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Abstract: Cyanobacteria (blue-green algae) have been present on Earth for over 2 billion years, and
can produce a variety of bioactive molecules, such as cyanotoxins. Microcystins (MCs), the most
frequently detected cyanotoxins, pose a threat to the aquatic environment and to human health. The
classic toxic mechanism of MCs is the inhibition of the protein phosphatases 1 and 2A (PP1 and PP2A).
Immunity is known as one of the most important physiological functions in the neuroendocrine-
immune network to prevent infections and maintain internal homoeostasis in fish. The present
review aimed to summarize existing papers, elaborate on the MC-induced immunotoxicity in fish,
and put forward some suggestions for future research. The immunomodulatory effects of MCs
in fish depend on the exposure concentrations, doses, time, and routes of exposure. Previous
field and laboratory studies provided strong evidence of the associations between MC-induced
immunotoxicity and fish death. In our review, we summarized that the immunotoxicity of MCs is
primarily characterized by the inhibition of PP1 and PP2A, oxidative stress, immune cell damage, and
inflammation, as well as apoptosis. The advances in fish immunoreaction upon encountering MCs
will benefit the monitoring and prediction of fish health, helping to achieve an ecotoxicological goal
and to ensure the sustainability of species. Future studies concerning MC-induced immunotoxicity
should focus on adaptive immunity, the hormesis phenomenon and the synergistic effects of aquatic
microbial pathogens.

Keywords: microcystins; neuroendocrine-immune network; inflammatory responses; immunotoxic-
ity; fish

Key Contribution: In vivo and in vitro studies of MC-induced immunotoxicity in fish are re-
viewed. Lymphocytes and macrophages are action sites of MC-induced immunotoxicity. MCs
have concentration-dependent dualistic influences on the innate immunity of fish. MC-induced
inflammation eventually leads to immune disorders and apoptosis.

1. Introduction

Cyanobacteria are the oldest known oxygenic photoautotroph on earth. The prolifera-
tion of cyanobacteria between 2.45 and 2.32 billion years ago greatly changed the foregoing
anoxic biosphere by producing oxygen and accelerating the evolution of higher flora and
fauna [1,2]. Many genera of cyanobacteria can regulate atmospheric nitrogen and store
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phosphorus, which enables them to adapt to multiple geographical conditions, including
aquatic and terrestrial environments [3,4]. However, the aquatic environmental and hydro-
logical alterations caused by anthropogenic activities have given rise to a series of serious
environmental problems [5,6]. In recent decades, the frequency of harmful algal blooms
(CyanoHABs) increased due to eutrophication and climate changes [7]. The deleterious
outcomes of these blooms cause the loss of water clarity, which negatively affects aquatic
plants, phytoplankton, and zooplankton [8,9]. The decomposition of CyanoHABs can
also result in oxygen depletion, and subsequently lead to fish death [10]. A variety of
cyanobacterial species also produce toxic secondary metabolites (cyanotoxins) during cell
lysis associated with natural aging or environmental stress, which can greatly induce toxic
effects in aquatic food webs (Figure 1).
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Figure 1. Impact of cyanobacteria and cyanotoxins on the aquatic food web. The respiration and degradation of CyanoHABs
result in oxygen deprivation in the water. The cyanotoxins, produced and released by cyanobacteria, can harm aquatic
animals through biological concentration or food chain transfer.

Among various classes of cyanotoxins, MCs are the most widespread in freshwater
environments. Until now, over 270 different MC congeners have been determined, and
Microcystin-LR (MC-LR), Microcystin-RR (MC-RR), and Microcystin-YR (MC-YR) are the
three of most concern and widely studied [11–13]. The molecular formula and molec-
ular weight of the three commonly distributed MCs are shown in Figure 2. MC-LR is
the most toxic and abundant structural congener in freshwater, followed by MC-RR and
MC-YR [14,15]. As one of the most toxic and commonly distributed variants, MC-LR is
a great worldwide concern due to its acute poisonous lethal effects and chronic carcino-
genesis [16,17]. According to the guidelines of the World Health Organization (WHO), the
maximum concentration of MC-LR should not exceed 1 µg/L in drinking water [18] in
order to be safe; the MC-LR concentrations in natural waters are normally within the scope
of 0.1 to 10 µg/L [19]. Previous studies have demonstrated that it is difficult to degrade
MC-LR in water during an algal bloom, which could greatly impact the normal function of
aquatic organisms and terrestrial organisms [20–24].
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Figure 2. Characteristics of cyanobacterial blooms and microcystins: (A) cyanobacteria blooms in the San Francisco Estuary
(photo provided by Dr. Peggy Lehman, California Department of Water Resources); (B) molecular formula and molecular
weight of microcystin variants; (C) microcystin-LR, with the amino acid leucine (L) and arginine (R); (D) microcystin-RR,
with the amino acid arginine (R) and arginine (R) and (E) Microcystin-YR, with the amino acid tyrosine (Y) and arginine (R).

The inhibition of protein phosphatase 1 and 2A is the classic toxic mechanism of MCs,
tightly associated with their cytotoxicity and tumorigenesis [25–27]. Several studies have
demonstrated that oxidative stress plays a vital role in the MC-induced hepatotoxicity,
mainly characterized by the overproduction of reactive oxygen species (ROS) and the
depletion of glutathione [28]. In order to alleviate the negative effects from oxidative stress,
an antioxidant system developed in aquatic organisms. This system produces antioxidant
substances, including enzymatic components such as catalase (CAT), superoxide dismutase
(SOD), glutathione peroxidase (GPx), and non-enzymatic components, such as glutathione
(GSH) [29].

Increasing evidence has shown that MCs mainly accumulate in the liver and cause
hepatotoxicity, but immune organs, such as the spleen and head kidney, are also vulnerable
to MCs exposure [30–32]. Many studies have found that MCs can exert toxic effects on
lymphocytes as well as phagocytes, subsequently resulting in immune dysfunction. In
an in vitro study, Rymuszka et al. [33] suggested that the proliferation of isolated splenic
lymphocytes of rainbow trout (Oncorhynchus mykiss) exhibited a significant decrease in the
40 mg/mL MC- LR group while a significant increase in the 1 mg/mL MC-LR group. In
an in vivo experiment, Wei et al. [34] found a significant downregulation of the immune-
related genes in the spleen and head kidney when grass carp (Ctenopharyngodon idella) were
injected with 50 µg/kg MC-LR. Hence, MCs were proven to disturb fish immune function,
which could increase their susceptibility to pathogens and eventually result in fish death.

The immune system is a collaborative network of immunological molecules, immune
cells, and lymphoid organs, and is hypersensitive to toxic substances [35]. It is thought that
MCs can enter the immune organs and cause immunotoxicity [36]. However, the details
of the mechanism of MC-induced immunotoxicity in fish are still incomplete. The aim of
this scoping review is to organize the existing works involving the immunotoxicity of MCs
in fish and to summarize the potential mechanism of MC-induced immune dysfunction.
The present literature review was conducted using PubMed (https://pubmed.ncbi.nlm.
nih.gov/ (accessed on 26 October 2021)) with the goal of identifying related articles.

https://pubmed.ncbi.nlm.nih.gov/
https://pubmed.ncbi.nlm.nih.gov/
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2. Immune System of Fish

The fish immune system is divided into innate (non-specific) immunity and adaptive
(specific) immunity. Innate immunity substantially acts as the hosts’ first line of defense
against external pathogens, while specific immunity exerts a key role to prevent recurrent
infections by generating membrane-bound receptors and memory cells [37]. Fish are
known as the earliest vertebrates with both specific and non-specific immunity, though
their adaptive immunity is not as developed as the higher vertebrates [38,39]. The innate
immunity to antigens relies on the pattern recognition receptors (PRRs), which recognize
danger-associated molecular patterns (DAMPs), or pathogen-associated molecular patterns
(PAMPs) [40]. Numerous PRRs have been extensively studied, including the Toll-like
pattern recognition receptors (TLRs), RIG-I-like receptors (RLRs), and Nod-like pattern
recognition receptors (NLRs) [41,42]. The host’s PPRs activate immune signaling pathways
when they recognize the conserved structure of PAMPs, subsequently resulting in an
inflammatory response [43,44].

The fish immune organs include the thymus, head kidney, spleen, and mucosa-
associated lymphoid tissue, which provide proper sites for immune cells to differentiate
and proliferate [45]. The thymus is the main site of differentiation and maturation of
the T lymphocytes, which are mainly responsible for cellular immune function [46]. The
head kidney is responsible for hematopoietic and immune functions in fish [37,47]. The
spleen is an important site for the production and maturation of various erythrocytes and
granulocytes [48]. The mucosa-associated lymphoid tissue of fish mainly consists of the
skin-, gill-, and gut-associated lymphoid tissue, which can induce a local immune response
and function [49].

Fish immune cells, including lymphocytes and phagocytes, mainly distribute in the
blood, lymphatic fluid, and immune organs [50,51]. T cells are responsible for mediating
cellular immunity, while B cells are involved in the synthesis of antibodies in humoral
immunity [52,53]. Zwollo et al. [54] found that the maturation, metastasis, and response of
B cells in bony fish are similar to those of mammals. The phagocytes of fish mainly include
monocytes, macrophages, and granulocytes, which can phagocytize senile cells and foreign
bodies through deformation movement [55,56].

A variety of immune molecules including cytokines, lysozymes, and the complement
system also play an important role in the immune function of fish [57–59]. Lysozyme
is widely found in the macrophage, serum, and mucus, and can destroy Gram-positive
bacteria cells [60]. Kong et al. [61] found that the lysozyme activity exhibited a signifi-
cant increase when fish were exposed to infectious bacteria or other stress factors. The
complement system, which plays a vital role in clearing the potential pathogens in the
host, can activate various immune function processes, like phagocytosis, pathogen cytol-
ysis and inflammation [62–64]. The activation of the complement system consists of the
classical pathway, lection pathway and alternative pathway, which are responsible for the
target identification and protease complex formation for the complement component C3
activation [65].

3. Immunotoxicity of MCs on Fish
3.1. In Vivo Studies
3.1.1. Cyanobacteria Cells

As shown in Table 1, a number of studies were dedicated to discussing the immuno-
toxicity of cyanobacterial cells on fish. Atencio et al. [66] found that the levels of lipid
peroxidation (LPO), GR, and GPx exhibited a significant increase in kidney and liver of
tilapia (Oreochromis niloticus) when exposed to an oral dose of 120 µg MC-LR/fish for 24 h,
while CAT, SOD and GST showed a significant decrease. In a long-term study, crucian carp
(Carassius auratus) were fed diets containing 20% and 40% of cyanobacteria lyophilized
powder made from Microcystis (equivalent to 1.41 mg/g MCs dry weight) and collected
from Lake Dianchi (Yunnan, China) [67]. After an exposure of 30 days, splenic hyperemia
and hemorrhages were observed in the 40% group. Lysozyme activity showed a significant
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increase in the 20% group, but a significant decrease in the 40% group, indicating that fish
immunity exhibited immunostimulation at low MCs doses, but was immunosuppressive at
high MC doses. In another study, blunt snout bream (Megalobrama amblycephala) were fed
diets containing 15% and 30% of cyanobacteria lyophilized powder for 30 d [68]. After the
exposure, the edematous mitochondria of head kidney lymphocytes, as well as a decreased
phagocytosis activity of macrophages, were observed.

Table 1. Summary of immunotoxicity of cyanobacterial extracts in fish studies in vivo a.

Test
Objects Toxicant Exposure Doses/Concentrations Time Points Biological

Responses References

Nile tilapia Cyanobacterial cells Orally 120 µg MC-LR/fish 24 h

Kidney: ultrastructural
damages, LPO ↑, GSH/GSSG
ratio ↓, CAT ↓, SOD ↓, GR ↑,

GPx ↑, GST ↓
[66]

Crucian carp Cyanobacteria
lyophilized powder Orally

20% and 40% of
cyanobacteria

(1.41 mg/g MCs)
30 d

Spleen and head kidney:
histopathological damages,

macrophage bactericidal
activity ↑, lysozyme activity ↑↓,

blood nitroblue tetrazolium
activity ↑

[67]

Blunt snout
bream

Cyanobacteria
lyophilized powder Orally 1.41 mg/g MCs

(Dry weight) 30 d

Head kidney: ultrastructural
damages, white blood cells

numbers↓, phagocytosis
activity ↓, sIgM ↓, sIgD ↓,

sIgZ ↓

[68]

Carp Cyanobacterial cells Immersion
5.6 × 104–3.2 × 105;
2.6 × 105–3.6 × 106

cells/mL
96, 168 h Plasma: LDH ↑, TP ↑, ALT ↑,

AST ↑ [69]

Silver carp Cyanobacterial cells Immersion 2.8–7.4 µg/L MCs 7, 14, 21, 28 d
Plasma: ALB ↓, ALP ↓, CHOL ↓,
TP ↓, CRE ↓, LACT ↓, LDH ↓, P

↓, Fe ↓, CHE ↓, ALT ↑
[70]

Silver carp Toxic Microcystis blooms Immersion 0–15.58 µg/L MCs
(averaged 4.16 µg/L)

Monthly
(1 year)

Kidney: ultrastructural
damages, CAT ↑, GST ↑, GSH ↓ [71]

Crucian Carp Cyanobacteria extract IP injection 50, 200 µg MC-LR equiv
kg−1 BW 12, 24, 48, 60 h

Plasma: ALT ↑, ALP ↑, AST ↑,
LDH ↑, GLU ↑↓, CHO ↓, TG

↓, TP ↓
[72]

Common Carp Cyanobacteria extract Immersion 25 µg/L MCs 1, 3, 5 d

Blood and head kidney:
Intracellular O2− production ↑,

ROS ↑, lymphocyte
proliferation ↓, IL-1β ↑, TNF-α

↑, IL-10 ↑

[73]

Common carp Cyanobacteria extract Immersion 1.3 µg/L, 13 µg/L MCs 8, 30 d

Blood: hematocrit value ↑,
hemoglobin concentration ↑,
phagocytic activity ↓, total

plasma protein ↑, AST ↓, LDH ↓
[74]

a ↑ indicates activation, increasing or upregulation; ↓ indicates inhibition, decreasing or downregulation.

In addition to oral feeding, immersion is also utilized to investigate the immuno-
toxicity on fish. Hematological indices are reliable indicators to evaluate the immune
function. In an acute study, Kopp and Heteša [69] suggested that various blood indices
like total protein (TP), aspartate aminotransferase (AST), alanine aminotransferase (ALT),
and lactic dehydrogenase (LDH) exhibited a remarkable increase in juvenile carp when
exposed to cyanobacteria blooms. Kopp et al. [70] demonstrated that numerous plasma
indicators including albumin (ALB), cholesterol (CHOL), glucose (GLU), creatinine (CRE),
alkaline phosphatase (ALP), and TP showed a significant decrease when silver carp (Hy-
pophthalmichthys molitrix) were exposed to cyanobacteria cells containing 2.8–4.7 µg MCs.
In a long-term field study, silver carp were collected monthly during a Microcystis bloom
period in Lake Taihu, and MC contents were detected in the fish kidney [71]. The nephritic
ultrastructural damages were mainly characterized by the dilation of bowman’s space and
lysosomes proliferation. The nephritic antioxidant enzyme activities exhibited a dramatic
increase, implying the antioxidant system was activated to alleviate oxidative stress.

3.1.2. Cyanobacteria Extracts

The in vivo studies of cyanobacterial extracts-induced immunotoxicity on fish are
summarized in Table 1. In an acute study, healthy crucian carp were intraperitoneally (IP)
injected with cyanobacterial extracts containing 50 and 200 µg/kg MC-LR, and plasma bio-
chemical parameters including LDH, ALP, AST, and ALT showed a significant increase [72].
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Rymuszka and Adaszek [73] reported that cyanobacteria extract can cause ROS overpro-
duction, as well as lymphocytes proliferation inhibition in the blood and head kidney
of common carp (Cyprinus carpio L.). The upregulation of tumor necrosis factor alpha
(TNF-α), interleukin 1 beta (IL-1β), and interleukin 10 (IL-10) gene expression were ob-
served when exposed to an MC-containing extract. In a sub-chronic study, Palíková et al. [74]
reported that common carp larvae exposed to the cyanobacteria crude extracts (equivalent
to 1.3 µg/L or 13 µg/L MCs) for 30 d, the hemoglobin concentrations and hematocrit
values showed a significant increase while the phagocytic activities of leukocyte exhibited
a significant decrease.

3.1.3. Pure Microcystins

The in vivo studies of pure microcystin-induced immunotoxicity on fish are summa-
rized in Table 2. In an acute study, a significant increase in serum ALT, AST, lysozyme
activity, complement C3, and the cytokines contents including TNFα, IL1β, and IFNγ

were observed when silver carp intraperitoneally injected with MC-LR [75]. In a chronic
study, Chen et al. [76] demonstrated that IP injection of 150 µg/kg MC-LR can result in a
significant decrease in serum complement C3 and lysozyme activity. However, antioxidant
indexes like CAT, SOD, GPx, and LPO levels were remarkably increased, suggesting the
antioxidant system was activated in the common carp. MCs exposure can also induce
changes in immune parameters in organs, except alterations in hematological biochemical
indicators. Grass carp were IP injected with 50 µg/kg/d MC-LR, and the spleen and
head kidney were sampled at 1, 2, 7, 14, and 21 d [34]. After exposure, the chromatin
compaction, mitochondria edema, and apoptotic lymphocytes were found in the spleen
and head kidney. In another study, Li et al. [77] found MC-LR could significantly upregu-
late the mRNA levels of interleukin-8 (il8), a classic inflammatory gene, in bighead carp
(Aristichthys nobilis) in a dose-dependent manner. Similarly, grass carp were IP injected
with 25, 75, and 100 µg/kg MC-LR [78]. Transcription levels of cytokine signaling 3 (soc3)
and heat shock protein 70 (hsp70) showed a significant increase after 96 h of exposure,
indicating an activation of the defense system. The oxidant-antioxidant balance is vital for
immune function in fish. In an acute study, Okogwu et al. [79] reported that IP injection of
MC-RR at 50 and 200 µg/kg MC-LR for 48 h could significantly decrease the nephritic total
antioxidant capacity (T-AOC) and GPx activities in gold fish (Carassius auratus). Similarly,
Prieto et al. [80] demonstrated that the increased antioxidant function was observed in
tilapia kidney when fish were IP injected with 500 µg/kg MC-RR for 7 d, which indicated
that the antioxidant system plays a vital role in the protection of fish health.

For immersion cases, Li et al. [81] demonstrated that acute exposure of 800 µg/L
MC-LR could interfere with lymphocytes deferrization and TCR/ig arrangement in ze-
brafish (Danio rerio) larvae by upregulating early lymphoid development genes, including
recombination activation gene-1 (Rag1), recombination activation gene-2 (Rag2), Ikaros,
GATA1, Lck, and T-cell receptor-α (TCRα). In a sub-chronic study, nucleus deformation
and edematous mitochondria were noticed in the spleen when zebrafish were exposed
to 20 µg/L MC-LR [82]. The mRNA levels of splenic interferon-1 (ifn1), il8, interleukin-
1β (il1β), and tumor necrosis factor-α (tnfα) exhibited a significant increase in the 1 and
20 µg/L groups. In our previous study, male zebrafish were exposed to environmentally
relevant concentrations of MC-LR for 30 d. Lin et al. [31] found that the number of melano-
macrophage centers and serum complement C3 levels and splenic complement component
C3b (c3b) expression showed a significant increase in the low MC-LR exposure groups (0.3,
1, and 3 µg/L). However, the degeneration of splenic macrophages and lymphocytes, and
the remarkable decrease in C3 levels were observed in the high MC-LR exposure groups
(10 and 30 µg/L). These findings indicated MC-LR exhibits diverse influence on the fish
immune system, which is characterized by an inflammatory activation in the low MC-LR
exposure groups, but immune inhibition in the high MC-LR exposure groups. Lin et al. [83]
found chronic inflammation and immune disorders induced by MC-LR may be mediated
through the myeloid differential protein-88-dependent Toll-like receptor (TLR/MyD88)
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signaling pathway. These findings indicated that MCs could cause varied influences on
the antioxidant system and the innate immune system in fish, which may greatly depend
on the exposure routes and concentrations/doses. Furthermore, Falfushynska et al. [84]
demonstrated that 20 µg/L MC-LR could induce multifaceted toxic effects including oxida-
tive stress and apoptosis in zebrafish, which characterized by the increase in thiobarbituric
acid-reactive substances (TBARS) levels and caspase-3a (cas3a) and caspase-3b (cas3b).

Table 2. Summary of immunotoxicity of pure microcystin in fish studies in vivo a.

Test
Objects Toxicant Exposure Doses/Concentrations Time Points Biological

Responses References

Silver carp. MC-LR IP 104.9 µg/kg,
262.1 µg/kg 6, 9, 12, 24, 72, 168 h Serum: ALT ↑, AST ↑, lysozyme activity ↑,

complement C3 ↑, TNF-α ↑, IL-1β ↑, IFN-γ ↑ [75]

Common
carp MC-LR IP 150 µg/kg BW 28 d Serum: CAT ↑, SOD ↑, GSH ↑, GPx ↑, LPO ↑,

complement C3 ↓, lysozyme activity ↓ [76]

Grass carp MC-LR IP 50 µg/kg 1, 2, 7, 14, 12 d
Spleen and head kidney: mitochondrial

edema, chromatin condensation, apoptotic
lymphocytes

[34]

Bighead carp MC-LR IP 50, 200, 500 µg
MC-LR/kg BW 3, 24 h Liver and kidney: temporal- and

dose-dependent increase in interleukin-8 [77]

Grass carp MC-LR IP 25, 75, 100 µg/kg BW 96 h Liver: complement and coagulation cascades
pathway ↑, soc3 ↑, hsp70 ↑, [78]

Gold fish MC-RR IP 50, 200 µg/kg BW 6, 12, 24, 48 h Kidney: T-AOC ↓, SOD ↑, GPx ↓ [79]

Tilapia MC-LR, -RR IP 500 µg/kg MC-LR or
MC-RR 7 d Kidney: SOD ↑, CAT ↑, GPx ↑, LPO ↑, [80]

Zebrafish MC-LR Immersion 200, 800 µg/L 12, 24, 48, 96, 168 h Larvae: Rag1 ↑, Rag2 ↑, Ikaros ↑, GATA1↑,
Lck↑, TCRα↑ [81]

Zebrafish MC-LR Immersion 0, 1, 5, 20 µg/L 30 d Spleen: ultrastructural damages, ifn1 ↑, il8 ↑,
il1β ↑, tnfα ↑ [82]

Zebrafish MC-LR Immersion 0.3, 1, 3, 10, 30 µg/L 30 d Spleen: histopathological lesions,
complement C3 ↑↓; [31]

Zebrafish MC-LR Immersion 0, 0.4, 2, 10 µg/L 30 d
Spleen: histopathological lesions, apoptosis,

TNF-α ↑, IL-1β ↑, MYD88 ↑, complement C3
↑↓

[83]

Zebrafish MC-LR Immersion 20 µg/L 14 d Liver: TBARS ↑, GSH ↑, LDH ↑, GST ↓, CAT
↓, cas3a ↑, cas3b ↑ [84]

a ↑ indicates activation, increasing or upregulation; ↓ indicates inhibition, decreasing or downregulation.

3.2. In Vitro Studies

The in vitro studies of pure microcystins induced immunotoxicity on fish are summa-
rized in Table 3. In an acute study, Zhang et al. [85] assessed the induction of apoptosis
by environmentally relevant levels of MC-LR and MC-RR on crucian carp lymphocytes.
Apoptotic features characterized by apoptotic bodies formation and nuclear chromatin
condensation were observed in the 1, 5, and 10 nM MC-LR or MC-RR groups, which
indicated that MCs could result in lymphocytes apoptosis. Zhang et al. [86] demonstrated
MC-induced apoptosis was tightly associated with ATP depletion and ROS overproduc-
tion, which implied that mitochondria and oxidative stress play a vital role in MC-induced
toxicity on crucian carp lymphocytes. In another study, Zhang et al. [87] found that 10 nM
MC-RR could result in ATP depletion and ROS elevation, as well as mitochondrial mem-
brane potential disruption in crucian carp lymphocytes. These findings revealed that the
alteration of intracellular Ca2+, ROS, mitochondrial membrane potential, and ATP are
closely associated with MC-induced apoptosis. Similarly, Zhang et al. [88] demonstrated
that the apoptotic pathway was stimulated, and antioxidant defense system were impaired
in crucian carp lymphocytes under MC-LR exposure, which confirmed that apoptosis
always come along with oxidative stress.
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Table 3. Summary of immunotoxicity of pure microcystins in fish studies in vitro a.

Test Objects Toxicant Doses/Concentrations Time Points BiologicalResponses References

Crucian carp
lymphocytes

MC-LR,
MC-RR 1, 5, 10 nM 2, 4, 6, 8 h Apoptosis, nuclear chromatin

condensation [85]

Crucian carp
lymphocytes MC-LR 10 nM 0.5, 1, 3, 6 h Apoptosis, intracellular Ca2+ ↑,

ROS ↑, MMP↓, ATP ↓, [86]

Crucian carp
lymphocytes MC-RR 10 nM 0.25, 0.5, 1, 3, 6 h Apoptosis, MMP ↓, ROS ↑,

intercellular ATP ↓ [87]

Crucian carp
lymphocytes MC-LR 1 µg/L 24 h Apoptosis, MMP ↓, ROS ↑, GSH ↓,

SOD ↓, CAT ↓, MDA ↑ [88]

Rainbow trout
lymphocytes MC-LR 1, 5, 10, 20,

40 µg/mL
4, 24, 48, 72, 96,

120 h
Cell viability ↓, lymphocytes

proliferation ↑↓ [33]

Rainbow trout
phagocytic cells MC-LR 1, 5, 10, 20 µg/mL 2, 4, 24 h

Time- and concentration-dependent
cell viability decrease, phagocytic
cell ability ↑↓, respiratory burst

activity ↑↓

[89]

CIK cells MC-LR 1, 10, 100 µg/L 24, 48 h
Apoptosis, cytoskeleton disruption,

cell viability ↑↓, ROS ↑, MDA ↑,
GSH ↓, GST ↑, SOD ↓

[90]

Carp leucocytes MC-LR 0.01, 0.1, 0.5,
1 µg/mL 24, 72 h

Respiratory burst activity ↑↓, B
lymphocytes proliferation ↑,

necrosis of leucocytes ↑
[91]

Common carp
lymphocytes and

phagocytes
MC-LR 0.01, 0.05, 0.1,

1 µg/mL 2, 6, 24 h Phagocytosis ↓, LDH ↑, GSH ↓,
apoptosis, necrosis [92]

Common carp
leukocytes MC-LR 0.01, 0.1 µg/mL 4 h il1β ↑↓, tnfα ↑↓, il10 ↑, tgfβ ↑ [93]

a ↑ indicates activation, increasing or upregulation; ↓ indicates inhibition, decreasing or downregulation.

To investigate the effects of MC-LR on the cell proliferation, rainbow trout lymphocytes
were isolated from immune organs and peripheral blood, then exposed to 1, 5, 10, 20, and
40 mg/mL MC-LR [33]. Lymphocytes’ proliferation showed a significant increase in the
1 mg/mL MC-LR group but a significant decrease in the 40 mg/mL MC-LR group, which
implied that the applied doses caused different immunomodulatory effects. In another
study, phagocytic cells were separated from the blood of rainbow trout and exposed to 1, 5,
10, and 20 µg/mL MC-LR [89]. The results indicated that MC-LR could decrease phagocytic
cell numbers in a concentration- and time-dependent pattern, and a possible reason for such
cytotoxic activity might be associated with oxidative stress. ROS overproduction and GSH
reduction in C. idellus kidney (CIK) cells, as well as a reduced cell viability, were observed
when exposed to 100 µg/L MC-LR for 48 h, which indicated that the oxidative stress and
cytoskeletal disruption may have had a mutual effect on inducing renal toxicity [90].

Head kidney cells from omnivorous carp were isolated and exposed to 0.01, 0.1, 0.5,
and 1 µg/mL pure MC-LR to evaluate the possible effects of MC-LR on their immune
functions [91]. The phagocytes’ metabolic activity exhibited an inhibitory effect in the high
MC-LR group, while a stimulatory effect in the low MC-LR group was observed. These
results suggested that the increased MC-LR concentrations could disturb the immunologic
homeostasis of the fish body and subsequently lead to an elevated susceptibility. Moreover,
Rymuszka et al. [92] demonstrated that MC-LR induced apoptosis and necrosis in common
carp lymphocytes. In another study, blood and head kidney leukocytes were isolated
from carp, then exposed to 0.01 and 0.1 µg/mL MC-LR for 4 h [93]. Pro-inflammatory
cytokines (tnfα and il1β) showed a significant downregulation, while anti-inflammatory
cytokines (il10 and tgfβ) showed a significant upregulation. This indicated that acute
MC-LR exposure could inhibit an inflammatory response.
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4. Potential Mechanism of MC-Induced Immunotoxicity

An increasing number of studies were conducted to explore the mechanism of MC-
induced immunotoxicity on fish. Aside from the classic toxic mechanism of PP1/2A inhibi-
tion, other physiological processes including oxidative stress, inflammatory responses, and
apoptosis also arouse public concern. We summarized all possible mechanisms to provide
a comprehensive understanding of how MCs enter fish organs and how they disrupt the
fish immune system.

4.1. Adsorption and Accumulation of MCs

In order to exert toxic effects, sufficient concentrations of MCs must enter specific
organs, tissues, or cells [27,94]. Due to the high molecular weight of MCs, their uptake
and accumulation in fish occurs through active transport [95]. Both field and laboratory
experiments have proven that MCs can accumulate in the spleen, and then interfere with
the immune function [36,96]. Organic anion transporting polypeptides (OATP) play a
critical role in the active transmembrane transport of MCs [97,98]. MC-LR is identified as
a hepatotoxin due to its high expression of hepatocyte-specific OATP carriers [99]. The
differential expression of Oatp subtypes results in a varying tissue distribution of MCs in
fish. It was demonstrated that the expression of zebrafish Oatp subtypes in diverse organs
is tightly associated with its specific toxicity, and the Oatp1f was only expressed in the
zebrafish kidney [100]. However, very few studies focus on the OATP subtypes in fish
spleen or head kidney.

4.2. Inhibition of PP1 and PP2A

Protein phosphorylation, catalyzed by protein phosphatases (PPs), is one of the most
important dynamic processes associated with cellular homeostasis. PP1 and PP2A are
major protein phosphatases in cells that are involved in the cytoskeleton dynamic, cell
mobility, cell proliferation, and cell death [101,102]. Liang et al. [103] demonstrated that
MCs could not only inhibit enzyme activity via regulating protein phosphatase activity, but
also affect protein expression directly. The alterations of PP1/PP2A activities are tightly
associated with cellular cytotoxicity and cytoskeletal disruption caused by MCs, which
reveal the importance of protein phosphatases in MC-induced immunotoxicity [104,105].

4.3. Oxidative Stress

Oxidative stress, mainly caused by ROS overproduction, is a general toxicity mecha-
nism of various xenobiotics or chemicals including MCs [106,107]. The antioxidant enzyme
system is usually activated to alleviate the oxidative stress. Malbrouck and Kestemont [96]
demonstrated that the alterations of antioxidant enzymes activities were greatly depen-
dent on MCs exposure concentrations and exposure routes. Evidence has shown that
both pure MCs and cyanobacterial cells can cause ROS overproduction, subsequently
interfering with antioxidant enzyme activities, and the induction of lipid peroxidation in
fish [108]. Oxidative stress induced by environmental pollutants is usually associated with
the immune function of organisms [109,110]. It is well known that fish largely rely on the
nonspecific immune system, which is tightly linked to the oxidant–antioxidant balance
of the immune organs. Our previous study demonstrated that 30 µg/L of pure MC-LR
resulted in a significant decrease in splenic GSH content in zebrafish [111]. GSH could exert
a detoxification effect by binding MCs to form MC-GSH conjugates, and the reduction in
cytosol GSH implied an excessive ROS production [112,113].

4.4. Immune Cell Damages

Several studies suggest that MC-LR can accumulate in the spleen and result in
pathological lesions and immune dysfunction in various fish species such as whitefish
(Coregonus lavaretus), trout, and crucian carp [67,114–116]. Rymuszka et al. [33] sug-
gested that the rainbow trout lymphocyte viability showed a dose-dependent decrease.
Wei et al. [34] demonstrated that MC-LR caused damage to the mitochondria of the splenic
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lymphocytes of grass carp when IP injected with MC-LR. Those results revealed that
the MC-induced immunomodulatory effects on the proliferation and viability of fish
lymphocytes rely on the different exposure concentrations and the target species. Apart
from lymphocytes, Neumann et al. [117] demonstrated that phagocytes, including neu-
trophils and macrophages, could limit the transmission of an infectious source and destroy
the phagocytosed pathogens. Research showed that MC-LR exposure could suppress
the phagocytic ability of erythrocytes in juvenile common carp and silver carp [74,118].
Sierosławska et al. [89] found that the phagocytosis of isolated phagocytic cells from rain-
bow trout exhibited a significant increase when exposed to MC-LR. In our previous study,
Lin et al. [31] suggested that splenic ultra-pathological alterations were observed when ex-
posed to various MC-LR concentrations. Specifically, the formation of melano-macrophage
centers and lymphocyte pseudopods was observed in the low MC-LR groups, while the
degeneration of macrophages and lymphocytes was observed in the high MC-LR groups.
Such evidence suggests that the MCs exposure could result in immunotoxicity by damaging
the structure of the immune cells.

4.5. Inflammation

Immune cells are activated and produce cytokines when induced by various pathogens,
exogenous chemicals, or environmental stress [119]. Cytokines, including TNFs, ILs, and
IFNs, are mainly secreted by lymphocytes, macrophages, and granulocytes [120]. The cy-
tokines in fish are similar to those in mammals, and several homologues have been cloned
and investigated [121–123]. TNFα and IL1β could be released during the inflammatory
response, which subsequently activated and recruited neutrophils and macrophages to
the infection sites [124]. Both TNFα and IL1β are produced by a variety of immune cells
after the activation of the hosts’ PRRs by PAMPs or DAMPs, whose main role is to initi-
ate inflammation [125,126]. An inflammatory response could induce a cytokine cascade,
characterized by TNFα release, followed by IL1β and other cytokine secretions [122]. In
recent decades, an increasing number of studies were conducted on MC-induced immune
dysfunction, especially regarding inflammation. In an in vivo study, the splenic TNFα and
IL1β levels showed a significant decrease in grass carp when exposed to MC-LR [127].
In an in vitro study, the transcription levels of tnfα and il1β in the pronephros cells of
common carp exhibited a significant increase when exposed to cyanobacterial extract and
pure MC-LR [73]. These results indicated that MC-LR could result in a disturbance in the
production of cytokines and an inflammatory response, subsequently interfering with the
fish immune function. In our previous study, the transcription levels and concentration
of IL1β and TNFα showed a remarkable and simultaneous increase, which proved that
MC-LR could result in an inflammatory response in zebrafish [83].

Toll-like receptor (TLR) signaling pathways can recognize exogenous substances and
induce cytokine release during the nonspecific immune process [128]. Myeloid differen-
tiation factor 88 (MyD88) plays a critical role in the inflammatory responses induced by
TLRs [129]. The activation of TLRs/MyD88 can regulate the immune defense by promoting
the production of downstream cytokines including TNFα and IL1β. Our previous study
revealed that MC-LR could induce chronic inflammation through the TLR/MyD88 signal-
ing pathway in zebrafish [83]. Generally, acute inflammation exerts a positive immune
function within minutes when the organism faces exogenous factors [130]. However, the
immunologic balance could be disturbed when the inflammation persists for weeks or
longer, eventually resulting in tissue damage [131].

4.6. Apoptosis

Apoptosis plays a vital role in cell growth and development, which is mainly char-
acterized by nuclear chromatin condensation, cell shrinkage, and apoptotic body forma-
tion [132,133]. Zhang et al. [85] demonstrated that MC-LR exposure could result in the
apoptosis in the lymphocytes of C. auratus. Our previous study found that the number of
apoptotic cells and the expression of apoptotic genes increased significantly in the zebrafish
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spleen when exposed to MC-LR [83]. Researchers believe that MC-LR exposure could in-
duce ROS formation and lipid peroxidation, which eventually results in cell apoptosis [134].
Up until now, increasing evidence has confirmed that MC-induced apoptosis was tightly
associated with the ROS generation [135]. Rymuszka and Adaszek [73] indicated that the
cyanobacterial extracts can induce apoptosis in common carp, which was confirmed by the
increase in caspase-3 and caspase-7 activities in lymphocytes. The endoplasmic reticulum
pathway is also involved in the MC-induced apoptosis [136]. These results demonstrated
that the apoptosis of lymphocytes and phagocytes could be one of the potential mechanisms
of MC-induced immunotoxicity on fish.

5. Current Research Gaps and Future Directions
5.1. Adaptive Immunity

Fish mainly depend on the innate immunity in the early stage, while the adaptive
immunity is less developed [58]. An increasing number of studies were carried out to
evaluate the MC-induced innate immunity in fish, and the research related to adaptive
immunity was usually neglected because of experiment difficulties. The adaptive immunity,
including humoral and cellular immunity, normally starts with a specific antigen-antibody
recognition [137,138]. The adaptive immunity normally takes days to develop when the
body is invaded by pathogens [139]. The identification of the specific molecules allows
for a faster and stronger adaptive immunity when exposed to the same pathogen. More
studies should be conducted to focus on MC-induced adaptive immunity.

5.2. Multi-Omics Study

In consideration of the organisms’ complexities and the potential interactions between
various environmental stressors or factors, classic techniques are far from adequate to
explore the in-depth immunotoxicity involving MCs. High-throughput analytical tech-
nologies, including metabolomics, proteomics, and genomics, need to be organized and
utilized to carry out toxicological studies [140,141]. Lin et al. [83] demonstrated that the
regulatory pathways concerning signal transduction were differentially regulated in the
zebrafish spleen via a transcriptomic analysis, and the TLR/MyD88 signaling pathway was
significantly activated to induce chronic inflammation. An increasing number of studies
are being conducted to assess MC-induced toxicity in fish by using the ‘omics’ methodol-
ogy [78,142,143]. The underlying mechanisms of the MC-induced immunotoxicity through
multi-omics studies must be elucidated by combining the immune regulation pathways
with the classic immune indices. The results will allow us to have a better understanding
of hazardous chemicals or materials.

5.3. Hormesis Phenomenon

The dose–response relationship is a basic concept in toxicological studies [144]. The
word ‘hormesis’ is used to describe a biphasic variation tendency, which is characterized
by a high dose inhibition and a low dose stimulation; this gradually became a key concept
in biological sciences and played a critical role in environmental risk assessment [145]. In
view of the specific dose–response phenomenon, it is extremely important to determine
the concentration threshold of the dosage effects [146]. Several previous studies observed a
hormesis phenomenon in MCs exposure tests. Rymuszka et al. [33] found that lymphocytes’
proliferation showed a significant increase when exposed to low-concentrations of MC-
LR, but a significant decrease when exposed to high-concentrations of MC-LR. Similarly,
low-dose cyanobacteria lyophilized powder resulted in increased lysozyme activity in
crucian carp, while high-dose cyanobacteria lyophilized power led to results of the opposite
trends [67]. In our former study, zebrafish immune systems exhibited a dualistic tendency
when sub-chronically exposed to different concentrations of pure MC-LR [31]. Very few
studies provide a comprehensive explanation of such biphasic consequences, and thus
future studies should explore the inner-most mechanism.
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5.4. Variants Other than MC-LR

MC-LR is the most distributed variant, followed by MC-RR and MC-YR from over
270 identified MCs variants [11–13,147]. For MC congeners, other than MC-LR, there
are limited data concerning their toxicity and occurrence in the scientific literature [148].
Previous studies demonstrated that tilapia and goldfish IP injected with MC-RR developed
nephritic oxidative stress [79,80]. Numerous variants such as MC-LF and MC-LW have
more lipophilic compounds than MC-LR, which indicates that other variants can be more
toxic than MC-LR. Higher concentrations of variants such as MC-YR and MC-LF were
detected instead of MC-LR and MC-RR in field studies, which implies that the toxicity
of the lesser-known minority MC congeners require more attention [149]. A realistic risk
evaluation should be based on the toxicity contribution of other variants, not merely on
MC-LR for future immunotoxicity studies, e.g., MC-YR, MC-LF, MC-LA, and the mixtures.

5.5. Microbial Pathogens in Aquatic Ecosystems

Various kinds of microbial pathogens exist in natural waters, which could pose a
threat to fish. Cyanobacteria bloom and their mucilaginous layers can be treated as a
cozy microenvironment for microbial pathogens, which pose a joint threat to fish immune
function [12]. In a sub-chronic study, Palikova et al. [150] found that a single cyanobacte-
rial biomass, or the presence of white spot disease (Ichthyophthirius multifiliis), created a
stimulating effect on the immune response, while the combined group caused immuno-
suppression in common carp. Polikova et al. [151] demonstrated that a cyanobacterial
biomass enhanced the severity of the immune dysfunction of common carp injected with
Carp sprivivirus, which indicated that the co-exposure to cyanobacteria and virus worsened
the fish immunity. Such evidence proved that the synergistic effects of MCs and microbial
pathogens should not be neglected.

6. Conclusions

As the immune system plays a vital role in maintaining a balance between MC-induced
toxicity and an organisms’ survival strategy, more attention must be paid to the immune
response when facing an exogenous threat. We made a comprehensive review compiled of
existing research concerning MC-induced immunotoxicity on fish. These studies exhibited
a tight association between immunotoxicity and MCs exposure doses and routes. MCs
can induce an inflammatory response and lead to immune dysfunction by impairing im-
munocytes and influencing the secretion of immune molecules. The possible mechanisms
of MC-induced immunotoxicity are summarized in Figure 3, implying that MC exposure
poses a critical threat to the immune function of fish. Moreover, our recent study found
that the parental exposure to MC-LR could interfere with the immune function of F1 larvae,
which indicated that MCs could result in cross-generational immunotoxicity [152]. The
alterations in immune parameters can be treated as reliable indicators to assess the health
of fish following MCs exposure. Investigating the immunotoxicity and the underlying
mechanisms of MCs is not only crucial for aquatic environment evaluation, but also for the
sustainable development of fish populations in the future.
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