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SUMMARY 
 
The mechanical properties of a cohesionless granular material are evaluated from grain-scale 
simulations. Intergranular interactions, including friction and sliding, are modeled by a set of 
contact rules based on the theories of Hertz, Mindlin, and Deresiewicz. A computer 
generated, three-dimensional, irregular pack of spherical grains is loaded by incremental 
displacement of its boundaries. Deformation is described by a sequence of static equilibrium 
configurations of the pack. A variational approach is employed to find the equilibrium 
configurations by minimizing the total work against the intergranular loads. Effective elastic 
moduli are evaluated from the intergranular forces and the deformation of the pack. Good 
agreement between the computed and measured moduli, achieved with no adjustment of 
material parameters, establishes the physical soundness of the proposed model. 
 
key words: micromechanics; grain-scale simulations; intergranular friction; quasi-static 
model; effective elastic moduli; principle of least work 
 

1. INTRODUCTION 
 
In this paper, we present a micromechanical model of a cohesionless particulate material, 
evaluating its mechanical properties by numerical simulations. The abundance of related 
applications and their large socioeconomic impact have motivated intensive research in the 
field of granular mechanics (see the references within [1, 2]). Technical difficulties 
associated with grain-scale measurements, together with the shortcomings of continuum 
macroscopic models, make micromechanical simulations a prominent tool. 

Obtaining the equilibrium configurations of a grain assembly requires solving a large 
nonlinear system of equations. In most micromechanical models, e.g. the discrete element 
method (DEM) [3], these equations are solved by explicit numerical integration over time. 
Constraints imposed on the time step make DEM simulations time-consuming [4, 5]. To 
enhance convergence to a static equilibrium, a damping parameter is often introduced, and its 
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value together with other grain-scale parameters are adjusted [6–10], sometimes to unrealistic
values. Such adjustments affect the computed mechanical properties of the pack, and may
result in “over-damping” of the grain motion, leaving a substantial number of grains out of
a stable equilibrium [11]. These difficulties have motivated development of implicit methods.
For example, a model of a pack of disks based on the discontinuous deformation analysis
(DDA) method [12] was proposed in [11]. DDA employs minimization of potential energy and
the penalty method to solve for the displacements of blocks. Consequently, a system of linear
equations is solved at each time step [11].
A computational technique to simulate deformation of a granular material and evaluate its

mechanical properties, denoted hereafter as Quasi-Static Granular Model (QuSGM), has been
presented in [1]. In QuSGM, a three-dimensional (3D) irregular pack of spherical grains is
loaded by incremental displacement of its boundaries. Deformation is described by a sequence
of equilibrium configurations, and time integration is avoided. According to the principle of
minimum potential energy [13], each equilibrium configuration is sought by minimizing the
potential energy of the pack with respect to the grain displacements using a modified conjugate
gradient method. The macroscopic stress, strain, and elastic moduli are evaluated from the
intergranular forces and the deformation of the pack.
The model in [1], denoted as “frictionless,” neglects intergranular friction, thus accounting

for normal contact forces only. These forces are evaluated by the Hertzian contact model,
which, for small deformations of relatively stiff particles, has been verified by experiments
and numerical simulations [14, 15]. The results in [1] confirm that the resistance of a grain
pack to volumetric compaction, characterized by the bulk modulus, mainly depends on the
normal contact forces [6, 16], and that the assumption of grain-scale elasticity can capture
inelastic deformation of a granular pack [17]. For instance, micromechanical analysis reveals
the mechanisms responsible for hysteresis, strain hardening, and stress-induced anisotropy [1].
While the model in [1] supports the idea that microscopic friction is not the sole mechanism

of macroscopic shear resistance [10], it underestimates the shear modulus. We associate this
deficiency, in part, with the assumption of negligible intergranular friction [1]. In this paper,
QuSGM is extended to account for friction.
Friction resists relative displacements and rotations of grains through shear forces and

torsional couples (“frictional loads”) at the contacts. For small grain deformations, the
models of Mindlin and Deresiewicz [18, 19] adequately describe intergranular shear ([14, 20, 21]
and the references therein) and torsion [14, 22]. Slip between the grain surfaces dissipates
energy, making load-displacement relations path-dependent. In [18, 19], this path-dependency
is modeled by tracking the load history in incremental steps [14, 23]. At each step, the
contact compliance evaluation accounts for the load increment, the reference load prior to
the application of that increment, and the maximum load experienced prior to unloading or
reloading of that contact. The complexity of the Mindlin and Deresiewicz models motivated
the development of simpler approaches to computation of the grain pack response [20, 23]. For
instance, in [20, 24] the tangential force is computed by accounting for a reduced number of
load scenarios. Since the contribution of torsional couples to the averaged stress in cohesionless
materials is negligible [2, 25], intergranular torsion is often neglected in simpler models.
In this study, the Mindlin and Deresiewicz models are simplified through a set

of incrementally path-independent constitutive relations. The capability to predict the
mechanical properties of a granular sample from its grain properties, with no adjustment
of parameters, demonstrates the physical soundness of our approach.
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The outline of this paper is as follows. Section 2 describes the model and simulation
procedure. Section 3 presents the results of simulations. The values of the model parameters
used in the simulations are specified in Section 3.1. The generation of a numerical grain pack
is discussed in Section 3.2. In Section 3.3, the model is verified against experimental data.
The sensitivity of the model’s predictions to the initial packing, the size of the incremental
load step, and the intergranular friction coefficient are examined in Sections 3.4–3.6. Section 4
provides summary and conclusions. The numerical algorithm is outlined in Appendix A.

2. A MICROMECHANICAL MODEL OF A GRANULAR MATERIAL

A granular sample is modeled as a 3D irregular packing of spherical grains, bounded by the
solid walls of a rectangular container. Simulations begin with a sufficiently-dense irregular
arrangement, denoted hereafter as the initial configuration. An irregular pack is used since
a regular arrangement, uncommon in natural materials [26, 27], deforms in a fundamentally
different manner than an irregular one [28, 29].

We use a quasi-static model, describing deformation as a sequence of static equilibrium
configurations. Starting from a reference configuration, a load is applied by incremental
displacement of the pack’s boundaries. Following such perturbation, the grains deform and
rearrange into a new (“current”) equilibrium configuration. The current configuration of the
previous step serves as the reference configuration of the next step. In the following sections
we discuss the characterization of a grain pack, the constitutive relations that are used to
compute the intergranular loads, a methodology of obtaining the equilibrium configurations,
and the evaluation of the macroscopic parameters.

2.1. Characterization of a grain pack

This section provides a quantitative description of the configuration of a grain pack. Each
equilibrium configuration is characterized by the translations and rotations of the grains
relative to a reference configuration, that satisfy the force and moment balance equations for
each grain. While the pack geometry is fully described by the radii and centers of the grains,
the grain rotations are required to compute the intergranular shear and torsional loads. Given
a reference configuration, a pack of N grains has 6N degrees of freedom: the displacements of
the grain centers and the grain rotations.

Labeling each grain with a single index, i=1,2,. . . ,N, we denote the displacement of grain i
by ui = ri − r0

i , where ri is the radius-vector of the grain center, and superscript 0 denotes
the reference configuration, cf. Figure 1(a). The vector Ωi denotes the rotation of grain i by
an angle ‖Ωi‖, around an axis passing through the grain’s center and directed along Ωi, using

the right-hand convention. Here, ‖ξ‖ = (ξ · ξ)
1/2

is the magnitude of a vector ξ. To make the
units of the variables uniform, the rotation of each grain is multiplied by its radius, Ri. Thus,
a vector of generalized coordinates, θ = [u1 . . . uN Ω1R1 . . . ΩNRN ], where ui and Ωi are
row vectors, characterizes the grain pack configuration.

This study considers a dense pack of relatively stiff grains, analogous to quartz. In such
a pack, grains exhibit very little damage unless exceedingly high stresses are applied [26, 27].
Thus, the grain deformations are often assumed to be small and localized near the contacts [14].
In our model, each grain consists of homogeneous and isotropic elastic material with Young’s
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modulus and Poisson’s ratio denoted by Ei and νi, respectively. The density of the grain
material, ρi, has little effect on the equilibrium configuration; while gravity stabilizes a loose
packing, its effect is negligible relative to the contact forces in a dense, stressed pack.

The pack’s boundaries are represented by elastic planar walls which interact with the
outermost grains. We align the domain with a Cartesian coordinate system, labeling each
boundary with a single index, w=1,2,. . . ,6. The position of a planar boundary w is determined
by its orientation, which is specified by an inward unit normal, n̂w, and an arbitrary point
on the plane, xw, see Figure 1(a). The displacement of the boundary is denoted by uw. The
Young’s modulus and Poisson’s ratio of the boundary material are denoted by Ew and νw.
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Figure 1. (a) Schematic description of the contact geometry. The reference configuration of the grains
and boundaries is marked with grey dotted lines. The dashed lines show the shapes of the undeformed
grains in the current configuration. (b) The loads on grain i due to its contact with grain j, at the
reference and current configuration, marked by dashed and solid arrows, respectively. The reference

loads are projected onto the current contact area to account for its rotation.

2.2. Intergranular constitutive relations

2.2.1. Normal contact forces. At each contact, we resolve the contact force into normal
and tangential components. Following [18, 19], we assume that the normal component is
independent of the other load components, and evaluate it using the Hertzian model. This
assumption has been justified analytically for the case of identical grains [14], and numerically
for dissimilar grain properties [15]. For a pair of spherical grains, i and j, the contact area is
modeled as a planar disk of radius aij ,

aij =
(

R∗
ijhij

)1/2
(1)

The magnitude of the normal compressive force acting at the contact is

‖P ij‖ =
4

3
E∗

ij

(

R∗
ij

)1/2
(hij)

3/2 (2)
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whereR∗
ij = (1/Ri + 1/Rj)

−1
and E∗ =

[

(1− ν2i )/Ei + (1− ν2j )/Ej

]−1
are the effective radius

and elastic coefficient associated with this contact [14]. The above equations are also applicable
to a grain-boundary contact by assigning an infinite radius to the planar wall, R∗

iw = Ri. The
normal compression is quantified by the mutual approach, hij ≥ 0,

hij = Ri +Rj − ‖rij‖ for a grain-grain contact (3a)

hiw = Ri − (ri − xw) · n̂w for a grain-boundary contact (3b)

where rij = ri − rj , see Figure 1(a). The normal forces acting on grain i at the contact with
another grain j and a wall w are directed along rij and n̂w, respectively. Thus, a zero moment
relative to the center of the grain is associated with the normal force.

2.2.2. Tangential contact forces. The shear (“tangential”) force associated with frictional
resistance is computed from the relative lateral displacements and rotations of a pair of
contacting grains, through a constitutive relation based on the Mindlin-Deresiewicz model [18].
Consider a reference configuration with a pair of contacting grains, i and j. Grain i is loaded

by a forceQ0
ij which is tangential to the contact plane, and a normal force, P 0

ij , cf. Figure 1(b).
We assume that incremental boundary displacements cause small linear and angular grain
displacements. These displacements correspond to a relative tangential displacement of grain i
with respect to j, uij(s), which alters the tangential force. The tangential force, Qij , is
calculated by incrementing the unperturbed value,

Qij = Q
p
ij − kij(s)uij(s) (4)

where kij(s) denotes the shear resistance (“stiffness”) of the contact. Subscript (s) denotes
a parameter associated with shear. Following [30], the reorientation of the contact interface
is accounted for by aligning the force Q0

ij with the direction of the current contact area,

Q
p
ij =

∥

∥Q0
ij

∥

∥ t̂ij , see Figure 1(b). The unit vector t̂ij = T ijQ
0
ij/

∥

∥T ijQ
0
ij

∥

∥ denotes the direction

of the rotated force, where T ij = Î − r̂ij ⊗ r̂ij and r̂ij = rij/ ‖rij‖. Here, Î is a second
order identity tensor and ⊗ denotes the tensor product. For a contact with a boundary w,
T iw = Î − n̂w ⊗ n̂w. The relative tangential displacement is

uij(s) = T ij(ui − uj) +Ωi ×Rij −Ωj ×Rji for a grain-grain contact (5a)

uiw(s) = T iw(ui − uw) +Ωi ×Riw for a grain-boundary contact (5b)

The radius-vectors Rij = −r̂ij

(

R2
i −A2

ij

)1/2
and Riw = −n̂w (Ri − hiw) connect the center

of grain i to the center of the contact area with another grain j and a boundary w,
respectively. The intersection of the undeformed grain surfaces defines a disk of radius

Aij = [(Ri −Rj − rij) (−Ri +Rj − rij) (Ri +Rj − rij) (Ri +Rj + rij)]
1/2

/ (2rij), where
rij = ‖rij‖; see Figure 1(a). The vector product is denoted by ×.
If intergranular slip occurs, the force-displacement relation becomes path-dependent [18].

In the Mindlin-Deresiewicz model [18], slip is accounted for by varying the shear stiffness
with the current load and the load history. Here, we formulate a linear, path-independent,
incremental force-displacement relation. The linearization is justified by the assumption of
small grain displacements [31]. With this linear approximation, we neglect the effect of the
normal force increment on Qij , so that Qij is a function of the reference value, P 0

ij . At
each load increment, we assume that a contact experiences either perfect stick (“no-slip”) or
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complete slip (“sliding”). According to the Coulomb friction model, the tangential force cannot
exceedQmax

ij = µij‖P ij‖, where µij is the intergranular friction coefficient. Sliding occurs when
the shear force reaches this threshold, and the force magnitude becomes independent of the
stiffness, ‖Qij‖ = Qmax

ij . To model this hysteretic behavior, we evaluate the stiffness by

kij(s) =







k∗ij(s)
∥

∥Q∗
ij

∥

∥ ≤ Qmax
ij

k′ij(s)
∥

∥Q∗
ij

∥

∥ > Qmax
ij

(6)

where Q∗
ij = Q

p
ij − k∗ij(s)uij(s), cf. Eq. (4), and

k∗ij(s) = 8aij

(

2− νi
Gi

+
2− νj
Gj

)−1

(7a)

k′ij(s) =
1

‖uij(s)‖2

{

Q
p
ij · uij(s) +

[

(

Q
p
ij · uij(s)

)2
+
(

(

Qmax
ij

)2
− ‖Qp

ij‖
2
)

‖uij(s)‖
2
]1/2

}

(7b)

Here, Gi is the shear modulus of the material of grain i. The value of k∗ij(s) is predicted in [18]
for the case of negligible slip. Negligible slip is expected at the onset of either loading or
unloading, as the tangential force either increases from zero or decreases after a monotonic
loading, cf. Figure 2. Sliding is accounted for by reducing the stiffness as the magnitude of the
tangential force approaches Qmax

ij . The reduced value, k′ij(s), makes the shear force equal to

Qmax
ij ; thus, k′ij(s) vanishes if the sliding threshold has been reached. Physically, the stiffness

coefficient is non-negative. Thus, we put k′ij(s) = 0 if the term inside the square brackets in

Eq. (7b) becomes negative.
With the linear approximation, we use the unperturbed force, P 0

ij , rather than P ij in
Eqs. (6)–(7). Similarly, we use the corresponding unperturbed values of the radius of the disk
of intersection, A0

ij , and the contact radius, a0ij . To justify the latter we expand the expression

in Eq. (1) as a Taylor series near hij = h0
ij , noting that the linear term in the expansion can

be neglected since
∣

∣hij − h0
ij

∣

∣/h0
ij ≪ 1. Here, h0

ij is the reference value of hij .
Finally, the force Qij is associated with a moment relative to the center of grain i,

M ij(s) = Rij ×Qij (8)

2.2.3. Torsional couples. Relative torsion between a pair of grains creates a torsional
couple at their contact [19, 32]. In Section 2.4, we demonstrate that the contribution of the
intergranular torsion to the macroscopic stress is negligible. However, in a cemented grain
pack, torsion may determine the strength of each contact [33]. To enable future extension of
the model to account for cemented grains, a torque-rotation relation based on the model in [19]
is formulated below, using an approach similar to that in Section 2.2.2.
Consider a pair of grains, i and j, loaded by a torsional couple, M0

ij(t), and a normal force,

P 0
ij . Subscript (t) denotes a parameter associated with torsion. Following a perturbation of

the boundaries, relative torsion between the grains, Ωij(t), modifies the torque,

M ij(t) = M
p
ij(t) − kij(t)Ωij(t) (9)

where the stiffness kij(t) describes the resistance of the contact to torsion. The effect of the

rotation of the contact interface is modeled by M
p
ij(t) =

∥

∥

∥
M 0

ij(t)

∥

∥

∥
sgn

(

M0
ij(t) · r̂ij

)

r̂ij , see
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∥
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The plot shows the magnitudes of the respective vectorial quantities, normalized to a non-dimensional

form. The shear and torsional stiffness, kij(s) and kij(t), correspond to the slope of the lines.

Figure 1(b). For a contact with a boundary w, Mp
iw(t) =

∥

∥

∥
M0

iw(t)

∥

∥

∥
sgn

(

M 0
iw(t) · n̂w

)

n̂w.

Here, sgn denotes the sign function. The relative torsion is evaluated by

Ωij(t) = [(Ωi −Ωj) · r̂ij ] r̂ij for a grain-grain contact (10a)

Ωiw(t) = (Ωi · n̂w) n̂w for a grain-boundary contact (10b)

Slip may occur in a circumferential direction, making the torque-rotation relation path-
dependent [19]. Linearization of the torque-rotation relation decouples the torque from the
normal force increment. At each load increment, a path-independent torque-rotation relation
is formulated by assuming either no-slip or sliding. The torque magnitude is limited by
Mmax

ij(t) = (3π/16)aijµij‖P ij‖, which is the expected value in sliding [32], by defining

kij(t) =











k∗ij(t)

∥

∥

∥
M∗

ij(t)

∥

∥

∥
≤Mmax

ij(t)

k′ij(t)

∥

∥

∥
M∗

ij(t)

∥

∥

∥
> Mmax

ij(t)

(11)

where M∗
ij(t) = M

p
ij(t) − k∗ij(t)Ωij(t), cf. Eq. (9), and

k∗ij(t) =
16

3
aij

3

(

1

Gi
+

1

Gj

)−1

(12a)

k′ij(t) =
1

∥

∥Ωij(t)

∥

∥

2

{

M
p
ij(t) ·Ωij(t) +

[

(

M
p
ij(t) ·Ωij(t)

)2

+

(

(

Mmax
ij(t)

)2

−
∥

∥

∥
M

p
ij(t)

∥

∥

∥

2
)

∥

∥Ωij(t)

∥

∥

2
]1/2

}

(12b)
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Here, k∗ij(t) is the stiffness in the case of negligible slip, expected at the onset of torsional

loading or unloading [19], see Figure 2. To enforce the torsional threshold, the stiffness is
reduced to k′ij(t), which vanishes at sliding. Similar to Eq. (7b), we put k′ij(t) = 0 if the term

inside the square brackets in Eq. (12b) becomes negative. With the linear approximation, the
unperturbed values P 0

ij and a0ij are used in Eqs. (11)–(12) to determine Mmax
ij(t) and kij(t).

2.3. Equilibrium configurations

This section describes a methodology to obtain an equilibrium configuration. Each
configuration is characterized by a set of generalized coordinates, θ, which satisfy the force
and moment balance for each grain,

F i =

Ni
g

∑

j=1

(

P ij +Qij

)

+

Ni
b

∑

w=1

(P iw +Qiw)−migêz = 0 (13a)

M i =

Ni
g

∑

j=1

(

M ij(s) +M ij(t)

)

+

Ni
b

∑

w=1

(

M iw(s) +M iw(t)

)

= 0 (13b)

The sums of forces and moments acting on grain i are denoted by F i and M i, respectively.
Employing a variational approach, each equilibrium configuration is obtained by finding a local
minimum of an energy functional, Π, with respect to θ. In the absence of friction, Π equals
the total potential energy of the pack [1]. Here, the total energy of the pack is not potential.
By the principle of least work [13], we seek a minimum of the mechanical work done against
the intergranular loads following a perturbation of the boundaries,

Π = −

N
∑

i=1







1

2

Ni
g

∑

j=1

Wij +

Ni
b

∑

w=1

Wiw −mig(ui · êz)







(14)

where g is the acceleration due to gravity, êz is a unit vector pointing opposite to the direction
of gravity, and the grain mass is mi = (4/3)πR3

i ρi. We denote by N i
g and N i

b the number of

contacts of grain i with other grains and with boundaries, respectively, so that N i = N i
g +N i

b

is the coordination number. In Eq. (14), Wij is the work done against the loads acting on
grain i due to its contact with grain j,

Wij = Wij(n) +Wij(s) +Wij(t) (15)

Here Wij(n), Wij(s), and Wij(t) are the mechanical works against the normal and tangential
contact forces, and torsional couples, respectively. We evaluate Wij(n) from the increment of
elastic strain energy associated with the normal compression [34],

Wij(n) = − (8/15)E∗
ij

(

R∗
ij

)1/2
[

(hij)
5/2
−
(

h0
ij

)5/2
]

(16)

The works against the shear and torsional loads are evaluated by integrating these loads
over the relative shear and torsional displacements, respectively. These integrals are evaluated
numerically using a midpoint rectangular rule,

Wij(s) = Q
p
ij · uij(s) −

1

2
kij(s)

∥

∥uij(s)

∥

∥

2
(17a)

Wij(t) = M
p
ij(t) ·Ωij(t) −

1

2
kij(t)

∥

∥Ωij(t)

∥

∥

2
(17b)
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In sliding, the stiffness vanishes and Eqs. (17) evaluate the work of fixed inelastic force and
torque with respect to the displacements. Following [20], we assume that friction is the only
means of energy dissipation.
We obtain a local minimum of Π numerically (see Appendix A). At a minimum, the gradient

of Π with respect to the generalized coordinates, θ,

∇θΠ = − [F 1 . . . FN M1/R1 . . . MN/RN ] (18)

vanishes. Thus, the zero gradient of Π means the balance of forces and moments.

2.4. Macroscopic parameters

For each equilibrium configuration, we evaluate the average strain (ǫ) and stress (σ) within
the sample, and the effective elastic moduli. The evaluation procedure is summarized below.

2.4.1. Strain. The strain is evaluated from the boundary displacements [1]. The normal strain
in the l-direction (l = 1, 2, 3) is

(

Ll − Lσ=0
l

)

/Lσ=0
l , where Ll and Lσ=0

l are the length of the
domain in that direction, in the current and undeformed configurations, respectively. Here, the
term undeformed refers to the configuration in which appreciable stresses first appear following
compaction of a loose packing [1].
We simulate an experiment in which the strains are enforced, and the corresponding stress

is computed. To simulate isotropic or polyaxial loading, identical or different normal strains
are enforced in three perpendicular directions. A triaxial test is modeled by applying two
identical strains in two perpendicular (“lateral”) directions. Simulation of uniaxial strain
(denoted hereafter as “uniaxial test”) mimics loading of a laterally confined pack. We use
the convention of positive stress and strain in compression.

2.4.2. Stress. The normal stresses are estimated from the sum of the normal contact forces
acting on each boundary, divided by its area [1]. This method is simpler than integrating
the product of the force and branch vectors over the sample’s volume [35], yet produces very
similar results.
The presence of frictional loads implies that the resultant load on the boundaries may

include shear and torsion, corresponding to shear stresses. However, in isotropic materials,
application of normal principal strains yields normal principal stresses. Thus, if the simulated
pack behaves isotropically, the resultant shear and torque must vanish. To verify that no
appreciable shear stresses develop, we compute the total moment applied by the normal and
tangential contact forces on the boundaries with respect to the pack’s center. The averaged
shear stress is evaluated from an equivalent force couple. Since this force is at least 2 orders
of magnitude smaller than the resultant normal forces, we neglect the shear stresses.
The smallness of the contact area [14] makes the arm of an intergranular torsional couple

much smaller than the size of a single grain. Unless torsion acts very close to the pack’s center,
the torque it applies is negligible relative to that of a contact force. Thus, the contribution of
intergranular torsion to the averaged stress is negligible; see also [25].

2.4.3. Elastic moduli. To describe the evolution of the mechanical properties of the pack with
loading, we evaluate effective elastic moduli for each load interval. The moduli are found by
fitting each stress-strain interval with Hooke’s law for a homogeneous, isotropic material [1].
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3. SIMULATIONS OF A DEFORMING GRANULAR SAMPLE

3.1. Material properties of the grains

The grain properties for the numerical simulations discussed below are taken from [36, 37].
To model heterogeneous materials such as clastic sediments, we assign the grains radii from
a uniform distribution of 0.07–0.13 mm, and elastic moduli from a normal distribution with
a standard deviation of 10% of the mean. A heterogeneous pack of 2740 glass beads (see
Figure 3), denoted by G2740, is modeled by assigning the grain moduli with mean values of
Ē=70 GPa and ν̄=0.2, corresponding to K̄=38.9 and Ḡ=29.2 GPa. Here, the overbar denotes
the arithmetic mean and K is the bulk modulus. The grain density is set equal to 2.42 g/cm3.
To minimize the deflections of the boundary walls, they are assigned stiffer moduli: Ew=100Ē
and νw=0.495.

Figure 3. A typical pack used in the simulations with 2740 glass beads, denoted by G2740.

While the grain sizes, densities, and, to some extent, their elastic moduli, can be readily
evaluated from experiments, the intergranular friction coefficient, µij , is not a well-defined
parameter [38, 39]. For a small contact area, e.g., between slightly deformed spherical grains,
the applicability of Coulomb’s law of friction is questionable [38, 40]. The difficulty in
estimating the value of µij stems from the fact that intergranular frictional resistance depends
on several parameters, such as grain surface roughness, contact area, and velocity, as well as on
molecular interactions [40]. As a result, the friction coefficient may vary with the deformation,
and with the type of experiment from which it is obtained [39].

Because of the uncertainties associated with the friction coefficient, we run a series of
simulations for a range of admissible values, and perform a sensitivity analysis in Section 3.6.
For glass beads, values of 0.1–0.3 were measured [40, 41], and used in simulations [6, 10, 40, 42].
In most simulations, we use µ=0.3 for both grain-grain and grain-boundary contacts, where µ
denotes a uniform coefficient for all contacts. Additional simulations using µ=0.5, as well as a
pack of 5036 ideally-smooth (µ=0) glass beads (G5036 ), are presented.

3.2. Initial packing

To make the simulations sensible, the initial grain pack must be sufficiently dense [1]. Such
packing can be acquired by tomography imaging of a physical sample, or numerically [1, 2].
Here, the numerical procedure to generate such a pack includes two phases: (a) creating a
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dense irregular arrangement, accounting for normal contact forces only [1]; and (b) transition
to a frictional model, introducing frictional loads.
The generation procedure starts with a loose irregular arrangement. Here, a loose

arrangement is obtained from DEM simulations [43]. In phase (a), the packing density is
increased by isotropic compaction of the pack, and expansion of grains with coordination
number of N i<4, until N i≥4 for all grains. Note that the grain expansion slightly modifies the
originally uniform grain size distribution. Finally, an equilibrium configuration is computed

using the frictionless model in [1]. The stress at the end of phase (a) is denoted by σ
(µ=0)
c .

In phase (b), a uniaxial compression of the sample is simulated while accounting for friction.
Uniaxial compression causes relative lateral and angular grain displacements, introducing
intergranular shear and torsional loads. Simulations of isotropic compression results in smaller
grain rearrangements, and thus smaller frictional loads. This result can be explained by the
following analogy: in a lattice-type pack, isotropic compression creates self-similar deformation,
with only normal compression between the grains. Similar correlation between the degree of
loading anisotropy and grain rearrangements is expected in an irregular pack.
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Figure 4. The effective shear modulus, G, and ratio of sliding contacts vs. confining stress, σc, evaluated
from sample G2740 with intergranular friction of µ=0.3, during: (1) sample generation procedure,

phase (b); and (2) uniaxial test simulation. The two stages are distinct by a dash-dot line.

At the beginning of phase (b), frictional loads rapidly build up. In Figure 4 we plot the
computed shear modulus, G, vs. the confining stress, σc = tr(σ)/3, where tr denotes the trace
of a tensor. The computed response is stiffer than the one observed experimentally. As phase (b)
continues, the initially high G values decrease with σc. The sample generation procedure is
completed when this abnormal behavior stops: once frictional loads are “well-developed”, the
moduli increase with σc.
The progress of phase (b) is monitored through the relative number of contacts which slide.

The ratio of sliding contacts to total number of contacts is plotted in Figure 4. A contact ij
is considered sliding if ‖Qij‖ = Qmax

ij . At the beginning of phase (b), the tangential forces are
zero, with no sliding. As the generation procedure continues, the tangential forces increase,
initially faster than the normal forces, leading to a rapid increase in the sliding ratio. The shear
modulus decreases with the increasing sliding ratio. When the transition to the frictional model
is complete, this artificial growth of the tangential forces stops and the sliding ratio becomes
relatively constant, ∼0.09–0.11. This “saturation” of the sliding ratio, also observed in the
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simulations reported in [6, 10], is the ending criterion for the generation procedure.

3.3. Verification against experiments

We test the physical soundness of our model by comparison with published data from acoustic
experiments on glass beads† [36, 37, 44]. We note that analytical solutions for the macroscopic
parameters are only known for the special case of a lattice-type packing, under the assumption
of infinitely-small perturbation [45] or self-similar deformation [2].
Two uniaxial strain tests are simulated using initial packs generated by: (a) isotropic

compression of sample G2740 to σ
(µ=0)
c =4 and σ

(µ=0)
c =10 MPa, followed by (b) uniaxial

compression with a friction coefficient of µ=0.3 to σc=9 and σc=19 MPa, respectively. Two ad-

ditional simulations are presented: (1) reproduction of the latter simulation (σ
(µ=0)
c =10 MPa)

with µ=0.5; and (2) uniaxial strain applied to sample G5036 with µ=0 [1]. Figure 5 shows the
stress-strain curves from which we computed the effective moduli. These curves resemble the
experimental and numerical curves presented in [46]. The moduli from our simulations and
from the published experiments are plotted in Figure 6 vs. confining stress, σc. Also plotted
are the results of DEM simulations and effective medium theory (EMT) reported in [37] using
a contact model that assumes µ→∞.
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Figure 5. The deviatoric stress, σd, computed as the difference between axial and lateral stresses, vs.
axial strain, ǫa, from the simulations on sample G2740 with the intergranular friction coefficient of
µ=0.3 and µ=0.5, and on sample G5036 with µ=0 [1]. The stress-strain data from these simulations

are used in evaluating the effective moduli presented in Figure 6.

Our estimates and the measured moduli are in good agreement, which has been achieved
with no adjustment of material parameters. We stress that the effective moduli are not
uniquely defined by the grain properties alone; they also depend on the spatial distribution
of these properties and, possibly, on the loading history. Predicting the effective properties
is difficult because of the sensitivity of the bulk response to small perturbations, often
referred to as “emergent behavior”: small variations in grain configurations can result in

†The numerical values of the data from [37, 44] have been obtained by digitizing Figure 1 in [37]. The data
from [36] are computed from the velocities reported by the author, see [2].
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Figure 6. The effective bulk modulus (K, left) and shear modulus (G, right) vs. confining stress, σc.
The moduli evaluated from the simulations on sample G2740 with intergranular friction coefficient
of µ=0.3 and µ=0.5, and on sample G5036 using a frictionless model (µ=0) [1], are compared with
the results of acoustic experiments in glass beads, as well as DEM and EMT predictions using µ→∞.
Superscripts 1–3 refer to the data published in [36], [37], and [44], respectively. Good agreement
between our estimates and the experimental data, achieved with no adjustment of material parameters,

demonstrates the physical soundness of our model.

significantly different properties ([1, 2, 38] and the references therein). Inevitable uncertainty in
characterizing the grain configurations and the loading history of each contact results in large
scatter in experimental data, e.g., see Figure 6, making exact reproduction of an experiment
by numerical simulations impossible.
Our simulations show a gradual decrease in the rate of moduli growth with confining stress,

from a power law of σ0.45
c to σ0.33

c . This transition, while observed in experiments and justified
by theory, is not predicted by the classical EMT [47]. Our model provides additional theoretical
interpretation for this transition. Increasing the confining stress increases both the packing
density and stiffness, while decreasing their growth rates. As the pack gets denser, further
compaction becomes more difficult. The relation between the contact stiffness and σc can
be predicted from the Hertzian contact law, cf. Eq. (2): the normal contact stiffness is the
derivative of the force magnitude, ‖P ij‖, with respect to the deformation, hij , where the
latter is expected to increase with the confining stress. Therefore, the growth rate of the normal
stiffness is proportional to the second derivative of ‖P ij‖ with a power law of (hij)

−1/2, which
indicates an inverse relation between the stiffness and σc. Since the moduli increase with both
the packing density and the contact stiffness, the transition in power law is expected.

3.4. Sensitivity of the effective moduli to the initial configuration

The sample generation procedure in Section 3.2 involves “activation” of frictional resistance
through uniaxial loading, which can affect the sample properties. In this section, we examine
the effect of the initial packing on the effective moduli. By the term “initial packing” we refer to
the configuration of the grains, the intergranular loads, and the sample generation procedure.
To generate a number of different initial packs, sample G2740 has been compacted

isotropically up to stresses of σ
(µ=0)
c = 4, 10, 20, 41, 54 and 74 MPa in phase (a), followed by

application of uniaxial strain with a friction coefficient of µ=0.3 in phase (b). The resulting
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initial packs are denoted by G2740 (4 ), G2740 (10 ), G2740 (20 ), G2740 (41 ), G2740 (54 ), and
G2740 (74 ), respectively. Although the packs are composed of assemblies of identical grains,
the microstructure of the samples, and consequently their mechanical properties, may differ
due to different loading paths [48].
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Figure 7. The effective bulk modulus (K, left) and shear modulus (G, right) vs. confining stress, σc,
evaluated during: (1) sample generation procedure, phase (b); and (2) uniaxial compression test
simulations using sample G2740 with a friction coefficient of µ=0.3. Six simulations were conducted

on initial packs generated with different stresses during phase (a), σ
(µ=0)
c . At a given σc, K is lower

for samples with higher σ
(µ=0)
c values, e.g. it is lower for G2740 (41 ) than for G2740 (10 ), whereas G

shows less sensitivity to σ
(µ=0)
c .

Figure 7 shows the effective moduli of these packs plotted vs. confining stress, σc, evaluated
during: (1) phase (b) of the generation procedure; and (2) uniaxial test simulation. Comparing
the moduli evaluated at similar confining stresses, we observe that the bulk modulus is lower for

samples with higher σ
(µ=0)
c values. While the difference between the bulk modulus evaluated

for G2740 (4 ) and G2740 (10 ) is only ∼1%, the difference with other samples, e.g. G2740 (41 ),
increases to ∼10%. The shear modulus estimates are less sensitive to the initial pack, with
relatively small variations among the different simulations.
To interpret these seemingly counterintuitive observations, we calculate the mean normal

contact force within the pack, P̄ . At a given confining stress, P̄ is found to be higher in

packs with lower σ
(µ=0)
c . This difference reflects the different load paths in the generation

procedure: for a sample with lower σ
(µ=0)
c , uniaxial strain loading starts at a lower stress,

indicating larger axial stress and lower lateral stress. As discussed in Section 3.2, stronger
loading anisotropy results in more grain rearrangements. Rearrangements increase the packing
density, and consequently the growth rate of the normal contact forces. Since the bulk modulus
is mainly affected by the normal contact forces [1], it increases with P̄ , while the shear modulus,
which strongly depends on the intergranular friction, shows smaller sensitivity.

3.5. Sensitivity to the size of the load increments

The tradeoff between the size of the load increments and the total number of increments
imposes constraints on the increment size. To examine sensitivity of the model to the
increment size, we compare the simulations on sample G2740, applying different strain
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increments, ∆ǫa. In Figure 8, the moduli evaluated during: (1) phase (b) of the generation
procedure, and (2) uniaxial test simulation, are plotted vs. confining stress. We present results
from two simulations using ∆ǫa=5 · 10−5 and ∆ǫa=5 · 10−4, in addition to a simulation in
which the strain increments were reduced from ∆ǫa=5 · 10−4 during the generation procedure
to ∆ǫa=5·10−5 during the uniaxial test. The similarity of the curves implies that the results are
robust with respect to ∆ǫa. In the simulations presented in the previous sections, increments
of ∆ǫa=10−4 or smaller were used.
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Figure 8. The effective bulk modulus (K, left) and shear modulus (G, right) vs. confining stress, σc,
evaluated during: (1) sample generation procedure, phase (b); and (2) uniaxial compression test
simulations using sample G2740 with a friction coefficient of µ=0.3. We compare three simulations,
enforcing strain increments of ∆ǫa=5·10−4, ∆ǫa=5·10−5, and their combination. The small differences

demonstrate the robustness of the results with respect to the size of the load increments.

3.6. Effect of the intergranular friction coefficient

The effects of the intergranular friction on the bulk response, the microstructure, and the
spatial distribution of the contact forces have been studied in [6, 10, 38, 39, 42, 49, 50]. For
example, experiments and simulations show that the shearing resistance correlates with the
intergranular friction coefficient [10, 39, 49, 50]. Note that intergranular frictional resistance is
not uniquely determined by the friction coefficient. In our model, this resistance is associated
with: (1) the friction coefficient, µ, and the magnitude of the normal force, ‖P ij‖, if sliding
occurs; and (2) the tangential and torsional stiffnesses, kij(s) and kij(t), if the contact does not
slide. The sliding threshold, Qmax

ij , and, on the verge of sliding, the reduced stiffness values,
k′ij(s) and k′ij(t), depend on µ and ‖P ij‖.

The sensitivity of the effective moduli to the friction coefficient is investigated by comparing

the moduli predicted from two uniaxial test simulations (σ
(µ=0)
c =10 MPa), using µ=0.3 and

µ=0.5, see Figure 9. As expected, the moduli, in particular the shear modulus, increase with
the friction coefficient. The bulk modulus is less sensitive to the intergranular friction.

To complete this analysis, we study the effect of extreme µ values. A frictionless model
(µ=0) underestimates the stiffness and strength of the pack, in particular under shear; for
example, it predicts loss of shear rigidity, G→0, at relatively high packing densities [1, 37]; cf.
Figure 6. Conversely, a model which prohibits sliding by assuming µ→∞ overestimates G [37].
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Figure 9. The effective bulk modulus (K, left) and shear modulus (G, right) vs. confining stress, σc,
evaluated from two simulations on sample G2740, using different intergranular friction coefficients,

µ=0.3 and µ=0.5. The effective moduli, in particular G, increase with the friction coefficient.

Note that macroscopic stiffness and strength do not increase significantly when the friction
coefficient increases above a certain value (e.g., µ=0.6 in [42]). Similar saturation of the contact
force distribution and the mean coordination number with respect to µ has been observed in
simulations [6] and experiments [51].

4. SUMMARY AND CONCLUDING REMARKS

A micromechanical model of a cohesionless particulate material with intergranular friction has
been presented. We simulate the deformation and evaluate the macroscopic elastic properties
of a granular pack using a computational technique denoted by QuSGM. In QuSGM, a three-
dimensional, irregular pack of spherical grains is loaded by incremental displacement of its
boundaries. Deformation is described by a sequence of static equilibrium configurations. The
intergranular interactions, including friction and sliding, are modeled by a set of constitutive
relations based on the contact theories of Hertz, Mindlin, and Deresiewicz. The macroscopic
stress, strain and elastic moduli are evaluated from the intergranular forces and the deformation
of the pack. Based on the principle of least work, a variational approach is employed to find
the equilibrium configurations by minimizing the work against the loads acting on the grains.
This minimum is computed using a modified conjugate gradient algorithm.
Our model has been verified by assigning experimentally measured grain properties, and

comparing the calculated effective moduli with published experiments. Good agreement
between predicted and measured moduli, achieved with no adjustment of material parameters,
establishes the physical soundness of the quasi-static approach. In addition, the predicted
moduli are shown to be robust with respect to the size of the load increment. Our approach
does not involve numerical damping, which is often used in dynamic models such as the discrete
element method.
QuSGM is used to generate a sufficiently dense, irregular packing. Simulations show that

the bulk modulus estimates are more sensitive to the initial pack formation procedure than
the shear modulus. Thus, the effective elastic moduli are not uniquely defined by the grain
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properties alone; they also depend on the spatial distribution of these properties and on the
loading history. This indeterminacy is enhanced by the sensitivity of the bulk response to small
variations in grain configurations. Uncertainty in experimental characterization of the grain
configurations and loading history prevents an exact numerical reproduction of an experiment,
and is associated with the scatter in experimental data.

Sensitivity analysis confirms that the stiffness and strength of a granular pack increase with
the intergranular friction coefficient. The shear modulus is more sensitive to the intergranular
friction than the bulk modulus, which mainly depends on the normal contact forces. We
conclude that proper account of intergranular frictional resistance is required to predict the
macroscopic response, in particular under shear.

In summary, QuSGM is a useful tool to advance the understanding of granular mechanics.
Our simulations complement physical testing of granular materials, and develop insights
into the design of new experiments. Elsewhere [1, 2], we have applied our approach to
model cohesionless and weakly-cemented sediments, accounting for hydrate dissociation and
cementation of grain contacts. The current model can be extended to account for inelastic
grain deformations (e.g., [52]), as well as for irregular grains that can fracture or break. The
irregular grains can be modeled as clusters of spherical grains bonded at their contacts [53].
Such extensions will allow QuSGM to elucidate the micromechanics of a wide range of complex
geological systems.

APPENDIX A: NUMERICAL ALGORITHM

This appendix outlines the numerical algorithm used in the simulations. Following each load
increment, simulated through displacements of the pack boundaries, a modified conjugate
gradient (CG) algorithm [54] is employed to find a new (current) equilibrium configuration of
the grains. The algorithm searches for a local minimum of an energy functional, Π. According
to the principle of least work [13], Π is computed from the work against the intergranular loads,
cf. Eqs. (14)–(17). The force and moment balance equations, Eqs. (13), are nonlinear, and Π
is not quadratic, for the following reasons: (a) nonlinearity of the intergranular constitutive
relations, and (b) variations in the contact network. The modifications of the classical CG
algorithm to accommodate the nonlinearity of the balance equations are summarized below.
For further discussion on implementation of CG in granular mechanics, see [55].

A.1. Initial Guess

The iterative minimization procedure begins with an “initial guess”: here, θk=0 = 0 is chosen,
where superscript k denotes the iteration. We use a fixed Cartesian coordinate system aligned
with the pack’s boundaries, with an origin at the pack’s geometric center, xCM . Application of
each load increment is modeled by symmetric displacements of each pair of parallel boundaries,
uw=l = −uw=l+3, where l = 1, 2, 3 denotes the coordinate directions. These displacements are
applied in several sub-increments, every kinc iterations, see Figure A1. After each incremental
boundary displacement, we select a new initial guess for the grain displacements and positions:
for each direction, l, the update for grain i is computed from the displacement of the boundaries
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scaled by the ratio between the distance of the grain to the pack’s center and the side length,

∆uk
i(l) =

∣

∣

(

xCM − rki
)

· êl
∣

∣

2Lk
l

∆uk
w=l (A1)

where Ll, ∆uk
w=l, and êl are the pack’s length, the incremental displacement, and a unit

vector associated with the nearest boundary in the l direction, respectively. The incremental
boundary displacements, ∆uk

l , are applied until the total desired boundary displacement for
that load increment, uw=l, has been achieved.

1. Initial guess (k = 0): θk=0 = 0. Set pk=0 = ∇θΠ|θk=0 .
2. IF k divisible by kinc AND uk

w < uw, apply sub-incremental perturbation:

(a) Update the boundary positions: xk
w ← xk

w +∆uk
w and uk

w ← uk
w +∆uk

w

(b) Update the grain displacements (“initial guess”), uk
i ← uk

i +∆uk
i and positions,

rki ← rk
i +∆uk

i , cf. Section A.1.

3. Evaluate ∇θΠ|θk , cf. Eq. (18).
4. IF k = 1 OR k divisible by kSD, refresh with a steepest descent step: set βk = 0.

ELSE βk = −

(

‖∇θΠ|θk‖

‖∇θΠ|θk−1‖

)2

.

5. Compute the “search direction” vector, pk = ∇θΠ|θk − βkpk−1.

6. Given θ
k and pk, find αk that minimizes Π

(

θ
k − αkpk

)

, cf. Section A.2.

7. Update the generalized coordinates, θk+1 = θk − αkpk, and the grain positions,
rk+1
i = rk

i + uk
i .

8. Check convergence:

IF Π(xk−1) − Π(xk) < τ1
∣

∣Π(xk−1)
∣

∣ OR ‖∇θΠ|θk‖
2
< τ2N

(

ĒR̄2
)2

OR k > kmax,
STOP.
ELSE, set k ← k + 1 and GOTO Step 2.

Figure A1. A modified conjugate gradient algorithm used to simulate application of a load increment,
and to obtain a subsequent equilibrium configuration.

A.2. Iterative Update

Since the criterion Π is not quadratic, the update coefficient αk is found numerically by

minimizing Π
(

θk − αkpk
)

with respect to αk. We perform this minimization using the

MATLAB function fminbnd [56], which utilizes the golden section search and parabolic
interpolation methods [54]. To avoid numerical artifacts in the form of grain permutations,
which correspond to a non-local minimum of Π, we restrict the update of the grain
displacements within each iteration. This restriction is enforced by limiting the value of α
so that the displacement of any grain does not exceed 10−3–10−1 of its radius. The optimal
constraint value is found by trial and error.
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A.3. Convergence Criterion

Theoretically, the CG method yields an exact solution to a system of linear equations with
a symmetric, positive-definite matrix within a number of iterations that does not exceed the
dimensions of the system, N [54]. Here, due to the nonlinearity of the balance equations, the
algorithm may not work in the same manner as it does for a linear system of equations [55]. To
avoid loss of conjugacy, the iterative procedure is periodically refreshed every kSD iterations
by setting βk = 0, equivalent to performing a steepest descent (SD) step, see Figure A1. The
frequency of this operation is determined by trial and error.
The iterations stop if convergence has been achieved within a given tolerance, specified by

Πk−1 −Πk < τ1
∣

∣Π(xk−1)
∣

∣ or ‖∇θΠ|θk‖
2
< τ2N

(

ĒR̄2
)2

(A2)

where R̄ and Ē are the mean grain radius and Young’s modulus. For example, for sample
G2740 with Ē = 7 · 1010 Pa and R̄ = 10−4 m, the tolerance parameters are τ1 = 10−11 and
τ2 = 10−13. These values provide for each grain a residual force, F i, and moment, M i, which
are smaller than the maximum contact force and moment on that grain by at least 4 orders of
magnitude. Formally, to avoid infinite cycling, the number of iterations is constrained by kmax.
Applying a strain increment of ∆ǫa = 10−4 with kinc=10, the number of iterations required
to find an equilibrium configuration is 100–130.
The algorithm in Figure A1 was coded in MATLAB [56]. The typical running time to

simulate the application of ∆ǫa = 10−4 on sample G2740 is ∼1 hour, using a standard desktop
with Intel Pentium D 2.80 GHz processor and 2.00GB of RAM. In [2], the performance of the
code has been evaluated by comparing the numerical prediction with an analytical solution
for the special case of a small, structured packing undergoing self-similar deformations. The
relative error, measured as the deviation from a self-similar deformation, is ∼10−11–10−9.
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the direct shear apparatus. Géotechnique 2006; 56(7):455–468, DOI: 10.1680/geot.56.7.455.

51. Blair DL, Mueggenburg NW, Marshall AH, Jaeger HM, Nagel SR. Force distributions in three-
dimensional granular assemblies: effects of packing order and interparticle friction. Physical Review E
2001; 63(4):041 304, DOI: 10.1103/PhysRevE.63.041304.

52. Zhang X, Vu-Quoc L. An accurate elasto-plastic frictional tangential force-displacement model for granular-
flow simulations: displacement-driven formulation. Journal of Computational Physics 2007; 225:730–752,
DOI: 10.1016/j.jcp.2006.12.028.

53. Vu-Quoc L, Zhang X, Walton OR. A 3-D discrete-element method for dry granular flows of ellipsoidal
particles. Computer Methods in Applied Mechanics and Engineering 2000; 187(3–4):483–528, DOI:
10.1016/S0045-7825(99)00337-0.

54. Press WH, Flannery BP, Teukolsky SA, Vetterling WT. Numerical Recipes in Fortran 77. Cambridge
University Press: New York, 1986.

55. Renouf M, Alart P. Conjugate gradient type algorithms for frictional multi-contact problems: applications
to granular materials. Computer Methods in Applied Mechanics and Engineering 2005; 194:2019–2041,
DOI: 10.1016/j.cma.2004.07.009.

56. The MathWorks Inc. MATLAB, The Language of Technical Computing, Version 7.6.0.324 (R2008a).
2008.




