanisms: (i) generation and 

separation of the excitons, (ii) surface oxidation and (iii) etching of the oxidized 

semiconductor surface. For the PEC etching to work properly the excitons generation 

and separation rate and the hole diffusion time to surface have to occur on same time 

scale of the etching rate, meaning that the oxide formed has to be removed very 

quickly. Alternatively the photogenerated holes can either recombine immediately 

with the electrons or they can escape from the QWs to the p-GaN and cause the 

etching there. Further studies are undergoing to analyze how using a better material 

quality can improve the PEC-E process. A careful analysis of the SEM images has 

also revealed that in several stripes the etching did not stop exactly at the edge of the 

Figure 16 Details of a different stripe showing again the stopping of the PEC-etch at the edge of 
the opaque metal mask, the nano-regions which did not etch and the tapered shape profile of 
the undercut obtained by the PEC-Etch 
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dark region produced by the opaque metal mask. In other material systems such 

PEC-etch resolution has been related30 to the hole diffusion length 𝐿ℎ = �𝐷ℎ𝜏ℎ . As 

a consequence, the un-illuminated semiconductor region which is within Lh can still 

be oxidized by the holes and therefore etched. However, this argument  does not 

explain by itself the deep undercut that we observed (in some cases on the order of 

~350nm), even assuming the fastest etch rate we measured for some set of samples. 

Indeed we believe that the major role in determining the PECE resolution is due to 

scattered light, possibly from the rough backside surface. Eventually the insertion of 

an InGaN absorbing layer (for example made an InGaN layer or an InGaN/InGaN 

superlattice) between the active region and the backside contact may help improving 

the PECE resolution. We noted also a tapered shape profile at the end of all the 

etched structure, as it has been also observed in the PEC-Etch of other material 

system31-34 as shown in Fig. 18 . This has been attributed to the local enhancement of 

the electric field at curved interface35 produced by holes local accumulation in the 

space charge region.  

 

Figure 17 Tapered PEC-Etched profile in GaP 
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Chapter 3 

Nitride Current Aperture Blue Laser Diode 

Since the invention of the blue laser diode (LD) in early ‘90s by Nakamura1, 

significant progress has been made in developing high efficient and high power LDs. 

Already employed successfully in a variety of applications ranging from biomedical 

devices to scientific instruments and consumer electronics, blue LDs look promising 

also for Solid State Lighting2 and high frequency light-based communication3 (Li-

Fi).  

Along with the carefully engineering of the device epitaxial structure, both a 

tight carriers-current-photons confinement into the active region and the reduction of 

the series resistance are necessary to improve the LDs wpe. To this purpose, several 

designs of edge-emitting LDs have been proposed8, each having a different degree 

of complexity and fabrication cost in terms of growth and processing steps. Between 
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the cheapest and simplest gain guided and the very expensive and complex buried-

ridge-stripe laser, the etch ridge design represents an acceptable compromise in 

terms of performance, device lifetime and cost. Although it offers a better reliability, 

the shallow etch ridge design provides also leaky paths for carriers and current, 

differently from the deep etch ridge design in which the laser ridge is etched though 

the active region and therefore no leaky paths exist. In device performance terms this 

translates into a lower threshold current, higher optical output power and more 

generally into a higher wpe, as both simulations9 and experimental10 works have 

demonstrated. 

Fig. 18 presents the most common LD ridge design 

 

 

 

 

 

 

 

 

 

 

 

Figure 18 Most common LD ridge design 
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Decreasing series resistance is also very important to achieve highly efficient 

LDs. This is not dependent on ridge etch depth and it is especially relevant for 

devices which need to have small width dimension (<2.5um) for single transverse 

mode lasing. The total operating voltage of a LD can indeed be expressed as Vtot = 

Vd + IRs, with the first term being the diode voltage and IRs the voltage drop on the 

rest of the device. A voltage inefficiency factor representing the voltage that needs to 

be applied in excess of the junction voltage can thus be defined as (1-Vd)/Vtot and it 

may account for as much as ~40% of the total ineffiencies (1-wpe) in current high 

performance blues LDs.   

Current aperturing has indeed been used to fabricate photonic devices in other 

III-V systems by exploiting selective composition and crystallographic wet etching12-

14 which is not possible to achieve in the nitride system using common wet etchants, 

or by selective oxidation and regrowth steps15-16. This last technique has also been 

used to fabricate GaN current aperture vertical electron transistors17 (CAVETs).  

The distinctive feature of the current aperture laser (CA-laser) design is represented 

by the reduced lateral dimension of the active region whose area is therefore smaller 

than the as-grown bottom n-doped and top p-doped regions. This is obtained through 

a selective and a controllable etch of the MQW active region by photo-electro-

chemical etching (PECE) which follows the laser ridge deep etch step.  

The CA-laser offers superior advantages with respect to the shallow etched ridge 

laser. Indeed comparing the two designs, the CA-laser (i) provides a higher current-

carrier-photons confinement, (ii) eliminates any leakage paths because of the laser 
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ridge deep etch, (iii) offers a reduction in series resistance because of the wider p-

GaN region, while maintaining an equal area of active region and injection 

efficiency, (iv) offers superior performances for high speed applications. Simulation 

done using FIMMWAVE18, a commercially available 2D waveguide mode solver, 

have shown that the confinement factor is similar for the two designs as shown in 

Fig. 19. 

 

Fig. 19 Simulation of the optical mode  in the shallow etched (left) and current aperture    

deep etched laser structure. Courtesy Dr. Cohen 
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3.1 Fabrication of Nitride-based Current Aperture laser  

Hereafter, we report the fabrication of a nitride current-aperture laser (also 

denominated constricted mesa laser11), to the best knowledge of the authors a design 

realized for the first time in nitride-based optoelectronics.  

We have grown LDs structures by atmospheric-pressure MOCVD on free standing 

(FS) m-plane GaN substrate provided by Mitsubishi Chemical Corporation (MCC). 

The epitaxial structure consisted of a low temperature nucleation layer, 800nm Si-

doped n-GaN, 50nm Si-doped n-InGaN waveguide layer (~6% In), a series of 

InGaN/GaN MQWs (~4.5/11nm), 20nm Mg-doped p-AlGaN (15% Al) electron 

blocking layer (EBL), 50nm Mg-doped p-InGaN (~6% In, [Mg] ~mid-1017), 800nm 

p-GaN with a small p++ Mg-doped GaN  layer on top. The In composition of the 

MQW was estimated ~16 - 18% based on PL measurements. 

CA-LD have been fabricated according to the following flow process. Opaque metal 

mask stripes of different width and length were defined by standard UV-lithography 

along the c+ direction and deposition of a thick metal layer (Pd/Au 300/5000A) by 

ebeam evaporation, followed by a blank deposition of a thick ~1.5um low-stress 

SiNx/SiOy layer by Advanced-PECVD. Both these insulators are transparent to UV-

light radiation and the purpose of such stack is to alleviate the possible bending or 

breaking of the structure by reducing the layer total internal strain, having the SiOx 

(SiNy) an internal (compressive) stress respectively.  
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The LD bars geometry was defined on top of the opaque metal mask by a 

CF4/CHF3-based ICP etch of the SiOx/SiNy layer. These insulator stripes were then 

used as hard mask for the subsequent Cl2-based RIE etch of the p-GaN. The 

resulting structure was covered again with SiOx/SiNy (~100nm) in order to have the 

p-GaN surface not exposed to the electrolyte during the PECE. Indeed the p-GaN 

surface oxidized by the photogenerated holes overflowing from the quantum wells 

would be etched by the electrolyte solution20. 

On the back side of the samples a 100/5000A Ti/Au layer was deposited as a n-

contact. The samples were then deeply etched again down to part of the n-GaN layer 

by a self-aligned process using the previously SiNx mask in order to expose the 

MQW for the subsequent PEC etch step. After dipping the samples into a HCL 

solution in a dark environment for few minutes to remove the native oxide, we 

proceeded with the actual PEC etch of the MQW. This was done by immersing the 

samples into a 1Mol KOH solution at room temperature without applying any 

external bias. A broadband white lamp (Oriel, 68806 Basic Arc Lamp) provided with 

a GaN filter was used as light source. The etching of the MQW layer stopped very 

close to shadowed region defined by the opaque metal mask whose role was indeed 

to stop the photogeneration of the electrons and holes pairs which are necessary for 

the PECE process to start. Although not used for PEC-etching, it is worth to mention 

that KOH treatment has been reported to be also beneficial to recover both 

optoelectronics and electronics device surface from the dry etch damages21,22. The 

insulator and metal opaque mask were then removed using HF and Au etchant 
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respectively and we checked the result of the PECE by observing the shrinking of the 

fluorescence active region as shown in Fig. 2 

 

Figure 20 Flurorescence images of the stripes a) before the PEC-E and 
without the opaque metal mask on top and b) after the PEC-E with the 
remaining active region corresponding to the masked area 
 

As field insulator ~500nm of low temperature SiO2 was deposited on the side of the 

ridges, followed by the ebeam evaporation of Pd/Au (50nm/1um) layer used as a p-

contact. Finally we created the LDs facets by Reactive Ion etching.  

Below the several processing steps are summarized. 
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  Figure 21 Process flow of the CA-LD 
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In order to to assess the performance of CA-laser, the samples were then cleaved in 

two pieces, the first was used to fabricate shallow etched ridge LDs using a common 

edge emitting laser processing which is summarized in Fig. 19, while the second was 

processed to fabricate the CA-LDs. 

 

Figure 22 Typical process flow of the shallow etched ridge LD 
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A schematic of the final structure of both the LDs is depicted in Fig. 23 while Fig. 24 

shows a SEM image of the final CA-laser  

 

Figure 23 Schematic cross section of the shallow etched and current aperture deep etched 

laser structure 

 

 

Figure 24 SEM image of the current aperture deep etched laser fully processed 
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3.2 CA-Laser Electrical test results 

 

The devices were tested on-wafer probing under pulsed conditions (pulse width: 

300ns, repetition rate: 1kHz, corresponding to a 0.03% duty cycle). The optical 

output power was measured at room temperature (~22.5 C) from the front facet using 

a calibrated broad area Si photodetector. The laser facets were not coated. 

Fig.  shows the IV characteristics for two 1500 um long  LDs fabricated according to 

the two designs. The current aperture LD has a p-GaN ridge width of 10um with an 

active region width of ~3um after the PECE step, while for the shallow etched LD 

both the p-GaN ridge and active region width is 3um 

Fig. 25 compares the LI characteristics of the two LDs. The threshold current 

(voltage) are 640mA (16.40V) and 654.7 mA (18.94V) and this corresponds to a 

threshold current density (Jth) of 14.23 KA/cm2 and 14.55 KA/cm2 for the CA LD  

and shallow etch LD respectively. 

The slope efficiency is  0.069 and 0.017 W/A for the CA-laser and shallow etch LD 

respectively. 
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Figure 25 LIV Characteristics of the PECE and Shallow Etched 

 

It should be mentioned that the data presented in Fig. 5 is from the best CA-LD and 

that the aggregate data for the shallow etched ridge LDs has a smaller standard 

deviation than the aggregate data for the CA-LDs. In general, the threshold current 

density for other CA-LDs was slightly higher than the threshold current density for 

shallow etch LDs with an equivalent active area, although the series resistance of the 

CA-LDs was generally lower. This may be explained in terms of uncompleted PEC-

etch of the unmasked active region which results in nanopillar-like structures 

scattered across the laser bar as shown by the FIB images of Fig.  26 and Fig. 27. 
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Figure 26 FIB of a PEC-Etched LD 

 

Figure 27 Detail of FIB of a PEC-Etched LD 
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We believe that such nanostructures are located in local highly defective areas of the 

sample epi-structure where the photo-generated electron/hole pairs tend to 

recombine immediately and thus the PEC-etching is impeded. Further studies are 

undergoing by our group to investigate deeper this phenomenon and improve the 

PEC-etching process. 

The relatively high threshold current densities and voltages and relatively low 

differential efficiencies for both LD designs can be attributed to an unoptimized 

epitaxial structure and growth conditions and are expected to improve with further 

development. 

In conclusion, we present the first nitride-based current-aperture edge emitting 

laser by making the top p-GaN area wider than the active region through a 

selectively PEC-etch of the MQW active layer of laser bars. Control of the PEC-

Etching was obtained by blocking the light and the subsequent etching caused by the 

photo-generated electron/hole pairs using opaque metal masks placed on top of the 

laser bars. This work demonstrates that the CA-LD has a lower series resistance than 

the most commonly used shallow etch ridge design for an equivalent active region 

area. By carefully designing the device geometry and epitaxial structure, the CA-LD 

may also offer a higher optical confinement factor and lower threshold current 

density which make this design promising for high-performance, high-power, high-

frequency LDs.  
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Conclusions 

This work shows the first Nitride Current Aperture Blue Laser Diode.  

The main feature of this LD design consists in making the top p-GaN area wider than 

the active region through a selectively PEC-etch of the MQWs layer of laser bars. In 

this way, it is possible to reduce the LD series resistance with respect to the most 

commonly used shallow etch ridge design for an equivalent active region area and 

therefore improve the device efficiency. Control of the PEC-Etching was obtained by 

blocking the light and subsequent photogeneration of electron/hole pairs and etching 

through opaque metal masks placed on top of the laser bars. By carefully designing 

the device geometry and epitaxial structure, the CA-LD may also offer a higher 

optical confinement factor and lower threshold current density which make this 

design promising for high-performance, high-power, high-frequency LDs.                                   
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