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Abstract

A relative version of Rochlin’s theorem

by

Michael R. Klug

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Robion Kirby, Co-chair

Professor Peter Teichner, Co-chair

Rochlin proved [20] that a closed 4-dimensional connected smooth oriented manifold X4

with vanishing second Stiefel-Whitney class has signature σ(X) divisible by 16. This was
generalized by Kervaire and Milnor [11] to the statement that if ξ ∈ H2(X;Z) is an integral
lift of an element in H2(X;Z/2Z) that is dual to w2(X), and if ξ can be represented by
an embedded sphere in X, then the self-intersection number ξ2 is divisible by 16. This was
subsequently generalized further by Rochlin (see Theorem 1 below) and various alternative
proofs of this result where given by Freedman and Kirby [4], Matsumoto [17], and Kirby
[13].

We give further generalizations of this result concerning 4-manifolds with boundary. Given a
smooth compact orientable four manifold X4 with integral homology sphere boundary and a
connected orientable characteristic surface with connected boundary F 2 properly embedded
in X, we prove a theorem relating the Arf invariant of ∂F , and the Arf invariant of F , and
the Rochlin invariant of ∂X. We then proceed to generalize this result to the case where
X is a topological compact orientable 4-manifold (which brings in the Kirby-Siebenmann
invariant), ∂F is not connected (which brings in the condition of being proper as a link), F
is not orientable (which brings in Brown invariants), and finally, where ∂X is an arbitrary
3-manifold (which brings in pin structures). The final result gives a “combinatorial” descrip-
tion of the Kirby-Siebenmann invariant of a compact orientable 4-manifold with nonempty
boundary.
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Chapter 1

Introduction

The Arf invariant of a quadratic form is an algebraic invariant of the form; by using topolog-
ical constructions of such quadratic forms, there are several different topological contexts in
which the Arf invariant makes an appearance. For example, in dimension two, we have the
Arf invariant of a spin structure on a surface; in dimension three, the simplest example is the
Arf invariant of a knot in S3; in dimension four, there is an Arf invariant of a characteristic
surface in a 4-manifold.

This thesis considers the relationship between different appearances of the Arf invariant
in low-dimensional topology as well as other related invariants, namely the Rochlin invariant
of an integral homology sphere and the Kirby-Sienbenmann invariant of a 4-manifold. Thus
this thesis amounts to an exercise in “Invariantology” (the study of the relationships between
different invariants).

The most basic setup that we work with is as follows: We are given a smooth compact
4-manifold X whose boundary ∂X is an integral homology 3-sphere. Furthermore, F 2 is
a orientable characteristic surface with connected nonempty boundary properly embedded
in X (see Chapter 2 for discussion of characteristic surfaces). Note that we have the Arf
invariant of the knot ∂F in ∂X, the Arf invariant of the characteristic surface F , the Rochlin
invariant of the boundary three manifold ∂X, and the signature of the 4-manifold X (see
Chapter 2 for discussion of these invariants). Then our main result is that we have the
relationship

Arf(F ) + Arf(∂F ) =
σ(X)− [F ]2

8
+ µ(∂X) (mod 2)

(see Theorem 2).
This relationship generalizes a theorem of Rochlin concerning the signature of closed 4-

manifolds and the proof of our result involves a reduction to a certain version of this theorem.
In addition to Rochlin’s work, other related results have been obtained by Robertello, Acũna-
González, Gordon, Yasuhara, and Kirby.

If F is a disk and ∂X = S3, then we recover Robertello’s original definition of the Arf
invariant [19]. If instead we take X to be an even 4-manifold and F to be the undisk (i.e.,
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a disk bounding an unknot in ∂X pushed into X), then we recover the definition of the
Rochlin invariant µ. When we take F to be a disk, then we recover a theorem of Gordon in
[7]. When we restrict to ∂X = S3, then we obtain Theorem 2.2 of [24].

Acũna-González gave a fundamental relationship between the Arf invariant of a knot and
the Rochlin invariant of a homology sphere by showing that if K is a knot in S3, then the
Rochlin invariant of +1-surgery on K is equal to the Arf invariant of K (and similarly for
−1-surgery) [6]. This result follows as a special case of Theorem 2 as we indicate at the end
of Chapter 3.

With this result in hand, some natural questions arise. How does our result extend to
topological manifolds? The answer, as we shall see, is that we must simply add the Kirby-
Siebenmann invariant to either side of the equation. What if we consider links instead of
knots? In trying to generalize to this case, we will be lead to restricting to a special set of
links called proper links. What if we do not want to assume the boundary 3-manifold is an
integral homology sphere but rather a general orientable 3-manifold? In this case, we are
lead to a generalization of the Arf invariant known as the Brown invariant and we will need
to consider pin structures (to warm up to this, we will first recast some of the earlier results
in terms of spin structures).

In Chapter 2, we review the algebra underlying the Arf invariant and discuss its ap-
plications to invariants of knots in integral homology spheres and characteristic surfaces in
4-manifolds. We state the version of Rochlin’s result that we will later use, and prove a
lemma that shows that two Arf invariants are equal. We also review the definition of the
Rochlin invariant of an integral homology sphere.

In Chapter 3, we prove our main result and then, by considering several special cases,
we recover several results from the literature. In Chapter 4, we discuss how to extend these
results to the topological category. In Chapter 5, we dwell a bit on the algebra underlying
the Arf invariant in order to justify the assumption that we only consider proper links (this
condition will arise again when discussing spin and pin structures). After this, we mention
how to extend our results to the case of proper links. In Chapter 6, we introduce the Brown
invariant of a link in an integral homology sphere, closely following the construction of this
invariant in S3 by Kirby and Melvin in [12], and then we prove a relative version of the
nonorientable analogue of Rochlin’s theorem of Guillou and Manin [8]. In Chapter 7, we
recast some of our previous results in the language of spin structures and give alternative
proofs of some of these results using this language as a warm-up to Chapter 8. In Chapter 8,
we recast our results concerning the Brown invariant in terms of work of Kirby and Taylor
[15], in particular showing that the invariant introduced in Chapter 6 is in fact a special case
of an invariant that appears in [15]. Then, using the language of pin structures, we are able
to formulate and prove a generalization of all of the previous results where the 3-manifold
boundary is no longer assumed to be an integral homology sphere.

We summarize our basic proof strategy as “cap off the 4-manifold and surface, use a
result for closed manifolds, compute using additivity, and use a result relating a 4-dimensional
invariant to a 3-dimensional invariant”. This strategy is used again and again in the proofs of
Theorems 2, 4, the version of Theorem 4 for links in Chapter 5, Theorem 6, the alternative
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proof of Theorem 2 in Chapter 7, the alternative proof of Theorem 6 in Chapter 8, and
Theorem 9. For each different proof, we need an appropriate result for closed manifolds
(see Theorems 1, 3, 5, 7, and 8) as well as the appropriate result relating 4-dimensional and
3-dimensional invariants (see Lemmas 1, 2, 3, 5, 6, and 7).

As the thesis progresses, we require less and less of our 4-manifolds X and character-
istic surfaces F , and this is reflected in the fact that our invariants become increasingly
complicated.
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Chapter 2

The Arf invariant

In this Chapter, we briefly review the definitions of the Arf invariant of a quadratic form,
the Arf invariant of a knot inside of a homology sphere, and the Arf invariant of a (not
necessarily closed) characteristic surface in a 4-manifold with trivial integral first homology.
We then derive a relationship between these invariants that will be used to prove our result.
We also recall the definition of the Rochlin invariant of a homology sphere. Manifolds will
be connected unless stated otherwise.

Let V be a finite-dimensional Z/2Z-vector space. A function q : V → Z/2Z is called a
quadratic form if the function I : V ⊗ V → Z/2Z defined by

I(x, y) = q(x+ y) + q(x) + q(y)

is a bilinear form. If this form is nondegenerate, then we say that q is nondegenerate. If q is
nondegenerate, then there exists a basis a1, b1, ..., an, bn for V so that I(ai, aj) = I(bi, bj) = 0
and I(ai, bj) = δij for all i, j. The Arf invariant of q, denoted Arf(q) is defined as

Arf(q) =
n∑
i=1

q(ai)q(bi)

and does not depend on the choice of such a basis. Two such vector spaces V,W with respec-
tive nondegenerate quadratic forms qV and qW are equivalent if there exists an isomorphism
of vector spaces φ : V → W such that qW ◦ φ = qV . Arf proved that (V, qV ) and (W, qW ) are
equivalent if and only if dim(V ) = dim(W ) and Arf(qV ) = Arf(qW ) [1]. The Arf invariant
is additive in the sense that if we have such a pair (V, q) where q is nondegenerate, and V
splits as an orthogonal direct sum

V = V1 ⊕ V2

then
Arf(V, q) = Arf(V1, q|V1) + Arf(V2, q|V2)

(see for example, [22]).
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For any knot K in an integer homology sphere Σ, there is a Z/2Z valued cobordism
invariant called the Arf invariant of K, denoted Arf(K). Let S be a Seifert surface for K.
Then we have a quadratic form qS : H1(F ;Z/2Z) → Z/2Z defined by taking an element x
in H1(F ;Z/2Z), representing it by an embedded curve C ⊂ F , and then taking qF (x) =
lk(C,C+) (mod 2) where C+ is the result of pushing C off of F using chosen nonvanishing
section of the normal bundle. The resulting bilinear form

IS : H1(S;Z/2Z)⊗H1(S;Z/2Z)→ Z/2Z

defined by
IS(x, y) = qS(x+ y) + qS(x) + qS(y)

is the intersection form on S. The Arf invariant of K is then defined as Arf(K) = Arf(qS).
The fact that the result does not depend on the choice of the Seifert surface S follows from
the fact that any two Seifert surfaces for a given knot in a homology sphere differ by a
sequence of isotopies, additions of tubes, and deletions of tubes. None of these operations
change the Arf invariant of the surface. The Arf invariant in S3 was originally defined in a
different way by Robertello [19] where he also shows that the definition is equivalent to the
one given here (see the discussion below Theorem 2). In [19], only knots in S3 are considered;
however, the relevant results also apply in integer homology spheres (see [22]).

We now review the relevant 4-dimensional background. Let X4 be a smooth compact
connected 4-manifold and let F be an connected surface properly embedded in X with
connected boundary. Then F is said to be characteristic if [F ] · G = G · G (mod 2) for all
G ∈ H2(X;Z/2Z) using the pairing H2(X, ∂X;Z/2Z)×H2(X;Z/2Z)→ Z/2Z coming from
Lefschetz duality together with the usual pairing on homology, or equivalently if [F, ∂F ]
is dual to w2(X) (i.e., [F, ∂F ] and w2(X) are identified when we first consider [F, ∂F ] ∈
H2(X, ∂X;Z/2Z) and then apply the Lefschetz duality isomorphism H2(X, ∂X;Z/2Z) ∼=
H2(X;Z/2Z)).

We also assume for now that H1(M ;Z) = 0 and that F is orientable – the case where F
is not orientable will be treated in Chapter 6. We now define a quadratic form

qF : H1(F ;Z/2Z)→ Z/2Z

whose corresponding bilinear form

IF (x, y) = qF (x+ y)− qF (x) + qF (y)

is the intersection form on H1(F ;Z/2Z). Since we will take the Arf invariant of qF , we need
to restrict to F having a connected boundary, otherwise the intersection form is degenerate.
We revisit this point in the Chapter 5.

Given x ∈ H1(F ;Z/2Z), first pick an immersed curve C ⊂ F representing x. Since
H1(X;Z) = 0, we can also pick an orientable surface D bounding C inside of X that is
transverse to F . Note that the normal bundle of D in X is orientable and therefore trivial
(since D is homotopy equivalent to a wedge of circles) and, in fact, the trivialization that is
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induced on C = ∂D by restricting a trivialization of the normal bundle of D to its boundary
is unique. This is because any two trivializations of the normal bundle of ∂D differ by a map
φ : ∂D → SO(2) and if these maps both come from trivializations of the normal bundle of
D then φ extends to a map Φ : D → SO(2). But π1(SO(2)) = H1(SO(2);Z) and therefore
these two trivializations are the same. The normal bundle of C in F then determines a
1-dimensional subbundle of this trivialized 2-dimensional bundle over C and we let O(D) be
the mod 2 number of twists in this 1-dimensional subbundle as we go around C. Now we
define

q(x) = D · F +O(D) + d(C) (mod 2)

where d(C) is the number of double points of C and D · F is the number of intersection
points between D and F . To see the importance of F being characteristic, imagine changing
the above choice of D by tubing into some closed surface.

In [17], it is shown that qF is well defined, and further that if [F ] = [G] in H2(X, ∂X;Z)
and ∂F and ∂G are concordant, then Arf(qF ) = Arf(qG). We denote this also by Arf(F ) =
Arf(qF ). In particular, when F is closed, then for any other orientable surface G homologous
to F , Arf(qF ) = Arf(qG) and we denote the result simply by Arf([F ]) where [F ] is the
corresponding homology class in H2(X;Z).

Recall that for any symmetric unimodular bilinear form on a finitely generated free
abelian group, there are characteristic elements and the square of any characteristic element
is congruent to the signature of the form modulo 8 (see, for example, [13]). In particular,
this applies to the intersection form on any closed orientable 4-manifold or any compact
orientable 4-manifold with integral homology sphere boundary. Rochlin proved the following
result which we use in deriving our relative result [21] (see also [17]):

Theorem 1. (Rochlin) Let X4 be a closed oriented smooth 4-manifold with H1(X;Z) = 0,
and let ξ be a characteristic homology class in H2(X;Z). Then

Arf(ξ) =
σ(X)− ξ · ξ

8
(mod 2)

The condition that H1(X;Z) = 0 in Theorem 1 can be defined away as follows. We start
with the setup of the closed case as in Theorem 1, but we do not insist that H1(X;Z) = 0.
Represent ξ by an embedded orientable surface F . Let L be a 1-dimensional link embedded
in X−F so that the components of L generate H1(X;Z). By doing surgery on L, we obtain
a new 4-manifold X ′ and we can consider F as being in X ′ as well. In this case, Theorem 1
applies and says that

Arf([F ]) =
σ(X ′)− [F ]2

8
(mod 2) (2.1)

Note that σ(X ′) = σ(X) since X and X ′ are cobordant and ξ · ξ = [F ]2 since they have
isomorphic normal bundles. We define Arf(ξ) := Arf([F ]) for some choice of F and L where
Arf([F ]) is considered as being in X ′. Note that the choice of L does not matter as the left
hand side of equation 2.1 does not depend on L. Also the choice of F representing ξ does
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not matter as given a different choice, say F ′, we necessarily have [F ′]2 = [F ]2 and we can
choose L to be disjoint from F and F ′. Then using F and L we obtain

Arf(ξ) =
σ(X)− [F ]2

8
(mod 2)

and using F ′ and L, we obtain

Arf(ξ) =
σ(X)− [F ′]2

8
(mod 2)

Therefore, Arf(ξ) is well defined. In the case of Theorem 2 where X has boundary, we can
similarly define Arf(F ) when H1(X;Z) 6= 0 by choosing an L disjoint from F and proceeding
as above. With these definitions in place, Theorem 1 holds without the hypothesis that
H1(X;Z) = 0 and it is in this form that we use the previous result.

Note that by the above mentioned results, if we are given a knot in a homology sphere
and an orientable surface F whose boundary is K contained in Σ × I, we have two Z/2Z-
valued concordance invariants associated to K, Arf(K) and Arf(F ). Note that for any other
such surface F ′, we have Arf(F ) = Arf(F ′). These invariants coincide:

Lemma 1. Let Σ3 be a integer homology sphere and let F 2 be a connected orientable properly
embedded surface in Σ× I with connected boundary. Then Arf(∂F ) = Arf(F ).

Proof. Assume that we start with a Seifert surface S for ∂F in Σ = Σ × {0} and let C be
an embedded curve in F that is nontrivial in H1(S;Z/2Z). Let S ′ be the result of pushing
S into Σ × I so that it is properly embedded. Then Arf(F ) = Arf(S ′) by our previous
discussion. Thus, it suffices to check that the 3-dimensional Arf invariant Arf(∂F ) is equal
to the 4-dimensional Arf(S ′). We do this by showing that the two quadratic forms qS and
qS′ agree. We denote the push-in of the curve C by C ′. Suppose that the particular push-in
S ′ has been chosen so that C ′, together with a small annular neighborhood, is embedded
in a particular time slice of Σ × {t0} and that this is the time slice with the maximum
time coordinate that intersects S ′ (note that all push-ins of S are isoptic relative to their
boundaries and so we can pick whichever push-in is convenient).

Let (C ′)+ be the knot in Σ×{t0} obtained by pushing C ′ off of the annular neighborhood
in Σ × {t0} and let D be a Seifert surface for (C ′)+ in Σ × {t0}. Then, when computing
the 3-dimensional quadratic form, we have qS(C) = lk(C,C+) = |C ∩ D| (where here, we
have projected D from Σ × {t0} to Σ × {0} and C+ is (C ′)+ projected from Σ × {t0} to
Σ × {0}). In computing the 4-dimensional quadratic form qS′(C

′), we use the surface D
together with the annulus between C ′ and (C ′)+, which we will simply refer to as D. Since
C is embedded, we have d(C) = 0. To see that O(D) = 0, note that the framing of the
normal bundle of D is given by one vector field pointed entirely in the time direction, and
one vector field entirely normal to D in the time slice Σ × {t0}, which, along the annulus,
agrees with a normal framing of C within the annulus. Finally, after perturbing S ′ slightly
so that the only C appears in Σ× {t0} by pushing the rest of the annulus slightly up in the
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time direction, we see that D · S ′ is the number of intersections between D and C ′, which is
just lk(C,C+). Therefore, qS(C) = qS′(C

′), and since we can choose a symplectic basis for
H1(S;Z/2Z) to consist of such embedded curves, it follows that Arf(∂F ) = Arf(F ).

Finally, we mention the Rochlin invariant of a 3-dimensional integer homology sphere Σ,
which is defined as

µ(Σ) =
σ(W )

8
(mod 2)

where W is a smooth even compact 4-manifold with H1(W ;Z) = 0 that bounds Σ (see,
for example, [22]). Note that we need to orient W to define σ(W ); however, changing the
orientation does not alter the result modulo 2. For the moment, choose an orientation on W
and hence Σ. If W ′ where another such oriented smooth even 4-manifold with H1(W ′;Z) = 0
with boundary Σ, then we can form the closed oriented even smooth 4-manifold W ∪Σ W

′,
and by applying Theorem 1 with ξ = 0, we obtain

0 =
σ(W ∪Σ W

′)

8
=
σ(W )

8
+
σ(W ′)

8
(mod 2)

by Novikov additivity [2], and therefore, µ(Σ) is well defined. Note that µ is invariant under
integral homology concordances of homology spheres.
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Chapter 3

A relative version of Rochlin’s
theorem

In this Chapter, we put together the pieces from the last section, prove a relative version of
Rochlin’s theorem, and then discuss the relationship of this theorem to some of the known
results in the literature. The argument used to prove the following theorem will be repeated
and referred to several times in the Chapters that follow, in which we will make minor
adjustments to the proof in order to prove various generalizations.

First we make some homological observations. Let X4 be a compact connected oriented
4-manifold whose boundary ∂X is an integral homology sphere. The relative long exact
sequence for the boundary then gives the isomorphism H2(X;Z) ∼= H2(X, ∂X;Z), and sim-
ilarly in cohomology we have H2(X;Z) ∼= H2(X, ∂X;Z). We also have the isomorphism
H2(X;Z) ∼= H2(X, ∂X;Z). By composing the isomorphisms H2(X, ∂;Z) ∼= H2(X;Z) ∼=
H2(X, ∂X;Z) the pairing H2(X, ∂X;Z) × H2(X, ∂X;Z) → Z yields a nondegenerate sym-
metric pairing H2(X, ∂X;Z)×H2(X, ∂X;Z)→ Z which is geometrically given by counting
intersection points with sign. For orientable F , the condition that F is characteristic is
equivalent to [F ] being characteristic with respect to this pairing. When we write [F ]2 be-
low, we are using this pairing. Geometrically, this is obtained by pushing F off of itself using
the 0-framing on all of the components of ∂F in ∂X, and extending this to a push-off of F
in X, and counting the signed number of intersections between F and this push-off.

Theorem 2. Let X4 be a smooth compact connected oriented 4-manifold with ∂X an integer
homology sphere. Let F 2 be an orientable characteristic surface with connected boundary that
is properly embedded in X. Then

Arf(F ) + Arf(∂F ) =
σ(X)− [F ]2

8
+ µ(∂X) (mod 2)

Proof. Assume for now that H1(X;Z) = 0. Let W 4 be a smooth even compact oriented
4-manifold with H1(W ;Z) = 0 and ∂W = ∂X. Let FW be an orientable surface properly
embedded W inside a collar neighborhood ∂X × I with ∂FW = ∂F . Since W is even, the
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closed F∪FW is characteristic in the closed 4-manifold X∪W . See Figure 3.1 for a schematic.
Note that by Novikov additivity [2], σ(X ∪W ) = σ(X) + σ(W ).

Since Σ is a homology sphere, ∂F bounds an oriented surface in ∂X. Pick a bicollared
neighborhood ∂X × [−1, 1] embedded in X ∪ W with ∂X × {0} mapped to ∂X via the
identity, ∂X× [−1, 0] contained in X, and ∂X× [0, 1] contained in W . Further, assume that
we have isotoped F and FW relative to their boundaries so that inside of ∂X × [−1, 0] and
∂X × [0, 1], they intersect each slice ∂X × {t} in just a copy of ∂F . Then let F be the part
of F outside of the collar, together with a copy of a Seifert surface for the F ∩ (∂X ×{−1})
pushed in to ∂X × {[−1, 0)}. Similarly, let FW be the part of FW outside of the collar,
together with a copy of a Seifert surface for the F ∩ (∂X × {1}) pushed in to ∂X × {(0, 1]}.
For the homology class of F ∪ FW in H2(X ∪ W ;Z) (where now an orientation has been
chosen) we have

[F ∪ FW ] = [F ] + [FW ] = [F ]

and
[F ] · [FW ] = 0

Therefore, we have
[F ∪ FW ]2 = [F ]2

Finally, Arf(F ∪ FW ) can also be computed in two parts. Namely, since both X and
W have vanishing first integral homology, the quadratic space (H1(F ∪ FW ;Z/2Z), qF∪FW

)
splits as an orthogonal direct sum

(H1(F ∪ FW ;Z/2Z), qF∪FW
) = (H1(F ;Z/2Z), qF )⊕ (H1(FW ;Z/2Z), qFW

)

and therefore, by the additivity of the Arf invariant, we have

Arf(F ∪ FW ) = Arf(F ) + Arf(FW ) = Arf(F ) + Arf(∂F )

where the last equality follows from Lemma 1 since FW is contained in a collar neighborhood
of the boundary in W .

Putting these additivity results together and applying Theorem 1, we obtain

Arf(F ) + Arf(∂F ) = Arf(F ) =
σ(X ∪W )− [F ∪ FW ]2

8
=
σ(X)− [F ]2

8
+ µ(∂X) (mod 2)

as desired.
The case where H1(X;Z) 6= 0 is obtained by doing surgery on a link generating H1(X;Z)

in the complement of F and applying the case where H1(X;Z) = 0.

There are other results relating the Rochlin invariant and the Arf invariant. Acũna-
González proved that, given a knot K ⊂ S3 and α ∈ Z with S3(K;α) equal to the integral
homology sphere that results from (1/α)-surgery on K, we have µ(S3(K;α)) = α · Arf(K)
[6]. We recover this result when α = ±1 from Theorem 2 as follows. Consider a copy of
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Figure 3.1: This figure is a schematic for our situation where X4 is the 4-manifold containing
the characteristic surface F 2, W 4 is the manifold that also bounds ∂X, which we have glued
on to obtain a closed 4-manfiold, and F 2

W is a surface in a collar neighborhood of ∂W with
∂FW = ∂F .

the mirror image of K contained in a 3-ball in S3 that is disjoint from K. We denote the
knot by Km. Then Arf(Km) = Arf(K) and there exists an annulus properly embedded in
B4 that cobounds K and Km. Now attach a 2-handle to B4 with framing α, denote the
resulting 4-manifold be X, and let F denote the aforementioned annulus together with the
core of the 2-handle. Note that F is characteristic in X and that the Arf invariant of Km

considered in ∂X is the same as the Arf invariant of Km considered in S3, since this can
be computed from a Seifert surface and the whole computation can be assumed to happen
within the 3-ball containing Km. Then, applying Theorem 2, we see that [F ]2 = σ(X) and
Arf(F ) = 0, thus rederiving Acũna-González’s result in this case.

Gordon has generalized this result of Acũna-González to the case where two solid torus
exteriors in integer homology spheres are glued together to obtain a Z/2Z-homology sphere
[7]. In particular, Gordon derived a formula for the Rochlin invariant of such a homology
sphere in terms of the gluing map, the Arf invariants of the cores of the removed solid tori,
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and the Rochlin invariants of the two homology spheres [7].
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Chapter 4

A relative version of Rochlin’s
theorem for topological manifolds

In this section, we discuss how to extend the results in the previous sections to the topo-
logical category. Let KS(X) be the Kirby-Siebenmann invariant of a connected topological
4-manifold [14]. The starting point for this discussion is a theorem of Freedman and Kirby
(as stated in [3], although we drop the hypothesis that the manifold be simply-connected as
addressed below the theorem statement). This result generalizes Theorem 1 to the topolog-
ical category:

Theorem 3. (Freedman and Kirby) Let X4 be a closed oriented topological 4-manifold, and
let ξ be a characteristic homology class in H2(X;Z). Then

Arf(ξ) = KS(X) +
σ(X)− ξ · ξ

8
(mod 2)

Note that in [3], the invariant τ = τ1 is used in place of Arf, however, these two invariants
are equal (see Lemma 6 in [3]). This theorem follows from Theorem 1 together with the
topological result of Freedman given by the equivalent criteria (iv) and (v) in Theorem 3 of
[3].

By using the definition of Arf(ξ) for non-simply-connected manifolds, as mentioned in
Section 2, together with the fact that KS(M) = KS(N) if M and N are concordant (see,
for example, Theorem 8.2 of [5]), Theorem 3 with no hypothesis on π1(X) follows from the
version of Theorem 3 stated in [3] (which assumes X is simply-connected) in the exact same
way that we generalized Theorem 1 with no condition on H1(X;Z) in Section 2.

Remark 1. The invariants τ and Arf are both obstructions to representing a homology
class by an embedded sphere. From the perspective of τ , we represent a homology class by
an immersed sphere and then try and eliminate the double points via Whitney moves and
τ is an obstruction to being able to do this. From the perspective of Arf, we start with a
higher genus surface that represents a given homology class and we try and find disks to do
compressions that lower the genus of the surface and Arf is an obstruction to doing this.
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We will make use of two properties of KS (see, for example, Theorem 8.2 of [5]). First, if
X4 andW 4 are two compact 4-manifolds with ∂X homeomorphic to ∂W , then KS(X∪φW ) =
KS(X)+KS(W ) where φ : ∂X → ∂W is any homeomorphism. Second, if W is a smoothable
compact 4-manifold, then KS(W ) = 0. Using Theorem 3 together with the aforementioned
facts about KS applied to W as in the proof of Theorem 2, the proof of Theorem 2 extends
to the topological category and yields:

Theorem 4. Let X4 be a compact oriented topological 4-manifold with ∂X an integer ho-
mology sphere. Let F 2 be an orientable characteristic surface with connected boundary that
is properly embedded in X. Then

Arf(F ) + Arf(∂F ) =
σ(X)− [F ]2

8
+ µ(∂X) + KS(X) (mod 2)
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Chapter 5

A relative version of Rochlin’s
theorem for proper links

In this section, we discuss the Arf invariant of a general link in a homology sphere and
highlight the need to restrict to proper links (see below). We then indicate how the results
of the previous section extend to this setting.

The Arf invariant for an oriented link L in a homology sphere Σ is generally only defined
when the link is so called proper, which means that for any component K of the link L, the
linking number lk(K,L − K) is even. Robertello showed that if K1 and K2 are two knots
in a homology sphere such that there are planar surfaces P1 and P2 properly embedded in
Σ× I with

∂P1 = (L× {0}) ∪ (K × {1})

and
∂P2 = (L× {0}) ∪ (K2 × {1})

then Arf(K1) = Arf(K2). This gives a definition of the Arf invariant of a proper link L
as in, for example, [9]. By considering, say, the Hopf link, the necessity of the properness
condition is seen. There is a different definition similar to the 3-dimensional definition that
we gave earlier for the Arf invariant of a knot (see, for example, [16]).

Here, we review this definition of the Arf invariant for links, following the presentation of
the closely related Brown invariant of a link in [12], which, we believe, illuminates why the
Arf invariant is only defined for proper links. Lickorish offers a different explanation for this
in terms of the Jones polynomial for links evaluated at t = i [16]. We discuss the relevant
4-dimensional concepts, relate them to the 3-dimensional ideas, and prove a relative version
of Rochlin’s theorem for proper links. This is a direct and straightforward generalization of
what we did in the previous sections.

We now review the algebra to illuminate the role of properness. Let V be a finite-
dimensional vector space over Z/2Z and let · : V ⊗ V → Z/2Z be a symmetric bilinear, but
not necessarily nondegenerate form on V . Let R = {r ∈ V : r · v = 0 for all v ∈ V } be the
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radical of (V, ·). Suppose further that there is a map q : V → Z/Z such that

q(x+ y) = q(x) + q(y) + x · y

for all x, y ∈ V . We will call (V, ·, q) a quadratic space. If q|R = 0, then we call (V, ·, q) proper.
In this case, we have a quadratic space (V/R, ·, q) with a nondegenerate inner product ·, and
therefore, we can use the previous definition and define the Arf invariant of (V, ·, q) to be
Arf(V/R, ·, q). If (V, ·, q) is not proper, then we make the convention that Arf(V, ·, q) =∞.
Together, the three quantities dim(V ), dim(R), and Arf(V, ·, q) completely classify (V, ·, q) up
to isomorphism. Furthermore, the Arf invariant is additive with respect to sums of quadratic
spaces, and since the sum of a nonproper quadratic space with any other quadratic space is
again nonproper, this justifies the ∞ notation.

The “democratic” method of computing Arf also extends to this setting:

Proposition 1. Let (V, ·, q) be a quadratic space and let q0 and q1 be the cardinalities of the
preimage of 0 and 1 under q, respectively. Then

Arf(V, ·, q) =


0 if q0 > q1,

1 if q0 < q1,

∞ if q0 = q1

Proof. If (V, ·, q) is not proper, then there exists an element r in the radical with q(r) = 1.
Writing V = (Z/2Z)r ⊕W , we find that given any w ∈ W , q(w) 6= q(w + r) and therefore
q0 = q1. Now we assume that (V, ·, q) is proper. If the radical R is trivial, then this result is
shown in, for example, [22]. If R 6= 0, then we will consider the restriction of q to the quotient
V/R, which we denote by qV/R. Then, letting (qV/R)0 and (qV/R)1 denote the cardinalities
of the preimages of 0 and 1, respectively, we have (qV/R)0 = |R|q0 and (qV/R)1 = |R|q1, from
which the result follows.

We now return to topology, in particular 3-dimensional topology. Let L be an oriented
link in an integer homology sphere Σ. Let F be a Seifert surface for L and define as before

qS : H1(S;Z/2Z)→ Z/2Z
x 7→ lk(C,C+)

where C is a curve embedded in S representing x and C+ is a push-off of a from F in the
normal direction. As before, we have

qS(x+ y) = qS(x) + qS(y) + x · y

for all x, y ∈ H1(S;Z/2Z), where here · is the intersection form on H1(S;Z/2Z). Note that
im(H1(∂S;Z/2Z) → H1(S;Z/2Z)) is the radical of this quadratic space and further note
that

qS([K]) = lk(K,K+)

= lk(K,L−K)
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where K is a component of L and K+ is a push-off of K using the surface framing. Therefore,
the quadratic space (H1(S;Z/2Z), ·, qS) is proper if and only if L is proper. We define
Arf(L) = Arf(H1(S;Z/2Z, ·, qS) where, as in the case of knots, this is independent of the
choice of Seifert surface (see [16]).

We now move on to 4-dimensions. The situation is completely analogous to what we did
for knots in the last section. The facts that we need are not exactly found in [17], so we state
the results here. However, they follow exactly the corresponding proofs of the statements in
[17] and thus, we omit the proofs.

Lemma 2. Let X4 be a compact smooth 4-manifold with H1(X;Z) = 0 and let F 2 be an
orientable characteristic surface that is properly embedded in X. Let x ∈ H1(F ;Z/2Z) and
suppose that X is represented by a curve C ∈ F , and D2 is an immersed orientable surface
in X that is transverse to F . Then define

qF : H1(F ;Z/2Z)→ Z/2Z
x 7→ D · F +O(D) + d(C)

where O(D) is the framing of D, and d(C) is the number of double points of C, and D ·F is
the number of points of intersection between D and F . Then qF is well defined and, together
with the intersection form, makes H1(F ;Z/2Z) a quadratic space. If F1 and F2 are two such
surfaces with ∂F1 and ∂F2 contained in the same boundary component of X such that they
are concordant in that boundary component, and such that the homology classes [F1] = [F2]
in H2(X, ∂X;Z/2Z), then Arf(qF1) = Arf(qF2). If ∂F is contained in an integer homology
sphere’s boundary component of X, then qF is proper if and only if ∂F is a proper link.

With this setup, results analogous to Lemma 1 and Theorem 2, where now F is allowed
to have boundary a proper link, follow exactly as in the case of knots. The topological
generalizations of these results also follow in the same manner and the hypothesis that
H1(X;Z) = 0 can be defined away just as in Section 2.
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Chapter 6

The Brown invariant

In this section, we discuss the Brown invariant of a Z/4Z-enhanced inner product space
over Z/2Z following the general path we have now gone along a few times: first, we review
the relevant bit of algebra; second, we discuss the use of this algebra to give an invari-
ants of 3-dimensional knots; third, we discuss 4-dimensional results relating the algebra to
characteristic surfaces in 4-manifolds; and finally, we prove a result that brings the 3- and
4-dimensional perspectives together.

We start with the algebra. Let V be a finite-dimensional vector space over Z/2Z and let
· : V ⊗ V → Z/2Z be a symmetric bilinear, but not necessarily nondegenerate, form on V .
Suppose further that there is a map e : V → Z/4Z such that

e(x+ y) = e(x) + e(y) + 2(x · y)

for all x, y ∈ V where here 2 : Z/2Z → Z/4Z is the inclusion map (we use such inclusions
going forward without note). We call such an e a Z/4Z-valued quadratic enhancement of ·.
We call (V, ·, e) an enhanced space. One source of examples of enhanced spaces comes from
taking a quadratic space (V, ·, 2q) where (V, ·, q) is a quadratic space. If e|R = 0, then we
call (V, ·, e) proper.

We now define the Brown invariant of an enhanced space (V, ·, e) following [12]. Let ei be
the size of the preimage of i ∈ Z/4Z with respect to the map e : V → Z/4Z. Then the Brown
invariant of (V, ·, e), denoted β(V, ·, e) ∈ Z/8Z, is defined as in Figure 6.1. One property of
the Brown invariant that we use below is that it is additive with respect to orthogonal direct
sums of enhanced spaces.

Remark 2. We could try and take this process one step further and look at Z/8Z-enhancements.
However, we find that every such enhancement f is equal to 2e for some Z/4Z-enhancement
e. Similarly, suppose that f : V → Z/2nZ is such that

f(x+ y) = f(x) + f(y) + 2n−1(x · y)

for all x, y ∈ V . If f(x) is odd, then since

0 = f(x+ x) = 2f(x) + 2n−1(x · x) (mod 2n)
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Figure 6.1: This figure gives the definition of the Brown invariant. The quantities ei are the
number of times that the enhancement e takes on the value i ∈ Z/4Z and sign(e0 − e2) and
sign(e1 − e3) denote the signs (positive, zero, or negative) of the respective integers. The
quadrant is then determined by these two signs and the result is the Brown invariant. For
example, if e0 = e2 and e1 > e3, then the Brown invariant is 2.

we find that x ·x = 1 and n ∈ {1, 2}. A general setup for quadratic refinements that contains
what we have discussed here is considered by Taylor in [23] where the appearance of the
number 8 is elucidated following an argument of Connolly.

We now turn our attention to 3-dimensional knot theory. Let L be an unoriented link in
an oriented integral homology sphere Σ. We now define the Brown invariant of L, denoted
β(L) which when L is not proper is ∞, and when L is proper is valued in Z/8Z. Note that,
in contrast to Arf, where we have an unoriented ambient manifold and an oriented link for
β(L), we require exactly the opposite. If we orient L, then we can consider Arf(L) as in the
previous section. This is related to β(L) by

β(L) = 4 Arf(L) + lk(L) (mod 8) (6.1)

where lk(L) is the sum of all linking numbers of all pairs of components in L. This then
explains the dependence of Arf(L) on the orientations of the individual components. This
also shows that β(L) ∈ {0, 2, 4, 6} ⊂ Z/8Z.

To define β(L), start by choosing an embedded (not necessarily orientable) surface S in
Σ with boundary L. We define a Z/4Z-valued quadratic enhancement eS : H1(S;Z/2Z) →
Z/4Z of the intersection form on H1(S;Z/2Z). By a band in Σ, we mean an embedded
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annulus or Möbius band in Σ. We have a map

h : {immersed collections of bands in Σ} → Z/4Z

given (connected) bands by compatibly orienting the core of the band and the boundary,
and then taking the linking number of the core with the boundary; for disconnected bands,
h is defined by summing over the connected components. We then define eS(x) for x ∈
H1(F ;Z/2Z) by first taking an immersed (not necessarily connected) curve C representing
x and defining

eS : H1(S;Z/2Z)→ Z/4Z
x 7→ h(B′) + 2d(C)

where B is a regular neighborhood of C in S, B′ is a resolution of B as in Figure 6.2, and
d(C) is the number of double points in C. The proof that this is well defined consists of
showing it does not depend on the choice of resolution of B to B′ as in Figure 6.2 and
showing that the choice of C representing x does not matter. For the former, the necessary
calculation is given by computing linking numbers on of the two possible resolutions on the
right side of Figure 6.2 in the case where Σ = S3. In the case of a general homology sphere,
this follows from the 4-dimensional method of computing linking numbers in Σ× I applied
to the regular homotopy between the two possible resolutions on the right side of Figure 6.2
given by pushing the band on on the top right portion of Figure 6.2 through through the
other band in order to obtain the bottom right part of Figure 6.2. The proof that the choice
of C representing x does not matter is identical to the proof given in the case where Σ = S3

as given in [12]. Note that if we switch the orientation on Σ, then the Brown invariant of L
changes sign since every element of H1(S;Z/2Z) can be represented by an embedded curve
and the term h(B′) will change signs when the orientation of Σ is switched.

We now check that eS is indeed a Z/4Z-valued quadratic enhancement of the intersection
form on H1(S;Z/2Z). Let x, y ∈ H1(S;Z/2Z) and let Cx and Cy be immersed curves in S
that represent x and y, respectively. Let B′(Cx) and B′(Cy) be resolutions of small regular
neighborhoods of Cx and Cy. Then Cx ∪ Cy represents x+ y with

d(Cx ∪ Cy) = d(Cx) + d(Cy) + x · y

and
h(B′(Cx) ∪B′(Cy)) = h(B′(Cx)) + h(B′(Cy))

thus,

eS(x+ y) = h(B′(Cx) ∪B′(Cy)) + d(Cx ∪ Cy)
= h(B′(Cx)) + h(B′(Cy)) + 2(d(Cx) + d(Cy) + x · y)

= eS(x) + eS(y) + 2(x · y)

We have therefore verified that (H1(S;Z/2Z), ·, eS) is a Z/4Z-enhanced quadratic space.
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Figure 6.2: On the left we see a curve C (in red) and a regular neighborhood B of C in S,
where here, we are just showing the local picture around a point of intersection of C. On
the right we see the possible resolutions B′ of B at this point of intersection. After making
one of these two choices at every point of self-intersection of C, we obtain a resolution B′ of
B.

Note that if K is a component of L, then we have

lk(K,K+) = lk(K,L−K) (mod 2)

where K+ is a push-off of K using the surface framing since S shows that [K+] = [L −K]
in H1(S;Z/2Z). Therefore,

eS([K]) = 2 lk(K,K+)

= 2 lk(K,L−K)

and thus eS is proper if and only if L is proper.
We define the Brown invariant of S to be the Brown invariant of (H1(S;Z/2Z), ·, eS)

and we denote this by β(S). We define the Brown invariant of L, denoted β(L), when L is
proper to be

β(L) = β(S)− φ(S)

where φ(S) is half of the sum of the framings of the boundary components induced by S,
and ∞ when L is not proper.



CHAPTER 6. THE BROWN INVARIANT 22

Figure 6.3: This figure shows one of the two moves that we will consider for changing the
bounding surface for a link while not altering the bounding link. The left side of the picture
indicates the surface before the move. The right hand side denotes the result of using this
move to add a tube to the bounding surface. It is not assumed that the two ends of the
tube are in the same components of the surface and it is not assumed that the tube is added
in an orientation-preserving way (the surface might not even be orientable). Note that the
bounding link is not altered.

We now show that the Brown invariant for links in a homology sphere is well defined. One
way of showing that Arf is well defined is to recall that all Seifert matrices of a given link are
S-equivalent, and then to see that the value of Arf does not change when we compute it using
two different Seifert surfaces that differ by the addition of a tube as in Figure 6.3 (although
in the case of Seifert surfaces, we must be sure to add the tube in a way such that the
resulting surface is orientable). We mimic this proof, but we need to consider nonorientable
surfaces. Here, the relevant result is due to Gordon and Livingston [18], which says that any
two surfaces S1 and S2 that bound a given link L in a homology sphere Σ are related by a
sequence of isotopies together with the moves shown in Figure 6.3 and Figure 6.4.

To show invariance of the Brown invariant under these modifications to the bounding
surface, we use an algebraic property of β, namely, that it is additive in the sense where if
(V, ·, e) is a Z/4Z-valued enhanced space and there is an orthogonal direct sum decomposition
V = V1 ⊕ V2, then

β(V, ·, e) = β(V1, ·, eV1) + β(V2, ·, eV2)
This follows from the Gauss sum method of computing β as explained, for example, in [12].

Let L be a proper link in an oriented homology sphere Σ. Let S1 and S2 be two surfaces
in Σ that bound L such that S1 and S2 differ by the move in Figure 6.5 where S2 is the
result of adding a tube to S1 and where both of the ends of the tube are attached to the
same connected component of S1, Then H1(S2;Z/2Z) splits orthogonally as

H1(S2;Z/2Z) = V ⊕ (Z/2Z)a⊕ (Z/2Z)b

where β(V ) = β(S1) as V is the part of S2 coming form S1 and the curves a and b are as in
Figure 6.5. Then eS2(a) = 0 and

eS2(a+ b) = eS2(a) + eS2(b) + 2(a · b)



CHAPTER 6. THE BROWN INVARIANT 23

Figure 6.4: This figure shows one of the two moves (which has two variations) that we will
consider for changing the bounding surface for a link while not altering the bounding link.
The left side of the picture indicates the surface before the move. The the right hand side
denotes the two possible modifications using this move. Note that the bounding link is not
altered.

Therefore, whatever eS2(b) is, since we have β((Z/2Z)a ⊕ (Z/2Z)b) = 0. Since φ(S1) =
φ(S2), it follows from additivity of the Brown invariant that

β(S1)− φ(S1) = β(S2)− φ(S2)

as desired. If instead we consider the case where S2 is the result of attaching a tube to S1

where the two ends of the tube are attached to different connected components, then there
is no change in the homology and the proof of well definedness follows.

Suppose instead that S1 and S2 are two surfaces in Σ that bound L such that they differ
by a move in Figure 6.6 (the argument for the other possibility in Figure 6.4 is analogous).
Letting a be the curve in Figure 6.6, we find that H1(S2;Z/2Z) splits orthogonally as

H1(S2;Z/2Z) = W ⊕ (Z/2Z)a

where β(W ) = β(S1) (W is the part of S2 coming form S1) and since eS2(a) = 1, we have
β((Z/2Z)a) = 1. Therefore, by additivity,

β(S2) = β(S1) + 1

The sum of the framings also changes with

φ(S2) = φ(S1) + 1
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Figure 6.5: This figure shows the result of performing the move shown in Figure 6.3 in the
case where the two ends of the tube are on the same component of the surface. We have
labeled to curves a and b, although b involves making a choice.

Figure 6.6: This figure shows the result of performing one of the two possible moves shown
in Figure 6.4 that alter a spanning surface for a knot without changing the knot. We have
labeled a curve a on the resulting surface.

and therefore
β(S1)− φ(S1) = β(S2)− φ(S2)

We have thus verified that β(L) is well defined.
Note that if S is an orientable surface, then for any x ∈ H1(S;Z/2Z), we can represent

x by a curve C embedded in S that has an annular regular neighborhood with boundary
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curves that we denote by C1 and C2. Then

es(x) = lk(C,C1) + lk(C,C2)

= 2 lk(C,C1)

= 2 lk(C,C+)

= 2qS(x)

where C+ is the push-off of C from S used in defining qS. Thus, β(S) = 2 Arf(∂S). Further,
letting L1, ..., Ln be the components of L, and L+

i be the push-off of Li using the surface
framing, note that

φ(F ) =
1

2

(
lk(L1, L

+
1 ) + · · ·+ lk(Ln, L

+
n )
)

=
1

2

(∑
i,j

lk(Li, Lj)

)
= lk(L)

Therefore, equation 6.1 is verified.
Now we discuss the application of the Brown invariant to characteristic surfaces in 4-

manifolds. Note that our surfaces will not necessarily be orientable (and when they are, we
recover results from the previous sections), but our 4-manifolds are always orientable and
from now on oriented. We first review the case of closed surfaces in closed 4-manifolds as
in [17] and [8] and then discuss the relative case that is of interest to us. From now on,
by a characteristic surface, we mean an embedded (not necessarily orientable) surface F 2

in an orientable 4-manifold X4 so that F · G = 0 for all G ∈ H1(X;Z/2Z), or equivalently,
that F is dual to w2(X). We define a Z/4Z-valued enhancement of the intersection form
eF : H1(F ;Z/2Z) → Z/4Z as follows. Given x ∈ H1(F ;Z/2Z), let C ∈ F be a curve that
represents x and let D be a connected orientable surface in X that is immersed in X with
boundary C. As before, the normal bundle of D is trivial and we get a unique trivialization
of the normal bundle of D restricted to ∂D. The normal bundle of C in F is a line bundle
contained in the normal bundle of D restricted to ∂D and we let n(D) be the number of right-
handed half-twists of this subbundle using the following convention. Choose an orientation
of C and let e1 and e2 be sections of the normal bundle of D restricted to ∂D that form a
basis at every point, such that, if rD is the radial outward direction of D along every point of
C, the ordered tuple of vectors (rD, C, e1, e2) agrees with the ambient orientation of X. This
convention allows us to pick out e1 and e2 and thus define right-handed half-twists. Note
the need to consider half-twists since F is not necessarily oriented. We then define

eF (x) = n(D) + 2(D · F ) + 2d(C) (mod 4)

where d(C) is the number of double points of C and D · F is the number of intersection
points between D and F . We call n(D) above the framing of D. In [17] it is shown that
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this is well defined and it is verified that eF is a Z/4Z-valued refinement to the intersection
form.

Then the Brown invariant of F , denoted β(F ), is defined to be the Brown invariant of
the Z/4Z-valued enhanced. If F is in fact orientable, then n(D) = 2O(D) and therefore
eF (x) = 2qF (x) for all x ∈ H1(F ;Z/2Z); thus in this case β(F ) = 4 Arf(F ).

Given a closed (not necessarily orientable) surface F in an oriented 4-manifold X, the
self-intersection number F ·F is defined by pushing F in the normal direction via an isotopy
and counting the number of intersections of this push-off F ′ with F , where the sign of a self-
intersection is determined by first fixing a local orientation of F at that point, giving F ′ the
same local orientation, and then seeing if the induced orientation on X at the intersection
point given by first using the local orientation of F and then the local orientation of F ′

agrees with X or not – these are counted as +1 and −1, respectively.
The following theorem generalizes Theorem 1 to the case of potentially nonorientable

characteristic surfaces. It is due to Guillou and Manin [8] and we are following the exposition
by Matsumoto [17].

Theorem 5. (Guillou and Manin) Let X4 be a closed oriented smooth 4-manifold with
H1(X;Z) = 0, and let F 2 be a characteristic surface in X. Then

σ(X) = F · F + 2β(F ) (mod 16)

Just as in the case of the Arf invariant, the condition that H1(X;Z) = 0 is removed by
defining β(F ) for F in a general closed oriented smooth 4-manifold to be the result of first
doing surgery on a link disjoint from F so that the resulting manifold X ′ has H1(X ′;Z) = 0
and then defining β(F ) as the Brown invariant of F in X ′. By Theorem 5, this is independent
of the choice of surgery and hence well defined.

In contrast to Arf, which only depends on the homology class, the Brown invariant is
not an invariant of the homology class. One such example of this is given by computing the
Brown invariants of the two copies of RP 2 contained in S4 given by taking the right-handed
(respectively left-handed) unknotted Möbius bands in the present time R3-slice of S4 and
capping it off in the future time slices with an unknotted disk.

We need to be able to consider β(F ) where F is not closed, but rather properly embedded
in X. The situation is analogous to the case of Lemma 2. As before, the facts that we need
are not exactly found in [17], so we state the results here, however they follow exactly the
corresponding proofs of the statements in [17] and so we omit the proofs.

Lemma 3. Let X4 be a compact smooth 4-manifold with H1(X;Z) = 0 and let F 2 be a
potentially nonorientable characteristic surface that is properly embedded in X. Let x ∈
H1(F ;Z/2Z) and suppose that x is represented by a curve C ∈ F and D2 is an immersed
orientable surface in X that is transverse to F . Then define

eF : H1(F ;Z/2Z)→ Z/4Z
x 7→ n(D) + 2(D · F ) + 2d(C)
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where n(D) is the framing of D, and d(C) is the number of points of C, and D · F is the
number of points of intersection between D and F . Then qF is well defined and, together
with the intersection form, makes H1(F ;Z/2Z) an enhanced space. If F1 and F2 are identical
characteristic surfaces, except that F2 differs from F1 by concordances in collar neighborhoods
of the boundary components of X, then β(F1) = β(F2). If ∂F is contained in an integer
homology spheres boundary component of X, then eF is proper if and only if ∂F is a proper
link.

In mimicking the proof of Theorem 2, we will need a result analogous to Lemma 1.

Lemma 4. Let Σ be a integer homology sphere and let F be an properly embedded surface
in Σ× I with L = ∂F a proper link. Then

2β(L) = 2β(F ) + F · F (mod 8)

where F · F is computed by extending the framing on ∂F that is given by the 0-framing on
each of the components of ∂F .

Proof. We start by showing that if F1 and F2 are two surfaces properly embedded in Σ× I
with ∂F1 = ∂F2, then

F1 · F1 + 2β(F1) = F2 · F2 + 2β(F2) (mod 16) (6.2)

Let W 4 be a smooth even compact oriented 4-manifold with H1(W ;Z) = 0 and ∂W = Σ.
Consider Σ as sitting inside of Σ × [−1, 1] as the 0-cross section and orient Σ × [−1, 1] so
that the induced orientation on Σ × {+1} agrees with the orientation on Σ. Consider the
oriented closed smooth 4-manifold, which we will call X, obtained by gluing W to Σ×{−1}
and W to Σ × {+1}. Further, consider the characteristic closed surface in X obtained by
taking the union of F1 and F2 along L where F1 is in Σ× [0, 1] and F2 is in Σ× [−1, 0]. We
call this surface F and note that

F · F = F1 · F1 + F2 · F2

where F1 · F1 and F2 · F2 are both computed using the fixed all-0-framing on L as in the
statement of the lemma. Further, by Novikov additivity, we have

σ(X) = σ(W ) + σ(W ) = 0

and therefore from Theorem 5, equation 6.2 follows.
It then follows that both the right and left hand sides of equation (6.2) are invariants of

the link L that are independent of the choice of surface. We then fix a Seifert surface S for
L in Σ and we let S ′ be the result of pushing the interior of S into Σ × I. Now note that
S ′ · S ′ = 0, and using the orientation of L induced by choosing an orientation of S, we have

2β(L) = 8 Arf(L) (mod 16)
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and
2β(F ) = 8 Arf(F ) (mod 16)

But by Lemma 1 (or more specifically, the analogous statement for links) we have

Arf(L) = Arf(F ) (mod 2)

and therefore the result follows.

We are now in position to mimic the proof of Theorem 2. We have not yet defined β(F )
when F is a properly embedded characteristic surface in a 4-manifold X but H1(X;Z) 6= 0;
however, this can be done just as it was for Arf(F ) once we have proven the following result
in the case where H1(X;Z) = 0. Further, with this definition in hand, the following result
holds regardless of the vanishing of H1(X;Z).

Theorem 6. Let X4 be a compact oriented topological 4-manifold with ∂X an integer ho-
mology sphere. Let F 2 be a characteristic not necessarily orientable surface that is properly
embedded in X such that ∂F is a proper link. Then

2β(F ) + 2β(∂F ) = σ(X)− F · F + 8µ(∂X) + 8 KS(X) (mod 16)

where F · F is computed by extending the framing on ∂F that is given by the 0-framing on
each of the components of ∂F .

Proof. We assume that X is smooth since the case where X is not smooth follows from the
smooth case exactly as in the proof of Theorem 4. We also assume that H1(X;Z) = 0. Once
we have addressed the case where H1(X;Z) = 0, it then follows that the usual definition
of β(F ) extends to the case where H1(X;Z) 6= 0 and is well defined. Further, the theorem
follows in this case as well. We now proceed exactly as in the proof of Theorem 2 where
Lemma 4 is used in place of Lemma 1. To obtain the topological case, we need a topological
version of Theorem 5 due to Kirby and Taylor (see [15]) where 8 KS(X) is added to both
sides of the equation in Theorem 5.

For an example calculation, note that the Borromean rings have Brown invariant equal to
4 and therefore cannot bound a connected planar surface in B4. Therefore, the Borromean
rings cannot bound any planar surface in B4.
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Chapter 7

Spin structures

In this section, we reinterpret the results from some of the previous sections in terms of
spin structures. Many of the results and insights in this section come from [15] and [13].
The quadratic refinements and enhancements in the previous sections are algebraic avatars
for spin and pin structures, respectively and in this section, we will clarify this relationship
and rederive some of the results from earlier sections with this language. In this section, we
discuss spin structures and in the next section we discuss pin structures (which, for us here,
always means Pin− structures). The situation with spin structures is simpler than with pin
structures, however, in this section we make an effort to explain the spin constructions in a
language that will later be generalized when we move to pin.

We begin by discussing spin structures and in particular by utilizing the isomorphism

Arf : ΩSpin
2 → Z/2Z

which we now describe. Given a closed connected surface F with a spin structure s, this
spin structure can be identified with a unique cohomology class σs ∈ H1(FSO(F );Z/2Z),
where FSO(F ) is the associated frame bundle of F , such that for every fiber the restriction
map H1(FSO(F );Z/2Z) → H1(SO(2);Z/2Z) maps σ(s) to the nontrivial element. Letting
U(F ) denote the unit tangent bundle of F and note that we have a canonical identification
FSO(F ) → U(F ) from which we obtain an element σ(s) ∈ H1(U(F );Z/2Z). Following
Johnson [10], we then obtain a quadratic refinement of the intersection form on H1(F ;Z/2Z)
as follows. First, we notice that to any simple closed curve α in F by choosing an orientation
on α, we obtain a natural section of U(F ) → F . Furthermore, if we change the chosen
orientation of α, then the image of the new section is isotopic to the image of the old section.
Thus with either orientation, we will call the image of the resulting section ~α. We then have
a map

H1(F ;Z/2Z)→ H1(U(F );Z/2Z)

a =
m∑
i

[αi] 7→ ã :=
m∑
i

~αi +mz
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where z is the homology class of the fiber of U(F ) and where the curves αi are pairwise
disjoint.

Then, after identifying H1(U(F );Z/2Z) with Hom(H1(U(F );Z/2Z),Z/2Z) and consid-
ering σ(s) in the latter, we have the quadratic refinement

qs : H1(F ;Z/2Z)→ Z/2Z
x 7→ σs(x̃)

We then define Arf(F, s) as Arf(qs). Johnson showed that this map from spin structures
on F to quadratic refinements of the intersection form on H1(F ;Z/2Z) is equivariant with
respect to the natural free and transitive actions of H1(F ;Z/2Z) on both sets and therefore
is a bijection.

We now give a different description of qs that relies on Johnson’s work to show that it
is well defined. We mention this because we find it to be the most transparent description
of qs. Recall that there are two inequivalent spin structures on S1 and ΩSpin

1 = Z/2Z so
one of these spin structures is called the Lie group spin structure (the spin structure that is
nonzero in ΩSpin

1 and is the trivial double cover of S1) and the bounding spin structure (the
spin structure that is induced by taking any spin structure on a spin manifold bounding S1

and taking the induced spin structure on the boundary). Given an oriented bundle ξ, we
let Spin(ξ) denote the set of equivalence classes of Spin structures on ξ that respect the
orientation. Using the inclusion Spin(n)→ Spin(n+ 1), there is then a bijection

Spin(ξ)→ Spin(ξ + ε)

where ε is an oriented line bundle. Let x ∈ H1(F ;Z/2Z) and let α be a simple closed curve
in F representing x. If we give α an orientation, then the normal bundle να⊂F obtains a
natural orientation so that the orientation of Tα together with orientation of να⊂F agrees
with the ambient orientation of F . Then we can restrict the spin structure on F to a spin
structure on Tα + να⊂F and then this induces a unique spin structure on α which is either
the Lie group or the bounding spin structure. Additionally, the choice of orientation of α
does not affect the resulting element of ΩSpin

1 .
We now show that qs(x) = 0 if the induced spin structure on α is the bounding spin

structure and qs(x) = 1 if the induced spin structure on α is the Lie group spin structure.
To see this, first note that by definition

qs(x) = σs(~α + z)

= σs(~α) + 1

so we must understand σs(~α). Having oriented α, we obtain an inclusion i~α : FSO(α) →
FSO(F ) and the induced spin structure on S1 corresponds to the cohomology class

i∗~α(σs) ∈ H1(FSO;Z/2Z) ∼= H1(α;Z/2Z) ∼= Z/2Z
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Where 0 ∈ Z/2Z corresponds to the Lie group spin structure and 1 ∈ Z/2Z. Since

i∗~α(σs)([α]) = σs(~α)

the result follows.

Remark 3. We could discuss spin structures on an oriented bundle ξ without mention of a

choice of metric by talking about G̃L+-principal bundles that map equivariantly to FGL+(ξ)

where G̃L+ is the universal cover of GL+. However, the tradition is to prefer working with
compact Lie groups and we will follow suit. Thus in what follows there will be choices of
metrics when appropriate, although ultimately none of these choices are important.

We now return to the situation of Section 3, but through the lens of spin structures.
Let X4 be a closed oriented connected smooth 4-manifold and let F 2 be a closed connected
oriented characteristic surface in X4. The manifold X−F admits a spin structure that does
not extend over F and the group H1(X;Z/2Z) acts freely and transitively on the set of such
spin structures (see [15]). Following [15], we call such a spin structure a spin characterization
of F in X and we denote the set of equivalence classes of such spin characterizations by
SpinChar(X,F ). We now describe a map

SpinChar(X4, F 2)→ Spin(F 2)

(see page 66 of [13]). Let E denote the normal bundle of F in X and let ∂E denote the
unit normal bundle of F in X. Then from the spin structure on X − F , ∂E inherits a spin
structure. The bundle ∂E admits a section after removing a point ∗ of F . Choose such a
section sec. Note that we now have a splitting as the sum of two line bundles

νF⊂X = λ+ ε

where the trivial bundle ε is trivialized from the choice of section s and λ is the orthogonal
complement of ε. Therefore, λ inherits a unique orientation such that the orientation of F
together with the orientation of λ and ε agrees with the ambient orientation of X. Note that
we have a canonical isomorphism

νsec(F−∗)⊂∂E ∼= λ

from which we orient νsec(F−∗)i⊂∂E. Then using the spin structure on ∂E together with this
orientation of νsec(F−∗)⊂∂E, we obtain a spin structure on sec(F − ∗) and hence on F . That
this is well defined (i.e., independent of the choice of section s and ∗) is shown in [13] (see
page 66) and follows from the spin structure on X − F being characteristic.

This construction works analogously in all dimensions but we only have use for the afore-
mentioned case. The construction also works analogously for X and F with boundary and
F properly embedded in X, and for F disconnected where characterizations are required to
not extend over any component of F . It may be helpful for the reader to keep in mind the
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analogous construction for orientations. Namely, given a codimension-1 embedded subman-
ifold V dual to w1, there is a map from the set of orientations on the complement of V to
the set of orientations on V (see Lemma 2.2 as well as Proposition 2.3 of [15]).

In the case where H1(X;Z/2Z) = 0, then there is a unique characterization of F in X
and thus we get a unique spin structure s on F by applying the above construction. Then
by Johnson’s construction, this yields a unique quadratic refinement of the intersection form

qs : H1(F ;Z/2Z)→ Z/2Z

In section 3, we discussed a different such quadratic refinement qF . We now show that
qs = qF . Let x ∈ H1(F ;Z/2Z). Let C be an embedded curve in F that represents x and
let D be an embedded surface in X with O(D) = 0 (i.e., D is framed, which can always be
achieved by boundary twisting). Then qF (x) = D ·F so it suffices to verify that qs(x) = D ·F .

Given an n-dimensional bundle ξ over S1 with a spin structure s on ξ, we get a corre-
sponding element [ξ, s] of ΩSpin

1
∼= Z/2Z, corresponding to whether (ξ, s) is isomorphic to

the appropriate stabilization of the Lie group spin structure on TS1 or the bounding spin
structure on TS1. If G is an orientable surface with boundary and ξ is a bundle over F with
spin structure s, then ∑

C∈π0(∂F )

[C, sC ] = 0 (mod 2)

Note that qs(x) = [sec(C), c|sec(C)] where c is the given characterization of F inX and further,
we assume that the section sec has been chosen so that sec(C) ⊂ D. LetG = D∩(X−int(E))
where E is the unit normal bundle of F in X and note that since c is a characteristic, then
for every point in D ∩ F , there is a boundary component b of G with [b, c|b] = 1. It thus
follows that

qs(x) = [sec(C), c|sec(C)]

=
∑

b∈π0(G),b 6=sec(C)

[b, c|b]

= D · F

as desired.
In [13], an equivalent form of Theorem [17] is proven in the language of spin structures

and follows from a calculation of a certain bordism. Namely, the following is shown:

Theorem 7. (Kirby) Let X4 be a closed oriented smooth 4-manifold, let F be an oriented
characteristic surface in X, and let c be a charicterization of F in X. Then

Arf(F, s(c)) =
σ(X)− [F ]2

8
(mod 2)

where s(c) is the spin structure on F induced by the characterization c.
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It follows from this result that, even when H1(X;Z) 6= 0, Arf(F ) as in section 3 agrees
with Arf(F, s(c)) for any choice of characterization c of F in X.

The following result relating the Arf invariant of a knot in a homology sphere to the Arf
invariant of a certain spin surface is also proved in [13] (see page 69).

Lemma 5. Let Σ be a integer homology sphere and let F be a connected orientable properly
embedded surface in Σ × I with connected boundary. There is a unique spin structure on
Σ × I − F that does not extend over F and this induces a unique spin structure on F . Let
F denote the result of attaching a disk to the ∂F and extending the spin structure on F to
this disk, and let s denote the resulting spin structure on F . Then Arf(∂F ) = Arf(F , s).

We are now in position to give an alternative proof of Theorem 2 using spin structures.

Proof. (Alternative proof of Theorem 2) We need one fundamental additional additivity
observation. Namely, if F1 and F2 are two compact surfaces with spin structures, then, by
removing a disk from both F1 and F2 and identifying the boundaries with an orientation-
reversing diffeomorphism, the connect sum F1]F2 inherits a natural spin structure and

Arf(F1]F2) = Arf(F1) + Arf(F2)

This can be seen by noting that F1]F2 is spin cobordant to the disjoint union of F1 and F2

or by using the quadratic enhancement description of spin structures on surfaces together
with the fact that the additivity of the Arf invariant.

Note that, since H1(∂X;Z) = 0 and ∂F is dual to w2 in ∂X, there is a unique spin
structure on ∂X − ∂F that does not extend over ∂F , which we call the characterization
of ∂F in ∂X. We now proceed exactly as in the previous proof of Theorem 2, where we
use Theorem 7 in place of Theorem 1, and we adopt the notation without further mention.
Let c denote a characterization of F in X and note that restricted to the boundary this
results in the characterization ∂c of ∂F in ∂X. Note that W − FW also admits a (unique)
characterization of FW in W and that when restricted to the boundary, this induces the same
characterization ∂c of ∂F in ∂X, although with the orientation reversed. Therefore, these
two characterizations of F in W and of FW in W glue together to yield a characterization of F
in X∪W . Note that the induced spin structure on F ∪FW coming from this characterization,
which we call s, when restricted to F or FW , agrees with the spin structure on F or FW
obtained from the characterization of F in X or of FW in W , respectively.

It follows from Lemma 5 together with our previous comments on why the spin definition
of Arf agrees with the previous definition for a characteristic surface, we have

Arf(F ∪ FW , s) = Arf(F, s|F ) + Arf(FW , s|FW
)

= Arf(F ) + Arf(∂F )

From this, together with the same calculation as in the previous proof of Theorem 2, the
result follows.
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We end this section by discussing the case where ∂F is a link as in section 5 and we
follow the notation from that section. From the perspective of spin structures, we can start
with a characterization c of X−F and this will induce a spin structure on F which therefore
gives a spin structure on each of the components of ∂F . These will all be the bounding spin
structures (regardless of the choice of characterization c) if and only if ∂F is a proper link
in ∂X. The reason is that the induced form qs(c) from the induced spin structure s(c) on
F agrees with the form from section 5, thus the discussion in section 5 applies. Then by
using a version of Lemma 5 adjusted to proper links, we obtain a proof of relative version of
Rochlin’s theorem for links mentioned in section 5 in the language of spin structures.
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Chapter 8

Pin structures

By a pin structure, we always mean a Pin− structure and we closely follow [15], which we
recommend for background information. The discussion in this section is terser than the last
section as much of the material here is considered in great detail in [15]. The appearance of
Pin− as opposed to Pin+ in the discussion that follows ultimately stems from the fact that
all compact surfaces admit Pin− structures as well as the more interesting low-dimensional
bordism groups that Pin− has, namely:

ΩPin−

1 = Z/2Z ΩPin+

1 = 0

ΩPin−

2 = Z/8Z ΩPin+

1 = Z/2Z

What is particularly relevant for us here is the isomorphism

β : ΩPin−

2 → Z/8Z

which is given by taking a compact surface with pin structure (F, p), associating a quadratic
enhancement to the intersection form

ep : H1(F ;Z/2Z)→ Z/4Z

and then taking the Brown invariant

β(F, p) := β(H1(F ;Z/2Z), ·, ep)

The definition of ep together with the fact that the map β is an isomorphism are discussed
in section 3 of [15]. In the case where we consider a spin structure s on F as a pin structure
using the inclusion Pin−(2)→ Spin(2), we have

es = 2qs

and therefore
β(F, s) = 4 Arf(F, s)
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Let Pin−(F ) denote the set of equivalence classes of pin structures on F .
We now discuss the relevant descend-of-structure results from section 6 of [15]. Let X4

be a closed oriented connected smooth 4-manifold and let F 2 be a compact characteristic
surface properly embedded in X4. The manifold X − F admits a pin structure that does
not extend over any component of F and the group H1(X;Z/2Z) acts freely and transitively
on the set of such pin structures (see [15]). Following [15], we call such a pin structure
a pin characterization of F in X and we denote the set of equivalence classes of such pin
characterizations by Pin−Char(X,F ). There is a map

Pin−Char(X4, F 2)→ Pin−(F 2) (8.1)

which is natural with regards to the respective cohomology group actions and, when F is
characteristic, fits into a commuting square with the corresponding map for spin structures
described in the previous section.

The set of pin characterizations of F inX is acted on freely and transitively byH1(X;Z/2Z)
and so, in the case where H1(X;Z/2Z), there is a unique pin characterization of F in X. In
this case, using the map in (8.1), there is an induced pin structure p on F which corresponds
to a quadratic enhancement

ep : H1(F ;Z/2Z)→ Z/4Z

In section 6, a different such quadratic enhancement eF was described, and in fact

ep = eF

(see the discussion on page 221 of [15]). Note that this gives another proof of the analogous
result for spin structures from section 7.

In the case where X and F have nonenmpty boundary, we call a characterization c of F
in X even if the induced pin structure on F given by (8.1), which we denote by p(c), has
the property that on every boundary component, it yields the bounding pin structure. In
this case we define the Brown invariant of F in X to be

β(F, c) := β(F , p(c))

where F is the result of capping off all of the boundary components of F with disks and
extending the pin structure p(c) to a pin structure on all of F , which we again denote by
p(c).

We now discuss how to obtain the invariant β(L) from section 6 in the language of pin
structures. We first consider a more general situation following [15], which we recommend
for additional details. Let M3 be an arbitrary 3-manifold with a spin structure s and let
L be a link in M with [L] = 0 ∈ H1(M ;Z/2) (and thus [L] is dual to w2(M)). A pin
characterization of L in M is, as before, a pin structure on M − L that does not extend
across any component of L. As before, we have an analogously defined descend of structure
map

Pin−Char(M3, L1)→ Pin−(L1)
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and we call a characterization c of L in M even if the induced pin structure on each compo-
nent of L is the bounding pin structure.

Given (M,L, s, c) we obtain a class γ ∈ H1(M−L;Z/2Z) which is the unique cohomology
class that acts on c to obtain s|M−L. Let E be the total space of the open disk bundle of L
in M and let S be the total space of the circle bundle of E. A set of longitudes for L is a
choice of parallel push-off of each component of L in M . We will call such a set of longitudes
l even in (M, s, c) if the dual of the class γ (thought of in the cohomology of the complement
of unit disk bundles of L) is represented by a surface F 2 that intersects S in l. If l is an
even set of longitudes and l′ is another set of longitudes, then l′ is even if and only if each
component of l′ differs from the corresponding component of l by an even number of twists.

There is then an invariant
β(L, s, c, l) ∈ Z/8Z

which is obtained as follows. There exists an embedded surface S2 in M with ∂S = L so
that S is dual to the element γ and so that the longitudes of L induced by S are l. The
surface F then obtains a pin structure p(s) from the spin structure s as is explained on pages
233-234 of [15] and this pin structure has the property that, when restricted to the boundary
components, it yields the bounding pin structure. We then take

β(L, s, c, l) := β(S, p(s))

where S is the result of capping off all of the boundary components of S with disks and
extending the pin structure p(s) to a pin structure on all of S, which we again denote by
p(s).

Let F 2 be a surface properly embedded in a 4-manifold and let l be a set of longitudes
for ∂F . Let F ·lF denote the self-intersection of F where we use a push-off of F that extends
the push-off along ∂F given by l. In this notation, the self-intersection considered in the
previous relative-Rochlin-type theorems were always F ·0 F , where 0 denotes the 0-framing.
The following is analogous to Lemma 4 and will be used to go between 3-dimensional and
4-dimensional invariants.

Lemma 6. Let M3 be a compact 3-manifold with spin structure s. Let L be a link in M
with [L] = 0 ∈ H1(M ;Z/2Z) and let c be an even characterization of L in M and let l be a
choice of even longitudes for L in M . Let F be a compact connected characteristic surface
in M × I where we denote the boundary components of M × I by M0 and M1 and where
∂F ⊂ M0. There is a unique characterization C of F in L such that C|M0 = c and using
the induced pin structure on F from C has the property that all of the boundary components
have the bounding pin structure. Then

2β(L, s, c, l) = 2β(F,C) + F ·l F (mod 16)

Proof. Using the free and transitive action of H1(M×I;Z/2Z) on the set of characterizations
of F in M × I, we see that there is a unique such characterization C with C|M0 = c, from
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which it immediately follows that the induced pin structure on F from C has the property
that all of the boundary components have the bounding pin structure.

Isotope F so that F ∩M × [0, 1/4] = L× [0, 1/4] and let F ′ = F ∩M × [1/4, 1]. Then the
normal bundle of F ′ in M × [1/4, 1] admits a section and let l′ denote the even longitudes
of ∂F ′ ⊂M1/4 := M × {1/4}. The longitudes l′ on L differ from the longitudes l on L by a
total of 2r right handed twists (summing over the components of L) for some integer r. By
Theorem 8.3 of [15], we have

β(L, s, c, l′) = β(L, s, c, l) + r (mod 8)

By Theorem 8.2 of [15] applied to M × [1/4, 1] and F ′ (note the missing factors of 2 in front
of all of the β terms), we have

β(L, s, c, l′) = β(F ′, C ′) (mod 8)

where here C ′ is C restricted to M × [1/4, 1]. Note that 2r = F ·l F where all of the
self intersections can be assumed to take place within M × [0, 1/4] due to changing of the
framings. The result then follows.

Lemma 7. Let Σ3 be an integral homology sphere and let L be link in Σ. Let s is the
unique spin structure on Σ and let c is the unique characterization of L in Σ. Then L is a
characteristic link if and only if c is even. Let 0 denotes the 0 push-off of each component
of L, then 0 is an even set of longitudes for L with respect to s and c. If L is characteristic,
then

β(L) = β(L, s, c, 0) (mod 8)

where the invariant on the left is the Brown invariant of L as defined in section 6.

Proof. For L characteristic, it follows from Lemma 6 that

2β(L, s, c, 0) = 2β(F,C) + F ·0 F (mod 16)

and from Lemma 4 we have

2β(L) = 2β(F ) + F ·0 F (mod 16)

From the proceeding discussion of how our pin structure framework generalizes the results
in section 6, we know that

β(F ) = β(F,C) (mod 8)

and thus the result follows.

Following the alternative proof of Theorem 2 given in the previous section using spin
structures, Theorem 6 can be derived for X4 smooth in the language of pin structures by
using Lemma 7 to identify β(L) with an invariant related to pin structures together with
Lemma 6.

We need the following topological version of Theorem 5 due to Kirby and Taylor [15]
(which we already used in the proof of Theorem 6):
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Theorem 8. (Kirby and Taylor) Let X4 be a closed oriented 4-manifold and let F 2 be a
characteristic surface in X. Let C be a pin characterization of F in X . Then

2 · β(F,C) = F · F − σ(X) + 8 KS(X) (mod 16)

Let M3 be a compact 3-manifold with a choice of spin structure s. Then the Rochlin
invariant of (M, s), denoted µ(M, s), is defined as

µ(M, s) := σ(W ) (mod 16)

where W 4 is a smooth compact 4-manifold with a spin structure that extends the given spin
structure on M . By Rochlin’s theorem, this is well defined.

The following theorem generalizes all of the previously given theorems. The main results
in the previous sections could have all been proved for F and ∂X not necessarily connected,
however, for simplicity, we chose not to do this. In the following theorem, we do not make
these restrictions. This result yields a “combinatorial” formula for KS(X4) for X orientable,
compact, and with nonempty boundary (see Theorem 3 for the closed case). The proof
strategy is the same as usual: cap off the boundary components appropriately, apply the
relevant formula for closed manifolds, and then use various additivity results together with
a lemma (in this case Lemma 6) to relate a 4-dimensional invariant to a 3-dimensional
invariant.

Theorem 9. Let X4 be a compact oriented topological 4-manifold. Let F 2 be a characteristic
not necessarily orientable surface that is properly embedded in X such that ∂F is a proper
link representing the 0 element in H1(M ;Z/2Z) in each of the components M3 of ∂X. For
each boundary component M of ∂X, let sM be a choice of spin structure on M . Let C be a
choice of even characterization of F in X and let l be a choice of even longitudes for F with
respect to the spin structures sM and C|M . Then

2[β(F,C)+
∑
M

β(∂F∩M, sM , C|M , l∩M)] = σ(X)−F ·lF+8 KS(X)+
∑
M

µ(M, sM) (mod 16)

where the sums are over the boundary components M of ∂X.

Proof. For each boundary component M of X, let WM be a compact smooth 4-manifold
with ∂WM = M and suppose that WM has a spin structure that bounds the inverse of the
spin structure on M . Let FM be a compact embedded surface in a collar boundary of WM

obtained from isotoping a surface bounding F ∩M in M into WM (and thus FM is dual to
w2(WM)) with ∂FM = ∂F . Then by definition

σ(WM) = µ(M,−sM) = −µ(M, sM) (mod 16) (8.2)

The characterization C|M extends to a characterization of FM in WM using Lemma 6 together
with the fact that WM is spin. Let CM denote a choice of such an extension.
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Let X be closed manifold resulting from gluing all of the manifolds WM to X and let
F be the result of closed surface that is the union of F and all of the surfaces FM . Let C
denote the characterization of F in X that is the union of the characterization C and the
characterizations CM . Then we have

2β(F ,C) + F · F = 2β(F,C) +
∑
M

2β(FM , CM) + F ·l F +
∑
M

FM ·l∩M FM

= 2[β(F,C) +
∑
M

β(∂F ∩M, sM , C|M , l ∩M)] + F ·l F (mod 16) (8.3)

where the first equality follows by computing F · F using pushoffs extending the push-off
given by l together with the additivity of the Brown invariant and the fact that ∂F is
characteristic, and the second equality follows from Lemma 6. Then by applying Theorem 8
to X and F , together with Novikov additivity, equation (8.2), and equation (8.3), we obtain
the desired result.
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