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Abstract: The microbial cells colonizing the human body form an ecosystem that is integral to
the regulation and maintenance of human health. Elucidation of specific associations between the
human microbiome and health outcomes is facilitating the development of microbiome-targeted
recommendations and treatments (e.g., fecal microbiota transplant; pre-, pro-, and post-biotics) to
help prevent and treat disease. However, the potential of such recommendations and treatments
to improve human health has yet to be fully realized. Technological advances have led to the
development and proliferation of a wide range of tools and methods to collect, store, sequence, and
analyze microbiome samples. However, differences in methodology at each step in these analytic
processes can lead to variability in results due to the unique biases and limitations of each component.
This technical variability hampers the detection and validation of associations with small to medium
effect sizes. Therefore, the American Society for Nutrition (ASN) Nutritional Microbiology Group
Engaging Members (GEM), sponsored by the Institute for the Advancement of Food and Nutrition
Sciences (IAFNS), hosted a satellite session on methods in nutrition and gut microbiome research
to review currently available methods for microbiome research, best practices, as well as tools and
standards to aid in comparability of methods and results. This manuscript summarizes the topics
and research discussed at the session. Consideration of the guidelines and principles reviewed in
this session will increase the accuracy, precision, and comparability of microbiome research and
ultimately the understanding of the associations between the human microbiome and health.
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1. Background

The human microbiome is a rapidly expanding area of research linked to health
outcomes [1]. Hundreds to thousands of different microbial species colonize mucosal and
skin environments of the human body, particularly in the human gut, and the sum of
these host-associated microbes contains more genetic material than the human genome [2].
This complex microbial ecosystem is unique to each individual and can change over time
in response to aging, medication or disease, changes in lifestyle factors such as diet, or
changes in other environmental factors [2,3]. Critically, differences in gut microbiome
composition or function have been linked to differences in human health outcomes and
disease states, such as glycemic response, cancer, inflammatory bowel disease, and immune
system complications ranging from allergy to rheumatoid arthritis [4,5].

Microbial community samples can be profiled using multiple types of molecular assays,
including metagenomics (e.g., species, strains, genes), metatranscriptomics (e.g., gene
expression), metaproteomics (e.g., proteins), and metametabolomics (e.g., metabolites)
that provide information on both the composition and function of the microbiome. These
data can then be normalized, integrated, and analyzed to detect associations with health
outcomes. Validation studies in vivo (e.g., gnotobiotic mice) and in vitro (e.g., cell culture)
can then be used both to support previous findings and understand mechanisms of action.
Understanding these connections between the human microbiome and health outcomes
will allow us to devise potential microbiome-targeted recommendations or treatments to
help prevent or treat disease.

A prerequisite of understanding these connections is accurate, precise, and consistent
measurement of microbiome communities as well as appropriate biostatistical methods
to then relate those microbial measurements with phenotypes. Methods and technologies
intended to achieve greater accuracy and precision of results are rapidly advancing and pro-
liferating, resulting in a wide range of approaches that make it difficult to compare results
across studies. Thus, the American Society for Nutrition (ASN) Nutritional Microbiology
GEM, sponsored by the Institute for the Advancement of Food and Nutrition Sciences
(IAFNS), brought together experts in the field of human microbiome studies to review the
current state of knowledge related to the methods used for each step of microbiome analy-
sis: collection, storage, sequencing, bioinformatic processing, and biostatistical analysis.
The objectives of this satellite session were to review the pros and cons of different methods
for each step, the context in which specific methods are appropriate, and the importance
of synchronizing methods or implementing practices such as use of internal standards to
increase inter-study comparability.

2. Microbiome Sample Collection and Storage Methods

Starting with the first steps of microbiome analysis: collection and storage, Dr. Emily
Vogtmannn from the National Cancer Institute led with her talk entitled, “Methods for
Fecal Sample Collection and Preservation: Considerations for Current and Future Studies”.
The collection and preservation of fecal samples provide the starting point from which
many other steps follow and therefore form one of the foundations of microbiome analysis.

Important criteria for a rigorous collection method are technical reproducibility, sta-
bility, and concordance [6]. Technical reproducibility is the similarity of different aliquots
from the same fecal sample. Stability is the potential of the fecal sample once collected to
remain constant or unaltered prior to freezing for a period of time. Fecal samples must
often be collected at home and either brought or mailed into the lab before being frozen,
which makes stability at ambient temperature an important aspect of a fecal collection
method. Concordance refers to the comparison of each sample collection method to a “gold
standard”. In the assessment of collection methods, Dr. Vogtmann and colleagues used
immediately frozen samples as the putative gold standard to compare to samples held at
room temperature for a period of time, although they acknowledge the limitations of this
“gold standard” [6].
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Dr. Vogtmann reviewed six different fecal collection methods: no additive, 70%
ethanol, 95% ethanol (Sigma-Aldrich, St. Louis, MO, USA), RNAlater Stabilization Solution
(Ambion, Austin, TX, USA), fecal occult blood test (FOBT) cards (Beckman Coulter, Brea,
CA, USA), and fecal immunochemical test (FIT) tubes (Polymedco, Inc., Cortlandt Manor,
NY, USA). Pros and cons of these different methods are shown in Table 1. Technical
reproducibility among all methods was high, and therefore stability and concordance were
the primary criteria compared between methods [7].

Table 1. Microbiome sample collection methods.

Method Pros Cons

No additive • No extra additives needed • Least stable (low ICC)

70% ethanol • Low stability (low ICC)

95% ethanol

• High stability (high ICC) with 16S
rRNA gene amplicon sequencing
and metabolomic analysis

• Most metabolites detected with
metabolomic analysis

• Lower stability (low ICC)
with MGX

RNAlater
• High stability (high ICC) with 16S

rRNA gene amplicon sequencing
and MGX

• Cannot be used in
metabolomic analysis due to
high sodium sulfate content

FOBT cards
• High stability (high ICC) with 16S

rRNA gene amplicon sequencing,
MGX, and metabolomic analysis

FIT tubes
• High stability (high ICC) with 16S

rRNA gene amplicon sequencing
and MGX

• Lower stability (low ICC)
with metabolomic analysis

Abbreviations: fecal immunochemical test (FIT), fecal occult blood test (FOBT), intraclass correlation coefficient
(ICC), shotgun metagenomic sequencing (MGX).

To assess stability at ambient temperature, intraclass correlation coefficients (ICC) were
calculated, with zero being the least stable and one being the most stable, from 16S rRNA
gene amplicon sequencing [7]. This assessment demonstrated high variability between
methods, revealing the “no additive” samples to be the least stable (low ICC). Samples
preserved in 70% ethanol also had relatively low stability. The other four methods: 95%
ethanol, RNAlater, FOBT cards, and FIT tubes were all relatively similar and demonstrated
high ICC values, indicating high stability of samples held at room temperature [7]. To
extend these results, Dr. Vogtmann conducted shotgun metagenomic sequencing (MGX)
and metabolomic measurements on a subset of these samples. When MGX was used, the
samples with 95% ethanol had lower ICC values, while the other three previously stable
methods (RNAlater, FOBT cards, and FIT tubes) had higher ICC values for stability [8]. In
the metabolomic analysis, samples with RNAlater could not be used due to the high sodium
sulfate content, which was incompatible with mass spectrometry-based metabolomics
platforms [9]. Additionally, the FIT tubes showed low ICC stability values for metabolomic
analyses, though samples collected using 95% ethanol or FOBT cards demonstrated high
stability [9].

Concordance was assessed by comparing samples collected using these methods to
the putative gold standard samples that were frozen immediately with no solution using
both ICCs and Spearman correlation coefficients (SCC) [6–8,10,11]. The concordance of
genus-level relative abundances differed by collection method and were typically low, but
alpha- and beta-diversity metrics had relatively higher ICCs or SCCs when using 16S rRNA
sequencing or MGX [6–8,10]. For metabolomic analysis, samples collected with 95% ethanol
and the FOBT cards were the most accurate but samples with 95% ethanol had the greatest
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number of metabolites detected, indicating that this may be the best collection method for
metabolomic analysis when immediately frozen fecal samples are not possible [9].

Additional factors such as shipping temperature and long-term storage stability were
also discussed. Thus far, the comparison of collection methods has presumed storage of
samples at room temperature. However, when shipping samples, temperature may vary
by season. Thus, Dr. Vogtmann and colleagues investigated the impact of temperature
(room temperature, 4 ◦C [winter shipping temperature], and 30 ◦C [summer shipping
temperature]) on the stability of FIT tubes [12]. Though temperature differences did result
in some differences in stability, all samples remained within acceptable ICC ranges [12].
In this study, genetic material collection cards kept at room temperature for 70 days also
showed high stability [12].

For large cohort studies, when investigators are interested in prospectively evaluating
microbiome associations with health outcomes, such as the development of cancer, using a
nested design, samples must remain stable in the freezer for years. Thus, Dr. Vogtmann
presented data from another study in which fecal samples were collected using no additive,
95% ethanol, RNAlater, FOBT cards, and FIT tubes and stored at −80 ◦C for two years [13].
The samples stored with no additive had consistently low stability ICC values for relative
abundance, alpha diversity, and beta diversity measurements, whereas the other four meth-
ods all demonstrated high ICC values for relative abundance and diversity measurements
when compared with immediately extracted samples. However, while these four methods
showed high stability, they each demonstrated differences in phylum-level relative abun-
dance profiles when compared to each other, demonstrating the importance of consistency
in collection methods when comparing results.

Not discussed within the context of the session, additional collection and preservation
methods that have been included in other methodological comparison studies include FTA
cards, OMNIgene Gut, Norgen, CURNA, HEMA, Shield, and swabbed samples, as well as
differences in storage temperatures [14–16]. All of these studies conclude that inter-subject
variability in microbiome profiles is greater than variability introduced by methodological
differences, but that each method does introduce some level of variability in microbiota
compositional profiles.

Thus, the primary conclusions based on these findings are that the choice of collec-
tion method may depend on several factors, such as which types of analyses are planned
(e.g., 16S rRNA sequencing, MGX, metabolomics), transportation temperature, and storage
duration prior to and after freezing. Additionally, while several collection methods may
have similar stability and concordance compared to a putative gold standard in a certain
context, they each result in unique microbial and metabolite profiles. Therefore, comparison
of results between studies may differ by sample collection and storage methods, highlight-
ing the importance of transparency and clarity of methods when publishing results. The
use of detailed reporting guidelines such as the “Strengthening The Organization and
Reporting of Microbiome Studies” (STORMS) checklist (https://stormsmicrobiome.org)
will aid in the organized and comprehensive sharing of microbiome methods [17].

3. Microbiome Standards

Following Dr. Vogtmann, Dr. Scott Jackson from the National Institute of Standards
and Technology (NIST) presented the importance of “Standards for Microbiome Mea-
surements” and described NIST’s creation of a human fecal microbiome standard [18]
that is planned to be released in late 2023. Human fecal material is a complex mixture of
hundreds, if not thousands, of different species of bacteria, viruses, human cells, animal
and plant material from food, as well as a collection of small molecule metabolites.
Many of these components may have clinical relevance and serve as biomarkers, but
realizing these associations depends on accurate and precise multi-omic measurements.
The analytical performance (e.g., accuracy, precision, sensitivity, specificity) of any
method or protocol can be measured or validated by using a reference material. The
principle behind the use of a microbiome reference or standard is that if you know

https://stormsmicrobiome.org
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what you’re starting with, this will help you determine and validate the analytical
performance of your measurement workflow.

There are two main types of standards for human gut microbiome analysis: mock/
synthetic communities and human fecal standards [18,19] (Table 2).

Table 2. Microbiome standards methods.

Method Pros Cons

Mock/synthetic
communities

• Represent “ground truth”
(qualitatively and
quantitatively known
composition)

• Can be used to assess accuracy
and precision/reproducibility
of methods

• Simplistic mixtures of
few microbes lacking
diversity and matrix
effects (not biomimetic of
human microbiomes)

Human fecal standards

• Composed of real microbiome
samples so are of
representative diversity and
matrix effects

• Can be used to assess
precision/reproducibility
of methods

• Composition not fully
qualitatively or
quantitatively defined so
cannot be used to assess
accuracy of methods

Mock community standards are mixtures of purified microbial cultures. They
are defined microbial communities that are built from the ground up and represent
“ground truth” (qualitatively and quantitatively known composition) [19]. These mock
community standards can be used to assess the accuracy and precision of a given method
as well as understand how methodological variables within or between labs impact
results. However, mock community standards are simplistic mixtures of few microbes
and are not biomimetic of real microbiome samples, which are highly complex mixtures
of both microbial cells and other cellular and molecular components. Thus, mock
communities have a much lower diversity and lack potential matrix effects compared
to fecal microbiome samples. In contrast, human fecal standards, like the one being
developed by NIST [18], are not just biomimetic of real microbiome samples, they are
real microbiome samples and represent the diversity and aspects such as matrix effects
present in these complex communities. However, unlike mock communities, these fecal
standards are not of fully defined composition with respect to their microbial taxa.
Because all microbiome metagenomic workflows introduce bias, from DNA extraction
technique to bioinformatic analysis and interpretation, it is not possible to assign
certified values (qualitatively or quantitatively) to the microbial taxonomic composition
of the fecal material. Therefore, human fecal standards cannot be used to assess the
accuracy of measurement methods. However, they can be used to assess the precision
or reproducibility of measurements and the impact of methodological variables.

The criteria for manufacturing a good fecal standard are homogeneity, stability,
and fitness-for-purpose. Yet, human fecal material is naturally heterogeneous, meaning
that material sampled from one part of the stool will contain a different collection of
microbes and molecules than material sampled from another part of the stool. Thus,
the first step in the manufacturing of NIST’s human fecal microbiome standard is
homogenization of pooled samples (bowel movements from multiple donors) using
blending and cryomilling to ensure that each aliquot contains a comparable, representa-
tive collection of microbes and molecules. Homogeneity and stability are then assessed
using a suite of measurement platforms including next generation sequencing (NGS)-
based metagenomics, nuclear magnetic resonance (NMR) and mass spectrometry-based
metabolomics, flow cytometry, and CFU.
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In summary, using microbiome reference standards, including mock communities and
standardized human fecal material, it is possible to assess the analytical performance of a
microbiome measurement workflow, from sample collection to sequencing and quantifica-
tion, to better understand how different methods impact results. The cost of implementing
these standards ranges considerably from $100 to $1000 per unit of material depending on
the material type and quantity. Labs may also prepare their own microbiome standards
by preparing large batches of pooled materials (e.g., feces) that are aliquoted and frozen.
Individual aliquots may then be used to show methodological consistency within their
laboratory over a period of months or even years, given proper collection and storage as
described in the previous section.

4. Microbiome Sequencing Methods

Dr. Daryl Gohl of the University of Minnesota followed to describe the current state
of knowledge regarding sources of bias in the process of next-generation sequencing
of the microbiome and how to reduce bias within and between laboratories [20,21]. To
begin, Dr. Gohl described the Microbiome Quality Control (MBQC) project, the goal
of which was to identify technical sources of variability in measurement of the human
microbiome to facilitate the development of standards for reporting of methods, best
practices, normalization, and meta-analysis [20]. This study highlighted significant
variability in 16S rRNA gene amplicon microbiome profiles between different labs
due to differences in sample handling environment, DNA extraction, homogenization,
polymerase chain reaction (PCR) amplification, and sequencing [20]. However, given
the MBQC study design, it was difficult to parse the effects of these separate variables
on data quality and accuracy.

A systematic study by Dr. Gohl and colleagues focused on the impact of protocol
variables during PCR amplification, including enzyme choice, PCR cycle number, and
template concentration. These parameters have both qualitative and quantitative effects
on the accuracy of profiles of mock community samples [21]. This study identified
aspects of particular importance in the PCR process, such as the use of proofreading
polymerases (e.g., KAPA HiFi, Q5) [21,22]. These polymerases can detect, excise, and
replace mis-incorporated bases due to their 3′ to 5′ exonuclease activity [22]. The
KAPA HiFi polymerase has also been engineered to have high processivity, which
reduces the formation of chimeric reads [21]. Thus, proofreading polymerases can
help reduce substitution error rates during PCR, as well as rescue “dropout” taxa
whose templates contain primer mismatches and are thus not amplified during the
PCR process [21]. In a follow-up study, Dr. Gohl and colleagues reported the primer
editing activity of several proofreading polymerases and demonstrated that the extent
of primer editing can be tuned through the adjustment of enzyme concentration or the
strategic incorporation of phosphorothioate bonds, which block exonuclease activity in
the amplification primers [22]. Thus, best practices for microbiome amplicon analysis
should include the use of a proofreading, highly processive polymerase, sequencing
primers should not overlap with amplification primers, template concentration should
be optimized, and the number of PCR cycles should be minimized [21].

The sequencing step of microbiome analysis can be described figuratively, and
sometimes literally, as a black box. Next-generation sequencers are complex liquid-
handling and optical devices where the raw data, which in the case of Illumina se-
quencers are a collection of fluorescent images, undergo a number of transformations
via proprietary software to generate the FASTQ files that are the basis for subsequent
bioinformatic analyses. Thus, there are likely sources of error and bias in the DNA
sequencing process that are currently unappreciated. As with assessing the accuracy
of other steps of the microbiome data generation process, reference standards provide
useful materials to assess the DNA sequencing process. Using synthetic standards,
Dr. Gohl and colleagues conducted an investigation that demonstrated a high degree of
clustering bias due to molecule length across Illumina sequencers (e.g., MiSeq, NextSeq,
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NovaSeq) and variability in these biases between instruments that could impact inter-
pretation and comparison of data in certain experimental contexts (for instance, in ITS
amplicon sequencing, since fungal ITS regions can vary considerably in length) [23].
To account and correct for these size biases, Dr. Gohl and colleagues are in the process
of developing a novel standard based on PhiX, a sequencing quality control that is
typically spiked into Illumina sequencing runs to measure error rates. This standard,
which is called “PhiXtra” contains a collection of PhiX fragments with defined sizes
and unique breakpoints that act as molecular barcodes for different fragment sizes. Use
of this standard would allow for measurement of the size bias curve in addition to the
error rate during DNA sequencing.

Identification of sources of variability and bias within the microbiome analysis
workflow and understanding the effect of different methods on results is a first step
to ensuring data quality. If the goal is to reproduce or compare results within or
between labs, the next step is to standardize methods or develop methods that can
correct for these biases. Steps that can be taken to increase intra-lab reproducibility
include developing detailed standard operating protocols, a quality management sys-
tem (e.g., training records, version control), and a laboratory information management
system (e.g., reagent lot numbers, instruments, sample touches, timestamps) as well
as implementing training and proficiency testing, routine incorporation of positive
and negative controls at each step, and version-controlled software. The path towards
inter-lab reproducibility is more difficult and, based on the experience of researchers
in other fields, can take years to achieve [24]. Though many of the same principles of
increasing intra-lab reproducibility apply, achieving inter-lab reproducibility would
require substantial coordination and troubleshooting of protocols, use of consistent
reagents, structured data and metadata collection, and cross-training of staff in addition
to a funding source invested in these efforts [24]. As discussed later in the session,
adherence to standardized protocols may not always be desirable, since this can mean
failing to take advantage of improvements in technology, thereby potentially sacrific-
ing accuracy for reproducibility. Moreover, the frequent turnover or obsolescence of
sequencing platforms and library prep reagents further complicate efforts to generate
reproducible data over long timescales.

Thus, understanding the effect of different library preparation and sequencing
protocols on variability and bias in results, and the implementation of standardized
protocols or controls to correct for these sources of variability, will allow for more
accurate comparison of results between studies and verification of consistent findings.
However, the benefits of standardized protocols must also be weighed against the
potential compromise of decreased accuracy as a result of slower adoption of new
technologies and methods.

5. Microbiome Quantification Methods

One of the characteristic features of microbiome sequencing methods is that they
are almost always presented as compositional, meaning that the abundances of mi-
crobiota taxa are relative and not absolute [25]. However, the next speaker, Dr. Doris
Vandeputte of Cornell University, described issues with compositional data, the value
of absolute quantification of microbial taxa, and methods for moving from relative to
absolute quantification.

Compositional data present a unique challenge of analysis and interpretation.
Changes in relative abundance of taxa over time or differences in relative abundance
between samples cannot provide information on microbial load or directionality of
changes or differences [26]. For instance, if the relative abundance of a certain taxa
is higher in one sample versus another, it cannot be determined whether the absolute
abundance of that taxon is higher or if the absolute abundance of the other taxa is lower
in that sample. Additionally, total microbial load cannot be determined from relative
abundance. Microbial load has been shown to differ in patients with Crohn’s disease
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from healthy controls [26] and in soil has been associated with plant yield independent
of microbial composition [27]. In Crohn’s disease, relative microbiome profiling seems
to suggest that Bacteroides is increased. However, quantitative microbiome profiling
reveals that it is a decrease in total microbial load and not a bloom of Bacteroides that
is characteristic of individuals with Crohn’s disease [26]. Thus, microbial load is a
biologically significant parameter in and of itself and quantitative microbiome profiling
can provide insight into the true direction of changes in microbial taxa abundances.
Quantitative microbiome profiling also improves sensitivity and reduces false discovery
rate of species–species associations [26]. The integration of microbiome sequencing
data with other -omics data (e.g., transcriptomics, proteomics, metabolomics) is also
improved by using quantitative microbiome profiling because these other omics data
are often also measured using absolute abundances.

To convert relative to absolute abundances, two extra measurements are needed: the
weight per sample and the cell number per sample. Cell numbers must be standardized by
the weight of the sample, taking into account the addition of any buffering solutions or other
additives. To measure the cell number per sample, several methods can be used (Table 3).
Parallel with sequencing, flow cytometry or quantitative PCR (qPCR) of a universal marker
can be utilized. Other options used during sequencing include addition of an internal
standard or a combination of an internal standard and qPCR. Providing a comparison of
methods, Dr. Vandeputte explained pros and cons of these different approaches. Flow
cytometry, while a commonly used method, is labor intensive and requires either fresh
samples or diluted frozen samples [26]. Described as a straightforward protocol with
minimal bias, considerations remain, such as formation of aggregates (i.e., cells that clump
together and affect cell counts) and potential bias if cells cannot be extracted or amplified,
which would cause differences in the flow cytometry results compared to sequencing
results [26]. Conversely, qPCR of a universal marker, gene while easily applicable, cheap,
and needing only limited resources, introduces multiple sources of bias. Sources of bias
include extraction, purification, and amplification of DNA as well as bias through 16S
rRNA gene copy number variation [26]. Sequencing or sequencing plus qPCR of an internal
standard involve steps within the sequencing process, rather than being parallel to it as
with the previously mentioned approaches. Sequencing of an internal standard that is
spiked into samples prior to extraction has the benefit that no extra analysis is needed.
However, a drawback of this approach is that the dose of the standard is difficult to
calibrate and therefore 20–80% of sequencing efforts may be devoted to measurement
of the internal standard rather than the biological sample itself [28]. To avoid this issue,
another approach was developed, combining sequencing and qPCR of the internal
standard [29]. In this approach, only minute amounts of internal standard are needed
and therefore sequencing efforts can be concentrated on the samples [29]. A drawback
is that several qPCR reactions are needed per sample to quantify both the internal
standard (to deduce the DNA recovery yield) and the 16S rRNA genes (to deduce the
number of 16S copies after extraction) [29].

In summary, microbial load is a clinically relevant measure of the microbiome and
can be measured using several different approaches both parallel to and in combination
with sequencing. In addition to its clinical relevance, quantitative microbial profiling
also circumvents the issue of analyzing compositional data by providing information
on the directionality of changes and magnitude of differences between samples.
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Table 3. Quantitative microbiome profiling methods.

Method Relative to
Sequencing Pros Cons

Flow cytometry of
bacterial cells Parallel • Straightforward protocol with

minimal bias

• Labor intensive
• Requires fresh samples
• Formation of aggregates
• Potential bias if cells cannot be

extracted/amplified

qPCR of universal marker
gene Parallel • Easily applicable

• Limited resources needed

• Bias through extraction, purification,
and amplification of DNA

• Bias through 16S rRNA gene copy
number variation

• Bias through community
replication rate

Sequencing internal
standard During • No extra analysis needed

• 20–80% of sequencing efforts devoted
to measuring internal standard

• Dose of internal standard difficult
to calibrate

qPCR of internal standard During

• Small amount of internal
standard needed

• Sequencing efforts
concentrated on sample

• Several qPCR reactions needed
per sample

Abbreviations: quantitative polymerase chain reaction (qPCR).

6. Microbiome Bioinformatic Methods

Regardless of whether relative or quantitative microbial profiling methods are utilized,
once data are generated from sequencing they must be processed using bioinformatics to
identify taxonomic groups and other biologically informative features from sequences. This
step was not directly discussed in the satellite session but remains an integral step in the
process of microbiome analysis. Though methods have advanced and new methods have
been developed in recent years, previously published studies comparing different bioinfor-
matic approaches demonstrate the complexity of this process and the variability that this
can introduce to the microbiome analysis process [30,31]. A more recent review by Gao and
colleagues provides an overview of bioinformatic methods for gut microbiome analysis [32].
The steps involved in bioinformatics processing will differ based on the type of sequencing
(e.g., 16S rRNA, 18S rRNA, internal transcribed spacer (ITS) sequencing, shotgun metage-
nomic sequencing, metatranscriptomic sequencing, and viromic sequencing) but generally
include three core steps: (1) data preprocessing and quality control, (2) assignment and
alignment, and (3) community (taxonomic and/or functional) characterization.

Many bioinformatics approaches use the same process and standards for quality
control: PHRED algorithm score. For 16S rRNA sequencing, taxonomic assignment has
two main approaches: operational taxonomic unit (OTU)-based analysis (e.g., UCLUST,
UPARSE, CD-HIT, hcOTU, ESPRIT, ESPRIT-TREE) or amplicon sequence variant (ASV)-
based analysis (e.g., DADA2, UNOISE, Deblur) [4]. OTU-based analysis uses a predefined
similarity threshold (typically 97%) to cluster sequences, whereas ASV-based analysis uses
denoising to deduce and remove amplification and sequencing errors, which provides a
higher-resolution result [32].

Metagenomic and metatranscriptomic analyses differ in that they sequence an entire
genome, rather than a single gene. There are generally two approaches to the assignment
and alignment step of metagenomic and metatranscriptomic sequencing: an alignment-
based approach that maps reads to known microbial reference genomes (e.g., Kyoto En-
cyclopedia of genes and genomes (KEGG), clusters of orthologous groups (COG)) or an
assembly based approach (e.g., Meta-IDBA, IDBA-UD, MetaVelvet, and MegaHit). To
obtain the most accurate results, it is often recommended to use both approaches in com-
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bination [32]. Metatranscriptomic sequencing differs in that it starts with RNA, rather
than DNA, and can therefore query gene expression at a given moment and under specific
conditions, rather than its potential.

Pipelines or platforms that integrate the different analytical steps into one package that
are commonly used include the Galaxy server (The Huttenhower Lab; https://huttenhower.
sph.harvard.edu/galaxy/, accessed on 3 May 2023) and QIIME 2 (https://qiime2.org/,
accessed on 3 May 2023) [33] for 16S rRNA and metagenomic sequencing, or HUMAnN2
and MG-RAST for metatrascriptomic sequence analysis [32]. The data generated from these
steps can then be analyzed using appropriate biostatistical approaches to interpret changes
or differences in the microbiome as well as associations with other data types.

7. Microbiome Biostatistical Methods

In the following presentation, Dr. Cara Frankenfeld of the University of Puget Sound
reviewed foundational biostatistical considerations and examples of statistical approaches
in gut microbiome research. There are many post-processing analytical options, the choice
of which is influenced by research objectives, data structure and features, as well as consid-
erations such as study design (e.g., cross-sectional, longitudinal, etc.) and integration with
other datasets (e.g., diet, metabolome, etc.).

Biostatistical methods used vary based on whether the objective of the study is to
understand mechanisms by which conditions shape the microbiome (e.g., microbiome as
dependent [outcome] variable), to understand mechanisms by which the microbiome influ-
ences health conditions of the host (e.g., microbiome as independent [predictor] or mediator
variable), or to characterize ecological associations of microbes (e.g., network analysis).

Microbiome data are structured in matrices that relate microbiome taxa or gene abun-
dances to samples. While simple in concept, several key features of these data make it
difficult to utilize conventional statistical approaches (Table 4). These key features include
compositionality [26,34,35], sparsity [34–36], high dimensionality [34,37], heteroscedasticity,
and batch effects or other technical effects.

Table 4. Features of microbiome data.

Microbiome Data Feature Definition

Compositionality Data are relative (percentage or proportion). Abundances of taxa
are no longer independent of one another.

Sparsity
Also known as zero-inflation. A high percentage of cells in the
data contain a zero because the specific sequence or taxon was

not detected.

High dimensionality The number of features (i.e., taxa columns) is larger than the
number of observations (i.e., subject rows).

Heteroscedasticity
Dependent or outcome variables (e.g., microbiota taxa) display
unequal variance over a range of independent variable values

(e.g., metadata) or time periods

As has been mentioned previously, the compositional or relative nature of most micro-
biome data influences the analysis and interpretation of these data due to the imposition of
an arbitrary total sum (100%) [26]. This has the effect that the abundances of different taxa
are no longer independent of one another (i.e., relative abundance of taxon A is dependent
on changes in the abundance of taxon B, even if absolute numbers of taxon A do not
change) [38]. The feature of sparsity, also known as zero-inflation, means that there are a
high percentage of cells in the data table that contain a zero because the specific sequence
or taxon was not detected [36]. Microbiome data also typically have the feature of high
dimensionality, meaning that the number of features (i.e., taxa columns) is larger than the
number of observations (i.e., subject rows). This high dimensionality makes it challenging
to build models to detect associations between features of the microbiome and health status
because there are so few observations on which to train models. Use of diversity metrics or
ordination methods such as principal coordinate analysis (PCoA) are often used to reduce

https://huttenhower.sph.harvard.edu/galaxy/
https://huttenhower.sph.harvard.edu/galaxy/
https://qiime2.org/
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this dimensionality by summarizing taxa data into a single metric or a smaller number of
distance vectors that can then be visualized to inspect sample clusters and similarity or
dissimilarity based on bacterial composition [35]. Heteroscedasticity is the characteristic
of dependent or outcome variables (e.g., microbiota taxa) having unequal variance over
a range of independent variable values (e.g., metadata) or time periods. This is common
and typically dealt with by using non-parametric approaches or utilizing techniques to
reduce heteroscedasticity (e.g., log transformation) before using parametric approaches.
As discussed in previous sections, other important factors influencing the structure of
microbiome data output and data interpretation include technical variability such as batch
or protocol effects.

The choice of statistical approach is limited by the aforementioned features of micro-
biome data but is ultimately driven by the goals of the analysis. For example, researchers
may consider a summary feature of the microbiome (e.g., diversity metric), overall com-
position (e.g., PERMANOVA [39], LDM), differential abundance (e.g., ANCOM-BC [38],
LinDA [40]), and/or taxa relationships (e.g., network analysis).

Diversity metrics provide a summary feature of the microbiome composition. As
mentioned, this is one strategy of addressing the challenge of high dimensionality through
data reduction. Within microbiome analysis, alpha and beta diversity are commonly used
measures of diversity. Alpha diversity is used for local diversity and reflects diversity
within a single sample. Examples of alpha diversity metrics include richness (e.g., number
of observed species, (e.g., ACE, Chao1), phylogenetic diversity (e.g., Faith’s phylogenetic
diversity), or evenness (e.g., Shannon index, Simpson index). Choice of alpha diversity
metric may depend on the structure of the data. For example, both ACE and Chao1 are
non-parametric richness estimators that may be more appropriate for data displaying
heteroscedasticity compared to the number of observed species. Beta diversity is a measure
of the similarity or dissimilarity of communities based on the distance between pairs of
samples. These distances can then be used in ordination to reduce the dimensionality of
the data and visualize the distances between samples. Beta diversity metrics can be catego-
rized as either quantitative (e.g., Bray–Curtis, Canberra, weighted UniFrac) or qualitative
(e.g., binary-Jaccard, unweighted UniFrac). Quantitative metrics use feature abundance
data whereas qualitative metrics only consider the presence or absence of taxa features.
Use of quantitative or qualitative metrics may depend on the sparsity of data or presence of
rare features within the dataset. Often, both types of metrics are used. Both alpha and beta
diversity metrics produce summary measures that may then be used in further statistical
analyses such as t-tests or linear regression to test research hypotheses.

Distance matrices produced from ordination or beta diversity measurements may also
be used to compare overall community composition via methods such as permutational
multivariate analysis of variance (PERMANOVA) [39]. PERMANOVA is a non-parametric,
multivariate extension of ANOVA that depends on permutation distributions rather than
assumptions about underlying normality of the data to determine statistical significance.
Overall community composition may also be compared using the taxa abundance table
via the linear decomposition model (LDM) [41], which can be applied to both relative
abundance data or presence-absence data when associated taxa are relatively rare.

Differential abundance analysis aims to identify differences or changes in the abun-
dance of individual taxa between samples or over time. As mentioned previously, this can
be complicated by the compositional or relative nature of most microbiome data. One of
the strategies to address this issue is through robust normalization. Once normalized, the
resulting values can then be used in statistical procedures such as regression or correlation.
One normalization strategy involves calculating some normalizing factor that is robust to a
small number of differential taxa, then dividing by this normalizing factor. This will bring
the abundance of non-differential taxa to the same scale and retain differences between
differential taxa. Procedures that incorporate this normalizing factor approach include
edgeR [42] and MetagenomeSeq2 [43]. Another common approach is the center log ratio
(CLR) transformation in which the counts are divided by their geometric means before tak-
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ing the logarithm of these values. This approach is used in ANCOM and ANCOM-BC [38].
A new method, LinDA [40], also allows for correlated or clustered data such as would
arise from paired or repeated measures, which is not available in ANCOM-BC. However,
LinDA does have a false discovery rate inflation that may not be appropriate for datasets
with small features sizes such as phylum level abundance data. Thus, it is important to
consider the structure of the dataset when deciding which method to use for differential
abundance testing. Recent publications have compared various differential abundance
methods [44–47].

The microbiota is a complex ecosystem in which individual taxa interact, positively and
negatively, to form an ecological network of co-occurring microbes. Thus, while comparison
of individual taxa can be informative, network analysis can provide insight into these
microbial interaction patterns [48]. There are four common categories of network analysis
models: correlation and regression based methods, local similarity analysis, probabilistic
graph models, and matrix factorization techniques [48]. Correlation and regression based
methods utilize additional steps such as normalization to account for the compositionality
of microbiome data as well as bootstrapping and penalty terms (e.g., lasso penalty to
drive the coefficients of taxa with negligible contributions to zero) to account for the high
dimensionality and sparsity of microbiome data [48]. Local similarity analysis detects
changes between time series measurements of bacteria to identify associations and study
dynamic changes in microbial communities [48]. Probabilistic graph models map microbial
interactions and, contrary to correlation- and regression-based methods, differentiate
between direct and indirect associations [48]. Matrix factorization techniques infer low
dimensional structure (e.g., principal components or coordinates) from high dimensional
-omics data to enable visualization and inference of relationships between the microbiome
and health outcomes. The tools most useful for a specific analysis depend on characteristics
of the data such as compositionality, sparsity, dynamic/time series, indirect and nonlinear
interactions, differential analysis, and/or multiple networks [48].

Complex extensions to microbiome analysis such as longitudinal analysis and integra-
tion with other complex data pose additional challenges. A review by Kodicara et al. [49]
discusses the challenges that microbiome data pose for longitudinal analysis and provides a
comparison of methods for longitudinal analysis using simulated data. Integration of other
data sets such as -omics or dietary data presents a challenge given the baseline complexity
of microbiome data in combination with the complexity of dietary or other -omics data.
A review by Choi et al. [50] demonstrates the complexity of integrating microbiome and
dietary data, also illustrating the parallels in analysis pipeline steps of data collection,
data preparation, data processing, data structure, and output between microbiome and
dietary data such as compositionality and sparsity. Choi and colleagues also highlight an
approach called Procrustes analysis that can be used to compare microbiome ordination
with dietary ordination to determine if there is agreement between the two sets of data,
though this method is limited by the inability to adjust for covariates [50]. A review by
Bhosle and colleagues [51] delves into the use of machine learning approaches such as
MimeNet, NPLinker, and MelonnPan to find or predict microbe–metabolite interactions. In
a more general approach to integrating -omics datasets, Ghazi and colleagues [52] describe
methods of identifying associated features between different -omics datasets including
parametric methods (e.g., partial least squares [PLS], canonical correlation analysis [CCA],
sparse principal component analysis [SPCA], and SPARSE-CCA), non-parametric methods
(distance correlation [dCor] and Chatterjee rank correlation [XICOR]), and a novel method
of linking high-dimensional -omics datasets called hierarchical all-against-all association
testing (HAllA).

Ultimately, each statistical method has a designated purpose and limitations that
must be considered along with the research objectives and data structure to determine
which methods are appropriate for analysis. Use of appropriate statistical methods to
analyze individual datasets as well as compare or link datasets provides a powerful avenue
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for understanding mechanistic pathways and establishing cause and effect between diet,
microbiome, and health outcomes.

8. Diet-Microbiome-Health Interactions: Considerations for Research

Dr. Curtis Huttenhower reviewed how microbiome data can be utilized within diet-
microbiome studies. Any perturbation such as diet can directly affect both health and the
gut microbiome (Figure 1). Gut microbial composition and function can respond directly to
diet, and in turn gut microbes can directly affect health [53]. However, the gut microbiome
can also affect health by modulating the effects of diet, not necessarily with a corresponding
change in the composition of the microbiome itself [5,54]. This last interaction has garnered
particular interest in the microbiome as a component of personalized nutrition [54–56]. For
instance, the gut microbiome has been found to modulate individual glycemic response
after standardized meals [5], cardiometabolic risk in response to a Mediterranean diet [54],
and inflammation in response to dietary fiber [57].

Nutrients 2023, 15, x FOR PEER REVIEW 13 of 18 
 

 

8. Diet-Microbiome-Health Interactions: Considerations for Research 
Dr. Curtis Huttenhower reviewed how microbiome data can be utilized within diet-

microbiome studies. Any perturbation such as diet can directly affect both health and the 
gut microbiome (Figure 1). Gut microbial composition and function can respond directly 
to diet, and in turn gut microbes can directly affect health [53]. However, the gut microbi-
ome can also affect health by modulating the effects of diet, not necessarily with a corre-
sponding change in the composition of the microbiome itself [5,54]. This last interaction 
has garnered particular interest in the microbiome as a component of personalized nutri-
tion [54–56]. For instance, the gut microbiome has been found to modulate individual gly-
cemic response after standardized meals [5], cardiometabolic risk in response to a Medi-
terranean diet [54], and inflammation in response to dietary fiber [57]. 

 
Figure 1. Diet–Microbiome–Health Interactions. Direct effect arrows are black, indirect effect arrow 
is red. Diet has direct effects on both health and the gut microbiome. The gut microbiome also has 
a direct effect on health as a result of changes in the community composition and/or function due to 
diet. However, the gut microbiome can also modulate (indirect effect) the effects of diet on health 
independent of diet-related changes in composition or function. 

In fact, while diet does directly affect gut microbiome composition and function, the 
effect sizes can in many settings be smaller than expected, even if they are statistically 
significant [54]. Diet can be a dominant influence on gut microbiome composition and 
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In fact, while diet does directly affect gut microbiome composition and function, the
effect sizes can in many settings be smaller than expected, even if they are statistically
significant [54]. Diet can be a dominant influence on gut microbiome composition and
function in certain contexts and populations such as in infants [58], hunter-gatherer pop-
ulations [59], non-human primates [60], and in lab mice with highly controlled diets [61].
However, in most healthy human adult populations eating a westernized diet (i.e., highly
varied and not subject to seasonal cycling of food availability) [62–66], dietary differences
seem to have only modest effects on the gut microbiome. Thus, in some contexts it may be
modulation of dietary effects by the baseline gut microbiome that matter more than direct
effects of diet on the gut microbiome in terms of health outcomes. For example, in a study
by Wang et al., while the Mediterranean diet showed modest effects on gut microbiome
composition and function, there was a strong interaction between individuals’ baseline
abundance of Prevotella copri and the effect of a Mediterranean diet on cardiometabolic
health [54]. Individuals who had higher relative abundance of P. copri were cardiometaboli-
cally protected regardless of Mediterranean diet adherence, while individuals with lower
abundance were more dependent on diet adherence for cardiometabolic health [54]. Sim-
ilarly, P. copri abundance has demonstrated the same interaction with fiber intake and
plasma C-reactive protein concentration (i.e., inflammation) [57].

In summary, diet can have direct effects on the gut microbiome and health outcomes.
However, in many healthy adult human populations, modulation of dietary effects on
health by the gut microbiome may play a bigger role in various health phenotypes. This
highlights the importance of personalized nutrition approaches that focus on or account
for baseline gut microbiome composition and function.

9. Discussion

This ASN satellite session reviewed the current state of knowledge related to methods
used for microbiome analysis: collection, storage, sequencing, bioinformatic processing,
and biostatistical analysis. In all steps of this analytic process, the importance of method-
ological synchronicity or use of standards for comparability of results as well as the consid-
eration of research objectives to determine appropriate methods were highlighted as key
factors in microbiome research.

Collection and storage methods are the first step in microbiome research and are
the foundation for ensuring quality results. Choice of method depends on several fac-
tors including what subsequent analyses are planned (e.g., 16S rRNA sequencing, MGX,
metabolomics). Thus, the research objectives or subsequent planned analyses factor into the
choice of collection method. In the case of multi-omic analyses, best storage and collection
practices for each individual analysis pipeline remain the same and individual aliquots
should be treated accordingly. Multi-omic data may then be integrated during the biostatis-
tical analysis step as discussed. Additionally, while several collection methods may have
similar stability and accuracy compared to a putative gold standard in a certain context,
they each result in unique microbial and metabolite profiles. Therefore, comparison of
results must consider collection methodology, and standardization of collection and stor-
age should be sought among studies with concordant research objectives and subsequent
analytic steps. Use of standards (e.g., mock community standard, defined human fecal
standard) during collection and sequencing can help identify differences between methods
and help refine and optimize technological approaches.

In addition to the use of standards during the sequencing process, use of other tools
can also reduce bias generated from the sample handling environment, DNA extraction, ho-
mogenization, and PCR amplification that are part of the sequencing process. For example,
the use of proofreading polymerases during PCR amplification can reduce errors and bias
that could impact downstream sequencing results. While the use of standards and other
tools such as proofreading polymerases can reduce bias, standardization of sequencing
protocols is important to achieve inter-study comparability of results and to identify and
validate associations and trends within the microbiome. Additionally, quantification of
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absolute microbe abundances, rather than the relative abundance that arises from the
standard sequencing process, may also be a step forward to identify associations within
the microbiome and enable improved interpretation and comparability of results.

The bioinformatic and biostatistical approaches that are employed downstream of
sequencing form the capstone of the microbiome analytic process, define the ultimate
interpretation, and inform the narrative that accompanies the data. Both bioinformatic and
biostatistical steps require consideration of the characteristics of the data input and the
desired data output or research objectives as these considerations drive the choice of pa-
rameters and methods. Specific bioinformatic parameter recommendations (e.g., trimming
length, truncating length, or sampling depth) were not covered during the satellite session.
However, choices about bioinformatic parameters should be made based on the quality
of the sequences in the dataset as well as the expected abundance of the taxa of interest
(i.e., is the research questions focused on rare or abundant taxa). As noted, researchers
should select their method of microbiome statistical analysis to align with their research
question. For example, a question about identifying specific differences in microbiome
species would be analyzed differently than a question about understanding global changes
in the microbiome profile. Once the main method of analysis is selected to align with the
research question, researchers should consider features of their specific dataset, such as
magnitudes of sparsity and dimensionality. Microbiome analysis is a rapidly evolving
field and microbiome scientists are developing and releasing new and adapted methodolo-
gies. Particular methods or extensions to methods may be available for a specific type of
analysis that are better suited to address higher sparsity or dimensionality. For example,
in a recent publication, Rahman et al. [67] introduced a flexible differential abundance
method that utilizes Bayesian approaches to account for high sparsity, high dimensionality,
and compositionality. Researchers are encouraged to evaluate longer-standing statistical
tools and recent additions to the statistical toolbox, and validation studies of such tools, to
identify what extensions to analytic methodologies would align best with the features of
their specific datasets.

In summary, choice of methods is dependent on research objectives and often limited
by available resources. Continued development, validation, and standardization of meth-
ods can help move microbiome research forward by increasing accuracy and precision of
results. Clear description of methods by researchers in the dissemination of their results,
will enable greater inter-study comparability and validation of findings.
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