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Abstract

Background: Consolidation with autologous hematopoietic stem cell transplantation (HSCT) 

has improved survival for patients with central nervous system tumors (CNSTs). The impact of the 

autologous graft CD34+ dose on patient outcomes is unknown.

Objectives: To analyze the relationship between CD34+ dose, total nucleated cell (TNC) dose, 

and clinical outcomes, including overall survival (OS), progression free survival (PFS), relapse, 
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non-relapse mortality (NRM), endothelial-injury complications (EIC), and time to neutrophil 

engraftment in children undergoing autologous HSCT for CNSTs.

Study Design: A retrospective analysis of the CIBMTR database was performed. Children aged 

<10 years who underwent autologous HSCT between 2008-2018 for an indication of CNST were 

included. An optimal cut point was identified for patient age, CD34+ cell dose, and TNC, using 

the maximum likelihood method and PFS as an endpoint. Univariable analysis for PFS, OS, and 

relapse was described using the Kaplan-Meier estimator. Cox models were fitted for PFS and OS 

outcomes. Cause-specific hazards models were fitted for relapse and NRM.

Results: One hundred fifteen patients met the inclusion criteria. A statistically significant 

association was identified between autograft CD34+ content and clinical outcomes. Children 

receiving >3.6x106/kg CD34+ cells experienced superior PFS (p=0.04) and OS (p=0.04) compared 

to children receiving ≤3.6x106/kg. Relapse rates were lower in patients receiving >3.6x106/kg 

CD34+ cells (p=0.05). Higher CD34+ doses were not associated with increased NRM (p=0.59). 

Stratification of CD34+ dose by quartile did not reveal any statistically significant differences 

between quartiles for 3-year PFS (p=0.66), OS (p=0.29), risk of relapse (p=0.57), or EIC (p=0.87). 

There were no significant differences in patient outcomes based on TNC, and those receiving a 

TNC >4.4x108/kg did not experience superior PFS (p=0.26), superior OS (p=0.14), reduced risk 

of relapse (p=0.37), or reduced NRM (p=0.25). Children with medulloblastoma had superior PFS 

(p<0.001), OS (p=0.01), and relapse rates (p=0.001) compared to those with other CNS tumor 

types. Median time to neutrophil engraftment was 10 days vs 12 days in the highest and lowest 

infused CD34+ quartiles, respectively.

Conclusions: For children undergoing autologous HSCT for CNSTs, increasing CD34+ cell 

dose was associated with significantly improved OS and PFS, and lower relapse rates, without 

increased NRM or EICs.

Keywords

Autograft; Autologous Hematopoietic Stem Cell Transplant; CD34+; Central Nervous System; 
Medulloblastoma; TNC

INTRODUCTION

Central nervous system tumors (CNSTs) are one of the most-common indications for 

autologous hematopoietic stem cell transplantation (HSCT) in children.1 Although many 

CNSTs are radiation-sensitive, radiotherapy may result in severe neuro-developmental 

sequelae and/or secondary malignant neoplasms, with younger age at the time of irradiation 

being the greatest risk factor for these late effects.2–4 Historically, radiation-sparing 

treatment strategies resulted in dismal outcomes, with 2-3 year progression free survival 

(PFS) of 0-34%, and median time-to-relapse of 6-9 months.5–10 Subsequent studies of 

children with relapsed/recurrent CNSTs were able to achieve event free survival (EFS) 

rates approaching 50% via single autologous HSCTs,11–14 with this approach therefore 

being integrated into front-line clinical trials for newly diagnosed children, with continual 

improvements in patient outcomes across tumor types have been achieved via the use of 

consolidative autologous HSCTs.15–22 Subsequent trials involving multiple sequential (e.g. 
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tandem) have shown this to be a relatively safe and effective approach,23 with additional 

studies ongoing.24,25

The impact of the infused autologous graft (autograft) on patient outcomes for children with 

CNSTs has not been well described to date. Data from adult patients with a range of solid 

tumor types has suggested that infusion of higher CD34+ doses results in shortened time to 

neutrophil engraftment, lessened need for supportive care,26,27 and improved survival.28,29 

However, autologous HSCTs are generally not performed for adults with CNSTs.30 In 

addition, pediatric peripheral blood stem cell (PBSC) collections may contain two-to-ten 

times higher levels of CD34+ cells than those of adults, potentially greatly exceeding the 

level necessary for hematopoietic recovery.31–36 Selecting the optimal CD34+ cell dose for 

infusion would help guide the management of patients undergoing autologous transplant for 

CNSTs.

Prior data has shown an association between higher CD34+ doses and a shortened time to 

hematopoietic recovery.26,27 However, more rapid hematopoietic recovery may be associated 

with a heightened incidence of endothelial-injury related complications (EICs).37–39 Such 

complications, including engraftment syndrome (ES), idiopathic pneumonia syndrome 

(IPS), transplant-associated thrombotic microangiopathy (TA-TMA), and veno-occlusive 

disease / sinusoidal obstructive syndrome (VOD/SOS) occur due interactions between 

injured endothelial cells and activated immune effector cells,40,41 and are a major 

contributant to non-relapse mortality (NRM).41,42 Large CD34+ doses could theoretically 

either improve or worsen outcomes, and the ideal CD34+ autograft content is not known for 

CNST. This analysis therefore assesses the relationship between CD34+ dose and clinical 

outcomes including progression-free survival, overall survival, relapse rates, non-relapse 

mortality, endothelial injury complications, and neutrophil engraftment in 115 children who 

underwent autologous transplant for central nervous system tumors.

METHODS

Data Source

All data were obtained via the Center for International Blood and Marrow Transplant 

Research (CIBMTR) registry, which contains information on over 575 000 individual 

patients, obtained from >350 distinct transplant centers world-wide. All data are de-

identified and reported on standardized forms, with participation being voluntary, and bias 

minimized via consecutive reporting requirements. Patients were eligible for inclusion if 

they underwent an autologous HSCT (either single or tandem) for CNST and were aged 

under 10 years of age at the time of transplant. Additional inclusion criteria included: 

transplant occurring in Canada or the United States of America, between the years of 

2008-2018 (inclusive). Patients were included if pre-transplant disease status was reported 

as complete response (CR) or partial response (PR). Children receiving salvage HSCT after 

failure of primary therapy could not specifically be excluded, but the requirement of a 

pre-transplant disease status of CR or PR likely minimized the number of included patients 

with refractory disease. This study was approved by the National Marrow Donor Program’s 

Institutional Review Board.
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Patients

Children received treatment according to relevant cooperative group protocols, including 

Children’s Cancer Group (CCG), Pediatric Oncology Group (POG), Children’s Oncology 

Group (COG), National Experimental Therapeutics (NEXT) Consortium, or St. Jude 

Children’s Research Hospital protocols. The study enrollment/treatment protocol was not 

specifically recorded. Patients undergoing tandem transplants were assessed on the basis of 

the CD34+ dose of the initial HSCT. If unavailable, the CD34+ dose of a subsequent HSCT 

was used, based on the assumption that CD34+ dose would be equal between transplant 

infusions.

Statistical Analysis

Progression-free survival was the primary study endpoint and was defined as alive 

and in remission. Secondary endpoints included overall survival, relapse rate, non-

relapse mortality, incidence of endothelial injury, and time (in days) to neutrophil 

engraftment (defined as an absolute neutrophil count (ANC) of ≥ 0.5 x 109/L for three 

or more consecutive days). The incidence of endothelial-injury related complications 

(EICs) was assessed as composite variable, and included the occurrence of engraftment 

syndrome (ES), idiopathic pneumonia syndrome (IPS), veno-occlusive disease / sinusoidal 

obstructive syndrome (VOD/SOS), thrombotic microangiopathy (TMA), and diffuse alveolar 

hemorrhage (DAH). Relapse was considered to be recurrence or progression of primary 

disease, and non-relapse mortality was considered to be death in the absence of disease 

reoccurrence or progression. Censure was performed at the time of last contact for surviving 

patients.

Cumulative incidence estimator with Gray’s test was utilized to calculate the incidence of 

EICs, neutrophil engraftment, relapse, and NRM, to accommodate competing risks. The 

Kaplan-Meier estimator, which estimates the probability of surviving as a function of time, 

was used to calculate OS (event defined as death from any cause) and PFS (event defined 

as relapse or death). A Cox model for PFS and OS and a cause-specific hazards model were 

constructed, and included the following variables: sex, age at the time of transplant, disease 

status prior to transplant, single or tandem transplant, infused TNC dose, and the infused 

dose of CD34+ cells. CD34+ and TNC dose cut-points were determined via the maximum 

likelihood method for PFS, and analyzed as a binary variable, e.g. over/under the cut-point. 

Stepwise selection was used to select significant variables, with those that achieve a p-value 

of 0.05 or less being included in the final model; CD34+ cell dose was included in the 

final model irrespective of significance level attained. P-values of ≤ 0.05 were considered 

statistically significant. No first-order interactions were observed between CD34+ cell dose 

and the other variables in the final model. Adjusted survival and cumulative incidence curves 

were created based on the final regression model.43,44 All analyses were performed via SAS 

version 9.4 (Cary, NC).
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RESULTS

Patient Characteristics

One hundred and fifteen patients were eligible. Patient demographics and HSCT details 

(including conditioning regimens and EIC incidence) are displayed in Table 1. Median age 

at the time of HSCT was 3 years (range <1 to 10 years). Seventy-six (66%) of children had 

a complete response, with the remaining 39 (34%) having a partial response prior to HSCT. 

Tandem HSCT was performed in 81 (70%) of patients, and single HSCT in 29 (25%). Data 

regarding number of transplants was unavailable in 5 (4%) of children. Sixty-five (57%) of 

children had a diagnosis of medulloblastoma. The median length of follow-up for the study 

population was 67 months (range 9 – 132 months). All (100%) of included patients utilized 

autologous peripheral blood stem cells as the graft source.

Effect of CD34+ Cell Dose

Autografts contained a median CD34+ of 4.7x106/kg (range 0.5-66.9x106/kg) (Table 1). The 

study population was also examined based on CD34+ dose quartiles, with the interquartile 

range being 2.7-8.3x106/kg (Table 1). Demographic characteristics were similar across 

CD34+ dose quartiles.

Optimal CD34+ dose: A CD34+ dose of 3.6x106/kg was identified as the optimal cell 

dose “cut point” to discriminate between the largest differences in outcome (Table 2). 

Autografts which contained >3.6x106/kg were associated with significantly superior PFS 

(HR = 0.55, 95% CI 0.31-0.97, p=0.04; Figure 1), superior OS (HR = 0.49, 95% CI 

0.25-0.98, p=0.04; Figure 2), and lower relapse rate (HR = 0.56, 95% CI 0.31-1.01, p=0.05; 

Figure 3). No association was identified between CD34+ cell dose and NRM (HR = 0.46, 

95% CI 0.03-7.48, p=0.59). EIC incidence was not associated with CD34+ dose at 100 days, 

6 months, and 1-year post-transplant (p=0.91; Table 3).

Interquartile Difference in Outcome: The association between clinical outcomes and 

CD34+ cell dose was also analyzed by quartiles (Supplementary Table 1). No quartile 

was associated with a statistically superior outcome for PFS (p=0.66; Figure 4), OS 

(p=0.29; Figure 5), or relapse rate (p=0.57; Figure 6) at one- or three-years post-transplant. 

EIC incidence did not vary significantly according to CD34+ dose quartile at 100-days, 

6-months, or 1-year post-transplant (p=0.87; Table 4). Descriptive statistics were calculated 

for patients who received low (e.g. ≤ 2x106/kg) (n=18) or high (e.g≥ 10x106/kg) (n=20) 

CD34+ cell doses. Among children receiving ≤ 2x106/kg CD34+ cells, the 3-year PFS and 

OS were 55.6% and 77.8%, respectively. Children who received ≥ 10x106/kg CD34+ cells 

experienced similar outcomes, with 3-year PFS and OS were 65% and 80%, respectively. 

Three-year relapse rates were: 8/18 (44.4%) of children who received doses ≤ 2x106/kg 

relapsed, versus 7/20 (35%) who received ≥ 10x106/kg CD34+ cells.

Endothelial Injury Complications: Six of the 115 patients (5%) developed EICs, 

including 5 who experienced IPS, and 1 who experienced VOD/SOS. Among the 6 patients, 

3 received conditioning with carboplatin / cyclophosphamide / vincristine, and 3 received 

conditioning with carboplatin / thiotepa. The median infused CD34+ cell dose among 
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children who developed EICs was 4.2x106/kg (range 1.36-8.74), and the median infused 

TNC dose was 3.1x108/kg (range 0.54-5.44). From the available data, it was not possible 

to determine whether EICs arose following the first or subsequent HSCT, or whether EICs 

occurred more frequently after first versus subsequent HSCTs.

Neutrophil Engraftment: Neutrophil engraftment occurred in 114/115 (99.1%) of 

children by day 28 post HSCT, with the median time to engraftment being 10-12 days 

across all CD34+ dose quartiles (Table 5). No specific CD34+ dose was found to predict 

more rapid neutrophil engraftment. The median time to engraft neutrophils was 12 days 

(range 11-13 days) in the lowest dose quartile compared to 10 days (range 9-11 days) for the 

highest quartile. All 17 evaluable patients who received a cell dose of ≤ 2x106/kg engrafted, 

with a median time-to-neutrophil recovery of 11 days (range 10-12 days). Nineteen of 20 

patients (95%) who received a cell dose of ≥ 10x106/kg had neutrophil recovery by day 

28, the median time to neutrophil engraftment 10 days. Data regarding neutrophil recovery 

following second HSCTs (when performed) were not available.

Effect of TNC Dose

The median TNC was 2.4x108/kg (range 0.4-49.8x108/kg), with an interquartile range of 

1.3-5.7x108/kg (Table 1). A TNC dose of 4.4x108/kg was identified as the optimal cell 

dose “cut point” to discriminate between the largest differences in outcome. However, there 

was no significant difference in patient outcomes based on TNC, as patients who received 

autografts containing a TNC content of >4.4x108/kg did not have significantly different 

outcomes from those patients who received autografts containing ≤4.4x108 TNC/kg. 

Specifically, a TNC >4.4x108/kg did not result in superior PFS (p=0.26), superior OS 

(p=0.14), reduced risk of relapse (p=0.37), or reduced NRM (p=0.25).

Overall Outcomes and Effects of Tumor Type and Tandem Transplant

Patient outcomes including PFS, OS, Relapse, NRM, and EIC incidence are displayed 

in Table 6. Three-year PFS was 58.6% (95% CI 49.4-67.8%) for the study population, 

and 3-year OS was 75.5% (95% CI 67.4-83.6%). Children with diagnoses other 

than medulloblastomas experienced worse outcomes than those with medulloblastomas, 

including lower PFS (HR = 2.87, 95% CI 1.69-5.15, p<0.001), lower OS (HR = 2.59, 95% 

CI 1.28-5.25, p=0.01), and a higher risk of relapse (HR = 2.67, 95%CI 1.58-4.82, p=0.001) 

(Table 2).

We assessed for any difference in outcomes based on the number of transplants performed 

and identified no statistically significant change in outcome between patients who had 

undergone single versus tandem transplant. Those who underwent tandem HSCT did not 

have demonstrable improvements PFS (HR 0.74, 95%C CI 0.39-1.41, p=0.36), OS (HR 

1.03, 95% CI 0.46-2.29, p=0.94), or risk of relapse (HR 0.69, 95% CI 0.36-1.34, p=0.27), 

compared to those who underwent single HSCT (Supplementary Table 2).

Knight et al. Page 7

Transplant Cell Ther. Author manuscript; available in PMC 2024 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



DISCUSSION

In a retrospective analysis of 115 children undergoing autologous HSCT for central 

nervous system tumors, higher CD34+ doses were associated with significantly improved 

PFS and OS, and a lessened risk of relapse. Specifically, patients who received greater 

than 3.6x106/kg had superior outcomes compared to those receiving lower doses, and the 

administration of higher CD34+ cell doses did not result in increased NRM or EIC.

This is one of the first studies in pediatric stem cell transplantation to show such 

associations. In contrast, the impact of the autograft CD34+ cell dose on outcomes has 

been well described in a number of adult studies, with variable results.28,29,45 Several 

adult studies have not shown a correlation between CD34+ dose and outcome,45 while 

others have shown an association between higher CD34+ doses and improved PFS and 

OS.28,29 Additionally, adult data has suggested that CD34+ doses below 2x106/kg may delay 

hematopoietic recovery,46,47 while autograft cell doses over 5x106/kg CD34+ may be been 

associated with more rapid engraftment.26,27 Compared to adult autograft trials, CD34+ cell 

doses are typically much larger in the pediatric population.29,45 Thus, pediatric-specific data 

are therefore needed.

One rationale for conducting our current study was to assess whether higher CD34+ cell 

doses were associated with an increased NRM and EIC, given the potential interaction 

between immune effector cells and endothelial cells in the transplant process. 40,41 In our 

current trial, we did not identify any association between EIC incidence, NRM, and CD34+ 

dose.

Given that CD34+ cells make up approximately 1-3% of the autologous graft,48 the impact 

of TNC content upon HSCT outcomes was also examined in our trial. The majority of cells 

in a typical autograft are a heterogeneous mixture of lineage-differentiated progenitors and 

immune effector cells (IECs).49–51 Although we did not observe differences in outcome 

based on infused TNC, we lacked the ability to investigate specific sub-mononuclear 

cell populations within the graft. Future prospective investigations into this area are 

warranted, however, because the importance of IECs in disease control is being increasingly 

understood. Promising clinical trials have investigated the use of directly modify T cells 

and NK cells to facilitate tumor targeting.52,53 Congruently, there is expanding use of 

anti-tumor vaccines, immune checkpoint inhibition, and oncolytic viral therapies, all of 

which rely to some extent on the patient’s own immunologic response, as mediated by 

endogenous unmodified IECs.52,53 Granular investigations into autologous graft IEC content 

may therefore yield actionable data as these clinical trials continue to grow in number and 

efficacy.

The observed OS and PFS compared favorably to other autograft studies in children 

with CNSTs. CCG 99703 used a triple tandem HSCT approach to treat children with 

embryonal CNSTs, with a 5-year OS of 63.6 ± 5% and 5-year EFS of 43.9 ± 5.2%.23 

HeadStart I reported 2-year OS and EFS of 55±6% and 39±7% respectively.15 HeadStart 

II reported 3-year OS and EFS rates of 60% and 49%,16–18 with HeadStart III noting 

5-year OS and EFS rates of 62 ± 5% and 46 ± 5%, respectively, for patients with 
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medulloblastoma.21 In general, patients with medulloblastoma have experienced superior 

outcomes on these trials, compared to patients with other diagnoses.16–18 Results for the 

current clinical trials COG ACNS0334 and HeadStart IV are not yet available. Several 

features of our study may explain the superior outcomes we observed. First, only patients 

who underwent auto-HSCT were included, with the effect of excluding patients with the 

most advanced/aggressive CNSTs. Patients who died, had progressive disease, or were 

otherwise ineligible for transplant were therefore not represented in our results. Second, 

the study window encompassed only transplants performed from 2008-2018. The results 

of the NEXT Consortium’s HeadStart I and II clinical trials had been published by early 

2008,17,18 HeadStart III closed to accrual in December 2009, and HeadStart IV opened 

to accrual in September 2015.24 The COG’s ACNS0334 clinical trial likewise opened 

to accrual in October 2007, and closed in December 2016.25 We therefore examined a 

population of patients who likely benefited from recent progress in CNST treatment, and 

received therapy according to current multicenter trials, as 70% of participants in our study 

received tandem HSCTs. Lastly, patients >10 years of age were excluded, due to differences 

in disease biology, management strategies, and the prognosis in this older population.54,55 

The observed NRM in our study likewise compared favorably to other pediatric CNST 

transplant studies. The day-100 NRM for the HeadStart I, II, and III trials were 6.4% (n=3), 

2.1% (n=1), and 0.8% (n=1), respectively.5 CCG-99703 reported a “toxic mortality rate” of 

2.5% (n=2), attributed to the auto-HSCTs performed on that study.23

No difference in outcomes was seen based upon whether patients received single versus 

tandem transplants. However, existing studies would suggest the superiority of tandem 

transplant in the CNS tumor setting.23–25 Although this may therefore be a surprising 

observation, the goal of this investigation was not to assess for the effect of transplant 

number. Neither study methodology nor sample-size were optimized for this endpoint. It 

can therefore only be reported that the observed associations between CD34+ cell dose and 

patient outcomes was not influenced by the number of transplants performed.

Our study has a number of limitations. First, we were necessarily limited to data fields 

included by the CIBMTR, which do not capture the induction regimen used, number of 

cycles of pre-apheresis or pre-transplant chemotherapy, and presence/absence of marrow 

disease at the time of diagnosis, transplant, or apheresis. We are therefore unable to 

assess the impact of specific treatment protocols on outcomes. We were also unable to 

analyze for an association between CD34+ dose and platelet recovery or hospitalization 

length, as this data was not captured.56,57 Second, our findings may have been confounded 

by pre-transplant disease burden or treatment response, as this data was not specifically 

captured. Patients with greater disease burden may have been less able to mobilize CD34+ 

cells, and therefore both collected and received lower CD34+ doses. Conversely, patients 

receiving higher CD34+ doses may have been those who disease was less severe. This effect 

has been seen in adult patients with lymphoma,58,59 but it is unclear whether it applies 

to children with CNSTs. We sought to minimize the influence of this by including only 

patients who had partial or complete responses to therapy, but patient disease status may 

still have influenced our observed results. We also assessed the cohort of patients who 

received CD34+ cell doses ≤ 2.0x106/kg. Although the small size of this group precluded 

valid statistical modelling, these children did not have notably poorer outcomes based on 
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descriptive statistics alone. Third, our population was heterogeneous, and included patients 

with a variety of different CNSTs. The observed effect of CD34+ dose was independent 

of diagnosis, but disease-specific subset analysis may have resulted in different outcomes 

for the different types of CNSTs. Due to the relatively small number of patients with any 

specific, non-medulloblastoma diagnosis, we did not perform such an analysis.

In conclusion, we identified an association between higher autograft CD34+ content and 

superior PFS and OS, and lower relapse rates. There was no association between CD34+ 

dose and the occurrence of NRM or EIC. The effect of CD34+ cell dose upon patient 

outcomes suggests that there may be sufficient grounds to investigate whether a higher 

CD34+ target might yield improved outcomes in pediatric patients with CNSTs.
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Highlights

• CD34+ doses >3.6x106/kg were associated with higher progression free and 

overall survival.

• No association between CD34+ cell doses and post-transplant complications.

• No association between TNC and survival, relapse risk, or non-relapse 

mortality.
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Figure 1: 
Progression-free survival by CD34+ dose (x106/kg)
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Figure 2: 
Overall survival by CD34+ dose (x106/kg)
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Figure 3: 
Relapse rate by CD34+ dose (x106/kg)
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Figure 4: 
Progression-free survival by CD34+ dose quartile (x106/kg)
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Figure 5: 
Overall survival by CD34+ dose quartile (x106/kg)
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Figure 6: 
Relapse rate by CD34+ dose quartile (x106/kg)
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Table 1.

Characteristics of patients undergoing autologous HSCT for Central Nervous System Tumors

Study Population CD34+ Dose by Quartile (x106/kg)

0.49 - 2.70 2.71 - 4.66 4.67 - 8.25 8.26 - 66.94

No. of patients (%) 115 (100) 29 (25.2) 28 (24.3) 29 (25.2) 29 (25.2)

Age at transplant, years - no. (%)

   Median (min-max) 3 (1-10) 5 (1-9) 5 (1-10) 2 (1-8) 3 (1-7)

   Less than 1 6 (5) 1 (3) 1 (4) 3 (10) 1 (3)

   1 to 2 42 (37) 8 (28) 4 (14) 13 (45) 17 (59)

   3 to 5 40 (35) 8 (28) 12 (43) 10 (34) 10 (34)

   6 to 9 27 (23) 12 (41) 11 (39) 3 (10) 1 (3)

Sex - no. (%)

   Male 74 (64) 21 (72) 13 (46) 23 (79) 17 (59)

   Female 41 (36) 8 (28) 15 (54) 6 (21) 12 (41)

CNS tumor type – no. (%)

   Medulloblastoma 65 (57) 16 (55) 20 (71) 15 (52) 14 (48)

   Other CNS tumors* 50 (43) 13 (45) 8 (29) 14 (48) 15 (52)

Disease status prior to transplant - no. (%)

   Complete response 59 (51) 11 (38) 17 (61) 13 (45) 18 (62)

   Complete response - undetermined 17 (15) 7 (24) 2 (7) 7 (24) 1 (3)

   Partial response 39 (34) 11 (38) 9 (32) 9 (31) 10 (34)

Transplant type - no. (%)

   Single HSCT 29 (25) 4 (14) 10 (36) 6 (21) 9 (31)

   Tandem HSCT 81 (70) 24 (83) 18 (64) 21 (72) 18 (62)

   Not reported 5 (4) 1 (3) 0 (0) 2 (7) 2 (7)

CD34+ dose, cells x106/kg

  Median (min-max) 4.7
(0.5 – 66.9)

1.7 (0.5-27) 37 (2.8-4.5) 6.0 (4.7-8.1) 12.1
(8.3-66.9)

  Inter-quartile range 2.7 – 8.3 0.9-2.4 3.2-4.0 5.0-6.7 9.6-17.5

Total nucleated cell dose, cells x108/kg

  Median (min-max) 2.4 (0.4 – 49.8) 3.8 (0.4-48.4) 5.1 (0.8-47.6) 1.4 (0.4-49.8) 2.2 (0.8-13.4)

  Inter-quartile range 1.3 – 5.7 2.2-6.5 1.9-9.7 0.9-3.2 1.4-5.5

Follow-up, months

  Median (min-max) 67 (9-132) 54 (9-124) 73 (11-132) 74 (12-144) 76 (23-124)

Conditioning Regimen of First Transplant– no. (%)

Cyclophosphamide / Fludarabine 1 (1)

Carboplatin / Etoposide 27 (23)

Carboplatin / Thiotepa 59 (51)

Carboplatin 3 (3)
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Study Population CD34+ Dose by Quartile (x106/kg)

0.49 - 2.70 2.71 - 4.66 4.67 - 8.25 8.26 - 66.94

Carboplatin / Cyclophosphamide / Vincristine +/− 
Amifostine

23 (20)

Etoposide / Thiotepa 1 (1)

None 1 (1)

*
Other CNS tumors: Rhabdoid tumors (n=14), Pineoblastoma (n=10), Anaplastic astrocytoma (n=3), Cerebral neuroblastoma (n=2), Anaplastic 

ependymoma (n=1), Ependymoblastoma (n=1), Glioblastoma multiforme (n=1), Primary brain sarcomas (n=1), Other primitive neuroectodermal 
tumors (n=13), Other high grade glial tumors (n=2), Not reported (n=1).
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Table 2.

Multivariable Analysis – Outcomes

Progression-Free Survival

N HR 95% CI Lower Limit 95% CI Upper Limit p-value

CD34+dose (x106/kg)

≤3.6 42 1

>3.6 71* 0.55 0.31 0.97 0.04

CNS type

Medulloblastoma 64 1

Other CNS tumors 49 2.87 1.60 5.15 <0.001

Overall Survival

N HR 95% CI Lower Limit 95% CI Upper Limit p-value

CD34+dose (x106/kg)

≤3.6 42 1

>3.6 73 0.49 0.25 0.98 0.04

CNS type

Medulloblastoma 65 1

Other CNS tumors 50 2.59 1.28 5.25 0.01

Relapse

N HR 95% CI Lower Limit 95% CI Upper Limit p-value

CD34+dose (x106/kg)

≤3.6 42 1

>3.6 71* 0.56 0.31 1.01 0.05

CNS type

Medulloblastoma 64 1

Other CNS tumors 49 2.67 1.48 4.82 0.001

Non-Relapse Mortality

N HR 95% CI Lower Limit 95% CI Upper Limit p-value

CD34+dose (x106/kg)

≤3.6 42 1

>3.6 71* 0.46 0.03 7.48 0.59

*
Progression-free survival, relapse, and non-relapse mortality data were not available for 2 patients.
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Table 3.

EIC Incidence by Optimal CD34+ Dose

≤3.6 x106/kg
(N=42)

>3.6 x106/kg
(N=71)*

p= 0.91

  100-day 0% 4.1% (95% CI = 0.8-9.9%)

  6 months 2.5% (95% CI = 0-9.6%) 4.1% (95% CI = 0.8-9.9%)

  1-year 5% (95% CI = 0.5-13.9%) 4.1% (95% CI = 0.8-9.9%)

*
Data unavailable for 2 patients
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Table 4.

EIC Incidence by CD34+ Dose Quartiles

CD34+ Dose (x106kg)

0.49-2.70
(N=28)

2.71-4.66
(N=28)

4.67-8.25
(N=29)

8.26-66.94
(N=28)

p-value

EIC Incidence Probability of EIC (95% CI)

  100-day 0% 0% 6.9% (0.6-19) 3.6% (0-13.7) 0.87

  6 months 3.6% (0-13.7) 0% 6.9% (0.6-19) 3.6% (0-13.7)

  1-year 7.1% (0.7-19.7) 0% 6.9% (0.6-19) 3.6% (0-13.7)
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Table 5.

Time to Neutrophil Engraftment by CD34+ Dose Quartiles

CD34+ Dose (Number of Patients)

0.49–2.70 x106/kg
(N=28)

2.71–4.66 x106/kg
(N=28)

4.67–8.25 x106/kg
(N=29)

8.26–66.94 x106/kg
(N=28)

Days to neutrophil engraftment

  Median (min-max) 12 (1-16) 10 (1-22) 11 (9-19) 10 (9-22)

  5th-95th percentile 1-16 4-15 10-13 9-14

  25th-75th percentile 11-13 10-12 10-12 9-11
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Table 6:

Patient Outcomes

  CNS Tumors
 (N = 115)

Outcomes N % Prob (95% CI)

Progression-free survival 113

  1-year 70.8% (62.1-78.8)

  3-year 58.6% (49.4-67.8)

Overall survival 115

  1-year 89.5% (83.3-94.4)

  3-year 75.5% (67.4-83.6)

Relapse 113

  1-year 28.4% (20.4-37)

  3-year 40.5% (31.3-49.8)

Non-relapse mortality 114

  1-year 0.9% (0-3.5)

  3-year 0.9% (0-3.5)

Endothelial Injury Complications 115

  100-day 4.3% (1.4-8.8)

  1-year 6.1% (2.5-11.2)

*
Endothelial-injury complications is a composite endpoint consisting of time to first of the following events: engraftment syndrome, IPS, VOD/

SOS, thrombotic microangiopathy, or diffuse alveolar hemorrhage
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