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Abstract

The problem of inferring probability comparisons between events from an initial set of comparisons arises in several contexts,
ranging from decision theory to artificial intelligence to formal semantics. In this paper, we treat the problem as follows: beginning
with a binary relation % on events that does not preclude a probabilistic interpretation, in the sense that % has extensions that
are probabilistically representable, we characterize the extension %+ of % that is exactly the intersection of all probabilistically
representable extensions of %. This extension %+ gives us all the additional comparisons that we are entitled to infer from %,
based on the assumption that there is some probability measure of which % gives us partial qualitative information. We pay special
attention to the problem of extending an order on states to an order on events. In addition to the probabilistic interpretation, this
problem has a more general interpretation involving measurement of any additive quantity: e.g., given comparisons between the
weights of individual objects, what comparisons between the weights of groups of objects can we infer?
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1. Introduction

The problem of inferring probability comparisons between
events from an initial set of comparisons arises in several con-
texts, ranging from decision theory to artificial intelligence to
formal semantics. In the context of normative decision theory,
Gilboa et al. (2010) propose a notion of rationality applica-
ble to probability comparisons as follows: a judgment of the
form “E is at least as likely as F” is objectively rational if it
can be proven to follow from some accepted judgments—given
by statistical analysis of evidence, scientific facts, the decision
maker’s judgments, etc.—using principles of logic, mathemat-
ics, and decision theory as inference rules. We may view the
initially accepted comparisons as encoded by a binary relation
% on events. This relation may be very incomplete, leaving
undecided many comparisons between events. Then the objec-
tively rational judgments that are provable from % using the
inference rules may constitute a proper extension %+ of %.

There are illuminating special cases of the general question
of how to rationally extend a partial qualitative probability re-
lation. One is the special case in which our initial comparisons
are all between disjoint events E1, . . . , En (disjoint subsets of a
state space S ), and we are trying to infer comparisons between
events in the algebra generated by E1, . . . , En. For example,

Email addresses: matthew.h-t@berkeley.edu (Matthew
Harrison-Trainor), wesholliday@berkeley.edu (Wesley H. Holliday),
icard@stanford.edu (Thomas F. Icard, III)

1Partially supported by the Berkeley Fellowship and NSERC grant PGSD3-
454386-2014.

suppose that our decision maker (DM) knows that a friend has
just landed at the local airport. The DM does not know which
airline the friend flew, but the DM has a likelihood ordering
over the airlines: United is more likely than Delta, while Delta
is more likely than Southwest, etc. Since the friend cannot have
flown on both United and Delta, or both United and Southwest,
etc., the DM has a likelihood ordering over disjoint events. Now
suppose that the DM is driving toward a fork in the road near
the airport, with one fork leading to a terminal A that services
airlines A1, . . . , An and the other fork leading to a terminal B
that services airlines B1, . . . , Bm. In order to decide which way
to turn, the DM needs to decide whether it is more likely that the
friend flew on A1 or A2 or . . . or An or that the friend flew on B1
or B2 or . . . or Bm. Then the question is whether the DM’s initial
likelihood ordering over individual airlines is enough to deduce
a rational likelihood comparison between the two disjunctions.

The special case of inferring comparisons in an algebra gen-
erated by disjoint events E1, . . . , En can be reduced to another
special case: we start with a basic ordering on states of the
world and then try to infer comparisons between events. (Sim-
ply take the atoms of the algebra to be the states of a new state
space.) In a decision-theoretic context, Kelsey (1993) proposes
to represent a notion of “partial uncertainty” by a likelihood
ordering on states: for states si and s j, the relation si ≥ s j is in-
terpreted to mean that “the agent believes that state si is at least
as likely as state s j.” For a given decision problem, the relevant
states might be quite coarse-grained. In the example above, we
may take one state of the world to be that the friend flew United,
another that the friend flew Delta, and so on. Given the DM’s
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likelihood ordering on these states of the world, a natural ques-
tion is how to extend this ordering to a likelihood ordering on
events built up from those states—in order to deal with the kind
of decision problem posed by the fork in the road.

Precisely this question of how to extend a likelihood ordering
on states of the world to a likelihood ordering on events built
up from those states has been studied in the context of artifi-
cial intelligence. In the well-known textbook, Reasoning about
Uncertainty, Halpern (2003) writes in the chapter on extending
likelihood relations on states to events: “Unfortunately, there
are many ways of doing this; it is not clear which is ‘best’ ”
(46). The same problem appears in the linguistics literature on
the formal semantics of statements like “E is at least as likely as
F.” One influential tradition gives the truth conditions for such
statements in terms of an ordering on states of the world, lifted
to an ordering on sets of states (Kratzer, 1991). Unfortunately,
the traditional way of doing so supports intuitively invalid in-
ferences, e.g., the inference from “E is at least as likely as F”
and “E is at least as likely as G” to the conclusion “E is at least
as likely as F or G” (for discussion, see Yalcin 2010). Some
better method of extending likelihood orderings is needed.

In this paper, starting with a binary relation % on the power-
set of a finite set, we study the following extension:

%+=
⋂
{%p | %p ⊇%, %p probabilistically representable}.

Equivalently, %+ is given by the unanimity rule: E %+ F if and
only if µ(E) ≥ µ(F) for all probability measures µ that almost
agree with %, i.e., such that A % B implies µ(A) ≥ µ(B). Intu-
itively, %+ gives us all the additional comparisons that we are
entitled to infer from%, assuming that there is some probability
measure of which % gives us partial qualitative information.

One way to characterize the extension %+ is to say that
E %+ F if and only if this comparison is derivable using cer-
tain axioms for incomplete qualitative probability, including a
generalized cancellation axiom (Rı́os Insua, 1992; Alon and
Lehrer, 2014). By contrast, we will characterize the extension
by saying that E %+ F if and only if there exists a certain kind
of injective mapping between partitions of the state space. Our
characterization has a constructive character, and it is easy to
visualize. In the special case where we start with an ordering
on states, our characterization is simpler than the characteri-
zation in terms of derivability using generalized cancellation
axioms. In the general case, we believe our characterization
provides a complementary perspective to generalized cancella-
tion axioms. In addition, our constructive characterization can
be broken down into three simple inference rules.

After some preliminaries in §2, we begin in §3 with the spe-
cial case of extending a likelihood ordering on states to one on
events built up from those states. The analogous problem of
extending a preference ordering on a set to one on its powerset
(Gärdenfors, 1979; Packard, 1979) leads to well-known impos-
sibility results (Kannai and Peleg, 1984; Barberá and Pattanaik,
1984), but in the case of relative likelihood, we have positive
results. Following Holliday and Icard 2013, given a preorder �
on a finite set S , we define the injection extension �i on P(S )
as follows: E �i F if and only if there is an injection g : F → E

such that for all x ∈ F, g(x) � x. (Such a function is called
inflationary with respect to �.) In other words, for every way
that event F could obtain, there is a matching way that event
E could obtain that is at least as likely (and this assignment is
one-to-one). We prove that this �i is precisely the desired ex-
tension %+ above, where % is the ordering of singleton events
induced by �, i.e., {s} % {s′} if and only if s � s′.

The idea of the injection extension applies not only in the
context of probability, but also in the context of additive mea-
surement in general. For example, suppose we have used a bal-
ance scale to compare the weights of individual objects from
a finite set S , giving us a preorder � on S with a � b mean-
ing that a is at least as heavy as b. We may then wish to infer
comparisons between the weights of groups of objects, e.g., to
decide whether a and c together are at least as heavy as b and
d together without making new measurements. For example, if
we have measured that a is at least as heavy as b, and c is at
least as heavy as d, then we may infer that a and c together are
at least as heavy as b and d together. Our results in §3 show that
the comparisons between groups of objects that one is entitled
to infer are exactly those obtained by this type of inference.

In §4, we generalize the idea of the injection extension to the
case where we start with an order on subsets of a finite set S ,
which in the probabilistic interpretation is a partial likelihood
ordering on events. In this case, instead of asking for an infla-
tionary injection that maps states to states, we ask for an infla-
tionary injection that maps cells in a partition to cells in another
partition. Returning to the example of the balance scale, we
now begin with comparisons between the weights of groups of
objects, and we wish to infer further comparisons of this kind.
As before, if a group A is at least as heavy as a group B, and a
group C is at least as heavy as a group D, then all of A and C
together are at least as heavy as all of B and D together. (We
do not require that A and C are disjoint, so “all of A and C to-
gether” may include multiples of a single object, and similarly
for B and D.2) But now two additional types of inference are
required to obtain all of the comparisons that follow from the
given ones. First, if A and C together are at least as heavy as
B and C together, then A is at least as heavy as B. Second, if n
copies of a group A are together at least as heavy as n copies of
a group B, then A is at least as heavy as B.

Orders on states and orders on events can be seen as spe-
cial cases of orders on real-valued random variables. In the
decision theory literature, there has been interest in when an or-
der on real-valued random variables is representable by a set of
probability measures (possibly together with a utility function)
(Giron and Rios, 1980; Bewley, 2002). In §5, we relate our re-
sults to the representation theorems of Girotto and Holzer 2003
for real-valued random variables. The axioms to which our
analysis leads, unlike generalized cancellation axioms, are spe-
cial cases of the axioms used in the representation theorem for

2For many kinds of objects, it is natural to consider groups that contain
multiple instances, e.g., two cans of soup. For others, it is less natural, in which
case we may regard comparisons of the form two copies of Thomas Jefferson
are together at least as heavy as Benjamin Franklin as “virtual” or “imaginary”
comparisons that may be useful in intermediate steps of a deduction that begins
and ends with comparisons involving no duplicates of objects.
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real-valued random variables. Thus, our results can be viewed
as showing which axioms, among those needed in the case of
real-valued random variables, and which instances of those ax-
ioms, are sufficient when dealing with special kinds of random
variables, e.g., {0, 1}-valued random variables (events).

2. Preliminaries

2.1. Probabilistic Representability

In the literature on foundations of probability, there has been
much discussion of the conditions under which a collection of
judgments of the form “event E is at least as likely as event
F” can be represented by a numerical probability function (for
surveys, see Fishburn 1986, Fine 1973, and Narens 2007). Of-
ten it is assumed that such a collection of judgments is com-
plete in the sense that for every pair of events E and F, either
E is judged to be at least as likely as F, or F is judged to be
at least as likely as E. Yet since at least Keynes 1921, there
has also been interest in contexts where an agent is not able to
compare the likelihood of every two events, in which case the
agent’s judgments may only be “imprecisely” representable by
a set of probability functions (Rı́os Insua 1992, Nehring 2009,
Alon and Lehrer 2014). In this section, we review this relevant
background on representability and imprecise representability.

Given a finite state space S , let % be a reflexive binary re-
lation on the powerset P(S ).3 We call elements E, F ∈ P(S )
events. The intended interpretation of E % F is that event E is
at least as likely as event F. As usual, a probability measure
on P(S ) is a function µ : P(S ) → [0, 1] such that µ(S ) = 1 and
µ(E ∪ F) = µ(E) + µ(F) when E ∩ F = ∅.4

Definition 2.1. For a set Φ of probability measures on P(S ):

1. Φ almost agrees with % if and only if for all E, F ∈ P(S ),

E % F ⇒ for all µ ∈ Φ, µ(E) ≥ µ(F).

2. Φ fully agrees with % if and only if for all E, F ∈ P(S ),5

E % F ⇔ for all µ ∈ Φ, µ(E) ≥ µ(F).

A single probability measure µ almost/fully agrees with % if
and only if {µ} almost/fully agrees with %.

3The results of this paper easily generalize to an arbitrary algebra over S .
However, we deal only with the case of a finite S (though see Remark 3.8),
as the case of an infinite S presents complications. In particular, we know of
no exact analogue to Theorem 2.8 below for the infinite case, though there are
related results. See, e.g., §2.3 of Alon and Lehrer 2014. We leave for future
research the extension of ideas in the present paper to the infinite case.

4As suggested in §1, (after rescaling) we may view such measure functions
on a finite set S as representing measurement of any additive quantity, e.g.,
weight. For this interpretation, see, e.g., Krantz et al. 1971.

5Rı́os Insua (1992) uses the term ‘quasi represents’ instead of ‘fully agrees’.
An alternative notion of agreement, with E % F ⇔ there exists µ ∈ Φ such that
µ(E) ≥ µ(F), is suggested by the “justifiable preference” approach of Lehrer
and Teper (2011); that approach also suggests a notion of agreement between
% and a set {Φi}i∈I of sets of measures, with E % F ⇔ there exists i ∈ I such
that for all µ ∈ Φi, µ(E) ≥ µ(F).

We say that% is almost representable if there is a probability
measure µ that almost agrees with %; that % is representable if
there is a probability measure µ that fully agrees with %; and
that % is imprecisely representable if there is a set Φ of proba-
bility measures that fully agrees with %.

In §3, we will consider starting with an order � on S , instead
of an order % on P(S ). In this context, we identify an order �
on S with the corresponding order on singleton subsets of S .
We will use the symbol � for an order on states and the symbol
% for an order on events.

To state conditions on% that guarantee almost representabil-
ity, representability, and imprecise representability, we need the
following definition with notation from Fishburn 1986.

Definition 2.2. For any two sequences 〈E1, . . . , Ek〉 and
〈F1, . . . , Fk〉 of events from P(S ),

〈E1, . . . , Ek〉 =0 〈F1, . . . , Fk〉

if and only if for all s ∈ S , the cardinality of {i | s ∈ Ei} is equal
to the cardinality of {i | s ∈ Fi}; and

〈E1, . . . , Ek〉 <0 〈F1, . . . , Fk〉

if and only if for all s ∈ S , the cardinality of {i | s ∈ Ei} is
strictly less than the cardinality of {i | s ∈ Fi}.

If 〈E1, . . . , Ek〉 =0 〈F1, . . . , Fk〉, then we will say that the
two sequences are balanced; every state appears the same num-
ber of times on the left side as on the right side. Note that
〈E1, . . . , Ek〉 <0 〈F1, . . . , Fk〉 means that every state appears
strictly more times on the right side than on the left side.

Definition 2.3 below gives necessary and sufficient condi-
tions in the finite case for % to be representable. To motivate
the definition, note the following fact about probability mea-
sures. If 〈E1, . . . , Ek〉 =0 〈F1, . . . , Fk〉 and for each i < k,
µ(Ei) ≥ µ(Fi), then in order to “keep the balance,” we must
have µ(Fk) ≥ µ(Ek). This is the idea behind the Finite Cancel-
lation axiom. Note that this axiom implies Transitivity of %.

Definition 2.3. A relation% onP(S ) is an FC order if and only
if the following conditions hold:

1. Finite Cancellation. For all sequences

〈E1, . . . , En, A〉 =0 〈F1, . . . , Fn, B〉

of events from P(S ), if Ei % Fi for all i, then B % A.
2. Positivity. For all E ∈ P(S ), E % ∅.
3. Non-Triviality. It is not the case that ∅ % S .
4. Completeness. For all E, F ∈ P(S ), E % F or F % E.

Theorem 2.4 (Kraft et al. 1959, Scott 1964). % is repre-
sentable if and only if % is an FC order.

For our later results, we will use the necessary and suffi-
cient conditions for almost representability and imprecise rep-
resentability, rather than representability. The following defini-
tion gives the conditions for almost representability.
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Definition 2.5. A relation % on P(S ) is an AFC order if and
only if the following condition holds:

1. Almost Finite Cancellation. For all sequences

〈E1, . . . , En, A〉 <0 〈F1, . . . , Fn, B〉

of events from P(S ), if Ei % Fi for all i, then not A % B.

Theorem 2.6 (Kraft et al. 1959). % is almost representable if
and only if % is an AFC order.

While Theorems 2.4 and 2.6 are classic results, the following
definition and theorem for imprecise representability are more
recent and less well known.

Definition 2.7. A relation % on P(S ) is a GFC order if and
only if it satisfies Reflexivity (for all E ∈ P(S ), E % E), Posi-
tivity, Non-Triviality, and the following condition:

1. Generalized Finite Cancellation (GFC). For all se-
quences

〈E1, . . . , En, A, . . . , A︸   ︷︷   ︸
r times

〉 =0 〈F1, . . . , Fn, B, . . . , B︸   ︷︷   ︸
r times

〉

of events from P(S ), if Ei % Fi for all i, then B % A.

Theorem 2.8 (Rı́os Insua 1992, Alon and Lehrer 2014). %
is imprecisely representable if and only if % is a GFC order.

It is shown in Harrison-Trainor et al. 2016 that Generalized
Finite Cancellation is stronger than Finite Cancellation rela-
tive to Reflexivity, Positivity, and Non-Triviality.

From the normative perspective with which we began in §1,
one could argue that a rational agent’s comparative probabil-
ity judgments should be at least imprecisely representable. In
Icard 2016, it is shown that an agent avoids strict dominance in
a canonical decision problem if and only if the agent’s compar-
ative probability judgements are imprecisely representable.

2.2. Random Variables
We will find it useful to deal with real-valued random vari-

ables on the state space S . A random variable X is a function
X : S → R. We say that a random variable X dominates a ran-
dom variable Y , and write X ≥ Y , if for all s, X(s) ≥ Y(s). The
space of random variables naturally forms a vector space with
addition X + Y and scalar multiplication rX.

We can view events as random variables taking values in
{0, 1}. Random variables taking values in N can be viewed as
multisets. A multiset is, simply put, a collection in which ob-
jects may appear more than once. For example, {0, 0, 1, 1, 1, 2}
and {0, 0, 1, 2} are distinct multisets (see Syropoulos 2001).

A partition of a random variable X is a collection of ran-
dom variables Y1, . . . ,Yn such that X = Y1 + · · · + Yn. We
call Y1, . . . ,Yn the cells of the partition. The reader can verify
that, when X and Y1, . . . ,Yn are events (i.e., {0, 1}-valued ran-
dom variables), this agrees with the standard notion of a par-
tition of a set. We call such a partition a set partition. When
X and Y1, . . . ,Yn are N-valued random variables, or multisets,

then this is the standard notion of a partition of a multiset. We
call such a partition a multiset partition (or a set partition if X
is a multiset but Y1, . . . ,Yn are events). If X and Y are disjoint
events, then X + Y is just the union of X and Y .

To define the notion of a function between multisets (here
we follow Abramsky 1983), it helps to represent multisets as
ordinary sets. Given a multiset X, define the set

set(X) = {〈k, a〉 ∈ N × S | 1 ≤ k ≤ X(a)}.

A function α between multisets X and Y is an ordinary function
α : set(X)→ set(Y). A function α between multisets is injective
if and only if it is injective as an ordinary function. The intuition
is that α assigns X(a) images from Y to each a ∈ S , possibly
allowing repetitions, and if α is injective then each b ∈ S can
only appear as an image at most Y(b) times.

To distinguish these different types of random variables, we
will use A, B, E, F, etc. for events, bold letters such as M and
N for multisets, and U, V , X, Y for arbitrary random variables.

3. Extending an Order on States to an Order on Events

In this section, we begin with a preorder � on the state space
S . (Note that since S is assumed to be finite, every preorder
on S is almost representable by a probability measure.) As in
Holliday and Icard 2013, we consider the following method of
extending � to a preorder �i on P(S ).

Definition 3.1. Given a preorder � on S , the injection exten-
sion �i of � is the binary relation on P(S ) defined by: E �i F
if and only if there is an injection g : F → E such that for all
x ∈ F, g(x) � x. Such an injection is called an inflationary
injection.

Intuitively, E �i F means that we can pair off each state from
F with a state from E which is at least as likely. Theorem 3.2
below shows that the comparisons between events entailed by
� are exactly those given by �i, and these comparison can be
explicitly demonstrated by exhibiting an inflationary injection.

As in §1, given a binary relation � on S , which we regard as
a relation on singleton subsets of S , we define the extension

�+=
⋂
{%p | %p ⊇�, %p probabilistically representable},

where each %p is an order on P(S ). Recall that �+ gives us all
the comparisons that can be inferred from �, assuming there is
some probability measure of which � gives us partial informa-
tion. There are several equivalent characterization of �+:

1. �+ is the maximal relation extended by every repre-
sentable extension of �;

2. �+ is the minimal extension of � that is imprecisely repre-
sentable;

3. the set of all probability measures that almost agree with
� fully agrees with �+.

We will show that �+ is exactly the injection extension �i of
Definition 3.1.
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Theorem 3.2. If � is a preorder on finite set S , then �+ =�i.

Incidentally, Theorem 3.2 answers an open question posed
by Yalcin (2010) in the literature on the formal semantics of
English statements like “E is at least as likely as F.” Yal-
cin asks whether there is a method of extending an order on
states to an order on events such that the class of extensions
has certain desirable properties, which the class of GFC orders
possesses. He observes that the method of extension used by
previous authors—Lewis (1973), Kratzer (1991), and Halpern
(1997) (E �l F if and only if there is an inflationary func-
tion g : E → F, not necessarily injective)—does not yield the
desired properties (see Example 3.3 below for an illustration).
By contrast, Theorem 3.2 shows that the injection extension �i

yields exactly the desired properties of GFC orders.
To see how the injection extension applies in a concrete ex-

ample, recall the decision problem with the airlines from §1.

Example 3.3. The set of states is:

S = {United,Delta,Southwest,American,Frontier}.

Initially, the DM knows that United is more likely than Delta,
that Delta is more likely than Southwest, and that American is
more likely than Frontier. The corresponding order � on states
is reflexive, transitive, and has

United � Delta � Southwest American � Frontier.

Suppose first that terminal A services United and American,
terminal B services Delta, and terminal C services Southwest
and Frontier. (We identify A with the event {United,American}
and so on.) Then we get A �i B via the map g : B → A which
maps Delta to United. We also get A �i C via the map g′ : C →
A which maps Southwest to United and Frontier to American.
So the DM should choose to go to terminal A (assuming equal
cost of going to each terminal), since it is more likely that the
friend will land in terminal A than either of the other two.

Now suppose that instead there were only two terminals, ter-
minal A which services United and American, and terminal B
which services Delta, Southwest, and Frontier. The relation �l

mentioned above, used by Lewis (1973), Kratzer (1991), and
Halpern (1997), would have A �l B via the inflationary map
g : B → A which maps Delta and Southwest to United, and
which maps Frontier to American. Thus �l would say that the
DM’s friend is most likely to arrive at terminal A. This is not
a valid conclusion: maybe the friend in fact had a 40% chance
of flying United, a 30% chance of flying Delta, a 20% chance
of flying Southwest, a 7% chance of flying American, and a 3%
chance of flying Frontier. Then the friend has a 47% chance of
landing at terminal A, and a 53% chance of landing at terminal
B. (Of course, there are other probabilities that are consistent
with � and which make it more likely for the friend to arrive
at terminal A than terminal B; the DM cannot conclude from �
which terminal is more likely.) The problem is that the map g
described above is not injective, and in fact there is no injective
inflationary map B→ A. A and B are �i-incomparable.

To prove Theorem 3.2, we begin by recalling Hall’s Marriage
Theorem. Let G = 〈X,Y,E〉 be a bipartite graph with partite sets
X and Y and edge relation E. An X-saturated matching for G
is an injection m : X → Y such that for all x ∈ X, 〈x,m(x)〉 ∈
E. Given A ⊆ X, let E[A] be the image of A under E. Hall’s
Marriage Theorem gives a necessary and sufficient condition
for an X-saturated matching to exist.

Theorem 3.4 (Hall 1935). Let G = 〈X,Y,E〉 be a bipartite
graph. There is an X-saturated matching for G if and only if
for each A ⊆ X, |E[A]| ≥ |A|.

To show that �i is a GFC order, we need to show that if
〈E1, . . . , En, X〉 and 〈F1, . . . , Fn,Y〉 are balanced and there are
inflationary injections fi : Fi → Ei for i ≤ n, then there is an
inflationary injection h : X → Y . Given the r repetitions of X
and Y in the GFC axiom, we will show that there is an infla-
tionary injection from the multiset rX to the multiset rY . Then
the following lemma will give us the desired injection from X
to Y . The proof of the lemma applies Hall’s Marriage Theorem.

Lemma 3.5. Given a preorder � on S and X,Y ⊆ S , if there
is an inflationary injection f : rX → rY, then there is an infla-
tionary injection h : X → Y.

Proof. View rX as {〈k, x〉 | 1 ≤ k ≤ r, x ∈ X} and view rY as
{〈k, y〉 | 1 ≤ k ≤ r, y ∈ Y}. Define a bipartite graph 〈X,Y,E〉 by
xEy if and only if for some k1 and k2, f (〈k1, x〉) = 〈k2, y〉. We
will use Hall’s Marriage Theorem to construct an X-saturated
matching h : X → Y . Then by definition of E, we will have that
for all x ∈ X, h(x) � x, so h is the desired inflationary injection.

To apply Hall’s Marriage Theorem, we must show that for
every A ⊆ X we have |E[A]| ≥ |A|. For A ⊆ X, observe that

{〈k, a〉 | a ∈ A} ⊆ {〈k, x〉 | ∃b ∈ E[A]∃k′ : f (k, x) = 〈k′, b〉},

so

r|A| = |{〈k, a〉 | a ∈ A}|

≤ |{〈k, a〉 | ∃b ∈ E[A]∃k′ : f (k, a) = 〈k′, b〉}|

≤ r|E[A]|

and hence |A| ≤ |E[A]|, as desired. �

The following lemma is the key to showing that �i is a GFC
order and hence imprecisely representable. In the statement of
the lemma, we extend the definition of =0 to multisets in the
obvious way:

〈M1, . . . ,Mn〉 =0 〈N1, . . . ,Nn〉

if and only if
n∑

i=1

Mi =

n∑
i=1

Ni.

We extend the definition of <0 in the same way.

Lemma 3.6. If 〈E1, . . . , En,M〉 =0 〈F1, . . . , Fn,N〉 and Ei �
i

Fi for all i, then there is an inflationary injection g : M→ N.
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Proof. By assumption, we have an inflationary injection
gi : Fi → Ei for each i. We show there is an inflationary in-
jection h : M → N by induction on the size of M. The base
case has M empty, in which case the empty function is the de-
sired h. Otherwise, pick a = a0 ∈ M. We will build a sequence
〈(a0, i0), (a1, i1), . . . , (an−1, in−1), an〉 where an ∈ N.

Given the balancing assumption

〈E1, . . . , En,M〉 =0 〈F1, . . . , Fn,N〉,

we have a0 ∈ Fi for some i or a0 ∈ N. If a0 ∈ N, then terminate
the sequence with an = a0. If a0 < N, so a0 ∈ Fi for some
i = i0, then let a1 = gi0 (a0), so a1 ∈ Ei0 . Now either a1 ∈ Fi

for some i or a1 ∈ N. If a1 ∈ N, then terminate the sequence
with an = a1. So suppose a1 < N. If a1 , a0, then let i1 be any
i such that a1 ∈ Fi. If a1 = a0, then a1 ∈ M. Given a1 ∈ M,
a1 ∈ Ei0 , and a1 < N, the balancing assumption implies there
are j, j′ with j , j′ such that a1 ∈ F j and a1 ∈ F j′ . Thus, we
can choose i1 , i0 so that a1 ∈ Fi1 . Set a2 = gi1 (a1), so a2 ∈ Ei1 .

In general, given ak ∈ Eik−1 , if ak ∈ N, then terminate the
sequence with an = ak. If ak < N, let A = {l | ak = al, l ≤ k}.
Thus, for each l ∈ A, ak ∈ Eil−1 (or ak ∈ M if l = 0). It follows
from the balancing assumption that for each l ∈ A, there is a F jl
with ak ∈ F jl . Thus, we can choose ik such that ak ∈ Fik and for
all l ∈ A − {k}, ik , il. Set ak+1 = gik (ak).

Continue building the sequence in this way, using the balanc-
ing assumption to ensure that each (ak, ik) appears only once.
Since each gi is inflationary, we have a0 � a1 � a2 . . . . Now
if our sequence were infinite, then 〈a0, a1, a2, . . . 〉 would have
an infinite subsequence with no repetitions, contradicting the
finiteness of S . So our sequence terminates with an ∈ N.

Now let

E′i = Ei − {ak | i = ik−1};
F′i = Fi − {ak | i = ik};

M′ = M − {a0};
N′ = N − {an}.

Observe that

〈E′1, . . . , E
′
n,M

′〉 =0 〈F′1, . . . , F
′
n,N

′〉

since we removed a0 from M and Fi0 , removed a1 from Ei0 and
Fi1 , and so on. Also observe that E′i �

i F′i for all i, since the
restriction of gi to F′i is an inflationary injection into E′i . Thus,
by the inductive hypothesis there is an injection h′ : M′ → N′.
Now extend h′ to h : M→ N by setting h(a0) = an. �

Lemma 3.7. The relation �i is a GFC order.

Proof. For GFC, suppose

〈E1, . . . , En, A, . . . , A︸   ︷︷   ︸
r times

〉 =0 〈F1, . . . , Fn, B, . . . , B︸   ︷︷   ︸
r times

〉

and Ei �
i Fi for all i. By Lemma 3.6 with M = rA and N = rB,

we have an inflationary injection h : rA → rB, so by Lemma
3.5, we have an inflationary injection h : A → B, so B �i A.
The other conditions are obvious. �

We are now prepared to prove Theorem 3.2: if � is a preorder
on finite set S , then �+ =�i.

Proof (Theorem 3.2). As noted before Theorem 3.2, �+ is the
minimal extension of � that is imprecisely representable. By
Lemma 3.7 and Theorem 2.8, �i is imprecisely representable.
To see that it is the minimal such extension of �, consider an
extension % of � which is imprecisely represented by a set Φ

of probability measures. Now note that if A �i B, so there is an
inflationary injection f : B→ A, then for any measure µ ∈ Φ,

µ(A) ≥
∑
b∈B

µ{ f (b)} ≥
∑
b∈B

µ{b} = µ(B),

so A % B. Thus % extends �i. �

Remark 3.8. Theorem 3.2 holds not only for finite preorders
but more generally for any Noetherian preorder, i.e., any pre-
order � for which there is no infinite sequence x1, x2, x3, . . . of
distinct elements such that x j � xi for j ≥ i. The proof of Theo-
rem 3.2 above uses finiteness only in the penultimate paragraph
of Lemma 3.6, where it is evident that the Noetherian condi-
tion is sufficient for the proof. Note that if � almost agrees
with a probability measure µ, then any sequence x1, x2, x3, . . .
as above must have µ({xn}) = 0 for each n; for otherwise the
sums

∑m
n=1 µ({xn}) grow without bound as m increases, contra-

dicting the requirement that
∑m

n=1 µ({xn}) ≤ µ({xn | n ∈ N}) ≤ 1.

It is interesting to note that an analogue of the Schröder-
Bernstein theorem holds for �i. Let a ' b if and only if a � b
and b � a. If A �i B and B �i A, then there are injections from
A to B, and from B to A, but for all we know so far, these two
injections may not be inverses. In fact, in this situation we can
always find injections that are inverses of each other.

Proposition 3.9. For any preorder � on a finite set S , both A �i

B and B �i A if and only if there is a bijection f : A → B such
that for all a ∈ A, a ' f (a).

Proof. Let g : A → B and h : B → A be such that g(a) � a for
all a ∈ A and h(b) � b for all b ∈ B. We define f by recursion.
We will give the main idea of the induction step.

Fix a = a0 ∈ A. Then g(a0) � a0. Let a1 = h(g(a0)),
a2 = h(g(a1)), and in general, ai+1 = h(g(ai)). Then we have

a0 � g(a0) � a1 � g(a1) � a2 � · · · .

Thus, since S is finite, for some m < n we have am = an. By
injectivity of h and g, am−1 = an−1. Continuing in this way, we
see that we may assume that m = 0; i.e., a0 = a` for some `.
Choose ` to be the least such. Then a0, a1, . . . , a` are all distinct,
for otherwise we could find some `′ < ` such that a0 = a`′ .
Since

a0 � a1 � a2 � · · · � a` = a0,

we must have

a0 ' g(a0) ' a1 ' g(a1) ' · · · ' a` = a0.

Set f (ai) = g(ai) for each i.
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Note that g and h can be restricted to the sets A−{a0, . . . , a`−1}

and B− {g(a0), . . . , g(a`−1)}. These restricted injections witness
that

A − {a0, . . . , a`−1} �
i B − {g(a0), . . . , g(a`−1)}

and
B − {g(a0), . . . , g(a`−1)} �i A − {a0, . . . , a`−1}.

We continue by recursion. �

Observe that the proof of Proposition 3.9 shows that if A �i B
and B �i A, then every inflationary injection g : A → B is a
bijection with the property that for all a ∈ A, a ' g(a).

4. Extending an Order on Events

We will now move to the more general setting where we be-
gin with an ordering % on events. In this setting, the construc-
tion from §3 is no longer adequate. Of course, by Theorem 2.8,
given a reflexive AFC order % on P(S ), the minimal extension
of % that is imprecisely representable can be characterized as
the minimal extension of % which is a GFC order. In this sec-
tion, we will search for a characterization that is more similar
in flavor to the extension in §3. The results in this section are
not technically difficult but should be viewed as a different per-
spective on GFC with its own advantages.

Consider the following examples, the import of which will
be explained below.

Example 4.1. Let S = {a, b, c, d, e}. Let % be an imprecisely
representable order with:

{c, d} % {a} {e} % {b, c}.

Then for any probability measure µ with µ{c, d} ≥ µ{a} and
µ{e} ≥ µ{b, c}, we have

µ{d, e} + µ{c} = µ{c, d} + µ{e} ≥ µ{a} + µ{b, c} = µ{a, b} + µ{c}

and hence µ{d, e} ≥ µ{a, b}. So {d, e} % {a, b}.

Example 4.2. Let S = {a, b, c, d, e, f }. Let% be an imprecisely
representable order with:

{d, e} % {a, b} {e, f } % {b, c} {d, f } % {a, c}.

For any probability measure µ which almost agrees with %, we
have

2µ{d, e, f } = µ{d, e} + µ{e, f } + µ{d, f }

≥ µ{a, b} + µ{b, c} + µ{a, c}

= 2µ{a, b, c}

and hence µ{d, e, f } ≥ µ{a, b, c}. So {d, e, f } % {a, b, c}.

Examples 4.1-4.2 show that the injection extension of Defini-
tion 3.1 is not sufficient when we start with an order on events.
Example 4.1 shows that in order to see that {d, e} % {a, b}, we
may need to introduce copies of a new element c on both sides.
Example 4.2 shows that in order to see that {d, e, f } % {a, b, c},
we may need to duplicate elements from both sides (i.e., to
show that two copies of each of d, e, and f add up to as much
as two copies of each of a, b, and c). Definition 4.3 will modify
Definition 3.1 to allow for both of these techniques.

Definition 4.3. Given a binary relation % on P(S ), the injec-
tion extension %i of % is the binary relation on P(S ) defined
by: E %i F if and only if there is a n ∈ N, a multiset M of
elements of S , a set partition E of nE + M, a set partition F of
nF + M, and an injection g : F → E such that for all D ∈ F ,
g(D) % D.6

In §5, we will give another characterization of %i in terms of
three simple axioms.

According to Definition 4.3, the way we see that E %i F is
intuitively as follows. We take n copies of E on the left hand
side (this is nE) and n copies of F on the right hand side (this
is nF). Then we add any number of states we want to both
sides (this is M). Finally, we divide the right hand side up into
groups of elements (this gives us the partition F ), and for each
such group we find a group of elements on the left hand side (in
the partition E). If each group on the right hand side is less than
or equal to (according to%) the corresponding group on the left
hand side, then we set E %i F. Once again, the comparison is
demonstrated in a constructive way.

In Theorem 4.4 below, we will prove that if % is a reflexive
AFC order onP(S ), then%i is exactly%+, the intersection of all
probabilistically representable extensions of%, or equivalently,
the least extension of % that is imprecisely representable. By
Theorem 2.8, %i is also the minimal GFC order extending %.

Let us first apply Definition 4.3 to Examples 4.1 and 4.2. For
Example 4.1, let % be an AFC order on S = {a, b, c, d, e} with

{c, d} % {a} {e} % {b, c}.

We claim that {d, e} %i {a, b}, as demonstrated in Figure 1. Let
n = 1 and M = {c}. Then we partition {a, b, c} into {a} and
{b, c}, partition {c, d, e} into {c, d} and {e}, and take

{c, d} ←[ {a} {e} ←[ {b, c}

as our inflationary injection.

e

d
{d, e}



cM
{

a

b

{a, b}


c M{

%

%

Figure 1: diagram witnessing {d, e} %i {a, b}

Now consider Example 4.2. Let % be an AFC order on S =

{a, b, c, d, e, f } with:

{d, e} % {a, b} {e, f } % {b, c} {d, f } % {a, c}.

6Recall that a set partition is a partition where all of the cells are sets.
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We claim that {d, e, f } %i {a, b, c}, as demonstrated in Figure
2. Let n = 2 and M = ∅. Partition the multiset 2{a, b, c} into
{a, b}, {b, c}, and {a, c}, and partition 2{d, e, f } into {d, e}, {e, f },
and {d, f }. Then our inflationary injection maps

{d, e} ←[ {a, b} {e, f } ←[ {b, c} {d, f } ←[ {a, c}.

So we can see that the definition of%i on events is exactly what
was required for Examples 4.1 and 4.2.

d

e

f

d

e

f

a

b

c

a

b

c















{d, e, f }

{d, e, f }

{a, b, c}

{a, b, c}

%

%

%

Figure 2: diagram witnessing {d, e, f } %i {a, b, c}

It is a virtue of the injection extension that its very definition
clearly separates the two different phenomena exhibited by Ex-
amples 4.1 and 4.2: the multiset M deals with Example 4.1 and
the n copies of E and F deal with Example 4.2. This distinction
does not appear as clearly in the definition of a GFC order.

We can now generalize Theorem 3.2 to the present setting,
where we start with orders on events.

Theorem 4.4. If % is a reflexive AFC order on P(S ), then
%+ =%i.

The key lemma used to prove Theorem 4.4 is the following.

Lemma 4.5. If % is a reflexive AFC order, then %i is a GFC
order.

Proof. It is easy to see that %i satisfies Reflexivity and Posi-
tivity. Now we will show that it satisfies GFC. Suppose that
we have two sequences

〈E1, . . . , En, A, . . . , A︸   ︷︷   ︸
r times

〉 =0 〈F1, . . . , Fn, B, . . . , B︸   ︷︷   ︸
r times

〉

of events from P(S ) and that Ei %i Fi for all i. This means
that for each i, there is some `i, a multiset Ai, partitions Ei of
`iEi + Ai and Fi of `iFi + Ai, and an injection gi : Fi → Ei such
that for all D ∈ Fi, gi(D) % D.

Let M be the multiset of elements in common between E1 +

· · · + En and F1 + · · · + Fn, and let C = A ∩ B. Then from

E1 + · · · + En + rA = F1 + · · · + Fn + rB

we get rA+M = F1+· · ·+Fn+rC and rB+M = E1+· · ·+En+rC.
Let ` = `1 · · · `n. We claim that B %i A as witnessed by the

number ` · r and the multiset

N = `M + (`/`1)A1 + · · · + (`/`n)An.

Observe that

(`r)A + N
= `(rA + M) + (`/`1)A1 + · · · + (`/`n)An

= `(F1 + · · · + Fn + rC) + (`/`1)A1 + · · · + (`/`n)An

= (`/`1)(`1F1 + A1) + · · · + (`/`n)(`nFn + An) + (`r)C.

Similarly,

(`r)B + N = (`/`1)(`1E1 + A1) + · · ·+ (`/`n)(`nEn + An) + (`r)C.

First, partition (`r)A+N into the multiset union of `r copies of C
and `/`i copies of `iEi+Ai for each i, and partition (`r)B+N into
the multiset union of `r copies of C and `/`i copies of `iFi + Ai

for each i. Next use the partitions Ei of `iEi + Ai and Fi of
`iFi + Ai to create partitions of (`r)A + N and (`r)B + N. Then,
piecing together the injections gi, and mapping the copies of C
to each other, we get the required injection witnessing B %i A.

Finally, we have to show that %i satisfies Non-Triviality.
Suppose that ∅ %i S . Then there is a number r, a multiset
A, partitionsA of A and S of rS + A, and an inflationary injec-
tion g : S → A. Let F1, . . . , Fn be the cells of S, and E1, . . . , En

the cells ofA, so that Ei % Fi. Then we have

〈E1, E2, . . . , En〉 <0 〈F1, F2, . . . , Fn〉.

Since we assumed % satisfies AFC, and since for each i < n,
Ei % Fi, we have not En % Fn. This is a contradiction. �

We are now prepared to prove Theorem 4.4 by showing that
%i is the minimal GFC order extending %.

Proof (Theorem 4.4). By Lemma 4.5, %i is a GFC order. We
must show that it is the minimal GFC order extending %.

Suppose that A %i B. Then there is a number r, a multiset
M, cells E1, . . . , En partitioning rA + M and cells F1, . . . , Fn

partitioning rB + M, such that Ei % Fi. Then

〈E1, . . . , En, B, . . . , B︸   ︷︷   ︸
r times

〉 =0 〈F1, . . . , Fn, A, . . . , A︸   ︷︷   ︸
r times

〉

is balanced and has Ei % Fi for each i. Thus, any GFC order
%∗ extending % has A %∗ B. �

When we began with an order on states in §3, we were able
to show that if E %i F and F %i E, then this was witnessed by a
bijection (Proposition 3.9). The equivalent result in the context
of this section would be to have it witnessed by a n ∈ N, a
multiset M of elements of S , a partition E ⊆ P(S ) of nE + M, a
partition F ⊆ P(S ) of nF + M, and a bijection g : F → E such
that for all D ∈ F , g(D) % D and D % g(D). The following
example shows that this does not necessarily happen.
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Example 4.6. Let S = {a, b, c, d, e, f , g, h}. Let % be an impre-
cisely representable order with:

{a, c} % {e, g} {b, d} % { f , h}

{e, f } % {a, b} {g, h} % {c, d}.

Then for any probability measure µ that almost agrees with %,
we have

µ{a, b, c, d} = µ{a, c} + µ{b, d} ≥ µ{e, g} + µ{ f , h} = µ{e, f , g, h}

and

µ{e, f , g, h} = µ{e, f } + µ{g, h} ≥ µ{a, b} + µ{c, d} = µ{a, b, c, d}.

So we have {a, b, c, d} % {e, f , g, h} and {e, f , g, h} % {a, b, c, d}.
However, one can check that there is no bijection as described
above. The key fact is that in the four comparisons above, a
does not appear with b on the left side of any comparison, and
a does not appear with c on the right side of any comparison.

5. Discussion

An order on subsets of S is a special case of an order on real-
valued random variables on S , namely a {0, 1}-valued random
variable. Let R(S ) be the set of all real-valued random variables
on our finite set S . Where X ∈ R(S ) and µ is a probability
measure on P(S ), let

µ(X) =
∑
s∈S

X(s) · µ{s}.

Let us say that an order % on R(S ) is imprecisely representable
by a set Φ of probability measures on P(S ) when for all X,Y ∈
R(S ), X % Y if and only if for all µ ∈ Φ, µ(X) ≥ µ(Y), i.e.,
according to µ the expected value of X is at least that of Y .

For the following definition, recall that we view sets such as
∅ and S as random variables, taking their values in {0, 1}, by
identifying a set with its characteristic function.

Definition 5.1. A binary relation % on R(S ) is an EV order if
and only if it satisfies:

1. Reflexivity. For all X, X % X.
2. Positivity. If X ≥ ∅, then X % ∅.
3. Non-triviality. It is not the case that ∅ % S .
4. Additivity. If U % X and V % Y , then U + V % X + Y .
5. Cancellation. If X + Z % Y + Z, then X % Y .
6. Scaling. If X % Y and r ∈ R>0, then rX % rY .
7. Continuity. If X1, X2, . . . is a sequence with lim Xi = X,

and Y1,Y2, . . . is a sequence with lim Yi = Y , and Xi % Yi

for each i, then X % Y .

These conditions are a reformulation of those in §2 of Girotto
and Holzer 2003. The following representation theorem is es-
sentially a special case of their Theorem 4.1 (cf. Theorem 3 of
Rumbos 2001 for representability by a single measure).

Theorem 5.2. Suppose that S is finite. A relation % on R(S ) is
imprecisely representable if and only if % is an EV order.

Our results in §4 can be viewed as showing which of the ax-
ioms from Definition 5.1 suffice for the case of {0, 1}-valued
random variables. First, recall the perspective of Gilboa et al.
(2010): we are interested in a method of deriving from certain
accepted judgments, i.e., from an initial (incomplete) order %,
all of those further judgments that necessarily follow. One way
to do this is to apply the GFC axiom; indeed, one can show
that any judgment which follows from % follows from a single
application of GFC.7 Our Theorem 4.4 shows that one can in-
stead use three simpler axioms. Though % begins as a relation
on sets, and all of the judgments we want to infer are compar-
isons between sets, we temporarily consider % as a relation on
multisets. One can think of this detour through multisets as sim-
ilar to the detour through imaginary numbers for solving cubic
equations (though like imaginaries, multisets are also interest-
ing to consider in their own right). The three axioms are:

1. Additivity. If A % B and C % D, then A + C % B + D.
2. Cancellation. If A + M % B + M, then A % B.
3. Discrete Scaling. If mA % mB (m ∈ N), then A % B.

We may regard an order on the powersetP(S ) as an order on the
set M(S ) of multisets. Given an order % on M(S ), let %? be
the least extension of % satisfying the three axioms above, plus
Reflexivity, Positivity, and Non-triviality from §2.1. Note that
Transitivity follows from Additivity and Cancellation. Also
note that %? exists only if % is an AFC order.

The relation %?, restricted to sets, is exactly our injection
extension %i from §4.

Lemma 5.3. For any AFC order % on P(S ) and E, F ∈ P(S ),
E %i F if and only if E %? F.

Proof. From left to right, if E %i F, then there is an n ∈ N, a
multiset M of elements of S , a set partition {E1, . . . , E`, . . . , Em}

of nE + M and a set partition {F1, . . . , F`} of nF + M such that
E j % F j for 1 ≤ j ≤ `. By Positivity, E j %? ∅ for ` < j ≤ m.
Then by Additivity,

nE + M = E1 + · · · + E` + · · · + Em

%? F1 + · · · + F`

= nF + M.

By Cancellation, nE %? nF, so by Discrete Scaling, E %? F.
In the other direction, suppose that E %? F. By Theorem

4.4, %i is imprecisely representable. Let Φ be a set of probabil-
ity measures that fully agrees with %i. Define the ordering %Φ

onM(S ) by A %Φ B if and only if µ(A) ≥ µ(B) for all µ ∈ Φ.
It is easy to see that %Φ satisfies Additivity, Cancellation, and
Discrete Scaling (as well as Reflexivity, Positivity, and Non-
triviality). Then by definition of%?,%Φ is an extension of%?,
and so E %Φ F. Since Φ fully agrees with %i, E %i F.

From this lemma, we obtain the following representation the-
orem.

7This follows from the proof of our Lemma 4.5.
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Theorem 5.4. For any order % on P(S ), the following are
equivalent:

1. % is imprecisely representable;
2. for all E, F ∈ P(S ), E % F if and only if E %? F.

Proof. First, recall from §4 that %+ is the least extension of %
that is imprecisely representable.

From 1 to 2, since % is imprecisely representable, it is an
AFC order for which %=%+, so by Theorem 4.4, %=%i. By
Lemma 5.3, we also have %i =%?. Thus, part 2 holds.

From 2 to 1, first we claim that % is an AFC order. Assume
to the contrary that for sequences

〈E1, . . . , En, A〉 <0 〈F1, . . . , Fn, B〉

of events from P(S ), we have Ei % Fi for all i, but A % B.
Then by Additivity, we have

E1 + · · · + En + A %? F1 + · · · + Fn + B.

By our initial assumption, the right-hand side includes E1+· · ·+

En+A+S . By applying Cancellation with M = E1+· · ·+En+A,
we obtain ∅ %? S +C for a multiset C. By Positivity, C %? ∅,
and by Reflexivity, S %? S . Thus, by Additivity, S + C %? S ,
so by Transitivity, ∅ %? S , contradicting Non-triviality.

Since % is an AFC order that agrees with %? on P(S ), by
Lemma 5.3 we have%=%i, so by Theorem 4.4,%=%+. Hence
% is imprecisely representable.

For the setting of §3, where we extended an order � on sin-
gletons of S to an injection extension �i on P(S ), we can char-
acterize �i as the least extension �# of � satisfying Reflexivity,
Positivity, Non-triviality, Transitivity, and:

Disjoint Additivity. If E1 �
# F1, E2 �

# F2, and E1∩E2 =

∅, then E1 ∪ E2 �
# F1 ∪ F2.

Transitivity and Disjoint Additivity are exactly the part of
GFC that is needed in the setting of states.

Thus, we obtain a hierarchy of three easily comparable sets
of axioms for the three domains: one for orders on states, one
for order on events, and one for orders on random variables.
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