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Structural Balance via Gradient Flows Over
Signed Graphs

Pedro Arturo Cisneros-Velarde , Student Member, IEEE, Noah E. Friedkin , Anton V.
Proskurnikov , Senior Member, IEEE, and Francesco Bullo , Fellow, IEEE

Abstract—Structural balance is a classic property of
signed graphs satisfying Heider’s seminal axioms. Mathe-
matical sociologists have studied balance theory since its
inception in the 1940s. Recent research has focused on
the development of dynamic models explaining the emer-
gence of structural balance. In this article, we introduce a
novel class of parsimonious dynamic models for structural
balance based on an interpersonal influence process. Our
proposed models are gradient flows of an energy function,
called the dissonance function, which captures the cog-
nitive dissonance arising from the violations of Heider’s
axioms. Thus, we build a new connection with the literature
on energy landscape minimization. This gradient-flow char-
acterization allows us to study the transient and asymptotic
behaviors of our model. We provide mathematical and nu-
merical results describing the critical points of the disso-
nance function.

Index Terms—Gradient flow, signed network, social
dynamics, structural balance.

I. INTRODUCTION

A. Problem Description and Motivation

S IGNED graphs represent networked systems with interac-
tions classified as positive or negative, e.g., cooperation or

antagonism, promotion or inhibition, and attraction or repul-
sion. Such graphs naturally arise in diverse fields, e.g., political
science [14], communication studies [19], and biology [20]. In
sociology [6], [9], they are used to represent friendly or antago-
nistic relationships, whereby signed edges may be interpreted as
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interpersonal sentiment appraisals. In the work by Heider [12],
each individual appraises all other individuals either positively
(friends, allies) or negatively (enemies, rivals). Heider postulated
the following four famous axioms:

i) “the friend of a friend is a friend”;
ii) “the enemy of a friend is an enemy”;

iii) “the friend of an enemy is an enemy”;
iv) “the enemy of an enemy is a friend.”

Violations of these axioms lead to cognitive tensions and
dissonances that the individuals strive to resolve; in this sense,
Heider’s axioms are consistent with the general theory of cog-
nitive dissonance [8]. A signed network satisfying Heider’s
axioms is called structurally balanced and can have only two
possible configurations: either all of its members have positive
relationships with each other and become a unique faction, or
there exist two factions in which members of the same faction are
friends but enemies with every other member in the other faction.
We refer to [9] and [6] for textbook treatment and to [29] for a
recent comprehensive survey.

Whereas Heider’s theory describes the qualitative emergence
of structural balance as the result of tension-resolving cognitive
mechanisms, it does not provide a quantitative description of
these mechanisms and dynamic models explaining the emer-
gence of balance. The aim to fill this gap has given rise to
the important research area of dynamic structural balance. The
Kułakowski et al. [17] model postulates an influence process,
whereby any individual i updates her appraisal of individual
j based on what others positively or negatively think about j.
The Traag et al. [27] model postulates a homophily process,
whereby any individual i updates her appraisal of j according to
how much she agrees with j on the appraisals of their common
acquaintances. Both models explain convergence to structural
balance under certain assumptions on the initial state (see below
for more information). Remarkably, both models assume the
existence of so-called self-appraisals (loops in the signed graph)
that strongly influence the system dynamics. Self-appraisals can
be interpreted as individuals’ positive or negative opinions of
themselves.

A second line of research, consistent with dissonance theory,
has focused on formulating social balance via appropriate energy
functions. The work [23] proposes an energy function for binary
appraisal matrices with global minima that represent structurally
stable configurations; it is argued that a dynamic structural bal-
ance model should aim to navigate through this energy landscape
and look for its minima. Some models (e.g., [2], [3]) were
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designed precisely to achieve this task. The work [7] computes
a distance to balance via a combinatorial optimization problem,
inspired by Ising models.

The purpose of this article is threefold. First, we aim to
propose a more parsimonious model of the influence process
establishing structural balance, that is, a model without self-
appraisal weights. Our argument for dropping these variables
is that balance theory axioms do not include self-appraisals,
and the inclusion of such appraisals amounts to an additional
assumption and introduces unnecessary complexities. Second,
we aim to connect the literature on dynamic structural balance
with the literature treating social balance as an optimization
problem. Finally, we aim to emphasize through numerical sim-
ulations that our parsimonious model does not suffer from a key
limitation present in the Kułakowski et al. model, namely that
the Kułakowski et al. model cannot predict the emergence of
structural balance from asymmetric initial configurations.

B. Further Comments on the State of the Art

We now present a summary of the current literature on dy-
namic structural balance. Historically, the first models appeared
in the physics community [2], [3], [25]. These models borrowed
some concepts from statistical physics and had the particularity
of assuming that the appraisals between individuals are binary
valued (either +1 or −1). At the same time, they rely on
hard-wired random mechanisms for the asynchronous updates
of the appraisals that lack a sociological insightful interpretation.

Another type of proposed models is based on discrete-time
and continuous-time dynamical systems with real-valued ap-
praisals. The seminal models of this kind are due to Kułakowski
et al. [17] (later analyzed more formally by [22]) and Traag
et al. [27]. Models with real-valued appraisals capture not only
signs but also magnitudes of positive or negative sentiments. All
these models adopt synchronous updating and stipulate socio-
logical meaningful rules for the updating of appraisals, based on
either influence or homophily processes. The following facts are
known about the Kułakowski et al. influence-based and the Traag
et al. homophily-based models: the set of well-behaved initial
conditions that lead the social network toward social balance for
the first model is a subset of the set of normal matrices, whereas
the second model can work under generic initial conditions.
Similar results are obtained by [24] for two discrete-time models
based on influence and homophily, respectively: influence-based
processes do not perform well under generic initial conditions
(in contrast to the homophily-based processes). Finally, only
the models proposed in [24] and a variation of the model by
Kułakowski et al. proposed in the early work [17], have a
bounded evolution of appraisals, whereas the others have finite
escape time.

Recent work has also started to focus on dynamic models
for other relevant configuration of signed graphs, e.g., config-
urations that satisfy only a subset of the four Heider’s axioms.
The work [10] provides a parsimonious model explaining the
emergence of a generalized version of structural balance from
any initial configuration; this model is based on an influence
process of positive contagion whereby influence is accorded only

to positively appraised individuals. A second model in this area
is proposed by Jia et al. [16]. Finally, there has been a third type
of models that propose the emergence of structural balance or
other generalized balance structures for undirected graphs from
a game theoretical perspective [5], [21], [28].

C. Contributions

First of all, we contribute by proposing two new dynamic
models that do not adopt the long-standing assumption of self-
appraisals and describe the evolution of signed networks without
self-loops. We argue that the introduction of self-weights is
poorly justified and that a model without them is a more faithful
representation of Heider’s theory. The first model, called the
pure-influence model, is a modification of the classic model
by Kułakowski et al., which is obtained by eliminating self-
appraisals (and thus reducing the system’s dimension). Analysis
of its convergence properties reduces to the analysis of our
second model, called the projected pure-influence model, which
arises as a projection of the first model onto the unit sphere.
This second model has a self-standing interest, since it enjoys
bounded evolution of the appraisals, whereas the first model
shares the finite escape time property of the classic model
by Kułakowski et al.

Our second contribution is to build a bridge between dynamic
structural balance and structural balance as an optimization
problem. We propose an energy function inspired by [23],
namely the dissonance function, which measures the degree
at which Heider’s axioms are violated among the individuals
of a social network. We show that this energy function has
global minima that correspond to signed graphs satisfying struc-
tural balance in the case of real-valued appraisals (restricted
on the unit sphere). Moreover, we show that our (projected)
pure-influence model is the gradient system of the dissonance
function in the case of undirected signed graphs, and hence the
critical points of the dissonance function are the equilibria of
our dynamical system. Thus, we establish a novel connection
between dynamic structural balance and the characterization
of structural balance as the minima of an energy function.
Remarkably, our derivations show that this property of our
models is enabled by the elimination of self-appraisals. Thus,
the models contributed in this article may be considered as both
an interpersonal influence process and an extremum seeking
dynamics for the dissonance function.

Our third and more detailed contribution is the mathematical
analysis of the projected pure-influence model in the cases
where the initial appraisal matrix is symmetric. In particular,
we provide a complete characterization of the critical points
of the dissonance function (i.e., the equilibrium points of the
projected pure-influence model). This characterization relies
upon a special submanifold of the Stiefel manifold and its
properties. Along with the characterization of the critical points,
we analyze their local stability properties and provide some
results on convergence toward structural balance.

Our final contribution is a Monte Carlo numerical study of the
convergence of our models to structural balance under generic
initial conditions in both the symmetric and the asymmetric case.
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For the symmetric case, our numerical result is comparable
to, but stronger than, what has already been proved for the
Kułakowski et al. model: our models converge to structural
balance under generic symmetric initial conditions. One key
advantage of our models, as compared with those by Kułakowski
et al., is that convergence to structural balance emerges under
generic asymmetric initial conditions. Based on these numerical
results, we formulate relevant conjectures.

D. Article Organization

This article is structured as follows. Section II presents pre-
liminary concepts. Section III presents our models and shows
they are gradient flows. Sections IV and V contain an analysis
of equilibria and important convergence results, respectively.
Section VI contains numerical results and conjectures. Finally,
Section VII contains some concluding remarks.

II. PRELIMINARIES

A. Signed Weighted Digraphs

Given an n× n matrix X = (xij) with entries taking values
in [−∞,∞], let G(X) denote the signed directed graph where
the directed edge i −→ j exists if and only if xij �= 0, and xij

represents its signed weight. The directed graph G(X) is com-
plete if X has no zero entries, except for the main diagonal.
G(X) has no self-loops if and only if X has zero diagonal
entries. Let xi∗ denote the ith row of the matrix X and x∗i the
ith column of the matrix X . Let sign(X) = (sign(xij)), where
sign : [−∞,∞] → {−1, 0,+1} is as usual

sign(x) =

⎧⎪⎨
⎪⎩
−1, if x < 0

0, if x = 0

+1, if x > 0.

Given a sequence a1, . . . , an, let B = diag(a1, . . . , an) de-
note the diagonal n× n matrix (bij), where bii = ai and
bij = 0 for i �= j. For an n× n matrix X , define diag(X) =
diag(x11, . . . , xnn). For a vector v ∈ Rn, define diag(v) =
diag(v1, . . . , vn). Let 0n denote the n× 1 vector of zeros, and
0n×n the n× n matrix with zero entries.

Let � and ≺ denote “entrywise greater than” and “entrywise
less than,” respectively.

A triad (if it exists) is a cycle between three nodes in G(X).
The sign of a triad is defined by the sign of the product of the
weights composing a triad. For example, the triad i → j → k →
i has sign sign(xijxjkxki).

A real-valued matrix Z is irreducible if its graph G(Z) is
strongly connected (a directed path between every two nodes
exists) and reducible otherwise. If Z is reducible, a permutation
matrix P exists such that the matrix

PZP	 =

⎡
⎢⎢⎢⎢⎣
Z1 ∗ . . . ∗
0 Z2 . . . ∗
...

0 Zk

⎤
⎥⎥⎥⎥⎦

is upper triangular with irreducible blocks Zi (some of them
can be 1× 1 matrices). If Z = Z	, the latter matrix is block-
diagonal matrix PZP	 = diag(Z1, . . . , Zk) and the graphs
G(Zi) are the connected components of the graph G(Z).

B. Sets of Matrices and the Frobenius Inner Product

Given two matrices A,B ∈ Rn×n, their Frobenius inner
product is defined by 〈〈A,B〉〉F = trace(B	A); the induced
norm is ‖A‖F =

√〈〈A,A〉〉F . Some important properties for
the trace operator are: trace(A) = trace(A	), trace(AB) =
trace(BA), and, for all d ∈ N, trace(Ad) =

∑n
i=1 λd

i where
λ1, . . . , λn are the eigenvalues of A.

Let Rn×n
zero-diag be the set of n× n real matrices with zero diag-

onal entries, and Rn×n
zero-diag,symm be the set of symmetric matrices

belonging to Rn×n
zero-diag. Let Sn×n be the unit sphere in Rn×n,

that is A ∈ Sn×n if and only if A ∈ Rn×n with ‖A‖F = 1.
Similarly, we define the sets Sn×n

zero-diag = Rn×n
zero-diag ∩ Sn×n and

Sn×n
zero-diag,symm = Rn×n

zero-diag,symm ∩ Sn×n.
Let Rn×n

diag be the set of all real diagonal matrices and Rn×n
sk-symm

be the set of all skew-symmetric matrices. Then, we have the
following orthogonal decomposition of Rn×n equipped with the
Frobenius inner product:

Rn×n = Rn×n
sk-symm ⊕ Rn×n

zero-diag,symm ⊕ Rn×n
diag . (1)

C. Review on Structural Balance

Throughout the article, we deal with social networks com-
posed of n ≥ 3 individuals, although the definition of structural
balance (Definition II.3) is formally applicable to the case of
degenerate networks with n = 1 or n = 2 nodes.

Definition II.1 (Appraisal matrix and network): We let the
entry xij of the matrix X ∈ Rn×n denote the appraisal (or
qualitative evaluation) held by individual i of individual j. The
sign of xij indicates if the relationship is positive (+1), negative
(−1) or of indifference (0). The magnitude of xij indicates
the strength of the relationship. xii can be interpreted as i’s
self-appraisal. We call X the appraisal matrix, and G(X) the
appraisal network.

Definition II.2 (Heider’s axioms and social balance notions):
Heider’s axioms are as follows.

H1) A friend of a friend is a friend.
H2) An enemy of a friend is an enemy.
H3) A friend of an enemy is an enemy.
H4) An enemy of an enemy is a friend.

An appraisal network G(X) is structurally balanced in Hei-
der’s sense, if it is complete and satisfies axioms H1)–H4).

Consider a complete appraisal network G(X). We call a
faction any group of agents whose members positively appraise
each other. We say two factions are antagonistic if every rep-
resentative from one faction negatively appraise every repre-
sentative of the other faction. It can be shown [4], [11], [12]
that Heider’s structural balance condition for G(X) with n ≥ 3
nodes holds if and only if either the individuals constitute a
single faction or can be partitioned into two antagonistic factions.
The possession of the latter property may thus be considered as

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on April 05,2023 at 17:15:49 UTC from IEEE Xplore.  Restrictions apply. 



3172 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 66, NO. 7, JULY 2021

an alternative definition of structural balance (and is formally
applicable to graphs without triads).

Definition II.3 (Structural balance): A complete appraisal
network G(X) is said to satisfy structural balance, if G(X)
is composed by one faction or two antagonistic factions; or,
whenever n ≥ 3, equivalently, that all triads are positive, i.e.,
xijxjkxki > 0 for any different i, j, k ∈ {1, . . . , n}.

Notice that a structurally balanced graph is always sign-
symmetric: sign(xij) = sign(xji) for any i �= j. For simplicity,
we will say that a matrix X corresponds to structural balance
whenever G(X) satisfies structural balance.

III. PROPOSED MODELS AND REPRESENTATION AS

GRADIENT FLOWS

In this section, we propose our models defining them over the
set of symmetric matrices. We postponed the general asymmetric
setting to Section VI.

A. Pure-Influence Model

We propose our new dynamic model solely based on inter-
personal appraisals.

Definition III.1 (Pure-influence model): The pure-influence
model is a system of differential equations on the set of zero-
diagonal matrices Rn×n

zero-diag defined by

ẋij =

n∑
k=1
k �=i,j

xikxkj (2)

for any i, j ∈ {1, . . . , n} and i �= j. Here xij , i �= j, are the
off-diagonal entries of a zero-diagonal matrix X ∈ Rn×n

zero-diag. In
equivalent matrix form, the previous equations read

Ẋ = X2 − diag(X2), X(0) ∈ Rn×n
zero-diag. (3)

We interpret X as the interpersonal appraisal matrix. While
system (2) does not define the evolution of self-appraisals,
the matrix reformulation (3) ensures diag(Ẋ) = 0n×n and,
since X(0) ∈ Rn×n

zero-diag means diag(X(0)) = 0n×n, we have
diag(X(t)) = 0n×n for all positive times t.

Our model is a modification of the classical model proposed
by Kułakowski et al. [17], where self-appraisals play a crucial
role in the dynamics of the interpersonal appraisals.

Definition III.2 (Kułakowski: et al. model) The Kułakowski
et al. model is a system of differential equations on the state
space Rn×n defined by

ẋij =

n∑
k=1

xikxkj = xij(xii + xjj) +

n∑
k=1
k �=i,j

xikxkj (4a)

ẋii = x2
ii +

n∑
k=1
k �=i

xikxki (4b)

for any i �= j ∈ {1, . . . , n}. In the equivalent matrix form, the
previous equations read: Ẋ = X2.

Remark III.1 (The problem with self-appraisals): The intro-
duction of self-appraisals in model (4) is objectionable on several

grounds. The first conceptual problem is that self-appraisals
are not considered in any definition of structural balance in
the social sciences. Heider’s axioms in Definition II.2 do not
take into account self-appraisals: social balance is a function of
only interpersonal appraisals. Moreover, once self-appraisals are
introduced, one needs to postulate why and how self-appraisals
affect interpersonal appraisals, i.e., justify the choice of the first
addendum for the right-hand side of (4a). Finally, one needs
to postulate how they evolve, i.e., justify the choice for the
right-hand side of (4b). In summary, the pure influence model (2)
avoids these difficulties and stays closer to the foundations of
structural balance, in which individuals are attending only to in-
terpersonal appraisals. Even though Ẋ = X2 may appear math-
ematically simpler or more elegant than Ẋ = X2 − diag(X2),
we believe the latter model is actually more parsimonious, lower
dimensional, and more faithful to Heiders’ axioms.

One easily notices the following important property of the
pure-influence model (3): the right-hand side is an analytic
function of X so that the equation enjoys (local) existence
and uniqueness of the solutions. A second property is that if
X(0) = X(0)	, then X(t) = X(t)	 for all subsequent times.
This implies that the pure-influence model is well defined over
the set of symmetric (zero diagonal) matrices Rn×n

zero-diag,symm.

B. Dissonance Function

We introduce and study the properties of a useful dissonance
function that summarize the total amount of cognitive disso-
nances [8] among the members of a social network due to the
lack of satisfaction of Heider’s axioms. Recall that, according
to Definition II.3, a triad i → j → k → i satisfies the axioms if
and only if xijxjkxki > 0.

Definition III.3 (Dissonance function): The dissonance func-
tion D : Rn×n

zero-diag → R is

D(X) = −
n∑

i,j,k=1
i�=j,j �=k,k �=i

xijxjkxki = − trace(X3) = −
n∑

i=1

λ3
i (5)

where {λi}ni=1 is the set of eigenvalues of X .
We plot D in a low-dimensional setting in Fig. 1.
Energy landscapes in social balance theory are studied in [7]

and [23]. Our proposed dissonance function is the extension to
Rn×n

zero-diag of the energy function proposed by Marvel et al. [23]
for the setting of binary-valued symmetric appraisal matrices.
For binary-valued appraisals, the global minima ofD correspond
to networks that satisfy structural balance, since all triads are
positive (Definition II.3). Thus, D naturally measures to which
extent Heider’s axioms are violated in a complete graph.

Lemma III.2 (Properties of the dissonance function): Con-
sider the dissonance function D and pick X ∈ Rn×n

zero-diag. Then,
the following conditions hold.

i) D is analytic and attains its maximum and minimum
values on any compact matrix subset of Rn×n

zero-diag.
ii) If G(X) satisfies structural balance, then D(X) < 0.

iii) D(X) = D(X	).
iv) D(X) = −〈〈X2, X	〉〉F .

Additionally, if ‖X‖F = 1, that is, X ∈ Sn×n
zero-diag, then

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on April 05,2023 at 17:15:49 UTC from IEEE Xplore.  Restrictions apply. 



CISNEROS-VELARDE et al.: STRUCTURAL BALANCE VIA GRADIENT FLOWS OVER SIGNED GRAPHS 3173

Fig. 1. For n = 3, an arbitrary symmetric unit-norm zero-diagonal ma-
trix X ∈ Sn×n

zero-diag,symm is described by (x12, x23, x31) with these coor-

dinates living in the sphere x2
12 + x2

23 + x2
31 = 1. In the upper figure,

we plot this sphere with a heatmap, with dark blue being the lowest
value and light yellow the largest value, according to the evaluation of
the dissonance function D(X). The function has four global minima
corresponding to the four possible configurations of G(X) satisfying
structural balance, and we can qualitatively appreciate the convergence
of solution trajectories to these minima in the superimposed vector field
on the sphere. The lower figure is a stereographic projection of the upper
figure.

v) −1 ≤ D(X) ≤ 1.
Proof: Here, we show only property (v) since the other prop-

erties follow easily from the definition of D. We note that

∥∥X2
∥∥2
F

=

n∑
i,j=1

(X2)2ij =

n∑
i,j=1

(Xi∗X∗j)2

≤
n∑

i,j=1

‖Xi∗‖22‖X∗j‖22

=

(
n∑

i=1

‖Xi∗‖22
)⎛
⎝ n∑

j=1

‖X∗j‖22

⎞
⎠

=
(∑n

i,k=1
x2
ik

)2

= ‖X‖2F = 1.

Now, note that the Frobenius norm on the set of matri-
ces coincides with the Euclidean norm of a single vec-
tor obtained by stacking the column vectors of the ma-
trix. Then, by the Cauchy–Schwarz inequality applied to the

inner product 〈〈·, ·〉〉F , it follows that: |D(X)| = |〈〈X2, X〉〉F | ≤
‖X2‖F ‖X‖F ≤ (‖X‖F )3 ≤ 1 when ‖X‖F ≤ 1. �

C. Transcription on the Unit Sphere and the Projected
Pure-Influence Model

We start by noting a simple fact. Given a trajectory
X : R≥0 → Rn×n

zero-diag \ {0n×n}, there exist unique trajectories
η : R≥0 → R≥0 and Z : R≥0 → Sn×n

zero-diag such that X(t) =
η(t)Z(t), where η(t) = ‖X(t)‖F and Z(t) = X(t)/‖X(t)‖F .

Theorem III.3 (Transcription of the pure-influence model):
The pure-influence model (2) with initial conditions in
Rn×n

zero-diag,symm can be expressed as the following system of
differential equations:

Ż = ηPZ⊥(Z2 − diag(Z2))

= η(Z2 − diag(Z2) +D(Z)Z) (6a)

η̇ = −D(Z)η2 (6b)

where η : R≥0 → R≥0 and Z : R≥0 → Sn×n
zero-diag,symm. Here,

PZ⊥ is the orthogonal projection onto span{Z}⊥ in the vector
space of square matrices with the Frobenius inner product.

Proof: Since Ẋ = η̇Z + ηŻ and X2 − diag(X2) =
η2(Z2 − diag(Z2)), (3) can be written as

η̇Z + ηŻ = η2
(Z2 − diag(Z2)

)
. (7)

Differentiating the equality ‖Z(t)‖2F = 〈〈Z(t),Z(t)〉〉F = 1,
one shows that 〈〈Z(t), Ż(t)〉〉F = 0, that is,Z(t) ⊥ Ż(t). Com-
puting the Frobenius inner product withZ(t)on both sides of (7),
(6b) is immediate

η̇ = η2〈〈Z(t),Z2(t)− diag(Z2(t))〉〉F
= η2〈〈Z(t),Z2(t)〉〉F = −D(Z(t))η2 (8)

where we have used the fact that Z(t) is symmetric, and
that diag(Z(t)) = 0n×n and hence 〈〈Z(t), diag(Z2(t))〉〉F =
trace(Z(t)	 diag(Z2(t))) = 0. Substituting (8) into (7), one
arrives at Ż = η(Z2 − diag(Z2) +D(Z)).

Given Y ∈ Rn×n, let PZ(Y ) = 〈〈Y,Z〉〉FZ , i.e., PZ is the
orthogonal projection operator onto the linear space spanned by
Z; and let PZ⊥(Y ) = Y − PZ(Y ) = Y − 〈〈Y,Z〉〉FZ be the
orthogonal projection onto the space perpendicular to the linear
space spanned by Z . Then, we observe that PZ⊥(Z) = 0 and
PZ⊥(Z) = Ż . Using these results, we apply PZ⊥ to both sides
of (7) and obtain Ż = ηPZ⊥(Z2 − diag(Z2)). This concludes
the proof of (6). �

In what follows, we are primarily interested in the dynam-
ics (6a), describing the behavior of the bounded component
Z(t). From Lemma VII.1 we observe that η is a time-scale
change for (6a) and so, for our convenience, we get rid of it
and obtain the following dynamical system on the unit sphere.

Definition III.4 (Projected pure-influence model): The pro-
jected pure-influence model is a system of differential equations
on the manifold Sn×n

zero-diag,symm defined by

Ż = Z2 − diag(Z2) +D(Z)Z. (9)
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Given a solution Z(t) to (9) with initial condition Z(0),
Lemma VII.1 in the Appendix shows that Z(t) is a time-scaled
version of a solution Z(t) to (6a) with initial condition Z(0) =
Z(0), where η in (6b) can have any positive initial condition.
Therefore, there is a solution X(t) to (3) that is both a scaled
and time-scaled version of Z(t).

Similarly, projecting onto the unit sphere leads to a new model
based on the Kułakowski et al. model.

Definition III.5 (Projected Kułakowski: et al. model) The
projected Kułakowski et al. model is a system of differential
equations on the manifold Sn×n

zero-diag,symm defined by

Ż(t) = Z2 +D(Z)Z. (10)

D. Pure-Influence Is the Gradient Flow of the
Dissonance Function

We now let gradD denote the gradient vector field of the
dissonance function D on the manifold Rn×n

zero-diag equipped with
the Riemannian metric tensor 〈〈·, ·〉〉F . We also let D∣∣

Sn×n
zero-diag,symm

denote the restriction of D onto the manifold Sn×n
zero-diag,symm. We

now present the first of our main results.
Theorem III.4 (The pure-influence models over symmet-

ric matrices are gradient flows): Consider the pure-influence
model (2) with X(0) ∈ Rn×n

zero-diag,symm and the projected pure-
influence model (9) with Z(0) ∈ Sn×n

zero-diag,symm. Then, the fol-
lowing conditions hold.

i) t �→ X(t) remains in the set Rn×n
zero-diag,symm and

Ẋ = − 1
3 gradD(X). (11)

ii) t �→ Z(t) remains in the set Sn×n
zero-diag,symm and

Ż = − 1
3PZ⊥(gradD(Z)) = − 1

3 gradD
∣∣∣
Sn×n

zero-diag,symm

(Z).

(12)
In other words, the projected pure-influence model (9) is,

modulo a constant factor, the gradient flow of the dissonance
functionD restricted to the manifold of zero-diagonal unit-norm
symmetric matrices Sn×n

zero-diag,symm.
Proof of Theorem III.4: The forward invariance of the set of

symmetric matrices in both statements is immediate from the
solution uniqueness. To prove (12), we adopt the slight abuse

of notation gradD(Z) = gradD
∣∣∣
Sn×n

zero-diag,symm

(Z). With this notation,

Z �→ gradD(Z) is [13, pp. 15–17] the unique vector field on
Sn×n

zero-diag,symm such that

d

dt
D(Z(t)) = 〈〈gradD(Z(t)), Ż(t)〉〉F (13)

for any differentiable Z : [0,∞) → Sn×n
zero-diag,symm. Here, both

gradD(Z(t)) and Ż(t) belong to the tangent space to the
manifold Sn×n

zero-diag,symm. Now, using the various properties of

the trace inner product [e.g., Ż(t) ⊥ Z(t)], we compute

Ḋ(Z(t)) = −(trace(Ż(t)Z(t)Z(t)) + trace(Z(t)Ż(t)Z(t)))

+ trace(Z(t)Z(t)Ż(t))

= −3 trace(Ż(t)Z2(t)) = −3〈〈Ż(t), Z2(t)〉〉F
= −3〈〈Ż(t), Z2(t)− diag(Z2(t))

+D(Z(t))Z(t)〉〉F .

Recalling that Z2 − diag(Z2) +D(Z)Z
(6a)
= PZ⊥(Z2 −

diag(Z2)) belongs to the tangent space to the manifold
Sn×n

zero-diag,symm at the point Z(t), one arrives at the equality

gradD(Z) = −3
(
Z2 − diag(Z2) +D(Z)Z

)
.

This concludes the proof of statement (ii). Finally, (11) can be
proved in a similar way. �

IV. CLASSIFICATION OF SYMMETRIC EQUILIBRIA

We here give the complete classification of the symmetric
equilibria in the projected pure-influence model (9); the clas-
sification of general asymmetric equilibria remains an open
problem. Thanks to Theorem III.4, all symmetric equilibria of
the projected pure-influence model are critical points of the
dissonance function D. We start with the equilibrium equation

Z2 +D(Z)Z − diag(Z2) = 0n×n, Z ∈ Sn×n
zero-diag,symm.

(14)
Note that the equilibria Z∗ with D(Z∗) = 0 correspond to equi-
libria of the original system (3) X(t) ≡ X∗ = η(0)Z∗, whereas
the others with D(Z∗) �= 0 lead to

X(t) = η(t)Z∗, η(t) =
η(0)

1 + tη(0)D(Z∗)

defined for t ∈ [0, 1
η(0)D(Z∗) ) if D(Z∗) < 0 (for which the solu-

tion is unbounded) or for t ≥ 0 if D(Z∗) > 0.

A. Normalized Stiefel Matrices

To start with, we introduce a special important manifold of
nonsquare matrices that we will use throughout the article.

Definition IV.1 (Normalized Stiefel matrices): A matrix V ∈
Rn×k, for k ≤ n, is normalized Stiefel (nSt), if the following
conditions hold:

i) the columns of V are pairwise orthogonal unit vectors,
i.e., V 	V = Ik;

ii) the norm of each row is the same (obviously, it must be√
k/n ≤ 1): diag(V V 	) = n−1kIn.

Let nSt(n, k) ⊆ Rn×k denote the set of normalized Stiefel
matrices.

In general, the rows of an nSt matrix need not be orthogonal.
We recall from [15] the notion of compact Stiefel manifold,
denoted by St(k, n) = {X ∈ Rn×k | X	X = Ik}.

Lemma IV.1 (Characterization of nSt matrices): The set
nSt(n, k),k ≤ n, is a compact and analytic submanifold of Rn×k
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of dimension (k − 1)n+ 1− k(k + 1)/2, and it is also a sub-
manifold of the compact Stiefel manifold (and thus, nSt(n, k) ⊆
St(k, n)). Moreover, the following conditions hold.

i) nSt(n, n) is the set of orthogonal matrices.
ii) For k = 1, the matrix V is nSt if and only if

V =
1√
n

⎡
⎢⎢⎣
s1
...

sn

⎤
⎥⎥⎦ (15)

for any numbers si ∈ {−1,+1}, i ∈ {1, . . . , n}.
iii) For k = 2, the matrix V is nSt if and only if

V =

√
2

n

⎡
⎢⎢⎣
cosα1 sinα1

...
...

cosαn sinαn

⎤
⎥⎥⎦ (16)

for any set of angles α1, . . . , αn satisfying

n∑
m=1

e2αm

√−1 = 0. (17)

We postpone the proof of Lemma IV.1 to Appendix A. We
remark that in the case of n = k = 2, the constraint (17) implies
that 2α2 = π + 2πs+ 2α1, where s ∈ Z, that is, α2 = π/2 +
πs+ α1 and cosα2 = (−1)s+1 sinα1, sinα2 = (−1)s cosα1.
Thus, the matrices in nSt(2, 2) are orthogonal 2× 2 matrices
(representing proper or improper rotations)

V =

[
cosα1 sinα1

−ε sinα1 ε cosα1

]
, ε ∈ {−1,+1}.

For a general k, it is difficult to give a closed-form description of
all matrices from nSt(n, k). However, there are simple examples
of matrices from nSt(n, k) in the case where n = 2k, including
every matrix of the form

V =
1√
2

[
U1

U2

]

where Ui are orthogonal k × k matrices.

B. Technical Results

The classification of equilibria relies on the following techni-
cal results that will be proved in Appendix A.

Lemma IV.2: Suppose that Z2 − 2αZ = βIn for some sym-
metric n× n matrix Z with diag(Z) = 0n×n and scalars α, β.
Then, Z can be decomposed as

Z = pV V 	 − qIn = Z	 (18)

for some V ∈ nSt(n, k) (1 ≤ k < n) and constants p, q ≥ 0
such that pk = qn, 2α = p− 2q, and β = q(p− q). Namely,
p = 2

√
α2 + β, q =

√
α2 + β − α.

Corollary IV.3: Given a matrix Z = Z	 with diag(Z) =
0n×n, the matrix Z2 − 2αZ is diagonal with s different eigen-
values β1 < · · · < βs of multiplicities n1, . . . , ns, respectively,
(n1 + n2 + · · ·+ ns = n) if and only if there exists such a

Fig. 2. For a network with size n = 10, the dissonance function D eval-
uated on all irreducible symmetric equilibria with k ∈ {1, . . . , 9} positive
eigenvalues, according to (22).

permutation matrix S that

SZS−1 = diag(Z1, . . . , Zs)

where each Zi is decomposed as (18) with parameters pi, qi, Vi,
where Vi ∈ nSt(ni, ki) for some ki < ni and

pi = 2
√

α2 + βi, qi =
√

α2 + βi − α. (19)

Thus, for irreducibleZ = Z	, the matrixZ2 − 2αZ is diagonal
if and only if Z is decomposed as (18) with p, q ≥ 0.

C. Classification of Irreducible Symmetric Equilibria

Theorem IV.4 (Irreducible equilibria for the projected pure-
influence model): For the projected pure-influence model (9),
the following conditions hold.

i) All irreducible symmetric equilibria are of the form

Z∗ = pV V 	 − qIn (20)

with V ∈ nSt(n, k), 1 ≤ k < n, and

p =

√
n

k(n− k)
, q =

√
k

n(n− k)
. (21)

ii) Z∗ has k positive eigenvalues with value p− q andn− k
negative eigenvalues with value −q.

iii) The dissonance function satisfies

D(Z∗) = − n− 2k√
kn(n− k)

(22)

and the right-hand side is monotonically increasing in
k ∈ {1, . . . , n− 1} (see Fig. 2).

Proof: We start by proving a technical statement. Pick V ∈
nSt(n, k), p, q real numbers and set θ = p− 2q. Then, the matrix
Z = pV V 	 − qIn = Z	 satisfies the following properties.

a) Z2 − θZ = q(p− q)In, and thus diag(Z2) =
θ diag(Z) + q(p− q)In.

b) For anyp �= 0, the matrixZ has two eigenvaluesp− q and
(−q)whose multiplicities are k and (n− k), respectively.

c) The eigenspaces corresponding to p− q and −q are the
image of V and the kernel of V 	, respectively.

d) diag(Z) = 0n×n if and only if pk = qn; in this situation,
trace(Z2) = q(p− q)n and D(Z) = − trace(Z2Z	) =
−θnq(p− q).

To prove (a), recall that V 	V = Ik and therefore

Z2 = p2V V 	V V 	 + q2In − 2pqV V 	 = pθV V 	 + q2In

= θZ + (pq − q2)In.
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To prove (b) and (c), notice that for any vector z = V y
one has V V 	z = V (V 	V )y = V y = z, and thus Zz = (p−
q)z. The space of such vectors is nothing else than the im-
age of V and has dimension k (recall that the columns of
V are orthogonal, and hence are linearly independent). If
V 	z = 0, then Zz = −qz, and the dimension of ker(V 	)
is (n− k). Since Z = Z	 and p− q �= −q (except for the
case where p = q = 0 and Z = 0, which is trivial), the two
eigenspaces are orthogonal and their sum coincides with Rn.
Hence, there are no other eigenvalues. To prove (d), note first
pdiag(V V 	) = (pk/n)In, and thus diag(Z) = 0n×n if and
only if pk/n = q. Using statement (a), one shows that in this sit-
uation diag(Z2) = q(p− q)In and hence trace(Z2) = q(p−
q)n. Thanks to (a), Z3 = θZ2 + q(p− q)Z =⇒ trace(Z3) =
θ trace(Z2) = θnq(p− q), which finishes the proof of (d).

Now, to prove the statement (i) of the theorem, let Z∗ be
an irreducible symmetric solution to (14). For α = −D(Z∗)/2,
the matrix (Z∗)2 − 2αZ∗ = diag(Z∗2) is diagonal. Since Z∗

is irreducible, it follows from Corollary IV.3 that Z∗ can be
decomposed as (20) with some p, q ≥ 0. Then, from (a) and (d),
it also follows thatZ∗ satisfies (14) if and only if pk = qn (which
comes from diag(Z∗) = 0n×n) and pq − q2 = 1/n (which

comes from trace(Z∗2) = 1). This implies that q =
√

k
n(n−k)

and p =
√

n
k(n−k) .

Finally, statement (ii) follows from (b); and (iii) is obtained
by substituting the values of p and q into the definition of the
dissonance function (5) and noting that the smooth functionκ �→
− n−2κ√

nκ(n−κ)
has positive derivative on (0, n). �

D. Classification of Reducible Symmetric Equilibria

The following theorem generalizes Theorem IV.4 and charac-
terizes all symmetric equilibria for the projected pure-influence
model and its proof can be found in Appendix A.

Theorem IV.5 (All equilibria for the projected pure-influence
model): The matrix Z∗ is an equilibrium (14) of the projected
pure-influence model if and only if a permutation matrixS exists
such that the following conditions hold.

i) SZ∗S−1 = diag(Z∗
1, . . . , Z

∗
s), s ≥ 1, Z∗

i = Z∗
i
	 ∈

Rni×ni .
ii) The blocks Z∗

i admit representation (18): Z∗
i =

piViV
	
i − qiIni

, where pi, qi ≥ 0 and Vi ∈ nSt(ni, ki),
1 ≤ ki < ni.

iii) The sign ε = sign(ni − 2ki) ∈ {−1, 0, 1} is the same
for all i = 1, . . . , s such that Z∗

i �= 0ni×ni
.

iv) Each block Z∗
i �= 0ni×ni

is irreducible and the corre-
sponding coefficients pi, qi have the form

pi = 2
√

α2 + βi, qi =
√

α2 + βi − α (23)

where
1) for ε �= 0, α and βi are determined from

α = ε

( ∑
i:Zi �=0

4kini(ni − ki)

(ni − 2ki)2

)−1/2

βi = α2 4niki − 4k2i
(ni − 2ki)2

(24)

2) for ε = 0, α = 0, for all i, and βi are chosen in
such a way that

∑
i:Zi �=0 βini = 1.

Remark IV.6: Let Z∗ be a reducible equilibrium for the
projected pure-influence model such that G(Z∗) is composed
of m (disconnected) subgraphs that satisfy structural balance.
According to Definition II.3, G(Z∗) does not satisfy structural
balance since this definition requires G(Z∗) to be complete.

E. Structural Balance and Equilibria

We now characterize the equilibria corresponding to structural
balance and how they minimize the dissonance function.

Corollary IV.7 (Balanced equilibria of the projected pure-
influence model): For the projected pure-influence model (9),
let Z∗ ∈ Sn×n

zero-diag be an equilibrium point with a single positive
eigenvalue. Then, the following conditions hold.

i) After a relabeling of the agents, Z∗ has the form

Z∗ =
[

Z ′ 0n1×(n−n1)

0(n−n1)×n1
0(n−n1)×(n−n1)

]
(25)

with n1 ≤ n and

Z ′ =
1√

n1(n1 − 1)
(ss	 − In1

) (26)

for some s ∈ {−1,+1}n1 ; and thus, for any fixed n1,
there are only 2n1−1 different equilibria (with a single
positive eigenvalue).

ii) G(Z ′) satisfies structural balance, with the binary vector
s characterizing the distribution of the individuals in the
single faction or in the two factions.

iii) If G(Z∗) is a connected graph, then G(Z∗) satisfies
structural balance (being thus complete) and Z∗ is a
global minimizer to the optimization problem

minimize
Z∈Rn×n

D(Z)

subject to Z ∈ Sn×n
zero-diag,symm

and satisfies D(Z∗) = − n−2√
n(n−1)

.

Proof: Consider a permutation of indices from Theorem IV.5.
Since Z∗ has only one positive eigenvalue, it can have only
one nonzero diagonal block Z∗

i = Z ′. Statement (i) now follows
from (20), (21) (with k = 1, n = n1), and (15).

Regarding statement (ii), observe that for any different i, j,
and k, we have

z′ijz
′
jkz

′
ki =

(sisj)(sjsk)(sksi)

(n1(n1 − 1))3/2
=

1

(n1(n1 − 1))3/2
> 0.

This inequality implies sign(z′ij) = sign(z′jkz
′
ki) and thus we

know that Z ′ satisfies structural balance. It is immediate to see
that any i and j such that si = sj correspond to the same faction
in the network G(Z ′). This completes the proof for (ii).

Regarding statement (iii), we notice that the smooth function
η �→ − η−2√

η(η−1)
has negative derivative for η > 3/2. Hence, the

value of D(Z∗) = D(Z ′) = − n1−2√
n1(n1−1)

at equilibrium (25)
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with one positive eigenvalue is minimal when Z ′ = Z∗ and
n1 = n, that is, the matrix is irreducible. Now, let us focus on
the points that vanish the gradient of D, i.e., the equilibria of the
projected pure-influence model. Permuting the agents, we may
confine ourselves to equilibria described in Theorem IV.5 that
have s blocks of size ni with ki < ni positive eigenvalues, i ∈
{1, . . . , s}. To see why this is true, in the proof of Theorem IV.4 it
was shown that D(Z∗

i ) = −2αnqi(pi − qi) = −2αβi. Next, if
ε = −1, thenα < 0 andD(Z∗) > 0. If ε = sign(ni − 2ki) = 0
for all Z∗

i �= 0, then D(Z∗) =
∑

i D(Z∗
i ) = 0. As we know, the

minimal value should be negative, so such equilibria cannot
be global minimizers. Therefore, we may assume that ε = 1,
that is, ki < ni/2 for all such i that Z∗

i �= 0. Assume, without
loss of generality, that Z∗

1, . . . , Z
∗
m �= 0 and Z∗

m+1, . . . , Z
∗
s =

0. Denote k1 + · · ·+ km = k′ and n1 + · · ·+ nm = n′ ≤ n.
Note that the function f(ξ) = ξ(1− ξ)/(1− 2ξ)2 is convex on
(0, 1/2). Therefore, Jensen’s inequality implies

1

n

m∑
i=1

kini(ni − ki)

(ni − 2ki)2
=

m∑
i=1

ni

n
f

(
ki
ni

)

≥ f

(
m∑
i=1

ki
n′

)
= f

(
k′

n′

)
=

k′(n′ − k′)
(n′ − 2k′)2

and, in turn

D(Z∗) = −
(

m∑
i=1

kini(ni − ki)

(ni − 2ki)2

)−1/2

≥ − n′ − 2k′√
k′n′(n′ − k′)

.

We know, however from Theorem IV.4 that the right-hand side
is minimal when k′ = 1, in which case the minimal value, as we
have seen in the beginning in the proof, is achieved at n′ = n.
Hence, the irreducible equilibrium with one positive eigenvalue
is the global minimizer of D∗. �

Remark IV.8: Let Z∗ denote an equilibrium point with one
positive eigenvalue. Then, −Z∗ has one negative eigenvalue
and does not correspond to structural balance. All such −Z∗

correspond to isolated critical points of D.

F. Examples of Equilibria With Two Positive Eigenvalues

Let Z∗ be any equilibrium of the projected pure-influence
model parameterized by nSt(n, 2) matrices so that it has two
positive eigenvalues. Let us assume first that it is irreducible.
Then, another class of equilibria is found using the parameteri-
zation (16). It can be easily shown that

Z∗ =

√
2

n(n− 2)
(θij)

n
i,j=1, θij =

{
0, i = j

cos(αi − αj), i �= j.

Here, the anglesαi should satisfy the relation (17). Interestingly,
many of such matrices do not correspond to structural balance.
Consider, for example, the case where the unit vectors in (17)
constitute a regular n-gon: αi =

π(i−1)
n , i = 1, . . . , n. For any

pair i, j > i the entry zij is negative if (j − i) > n/2, positive if
j − i < n/2 and zero if j − i = n/2 (possible only for even n).
If n is odd, the graph is complete, otherwise, the pairs of nodes
(i, i+ n/2) for i = 1, . . . , n/2 are not connected. For example,
in the smallest dimension n = 3, by setting α1 = 0, α2 = π/3,

and 2π/3, we obtain the equilibrium

Z∗ =
1√
6

⎡
⎢⎣ 0 +1 −1

+1 0 +1

−1 +1 0

⎤
⎥⎦

which does not correspond to structural balance. Actually, in
the case where n = 3 or n ≥ 5, the graph always contains
imbalanced triads. For instance, for n ≥ 3 being odd the nodes
i = 1, j = (n− 1)/2 and 
 = (n+ 3)/2 always constitute such
a triad: zi� < 0, whereas zij , zj� ≥ 0. For an even numbern ≥ 6,
one may take i = 1, j = n/2, 
 = n/2 + 2. In the case n = 4,
the equilibrium Z∗ corresponds to an incomplete cyclic graph
such that D(Z∗) = 0

Z∗ =
1

2
√
2

⎡
⎢⎢⎢⎢⎣

0 1√
2

0 − 1√
2

1√
2

0 1√
2

0

0 1√
2

0 1√
2

− 1√
2

0 1√
2

0

⎤
⎥⎥⎥⎥⎦ .

For the reducible matrix case, since Z∗ has two positive
eigenvalues, G(Z∗) contains two disconnected subgraphs that
satisfy structural balance with possibly other isolated nodes.

V. CONVERGENCE TO BALANCED EQUILIBRIA AND

STABILITY ANALYSIS

We now provide convergence results for our models toward
equilibria that correspond to structural balance. We present a
supporting lemma and then our main theorem.

Lemma V.1: Assume that the solution of (2) satisfies
xi∗(t0) = 01×n at some t0 ≥ 0, that is, in the graph G(X(t0))
node i does not communicate to any other node. Then, xi∗(t) ≡
01×n for any t ≥ 0. The same holds for the solutions of (9).

Proof: Since the right-hand sides of (2) and (9) are analytic,
any solution is a real-analytic function of time. Assuming that
xij(t0) = 0 for all j, one finds that ẋij(t0) = 0. Differentiat-

ing (2), it is easy to show that ẍij(t0) = 0, and so on,x(m)
ij (t0) =

0 for any m ≥ 1. In view of analyticity, one has xij(t) ≡ 0 for
any t. Similarly, zij(t0) = 0∀j entails that zij(t) ≡ 0 for any
solution of (9).

Theorem V.2 (Convergence results and dynamical properties):
Consider the pure-influence model (2) with an initial con-
dition X(0) ∈ Rn×n

zero-diag,symm and the projected pure-influence

model (9) with initial condition Z(0) = X(0)
‖X(0)‖F . Then, the

following conditions hold:
i) the solution Z(t) converges to a single critical point of

the dissonance function D;
ii) the number of negative eigenvalues ofZ(t) is nondecreas-

ing.
Moreover, if X(0) has one positive eigenvalue, then the

following conditions hold:
iii) limt→+∞ Z(t) = Z∗, where Z∗ is as in (26), so that

G(Z(t)) or one of its connected components (while the
rest of nodes are isolated) reaches structural balance in
finite time;

iv) X(t) achieves the same sign structure asZ∗ in finite time;
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v) nonzero entries of X(t) diverge to infinity in finite time.
Proof: For convenience, throughout this proof, let us denote

W (t) = X(t)
‖X(t)‖F , i.e., X(t) = η(t)W (t) with η(t) evolving ac-

cording to (6a) and W (t) evolving according to (6b). From the
construction of the transcription of the pure-influence model in
Theorem III.3, we have that η(t) = ‖X(t)‖F and so η(t) > 0 for
all well-defined t ≥ 0. Moreover, Lemma VII.1 let us conclude
that W (t) = Z(

∫ t

0 η(s)ds) for all t ≥ 0, and thus the solution
X(t) is well defined.

To prove (i), recall that (9) is a gradient flow dynamics of the
analytic function D, and the trajectory Z(t) stays on a compact
manifold and, in particular, is bounded. The classical result of
Łojasiewicz [1] implies convergence of the trajectory to a single
fixed point.

To prove (ii), we enumerate the eigenvalues of Z(t) in the
descending order λ1(t) ≥ λ2(t) . . . ≥ λn(t) and consider the
corresponding orthonormal bases of eigenvectors vi(t). Since
Zi(t)vi(t) = λi(t)vi(t) and vi(t)

	vi(t) = 1, we obtain Żvi +
Zv̇i = λ̇ivi + λiv̇i and v̇i(t)

	vi(t) = 0. Therefore, we have

λ̇i = v	i Żvi + v	i Zv̇i = v	i Żvi + λiv
	
i v̇i = v	i Żvi

entailing the following differential equation:

λ̇i = λ2
i +D(Z)λi − v	i diag(Z2)vi. (27)

Notice that all diagonal entries of diag(Z2) are nonnegative.
Now, due to Lemma V.1, if the ith row ofX was initially the zero
vector, then it will continue being the same for all times and also
for Z; and, moreover, diag(Z2)ii = 0 and there exists a zero
eigenvalue with its associated eigenvector having zero entries
in all the positions of the entries where diag(Z2) are positive.
Then, it immediately follows from (27) that if λi(0) = 0 due to
Z(0) having a row being the zero vector 01×n, then λ̇i = 0.

Now, let N be the set of indices i such that diag(Z2)ii > 0.
Thus, for any i ∈ N , if λi crosses the real axis at time t∗, i.e.,
λ(t∗) = 0, then

λ̇i(t
∗) = −(vi(t

∗))	 diag (Z2(t∗))vi(t∗) < 0. (28)

Therefore, if λi(t0) ≤ 0 for some t0 ≥ 0, then λi(t) ≤ 0 for all
t ≥ t0. This finishes the proof for (ii).

Notice that since trace(Z(t)) = 0 and Z(t) = Z(t)	 �=
0n×n, then Z(t) has at least one positive eigenvalue. Then, (28)
implies that

Λ := {Z ∈ Sn×n
zero-diag,symm |Z has only one positive eigenvalue}

is forward invariant and, in particular, the limit Z∗ =
limt→∞ Z(t) [existing in view of statement (i)] belongs to Λ.
Since Z∗ is a critical point of D (or, in view of Theorem III.4,
the equilibrium of (9)), it has the structure described by Corol-
lary IV.7.

By continuity of the flow Z(t), there is a finite time τ such
that G(Z(t)) has the same sign structure as G(Z∗) for all t ≥ τ .
This finishes the proof for (iii).

Now we prove the last two statements of the theorem. Know-
ing the convergence result from (iii), Lemma VII.1 tells us
that introducing the term η as in the transcribed system (6a)
to the projected pure-influence model has the simple effect of

altering the convergence rate properties for Z(t). Therefore,
there always exist a finite time τ ∗ ≥ 0 such that, for any t ≥ τ ∗,
W (t) satisfies the sign properties of statement (iii) regarding
structural balance. Moreover, the fact that X(t) = η(t)W (t)
and η(t) ≥ 0 by construction, immediately implies (iv). Now,
let g(t) := −D(W (t)), and notice that g(t) is a strictly pos-
itive continuous function for all (well-defined) t ≥ τ ∗. Now,
from (6b), we have the system η̇(t) = g(t)η2(t), with solu-
tion η(t) = η(τ)

1−η(τ)
∫ t
τ g(s)ds

for t ≥ τ . Then, since
∫ t

τ g(s)ds

is a monotonic strictly increasing function on t ≥ τ , we have
that η(t) → +∞ as t → t∗, where t∗ > τ ∗ is some finite time
such that

∫ t∗

τ g(s)ds = 1
η(τ) (note that t∗ > τ ∗ holds from the

relationshipW (t) = Z(
∫ t

0 η(s)ds)). Then, we conclude that the
solution η(t) and the entries of X(t) diverge in some finite time
t∗, which proves (v). �

Corollary V.3: Consider the same conditions as in Theo-
rem V.2, i.e., the projected pure-influence model with initial
condition Z(0) ∈ Sn×n

zero-diag,symm having one positive eigenvalue.
If D(Z(0)) < − n−3√

(n−1)(n−2)
, then G(Z(t)) eventually reaches

structural balance.
The previous theorem immediately implies that the set of ir-

reducible equilibria with a single positive eigenvalue is (locally)
asymptotically stable. We present further results on the stability
of equilibria.

Lemma V.4 (Further results on stability of the equilibria):
Consider a symmetric equilibrium point Z∗ for the projected
pure-influence model (9). Without loss of generality, assume
that Z∗ has no row equal to the zero vector.1 If D(Z∗) ≥ 0, then
Z∗ is an unstable equilibrium point and does not correspond to
structural balance.

Proof: Write the analytic projected influence system (9) as
Ż = f(Z) := Z2 − diag(Z2) +D(Z)Z, thereby defining f :
Rn×n → Rn×n, and compute

∂fij(Z)

∂zij
= D(Z) +

∂D(Z)

∂zij
zij

∂D(Z∗)
∂zij

= −3
n∑

k=1
k �=i,j

z∗ikz
∗
kj .

Now, the Jacobian of f , denoted by Df , is a (n2 − n)× (n2 −
n)matrix (since we do not consider self-appraisals). LetDf(Z∗)
be the Jacobian evaluated at Z∗ and let {λi}n2−n

i=1 be the set of
its eigenvalues. Then, we compute

n2−n∑
i=1

λi = trace(Df(Z∗)) =
n∑

i=1

n∑
j=1
j �=i

∂fij(Z
∗)

∂zij

= (n2 − n)D(Z∗) + 3D(Z∗) = (n2 − n+ 3)D(Z∗).

Since n2 − n+ 3 > 0 for n ≥ 3, we draw the following conclu-
sions for D(Z∗) ≥ 0: (i) Df(Z∗) contains at least one positive

1If Z∗ had a row equal to the zero vector, then, in the lemma statement, we
would replace n by n1 < n, where n1 is the number of rows of Z∗ that are not
equal to the zero vector.
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eigenvalue and so the equilibrium point Z∗ is unstable; (ii) at
least one triad in G(Z∗) is unbalanced and so Z∗ does not
correspond to structural balance. �

VI. SIMULATION RESULTS AND CONJECTURES

The generic convergence of trajectories to the minima of
D (or, equivalently, the convergence from almost all initial
conditions) is an open problem. However, we present strong nu-
merical evidence that supports such a claim. We first remark that,
from the proof of Theorem III.3, the projected pure-influence
model (9) can be generalized over any asymmetric matrix in
Sn×n

zero-diag by replacing D(Z) by − trace(Z	Z2) and this is the
model we will refer throughout this section.

A generic asymmetric initial condition X(0) for the pure-
influence model (2) is a matrix that is generated with each
entry independently sampled from a uniform distribution with
support [−100, 100], and its diagonal entries set to zero. A
generic symmetric initial condition is similarly constructed by
only sampling the upper triangular entries of the matrix. For
the projected pure-influence model, we say Z(0) = X(0)

‖X(0)‖F is
a (non)symmetric generic initial condition depending on how
X(0) was generated. We immediately see from the proof of
Theorem V.2 that Z(t) converges to social balance if and only
if X(t) converges to social balance. Indeed, given that X(t)

diverges at some finite time t̄, we have Z(∞) = X(t̄−)
‖X(t̄−)‖F .

For a fixed network size n, we use a Monte Carlo method [26]
to estimate the probability p of the event “under a generic
asymmetric initial condition Z(0), Z(t) converges to struc-
tural balance in finite time.” We estimate p by performing
N independent simulations (i.e., each simulation generates a
new independent initial condition) and obtaining the proportion
p̂N , also known as the empirical probability, of times that the
simulation indeed had Z(t) converging to structural balance
in finite time. For any accuracy 1− ε ∈ (0, 1) and confidence
level 1− η ∈ (0, 1) we have that |p̂N − p| < ε with probability
greater than 1− η if the Chernoff bound N ≥ 1

2ε2 log
2
η is sat-

isfied. For ε = η = 0.01, the bound is satisfied by N = 27 000.
We performed the N = 27 000 independent simulations with
n ∈ {5, 6}, and found that p̂N = 1. Our observations let us
conclude that for generic asymmetric initial condition Z(0) and
n ∈ {5, 6}, with 99% confidence level, there is at least 0.99
probability that Z(t) converges to structural balance in finite
time.

Similarly, we performed the same Monte Carlo analysis
for generic symmetric initial conditions with n ∈ {3, 5, 6, 15},
and found for that p̂N = 1 for all n. Therefore, we conclude
that for any symmetric generic initial condition Z(0) and n ∈
{3, 5, 6, 15}, with 99% confidence level, there is at least 0.99
probability that Z(t) converges to structural balance in finite
time.

We report three more observations and then state a resulting
conjecture. First, remarkably, we found that all of our simula-
tions (for any type of random initial condition) that converged
to structural balance in finite time, did it by converging to an
equilibrium point having only one positive eigenvalue inside the
set of scale-symmetric matrices, which is a superset of the set of

Fig. 3. Convergence comparison for a network of size n = 7 (a) with
and (b) without the consideration of self-appraisals. The setting is the
same one as in Fig. 5, but with a different random initial condition.
(a) Converged to a network with only diagonal negative entries (all
interpersonal appraisals go to zero), whereas (b) converged to structural
balance. (a) Projected influence model (10) with generic asymmetric
initial condition. (b) Projected pure-influence model (9) with generic
asymmetric initial condition.

symmetric matrices (see Appendix B). Second, we did not per-
form experiments for larger sizes of n due to computational con-
straints. Third, unfortunately, for n = 3, we did find randomly-
generated asymmetric initial conditions whose numerically-
computed solutions do not converge to structural balance.

Conjecture 1 (Convergence from generic initial conditions):
Consider the pure-influence model (2) with some initial condi-
tionX(0), and the projected pure-influence model (9) with initial
conditionZ(0) = X(0)

‖X(0)‖F . Then, the following conditions hold:
i) under generic asymmetric initial conditions,

limt→+∞ Z(t) = Z∗ for a sufficiently large n;
ii) under generic symmetric initial conditions,

limt→+∞ Z(t) = Z∗ for any n
where Z∗ is scale-symmetric [and particularly symmetric
for (ii)] corresponding to structural balance. Then, Z(t) reaches
structural balance in finite time. Moreover, X(t) reaches struc-
tural balance in finite time with same sign structure as Z∗, and
also diverges in finite time.

Similarly, we performed the same simulation analysis for the
Kułakowski et al. model (4), which converges to structural bal-
ance if and only if the projected Kułakowski model (10) does. To
generate a generic initial condition for this system, we generated
an n× n matrix with each entry independently sampled from a
uniform distribution with support [−100, 100], and then divide it
by its Frobenius norm. We performed N = 27 000 independent
simulations with n ∈ {5, 6}, and found that for generic initial
condition Z(0) and n = 5, only 16.94% converged to structural
balance, and for n = 6, only 11.50% converged to structural
balance.

Also, for n = 3, not all simulations converged to structural
balance. We remark that not all of the networks for which the
system converged and did not satisfy structural balance were
complete, some of them were networks with only self-loops,
[e.g., Fig. 3(a)]. Similarly, we performed the same Monte Carlo
analysis for symmetric initial conditions with n ∈ {3, 5, 6, 15}.
Our results show that for symmetric generic initial condition,
Z(0) did not always converge to structural balance for n = 3,
but, for n ∈ {5, 6, 15}, with 99% confidence level, there is at
least 0.99 probability that Z(t) converges to structural balance
in finite time.
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Fig. 4. Convergence to structural balance for a network of size n = 10.
We plot the evolution of all the entries of Z(t). (a) Projected pure-
influence model (9) with generic asymmetric initial condition. (b) Pro-
jected pure-influence model (9) with generic symmetric initial condition.

Fig. 5. Convergence comparison for a network of size n = 7 (a) with
and (b) without the consideration of self-appraisals. We first generated
an n× n random matrix W with each entry independently sampled
from a uniform distribution with support [−100, 100]. Then, for (a), we
normalize this matrix to have unit Frobenius norm and used it as the
initial condition. For (b), we set the diagonal entries of W to zero and
then normalize it to have unit Frobenius norm and use it as the initial
condition. In this example, (a) did not converged to structural balance,
whereas (b) did. We plot the evolution of all the entries of the appraisal
matrix. (a) Projected influence model (10) with generic asymmetric initial
condition. (b) Projected pure-influence model (9) with generic asymmet-
ric initial condition.

These Monte Carlo results are expected since it has been
formally proved that the Kułakowski et al. model converges
to structural balance only under generic symmetric initial con-
ditions as n → ∞ [22] and negative results for asymmetric
conditions are given by Traag et al. [27].

See Fig. 4 for a comparison of trajectories of the pure-
influence model in both generic and symmetric generic ini-
tial conditions. Fig. 5 shows a comparison between our pro-
jected pure-influence model, which does not consider self-
appraisals, and the projected influence model, which considers
self-appraisals. Note how not considering self-appraisals dras-
tically changes the convergence time as well as the dynamic
behavior of the interpersonal appraisals.

VII. CONCLUSION

We propose two new dynamic structural balance models that
incorporate more psychologically plausible assumptions than
previous models in the literature, based on a modification by
a model proposed by Kułakowski et al. We have established
important convergence properties for these models and also
that, most importantly, they correspond to gradient systems over

an energy function that characterizes the violations of Heider’s
axioms for the symmetric case. We also expanded our results to
a set of asymmetric matrices called scale-symmetric. Numerical
results illustrate that, under generic initial conditions, our models
converge to structural balance (for sufficiently large n) and thus
have better convergence properties than the previous model by
Kułakowski et al.

As future work, we propose to further study the general
case of asymmetric (and nonscale-symmetric) equilibria and
the convergence properties of our models under arbitrary initial
conditions. For example, numerical simulations of the projected
pure-influence model from generic (asymmetric) initial condi-
tions illustrate how this system features transient chaos before
converging toward an equilibrium. Future work will focus on
models with a more sociologically justified transient behavior.
Finally, one could study the removal of the self-appraisals in
other dynamical structural balance models, like the homophily-
based model by Traag et al. [27].

APPENDIX A
SUPPORTING RESULTS AND PROOFS

Lemma VII.1: Let x(t) be the solution to ẋ = f(x) from
initial condition x(0), with f being a continuously differentiable
vector field. Let η be a positive continuous scalar function.
Then, z(t) is the solution to ż = η(t)f(z) with initial condition
z(0) = x(0) if and only if z(t) = x(

∫ t

0 η(s)ds).

Proof: Consider the time transformation t̄(t) =
∫ t

0 η(s)ds,
which is well defined since it is continuous and monotonically
increasing on t (recall that η(s) > 0 for s ∈ [0, t]), with t̄ = 0 if
and only if t = 0. Now, from the chain rule, it follows that

dz

dt
=

dx(t̄)

dt̄

dt̄

dt
= f(z)η(t), z(0) = x(0).

This finishes proof of the “if” part. The “only if” part follows
from the uniqueness theorem. �

Proof of Lemma IV.1: First, to prove that the set nSt(n, k),
k ≤ n is a submanifold of the compact Stiefel mani-
fold, define the smooth map Φ : St(n, k) → Rn by X �→
(‖Xi∗‖22, . . . , ‖Xn∗‖22)	, where Xi∗ is the ith row of X . Then,
we have that nSt(n, k) = Φ−1((k/n, . . . , k/n)	) and it is easy
to prove the mapping Φ has constant rank n. Thus, we use the
constant-rank level set theorem [18] to conclude our claim. The
properties of compactness and analyticity are immediate from
the definition of the set nSt(n, k), k ≤ n.

Now, notice that conditions [(i) and (ii)] from Definition IV.1
impose, in total, k(k+1)

2 + n constraints on kn independent
variables, however, these constraints are linearly dependent:
one of them can be removed (for instance, if one requires
condition (i) from Definition IV.1, then suffices to constrain
only sums of n− 1 rows, whereas the remaining sum auto-
matically equals k/n)). Whenever k ≤ n and n ≥ 3, one has
k(k+1)

2 + n− 1 < kn, which implies that the set nSt(n, k) has
the dimension (k − 1)n+ 1− k(k + 1)/2.

Statements (i) and (ii) are immediate. Now regarding (iii), it
is obvious that each row has norm

√
k/n if and only if V can
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be written as (16). Notice now the columns are unit vectors
if and only if

∑n
m=1 cos

2 αi = n/2 =
∑n

m=1 sin
2 αi, which

in turn holds if and only if
∑

m cos 2αm = 2
∑

m cos2 αm −
n = 0. Similarly, the columns are orthogonal if and only
if
∑n

m=1 cosαi sinαi = 0 = 1
2

∑
m sin 2αm. These two con-

straints are equivalent to (17). �
Proof of Lemma IV.2: The case where α = β = 0 is trivial:

Z = 0 and it obviously can be decomposed as in (18) with
p = q = 0. Notice that every eigenvalue ofZ = Z	 corresponds
to the eigenvalue λ2 − 2αλ of Z2 − 2αZ, and hence λ2 −
2αλ − β = 0. Therefore, α2 + β ≥ 0 (otherwise, eigenvalues
of Z would be complex). Furthermore, α2 + β �= 0 (otherwise,
λ = α would be the only eigenvalue of Z of multiplicity n,
and one would have trace(Z) = αn, entailing that α = β =

0). Denoting Δ =
√

α2 + β, the matrix Z has two different
eigenvalues α+Δ and α−Δ, denote their multiplicities by k
and n− k. Then (α+Δ)k + (α−Δ)(n− k) = 0. Denoting
q = Δ− α and p = 2Δ > 0, one has (p− q)k − q(n− k) = 0
or, equivalently, pk = qn thus, q > 0.

Consider the orthonormal eigenvectors v1, . . . , vk, corre-
sponding to the eigenvalue p− q = α+Δ and orthonor-
mal eigenvectors w1, . . . , wn−k, corresponding to −q = α−
Δ. The sequence v1, . . . , vk, w1, . . . , wn−k constitutes an or-
thonormal basis of eigenvectors for the operator Z. Stack-
ing the columns vi and wi, one obtains n× k and n×
(n− k)matrices V = (v1, . . . , vk),W = (w1, . . . , wn−k). The
matrix [V,W ] is orthonormal and diagonalizes Z, that is,

Z[V,W ] = [V,W ]
[
(p−q)IFIXHERE 0

0 −qIFIXHERE

]
and thus Z =

(p− q)V V 	 − qWW	. Since V V 	 +WW	 = In, Z is de-
composed as (18). It remains to notice that V 	V = Ik by def-
inition of the orthonormal basis and diag(V V 	) = (q/p)In =
(k/n)In since, by (18),diag(Z) = 0n×n. To finish the proof, no-
tice that p− 2q = 2α and β = Δ2 − α2 = (Δ− α)(Δ + α) =
q(p− q). �

Proof of Corollary IV.3: Let f(z) = z2 − 2αz, z ∈ C. It suf-
fices to show that, if f(Z) = diag(β1In1

, . . . , βsIns
), thenZ =

diag(Z1, . . . , Zs), where f(Zi) = βiIni
. This statement will be

proved for any analytic function f(z). It is well known that the
spectrum of f(Z) consists of all points f(λ), where λ is an
eigenvalue ofZ. Consider the set of eigenvalues ofZ that belong
to f−1(βi) and let Xi be the sum of corresponding eigenspaces.
Then Xi is invariant under the operator Z, and Rn = ⊕s

i=1Xi

(the sum is orthogonal). Also, f(Z)x = βix for any x ∈ Xi. For
any basis vector er = (0, . . . , 1, . . . , 0)	 consider the decom-
position er = ⊕s

i=1e
i
r, eir ∈ Xi. Then Zer = ⊕s

i=1Zeir, Zeir ∈
Xi and f(Z)er = ⊕s

i=1f(Z)eir = ⊕s
i=1βie

i
r. Suppose that 1 ≤

r ≤ n1. Then, f(Z)er = β1er. Since β1, . . . , βs are pairwise
different, we have er = e1r and e2r = . . . = esr = 0. Similarly,
for n1 + n2 + . . .+ nj−1 + 1 ≤ r ≤ n1 + n2 + . . .+ nj−1 +
nj one has er = ejr (j = 2, . . . , s).

In other words, each Xi contains ni basis vectors
er, where n1 + n2 + . . .+ ni−1 + 1 ≤ r ≤ n1 + n2 + . . .+
ni−1 + ni and thus dimXi ≥ ni. Recalling that n1 + . . .+
ns = n, one shows that dimXi = ni ∀i and thus Xi is spanned
by the corresponding basis vectors. Since Xi is invariant under
Z, Z = diag(Z1, . . . , Zs), where the block Zi has dimension

ni × ni. Obviously, f(Zi) = βiIni
. The statement of Corollary

is now immediate from Lemma IV.2. �
Proof of Theorem IV.5: We prove the necessity first. De-

noting 2α = −D(Z). By assumption, Z2 − 2αZ is diago-
nal. Statements (i) and (ii) follow from Corollary IV.3, en-
tailing also that pi, qi can be represented as (23) with some
βi. Since Z2

i = 2αZi + βiIni
and diag(Zi) = 0ni×ni

, one has
traceZ2

i = βini, therefore∑s

i=1
βini = trace(Z2) = 1. (29)

Recall also that for each i one has piki = qini or, equivalently

2ki
ni

=

√
α2 + βi − α√
α2 + βi

= 1− α√
α2 + βi

∀i : pi, qi �= 0.

(If α = 0, one always has pi, qi �= 0, otherwise it is possible that
βi = 0 and then Zi = 0). This implies condition 3 (ε = signα)
and allows to determine α, βi. In the case where ε �= 0, notice
that ni − 2ki �= 0 for any i such that Zi �= 0. Thus

βi + α2

α2
=

n2
i

(ni − 2ki)2
⇐⇒ βi = α2 4niki − 4k2i

(ni − 2ki)2
.

In view of (29), one obtains that

α = ε

⎛
⎝ ∑

i:Zi �=0ni×ni

4kini(ni − ki)

(ni − 2ki)2

⎞
⎠

−1/2

which entails (24). In the case ofα = 0, one haspi = 2
√
βi, qi =√

βi for any i, and (29) implies that
∑

i q
2
i ni = 1. This finishes

the proof of statement (iv).
The proof of sufficiency is similar. For any i such that Zi �=

0, the coefficients pi, qi have the form (23) (if ε �= 0, this is
implied by (iv)a, otherwise we choose α = 0 and βi = q2i =
p2i /4). Therefore, we haveZ2

i − 2αZi = βiZi and, in particular,
Z2 − 2αZ is diagonal. A straightforward computation shows
that piki = qini and thus diag(Zi) = 0ni×ni

∀i, in particular,
diag(Z) = 0n×n. Also, diag(Z2

i ) = βiIni
, and statement (iv)

now implies that traceZ2 = 1. It remains to notice that Z3
i =

2αZ2
i + βiZi, and hence trace(Z3

i ) = 2αβini. Hence,D(Z) =
− trace(Z3) = −2α, Z2 +D(Z)Z is a diagonal matrix, and Z
is an equilibrium (14). �

APPENDIX B
SCALE-SYMMETRIC MATRICES

We now generalize our results for symmetric appraisal net-
works to a class of asymmetric matrices. We define the sets of
scale-symmetric matrices

Rn×n
zero-diag,dss = {A ∈ Rn×n

zero-diag | there exists γ � 0n such that

Adiag(γ) = (Adiag(γ))	}
Sn×n

zero-diag,dss = Sn×n
zero-diag ∩Rn×n

zero-diag,dss.

Note that Sn×n
zero-diag,dss ⊃ Sn×n

zero-diag,symm and

Sn×n
zero-diag,dss =

⋃
γ�0n

Sn×n
zero-diag,dss(γ)
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Sn×n
zero-diag,dss(γ) = {A ∈ Sn×n

zero-diag |Adiag(γ) = (Adiag(γ))	}.
Lemma B.1: Consider any γ � 0n and some matrix A ∈

Rn×n such that Adiag(γ) = diag(γ)A	. Then, the following
conditions hold.

i) A has real eigenvalues and it is diagonalizable.
ii) trace(A2) = 0 if and only if A = 0.

Proof: Since Adiag(γ) is symmetric, then A′ =
diag(γ)−1/2Adiag(γ)1/2 is also symmetric and thus has
real eigenvalues and its eigenvectors form an orthogonal
basis. Now, let (λ, v) be an eigenpair for A′. Then, by
defining u = diag(γ)1/2v, we observe that Au = λu, and so
(λ, diag(γ)v) is an eigenpair for A. Hence the eigenvectors of
A form a basis, and thus A is diagonizable. This proves (i).

Observe thatA = diag(γ)A	 diag(γ)−1. Then, trace(A2) =
trace(Adiag(γ)A	 diag(γ)−1). From simple algebraic oper-
ations, it can be found that trace(A2) =

∑n
i=1

∑n
j=1

γj

γi
a2ij .

Since γi

γj
> 0, trace(A2) = 0 if and only if A = 0. This

proves (ii). �
In view of Lemma B.1, a matrix A is scale-symmetric if

and only if A = D−1AsD, where D > 0 is a positive diagonal
matrix (in Lemma B.1, D = diag(γ−1/2) for some γ � 0n) and
As a symmetric matrix.

Recall the invariance property of the pure-influence model (2):
ifX(0) = X(0)	, thenX(t) = X(t)	 for all t > 0. We are now
ready to provide a more general version of this property: If D >
0 is a diagonal matrix and X(t) is a solution, then DX(t)D−1

is also a solution. For this reason, if X(0) = DXs(0)D
−1 is

a scale-symmetric matrix with some Xs(0) = Xs(0)
	, then

the solution X(t) = DXs(t)D
−1 is scale-symmetric. A similar

result holds for the projected pure-influence model (9). Indeed,
all of the theoretical results obtained in this article for symmetric
appraisal matrices can be generalized to scale-symmetric ap-
praisal matrices. For example, if X(0) ∈ Rn×n

zero-diag,dss (Z(0) ∈
Sn×n

zero-diag,dss) then t �→ D(X(t)) (t �→ D(Z(t))) is monotoni-
cally nondecreasing in Rn×n

zero-diag,dss (Sn×n
zero-diag,dss).
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