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Abstract

Many events that humans and other organisms experience con-
tain regularities in which certain elements within an event
predict certain others. While some of these regularities in-
volve tracking the co-occurrences between temporarily adja-
cent stimuli, others involve tracking the co-occurrences be-
tween temporarily distant stimuli (i.e., non-adjacent dependen-
cies, NADs). Prior research shows robust learning of adjacent
dependencies in humans and other species, whereas learning
NADs is more difficult, and often requires support from prop-
erties of the stimulus to help learners notice the NADs. Here
we report on four experiments that examined NAD learning
from various types of visual stimuli. The results suggest that
continuous movements aid the acquisition of NADs. We also
found that human motion leads to more robust NAD learn-
ing compared to object motions, perhaps because of a richer
representation. This richer representation could result in bet-
ter memory and recall, and provide a stronger signal for NAD
learning.

Keywords: non-adjacent dependency; human action; visual
sequence; statistical learning

Introduction
Many events we experience involve temporally ordered se-
quences. These include visual events, such as watching
agents engaging in actions, as well as auditory events, such as
hearing a sequence of words in a spoken sentence. In many
cases, these sequential events contain regularities in which
certain elements within predict certain others. For example,
in the English present progressive, the copula, is, is followed
by a verb with the inflection -ing (e.g., . . . is bak-ing . . . ).
Through experience, individuals learn about aspects of these
regularities, and, once noticed, can use them to generate new
knowledge, either explicit, such as the understanding of an
artifact’s function, or implicit, such as the knowledge of the
grammatical rules in one’s native language(s).

There is now a large body of research investigating the
kinds of regularities that learners can detect and learn from
sequential stimuli. Many studies have looked at regulari-
ties involving adjacent items. The findings show that co-
occurrence patterns of adjacent items are readily detected by
human adults (Saffran, Newport, Aslin, Tunick, & Barrueco,
1997), infants (Saffran, Aslin, & Newport, 1996; Aslin, Saf-
fran, & Newport, 1998), and even by other species (Hauser,
Newport, & Aslin, 2001; Toro & Trobalón, 2005). The

ability to detect adjacent regularities has been shown for
a range of stimuli, including speech (Saffran et al., 1996;
Pelucchi, Hay, & Saffran, 2009), tones (Saffran, Johnson,
Aslin, & Newport, 1999), non-musical noises (Gebhart, New-
port, & Aslin, 2009), shapes (Fiser & Aslin, 2002), and hu-
man actions (Baldwin, Andersson, Saffran, & Meyer, 2008).
Researchers have also explored regularities involving non-
adjacent items, or non-adjacent dependencies (NADs). The
findings from studies with adult humans suggest that learning
of non-adjacent patterns is less robust, and shows a greater
dependency on various properties of the stimulus. For ex-
ample, Peña, Bonatti, Nespor, and Mehler (2002) first tested
whether adults could learn NADs from sequences of non-
sense syllables in an artificial language, and found that adults
were capable of learning NADs from syllable sequences only
when brief 25ms pauses were added between syllable triplets
that contained the NAD. Wang, Zevin, and Mintz (2019) ex-
panded this finding and demonstrated that learning NADs
from syllable sequences was possible without pauses, if the
sequences were presented at a natural speech rate. With re-
spect to non-linguistic auditory stimuli, adults could learn
NADs from musical tones and noises when the items con-
structing the dependency (i.e., the a and b) were perceptually
similar to each other and when the middle item X differed per-
ceptually from them (Creel, Newport, & Aslin, 2004; Geb-
hart et al., 2009). Similar results were found with learn-
ing NADs from visual stimuli such as simple shapes (Turk-
Browne, Jungé, & Scholl, 2005). Participants failed to ac-
quire the NADs when the perceptual similarity cues were
removed from the sequence, even when brief pauses were
added (Gebhart et al., 2009).

It is not surprising that pattern detection and learning is dif-
ferent for adjacent and non-adjacent patterns. Linking adja-
cent items requires minimal memory resources (although re-
sources are required to store the link), and the relationship it-
self is very basic—items are either adjacent or they are not. In
contrast, detecting non-adjacent relationships requires hold-
ing one item in working memory as more items are processed,
then linking that item to a subsequent (non-adjacent) item.
Beyond this increase in resource demands, the computational
problem increases because there are multiple non-adjacent re-
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lationships that the learner could consider: While adjacency
is limited to one position, non-adjacency is bounded only by
the length of the sequence. Moreover, there is evidence that
learners learn adjacent patterns even as they are learning non-
adjacent ones (Romberg & Saffran, 2013; Wang & Mintz,
2018). Thus, given that the non-adjacent relationship itself
is less constrained than adjacency, and given the correlated
increase in resource demands, learning non-adjacent depen-
dencies would logically benefit from constraints on the do-
main over which non-adjacent patterns are processed. The
pauses in Peña et al.’s (2002) study plausibly contribute one
kind of constraint. Wang et al. (2019) proposed that rhythmic
segmentation set up by repetition patterns (when there are no
pauses) could be another. Perceptual similarity could serve
a similar function by packaging the input into perceptually
similar units, over which pattern detection mechanisms could
operate. In general, anything that could constrain or bias
a learner to segment or group a sequence into smaller sub-
sequences could facilitate NAD learning, if the sub-sequences
contain the NAD (Wang, Zevin, & Mintz, 2017).

In the visual domain, dynamic movement has been pro-
posed as another property that could constrain and facilitate
NAD learning. Li and Mintz (2015) showed that when an ob-
ject dynamically transformed from a flat, blanket-like shape
into different forms, learners could detect NADs involving
those transformation movements but did not learn NADs in-
volving pictures of the static endpoints of those transforma-
tions.1 Interestingly, if the dynamic events or static images in-
volved human avatars, then learners were able to detect NADs
in both dynamic and static images. Li and Mintz hypothe-
sized that movement provided a way of connecting the items
in a sequence into a cohesive package, and that this pack-
aging served to constrain and facilitate the detection of the
NADs contained within those elements. They further specu-
lated that in the case of static human images, learners filled in
the motion, either because of familiarity with seeing human
forms in motion, or because they mapped the avatar positions
to their own body, and simulated the motor movements to
transition from one pose to the next. Either way, they specu-
lated that dynamic motion (real or inferred) bound the events
together and and thus facilitated NAD detection, much like
the other signal-driven constraints discussed earlier.

A limitation with Li and Mintz’s (2015) findings is that
their design did not allow them to rule out the possibility that
learners were learning simpler positional regularities, and not
NADs. In their experiments, participants saw random se-
quences of nine NAD triplets during training (e.g., a1X1b1,
a1X2b1, a1X3b1, a2X1b2, a2X2b2, etc.). Then, they were
tested on triplets that adhered to the NAD patterns (i.e., NAD
triplets) and triplets that deviated from the NAD patterns (i.e.,
part triplets). In the test materials, NAD triplets had items
at the beginning and end positions in their trained positions
(e.g., a1Xb1 where a1 b1 constituted a trained NAD, but

1The shapes and transformations were similar to those depicted
in Figure 3.

where the X item was an a or b item in training which hadn’t
occurred in the medial position), whereas part triplets con-
tained an edge position with an item in an unattested posi-
tion (e.g., a middle item during training occurred in an edge
position in testing). On each test trial, subjects had to pick
which of two test items, NAD triplet or part triplet, was most
like the training triplets. When stimuli were human avatars
(static, or in motion) or objects displaying dynamic move-
ment, subjects chose the NAD triplets. Endorsement of the
items with the NADs could have been driven by the recog-
nition of the NADs, but could also have been driven by the
fact that the first and last items were in familiar positions.
Hence, those findings do not conclusively show that dynamic
motion facilitates NAD detection in visual sequences. In fact,
Li and Mintz (2015) based their study on a prior study by
Endress and Wood (2011) that explored the conditions under
which subjects learned adjacent dependencies and positional
regularities in human action sequences, so the design was not
meant to provide a strong test of NAD learning. Frost and
Monaghan (2016) also identified problems with this design
for testing NAD learning. They argued that using an item in
its unattested position might hinder NAD learning and block
generalization to triplets in the test phase. When they mod-
ified the design by using novel items in the medial position
of test triplets, adults were capable of learning NADs in un-
segmented speech, in contrast to the findings of Peña et al.
(2002). Thus, it is still an open question whether dynamic
motion facilitates the detection of NADs in temporally se-
quenced visual stimuli. This is what the present study ad-
dresses.

In the four experiments here, the test items were either
NAD triplets, or positional triplets. These were sequences
where the first and last items appeared in the same position
within the sequence as they did in the triplets in the training
materials, but where the non-adjacent relationship was vio-
lated. For example, if a1 b1 and a2 b2 were trained NADs,
then a1Xb2 and a2Xb1 would be positional triplets. This dif-
ference in test items compared to Li and Mintz (2015) allows
one to test for subjects’ sensitivity to NADs, above and be-
yond their sensitivity to absolute position.

Experiment 1: Human Actions
Experiment 1 investigated adults’ capacity for learning NADs
from human actions. Li and Mintz (2015) found that subjects
endorsed sequences of human actions that contained attested
NADs over ones that did not, but their data is consistent with
the possibility that subjects learned only the positions of ac-
tions within triplet sequences, and not the relations between
them. In this experiment, all the items in all test sequences
were in the same positions within the test triplet as they were
in the training materials; they differed only on whether they
contained a trained NAD or not.

Methods
Participants Forty-five participants were recruited online
through Prolific, a crowd-sourcing platform for running

2659



experiments. Participants received $3.75 for their time in the
experiment. Ten participants were excluded for the analysis
due to technical issues during the experiment (2) or not
passing the attention check (8). The final sample included 35
participants (Mage = 25.37, SDage = 6.00, range: 18-41 years).

Materials Fifteen video clips of human actions similar to
those in Li and Mintz (2015) and Endress and Wood (2011)
were used to create training and testing materials. In each
video clip, an animated male human avatar performed one
action (e.g., kicking a leg). Each action clip lasted 625ms,
and it started and ended with the avatar in a neutral upright
position with arms at the sides and head facing forward. This
ensured that the action sequence flowed naturally from clip to
clip. The midpoints of each action clip depicted the maximum
extent of movements (Figure 1). The videos of human actions
were created using the animation software Poser (Bondware,
Inc., 2015).

Figure 1: Frames excerpted from the action clips (depicting
the maximum extent of movement) used in Experiment 1.
These were also the still images of postures used in Exper-
iment 4.

Procedure Participants were first exposed to video se-
quences of human actions with NADs embedded (i.e., train-
ing phase). Six action clips were used to create three NAD
frames (i.e., a1 b1,a2 b2, and a3 b3). For each NAD
frame, one of three corresponding intervening actions could
be inserted to create a triplet (i.e., X1−3 for one frame, and
X4−6 for a different frame, and X7−9 for the third frame).
Therefore, participants saw 9 unique triplets during train-
ing (i.e., a1X1b1, a1X2b1, a1X3b1, a2X4b2, a2X5b2, a2X6b2,
a3X7b3, a3X8b3, and a3X9b3). Furthermore, the assignment
of actual actions to letters was random for participants (i.e.,
a1 might be raising a leg for one participant and turning
head for another). Following Li and Mintz’s (2015) design,

each triplet was presented for a total of 1875ms, with 125ms
pauses between triplets. In the training phase, participants
saw a pseudo-random sequence of 20 repetitions of each
triplet, resulting in a total of 180 triplets and a total exposure
time of 6 minutes.

Then, participants were presented with 36 novel test
triplets one at a time. They were asked to indicate for each
triplet whether they thought they had seen it before, us-
ing a 5-point scale with 1 being definitely had not seen the
triplet and 5 being definitely had seen the triplet. Half of
the novel triplets followed the NAD patterns (NAD triplets),
and the other half violated the patterns (positional triplets).
The NAD triplets were created by combining an interven-
ing item of one trained NAD frame with a different NAD
frame (e.g., combining the X5 in a2X5b2 and the NAD frame
a1 b1 to create a1X5b1). Note that these test sequences were
novel since the adjacent transitional probabilities between
actions—based on the training sequences—were zero, even
while the non-adjacent dependencies were maintained. The
positional triplets were created by swapping the last action
of one trained NAD triplet with a last action from a differ-
ent trained NAD triplet, with a middle item that did not occur
with either edge item during training (e.g., a1X5b3). These
test sequences were also novel because the adjacent transi-
tional probabilities were zero; but in this case, the NAD was
not maintained. Note that a1X5b2 could not be a positional
triplet because X5 had occurred with b2 in training. Thus,
the two types of test items were equated on all surface di-
mensions with respect to the training items, except the NAD
triplets maintained the NAD relationship but the positional
triplets did not.

One possible problem with this design was that participants
might form a category-like feature for each NAD frame in
training and resist generalizing the learned frame with a me-
dial item that went with a different NAD frame in training.
This possibility was addressed in Wang et al.’s 2019 study,
where the authors compared participants’ NAD learning from
speech using this design with their learning using a more dis-
tributed design (where the nine medial items could go with
any of the three NAD frames). Both groups of participants
were able to learn the NADs, and showed no difference in
their learning outcomes. We therefore did not think that this
property would inhibit generalization in our experiments.

Since the experiment was conducted online, twelve catch
trials were added into the test phase to ensure participants
were paying attention. The catch trials asked participants to
rate the familiarity of novel triplets involving repetition of ac-
tions (e.g., a1b2b2 or a1a1b2), which should be obvious to
participants that these patterns were novel if they paid atten-
tion. Participants who gave a rating of 3 or higher for more
than four catch trials were excluded for further analysis. The
48 novel triplets were pseudo-randomly ordered such that no
more than 2 triplets of the same type could occur in a row.

If successful NAD learning occurred, we expected par-
ticipants to rate the NAD triplets higher than the positional
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triplets. In addition, as the experiment progressed, the differ-
ence between participants’ ratings for the NAD and positional
triplets might become less noticeable. Note that this could be
considered a more conservative test of NAD learning than the
2AFC assessment used by Li and Mintz (2015). The differ-
ence between NAD and positional triplets is minimal, as the
individual items in both test triplet types are in the familiar
positions with respect to the training triplets. In 2AFC, sub-
jects compare two items, and the comparison could highlight
the small difference between them (the NAD), making the
NAD triplet just a little more familiar. In contrast, rating in-
dividual test items requires subjects to evaluate each item on
its own. Since both test triplet types are very similar to the
training triplets, even a small but reliable difference in ratings
between NAD and positional triplets is strong evidence for
the learning of NADs.

Results and Discussion
An ordinal logistic regression model, with the ordinal pack-
age in R (Christensen, 2019), was used to compare partici-
pants’ ratings for the NAD and positional triplets. The model
incorporated fixed effects of grammaticality (NAD versus po-
sitional), test trial number, and an interaction between the
two. In addition, the model allowed for a random intercept
for subjects and a by-subject random slope for grammatical-
ity and trial number. Participants’ average rating was 3.43
(SD = 1.24) for NAD triplets and 3.17 (SD = 1.30) for posi-
tional triplets. The model indicated that NAD triplets were
rated significantly higher than positional triplets (β = .81,
z = 3.56, p < .001). See Figure 2 for a depiction of par-
ticipants’ ratings of NAD triplets and positional triplets over
the period of the test phase. No significant effect was found
for trial number (p = .994). However, there was a signif-
icant interaction between grammaticality and trial number
(β =−.02, z =−2.29, p = .022). Overall, participants had a
smaller difference in their ratings between the NAD and po-
sitional triplets as the experiment progressed.

These results show that human adults can learn NADs in
temporally sequenced visual events depicting human actions.
This findings thus go beyond the findings in Endress and
Wood (2011) and Li and Mintz (2015), which showed that
subjects can learn positional information in action sequences.
Furthermore, participants succeeded even with a more rigor-
ous testing method. Subjects rated each item with respect to
its familiarity with the training material, in contrast to some
prior methods that used a 2AFC design in which the differ-
ences between test items that conform to or violate the trained
NADs would be highlighted.

Experiment 2: Object Transformations
Li and Mintz (2015) also investigated NAD learning in se-
quences of object transformation events. They demonstrated
that human adults could learn the positions of items in these
sequences. In Experiment 2 we ask whether subjects can
learn NADs in such sequences. The question is important be-
cause it addresses the generality of the mechanisms involved

Figure 2: Results of Experiments 1-4. Each graph depicts
participants’ ratings for positional triplets and NAD triplets
over the time course of the experiment. The shades surround-
ing the lines represent the 95% confidence interval, and each
dot represents a rating from one participant for a certain test
triplet.

in visual NAD learning in humans. One could imagine that
highly familiar and ecologically important human forms en-
gage learning mechanisms that more generic stimuli do not.
Here we use similar object transformations to those used by
Li and Mintz, and ask whether human adults can learn NADs
in sequences of object transformations.

Methods
The methods were the same as in Experiment 1, except
that the materials used were video clips of 15 transfor-
mations of a blanket-shaped object instead of human ac-
tions (Figure 3). These videos were created using Blender
(BlenderOnlineCommunity, 2018).

Participants Fifty-eight participants were recruited online
through Prolific2. Participants received $3.75 for their time
in the experiment. Twenty-eight participants were excluded
for the analysis due to technical issues during the experiment
(2) or not passing the attention check (26). The final sample
included 30 participants (Mage = 29.47, SDage = 8.82, range:
18-57 years).

Results and Discussion
The same model as the one in Experiment 1 was fitted for
Experiment 2. Participants’ average rating was 3.37 (SD =
1.18) for NAD triplets and 3.30 (SD = 1.25) for positional
triplets. No significant effect was found for grammaticality
(p = .136), trial number (p = .404), or the interaction be-
tween the two (p = .239), suggesting that participants failed
to distinguish the NAD and positional triplets.

These results differ from those in Li and Mintz (2015),
who pitted NAD triplets against part triplets, and found that

2All participants only took part in one of the four experiments
reported here.
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Figure 3: Frames excerpted from the object transformation
clips. The image in the upper left corner, labeled ”Neutral
position,” depicts the start and end point of each transforma-
tion. Each other image depicts the maximum extent of one of
the transformations used in Experiments 2 and 3.

subjects were more likely to choose NAD triplets as the se-
quences they saw in the training phase. It is possible, as we
indicated in the introduction, that subjects in their experiment
based their choices on the positional information, and not on
the NADs. In our materials, both NAD and positional triplets
conformed to the positional patterns in the training triplets.
Our different results could also be due to the testing measure
we use, as discussed in the Procedure section of Experiment
1. With the 2AFC method Li and Mintz used, subjects always
evaluate a ‘grammatical’ item in comparison to an ‘ungram-
matical’ one, which could draw attention to the critical differ-
ences. Here, subjects rate each item individually, and subjects
may not always be applying the same standard of comparison
in each evaluation. In any case, it is noteworthy that, using the
same designs and methods we failed to find evidence of NAD
learning in sequences of object transformations, whereas we
did in sequences of human actions, in Experiment 1. This
contrast suggests that there may indeed be an advantage for
human forms in human subjects’ visual sequence learning.
To compare the learning outcomes across Experiments 1 and
2, we fitted an ordinal regression model with grammaticality,
experiment (Experimant 1 vs. 2), and their interaction as the
fixed effects, allowing for a by-subject random slope of gram-
maticality. The lack of an interaction between grammaticality
and experiment (p = .140) suggests that there might be some
weak learning in Experiment 2. Therefore, in Experiment 3,
we tested whether increasing the exposure to the training ma-
terial would lead to detectable NAD learning in sequences of
object transformations.

Experiment 3: Object Transformations with
More Exposure

In Experiment 1, we found that subjects learned NADs in se-
quences of human actions, but we failed to find evidence of
this capacity when the stimuli were sequences of object trans-
formations. One explanation of this difference is that certain
sequence learning mechanisms are only engaged in the do-
main of human actions, but not for other visual motion events.
On the other hand, the apparent advantage for human stimuli
may result from greater attention, or richer representations in
that domain. In that case, increased exposure to sequences
of object transformations could yield NAD learning, even for
non-human objects.

Methods
The materials were the same as in Experiment 2, except that
the training phase included 30 repetitions of each of the 9
NAD triplets, resulting in an exposure time of 9 minutes. In
addition, participants were given a short break after 6 minutes
of NAD exposure and saw a short one-minute hand-drawing
video during the break.

Participants Forty-five participants were recruited online
through Prolific. Participants received $3.75 for their time
in the experiment. Fifteen participants were excluded for the
analysis due to technical issues during the experiment (2) or
not passing the attention check (13). The final sample in-
cluded 30 participants (Mage = 23.41, SDage = 6.31, range:
18-47 years).

Results and Discussion
Participants’ average rating was 3.43 (SD = 1.21) for NAD
triplets and 3.26 (SD = 1.22) for positional triplets in Exper-
iment 3. NAD triplets were rated significantly higher than
positional triplets (β = .59, z = 2.26, p = .024), suggesting
that participants learned the NADs embedded in the train-
ing phase. No significant effect was found for trial number
(p= .468) or the interaction between grammaticality and trial
number (p = .094). Thus, adults indeed have the capacity to
learn NADs in sequences of object transformations. How-
ever, learning appears to be less robust than in the domain
of human actions, as learners required more exposure to the
non-human stimuli.

Experiment 4: Human Postures
Li and Mintz (2015) found that subjects could learn positional
information (and possibly NADs) from static images of hu-
man postures, but not with static images of objects. Thus,
the dynamic aspect of the stimuli was not critical for human
forms, but was for objects. In our final experiment, we tested
NAD learning in sequences of human postures.

Methods
The methods were the same as in Experiment 1, except that
each action was substituted with the frame depicting the
largest extent of action in that clip (Figure 1). In addition, the
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twelve attention check triplets had an additional 25ms pause
in between postures within a triplet. Otherwise, the attention
check triplets might be perceived as a sequence containing
only two postures (e.g., instead of a1a1b2, participants might
perceive it as a longer a1 followed by a shorter b2).

Participants Sixty-nine participants were recruited
through the University of Southern California Psychology
Subject Pool3. They received course credits for their par-
ticipation in the experiment. Thirty-nine were excluded for
further analysis because they didn’t pass the attention check,
leaving 30 participants in the final sample (Mage = 20.17,
SDage = 1.84, range: 18-27 years).

Results and Discussion
Participants’ average rating was 3.04 (SD = 1.32) for posi-
tional triplets and 3.16 (SD = 1.32) for NAD triplets in Ex-
periment 4. No significant difference was found in partici-
pants’ ratings based on grammaticality (p = .405), trial num-
ber (p = .131), or the interaction between the two (p = .910),
suggesting that participants failed to distinguish the NAD and
positional triplets for human postures.

General Discussion
These findings help clarify the role of motion in facilitating
learning NADs in temporal visual sequences. Prior research
suggested that motion facilitated learning positional informa-
tion within visual sequences. The present findings extend this
result, with evidence of facilitation of NAD learning as well.
Moreover, subjects were able to detect action NADs, whether
performed by human avatars, or by objects.

Why might motion facilitate NAD learning? In dynamic
events, in contrast to static displays, observers witness an en-
tity transform over time. The resulting perception is one in
which the temporal dimension is highly salient, and links mo-
mentary states or representations of the object, establishing
relationships between configurations at different time points.
Movement, then , facilitates establishing relationships across
time. While any temporal sequence objectively, and nec-
essarily, involves the dimension of time, our hypothesis is
that processing dynamic events has the effect of priming, or
strengthening the temporal dimension, thus making the re-
lationship between temporally non-adjacent events more ac-
cessible. How this is realized at the level of cognitive mecha-
nisms is an important question for future research. We spec-
ulate that it may be realized as a kind of chunking or in-
tegrative process within working memory. It could also be
that dynamic motion events may better sustain people’s atten-
tion, thus leading to successful NAD learning. Future stud-
ies can measure participants’ level of attention when viewing
NADs from various kinds of events and examine the associ-
ated learning outcomes.

3This was a different participant recruitment platform than the
one used in the previous three experiments. However, we have re-
cently started running this experiment with subjects recruited from
Prolific. Data from 24 subjects show the same patterns as reported
here.

We also found that participants didn’t learn NADs from se-
quences of static human poses. This contrasts with what Li
and Mintz (2015) found for learning positional information.
It may be that our testing method was too conservative to de-
tect learning, as discussed in Experiment 1. In any case, our
data do not provide evidence that human forms, as opposed
to mere objects, confer any advantage to NAD learning of
static images. However, the fact that learners detected NADs
in human actions with less exposure than was necessary with
object transformations suggests that, as Li and Mintz found
with positional learning, human stimuli might confer an ad-
vantage for sequence learning. More studies with different
objects and transformations would need to be done to rule out
the possibility that there were lower-level artifacts of the par-
ticular stimuli in Experiments 2 and 3 that made them harder
to learn from. One possibility is that some of the object mo-
tions in Experiments 2 and 3 looked more complex than the
kinds of human motions seen in Experiment 1, in that they
involved physical deformations that are rarely seen in the real
world. Despite the fact that the human form in Experiment 1
had more parts than the flat plane in Experiments 2 and 3, par-
ticipants may have a harder time forming mental representa-
tions of those complex object motions, resulting in the unsuc-
cessful NAD learning.4 It would be interesting to investigate
whether the advantage of human forms still holds when com-
paring NAD learning from point-light displays versus NAD
learning from groups of dots moving systematically.

It’s worth noting that Experiments 1-3 had each motion be-
gin from and return to a neutral position. This feature may
aid the segmentation of motions, making it easier to form a
mental representations of motions and eventually help NAD
learning. On the other hand, it may also make each motion
more discrete within a triplet, thus looking less like a cohe-
sive package for NAD learning. Future studies could have the
human avatar and the object plane continue to the next motion
without returning to a neutral position. This also better mim-
ics the kind of motions we see in the real world, especially
those performed by humans.

In summary, we found that subjects can learn NADs in tem-
porally sequenced visual stimuli. Like Li and Mintz (2015),
we found that dynamic motion contributed to successful NAD
learning, and we also found a learning advantage for human
forms. Note that in our experiments, there were brief pauses
between triplets during the training phase. Thus, there were
already aspects of the signal that were like the pauses in Peña
et al.’s (2002) study, yet that was insufficient for NAD learn-
ing with static images. Dynamic motion appears to bring the
events together in a cohesive package and to stimulate pro-
cessing and computing relationships over time.
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