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ABSTRACT

Reliable, non-intrusive, short-term (of up to 12 hours ahead) prediction of a
building’s energy demand is a critical component of intelligent energy management
applications. A number of such approaches have been proposed over time, utilizing
various statistical and, more recently, machine learning techniques, such as deci-
sion trees, neural networks and support vector machines. Importantly, all of these
works barely outperform simple seasonal auto-regressive integrated moving average
models, while their complexity is significantly higher. In this work, we propose a
novel low-complexity non-intrusive approach that improves the predictive accuracy
of the state-of-the-art by up to ∼10%. The backbone of our approach is a K-nearest
neighbours search method, that exploits the demand pattern of the most similar his-
torical days, and incorporates appropriate time-series pre-processing and easing. In
the context of this work, we evaluate our approach against state-of-the-art methods
and provide insights on their performance.
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1. Introduction

Transitioning to an energy sustainable future is one of the greatest challenges of
our era. Intelligent energy management applications, such as smart thermostats (e.g.,
(Hilliard, Kavgic, & Swan, 2016; A. Panagopoulos, Maleki, Rogers, Venanzi, & Jen-
nings, 2017)), smart electric vehicle charging stations (Liu, McNamara, Shorten, &
McLoone, 2015), and smart solar tracking systems (A. A. Panagopoulos, Chalkiadakis,
& Jennings, 2015), have been heralded as key means to achieve this goal (Dounis, 2010;
Ramchurn, Vytelingum, Rogers, & Jennings, 2012). This is supported by the fact that
such applications introduce energy efficiency improvements with minimum retrofitting
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and installation cost. For instance, a smart thermostat can preheat a space to maxi-
mally exploit potential renewable energy availability and, hence, minimize the reliance
on dispatchable energy generation with a potentially higher carbon footprint. Such en-
ergy management efficiency improvements can come with less cost when compared to
improving insulation or upgrading the heating technologies employed (A. Panagopou-
los, Alam, Rogers, & Jennings, 2015).1

That said, most intelligent energy management applications require reliable short-
term (of up to 12 hours ahead) predictions of the demand of the non-controllable loads
(i.e., loads that are typically not scheduled in the context of demand side management
schemes (Hemanth, Charles Raja, Jeslin Drusila Nesamalar, & Senthil Kumar, 2020;
Ramchurn et al., 2012), such as lights and hair dryers.) to perform adequately (e.g.,
(A. Panagopoulos et al., 2015; Zhao & Magoulès, 2012)). For instance, if in the pre-
vious example, the rest of the consumption of the building surpasses the renewable
generation during the preheat period, then the energy used for preheating would come
from the dispatchable energy generation. This renders preheating inefficient in this
case. 2 Nevertheless, when a smart thermostat is aware of the future consumption of
the non-controllable loads of a building, it can take this information into account. As
such, reliable short-term predictions of the energy demand of non-controllable loads
of a building is a crucial component in such settings.

In this context, a number of approaches to predict the energy demand of build-
ings over short-term horizons have been proposed (Amasyali & El-Gohary, 2018). The
majority of these approaches are highly intrusive; they rely on the installation and
calibration of sensor networks to monitor demand at various scales, such as at a per-
appliance one. However, demand prediction should require minimum retrofitting and
installations in order to efficiently support intelligent energy management applications.
In any other case, the competitive advantage of energy management applications over
deep retrofitting, such as improving the building insulation and installing advanced
energy technologies, is, subsequently, also deteriorated. As such, intrusive approaches
have narrower practical value in this respect when compared to non-intrusive ones.
Acknowledging this fact, several non-intrusive approaches have also been proposed
over time, utilizing various statistical or machine learning techniques, such as decision
trees, neural networks and support vector machines (SVMs) (e.g., (Amasyali & El-
Gohary, 2018; Edwards, New, & Parker, 2012; O. P. Panagopoulos, Pappu, Xanthopou-
los, & Pardalos, 2016; O. P. Panagopoulos, Xanthopoulos, Razzaghi, & Şeref, 2019;
Pappu, Panagopoulos, Xanthopoulos, & Pardalos, 2015; Tso & Yau, 2007)). Impor-
tantly though, all of these works barely outperform a simple seasonal auto-regressive
integrated moving average (SARIMA) model (Amjady, 2001; Dagnely, Ruette, Tourwé,
Tsiporkova, & Verhelst, 2015), while their complexity is significantly higher (Dagnely
et al., 2015; Edwards et al., 2012). In more detail, a SARIMA model is a straightfor-
ward extension of simple auto-regressive integrated moving average models for time
series analysis to consider seasonality (Box, Jenkins, Reinsel, & Ljung, 2015). It has

1Such energy efficiency-improving approaches have long been investigated in the context of supervisory heat-

ing, ventilation and air conditioning (HVAC) control, due to their low cost compared to insulation and heating

technology improvements (Wang & Ma, 2008). For instance, replacing an old thermostat with a smart one can
be less costly than improving the insulation of a building, and has substantial energy efficiency improvement

potential (Wang & Ma, 2008).
2In particular, preheating generally requires additional energy when compared to “on-time” heating strategies.

This is the case, as more energy is needed to get the temperature above the desired level—to then let it drop
to the desired one. However, the energy used for preheating can potentially be cheaper, such as energy coming
from self-owned renewable generators. This, in turn, can lead to lower energy bills. Nevertheless, this is not the

case in this setting and, as such, preheating would only increase the overall cost.

2



been repeatedly shown to outperform far more complex machine learning and statisti-
cal approaches in this task, including neural networks, regression models, and genetic
algorithms (Blázquez-Garćıa, Conde, Milo, Sánchez, & Barrio, 2020; Dagnely et al.,
2015; Edwards et al., 2012). Notably, machine learning approaches can outperform
more straightforward statistical approaches when very-short-term horizon predictions
are considered (of up to 60 minutes ahead), e.g., Li, Ding, Zhao, Yi, and Zhang (2017).

Against this background, we propose a novel low-complexity non-intrusive energy
demand prediction approach suitable for short-term horizons. Our method utilizes a
K-nearest neighbors approach and incorporates appropriate time-series pre-processing
and easing (i.e., the iterative application of an appropriate function to smooth out the
transition from observed consumption towards the predicted one, as detailed in Section
3). We provide a thorough evaluation to show that a simple K-nearest neighbors
approach outperforms the benchmark SARIMA model. Furthermore, we show that
our improved K-nearest neighbors approach (that incorporates appropriate time-series
pre-processing and easing) further improves the predictive accuracy. In particular, we
show that our improved approach improves the predictive accuracy by up to ∼ 10%
when compared to the SARIMA model. As discussed, the SARIMA model has been
shown to outperform far more complex statistical and machine learning approaches
in this task (Dagnely et al., 2015; Edwards et al., 2012). As such, this considers a
carefully selected benchmark that enables us to indirectly compare our approach with
far more complex approaches. By doing so, in this work we also provide insights into
the comparative effectiveness of different approaches in this domain. To sum up, our
main contributions to the state-of-the-art are the following:

• We propose a novel low-complexity non-intrusive approach that utilizes K-
nearest neighbors and incorporates appropriate time-series prepossessing and
easing.
• We evaluate our approach against the state-of-the-art to show that it can improve

the predictive accuracy by up to ∼10%.

The remainder of this paper is structured as follows: First, in Section 2 we provide an
overview of background material and related work. In Section 3 we detail our approach.
Then, in Section 4, we provide a thorough evaluation of our approach (also detailing
our case study and the instantiation specifications). Finally, Section 5 concludes.

2. Background & Related work

Predicting energy demand is tightly connected with the task of predicting energy
consumption (as for small enough intervals one approximates the other). As such,
here we review the work on both energy demand and consumption prediction over
short-term horizons. In general, existing energy demand and consumption prediction
approaches can be mainly classified into either intrusive or non-intrusive, with respect
to their reliance on a distributed sensing network or a single sensing point, respectively
(Ridi, Gisler, & Hennebert, 2014). The former utilize an extensive sensor network to
predict demand using numerous indicative signals, such as occupancy, indoor tem-
perature and/or sub-metering demand values (Edwards et al., 2012; Ekici & Aksoy,
2009; Faisal et al., 2019; Shabani & Zavalani, 2017; Zhao & Magoulès, 2012). Since the
additional information can significantly enhance their efficiency, most work on energy
consumption prediction proposed in the literature is generally intrusive (Amasyali &
El-Gohary, 2018).
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For instance, the work of Solomon, Winter, Boulanger, Anderson, and Wu (2011),
uses SVMs to provide hourly predictions of the energy demand of a building with the
aim to improve the efficiency of the HVAC system. In this context, it utilizes tem-
perature, dew point temperature, pressure, wind direction, wind speed, humidity, and
monthly precipitation data to achieve a 0.71 - 0.95 regression coefficient. Furthermore,
the work of Edwards et al. (2012), compares a wide range of machine learning tech-
niques, including different artificial neural network architectures and SVMs to provide
reliable hourly predictions of building energy hourly consumption. To this end, it uti-
lizes 140 different input signals, including temperature and solar flux. In a similar line
of research, the work of Kwok and Lee (2011) trained a neural network to predict
the hourly building energy consumption pattern utilizing a number of input signals
including occupancy area and occupancy rate to achieve a ∼15% root mean square
percentage error and a ∼0.98 coefficient of correlation. Finally, the work of Farzana,
Liu, Baldwin, and Hossain (2014) trained a neural network to predict the yearly energy
consumption of residential buildings of a city in order to support effective supply-side
management applications. By doing so, it achieved an impressive 0.09% mean relative
prediction error and a ∼0.97 coefficient of determination, utilizing several detailed in-
puts including the number and type of lightning bulbs per household, and the space
heating and cooling energy use of fuel.

Now, although such additional information can enhance prediction efficiency, the
required extensive instrumentation is typically not available in most buildings today
(Sioshansi, 2016). By contrast, non-intrusive approaches, rely solely on aggregated
consumption data and, hence, can be readily deployed in domestic settings today by
merely monitoring the existing house metering infrastructure. For this reason, in this
work we focus on non-intrusive approaches.

Many non-intrusive prediction approaches have been proposed over time, utilizing
various statistical and, more recently, or machine learning techniques, such as deci-
sion trees, neural networks, and support vector machines (e.g., Edwards et al. (2012);
Shabani and Zavalani (2017); Tso and Yau (2007); Zhao and Magoulès (2012)). For
instance, the work of Yun, Luck, Mago, and Cho (2012) proposes a statistical autore-
gressive model to predict the hourly consumption of the HVAC system of residential
buildings taking into account only the previous consumption to achieve a ∼20% coef-
ficient of variation. However, this work does not consider the cumulative consumption
of the building; it solely focuses on HVAC consumption. Nevertheless, predicting the
non-controllable loads is needed to support intelligent applications as discussed in
Section 1. Furthermore, the work of Dagnely et al. (2015) implements three autore-
gressive baseline models to predict the hourly energy consumption of a building at
time t considering the hourly energy consumption at times t − 1 day, t − 7 days and
t − 14 days respectively. This selection is supported by the fact that these periods
consider the strongest auto-correlation lags in the data-set. By doing so, they achieve
a performance similar to more advanced intrusive statistical approaches (i.e., support
vector regression and ordinary least squares on several signals including occupancy
and irradiance).

Machine learning approaches have been shown to outperform simpler statistical
approaches when very-short horizon predictions are considered (of up to 60 minutes
ahead), e.g., Li et al. (2017). Importantly, however, when longer but still short-term
(up to 12 hours) non-intrusive predictions are considered, advanced machine learning
approaches have been shown to barely outperform a simple seasonal autoregressive
integrated moving average (SARIMA) model (Amjady, 2001; Dagnely et al., 2015),
while their complexity is significantly higher (Dagnely et al., 2015; Edwards et al.,
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2012). The work in Yang, Meng, Xia, Lu, and Yu (2011) proposes a similarity-based
approach which has lower complexity than a SARIMA model. This work, does not
come with a concrete evaluation, does not consider time-series pre-processing (that
could potentially improve its accuracy), and does not account for the continuous dy-
namics of house energy demand (as further discussed in Section 3). Nevertheless, it
is the most suitable point of departure for our work; it sets the foundations of our
approach, and it also considers a benchmark in our evaluation.

For a thorough review of building energy consumption pattern and demand predic-
tion approaches see the work of (Amasyali & El-Gohary, 2018).

3. Our approach

As discussed in Section 1, in this work we present a non-intrusive improved similarity-
based approach to predict the energy demand of buildings over a short-term predictive
horizon. The backbone of our approach is a K-nearest neighbours search method that
predicts the demand pattern of the building using the pattern of the K most similar
historical days (i.e., the K-nearest neighbours). Essentially reflecting the household
activity, the energy demand pattern is expected to demonstrate periodicity and to be
similar among days. As such, an approach that relies on identifying the most simi-
lar days, in order to subsequently utilize them, in the prediction process of energy
demand is expected to be highly effective. K-nearest neighbours (Bishop, 2006) is a
straightforward choice in this respect. In addition, K-nearest neighbours is a far less
complex approach when compared to advanced machine learning approaches, such as
neural networks and support vector machines (Bishop, 2006). This, in turn, enables
its utilization in systems with restricted computational and memory resources, such as
those available in residential, as well as in small and average size commercial buildings
(Fierro & Culler, 2015).

Now, we further improve on this approach by incorporating appropriate pre-
processing and easing. In more detail, we pre-process our time-series utilizing a low-
pass-filter to distinguish the base consumption from the spikes to predict the base
consumption alone. This pre-processing is based on the assumption that a smooth
base demand is easier to be predicted than a signal that includes highly dynamic
energy spikes. Furthermore, our approach incorporates easing to account for the con-
tinuous dynamics of the energy demand. This is done to maximally account for the
most recent time series observations in our prediction model and ease them as we
transition to our predictions. By doing so, we propose a similarity based approach
that has higher predictive accuracy than the state-of-the-art, as further discussed in
the evaluation section. with low complexity.

Importantly, our approach is suitable for predicting both energy demand as well
as small-interval consumption patterns (which can approximate the energy demand)
over short-term horizons. In more detail, our approach predicts the future demand
and/or low-resolution consumption pattern given historical demand samples or low-
resolution consumption data, respectively. In the following paragraph we present our
approach, predicting minute-wise-consumption as an approximation of the demand
(demand samples can be used instead in a straightforward manner). Our approach
follows a 3-step procedure (as illustrated in Figure 1):

I Calculate a baseline vector by low-pass filtering the partial day consumption vec-
tor, c. In particular, c considers energy consumption values for every minute from
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Figure 1. Flowchart of our improved similarity-based approach. The partial current day consumption vector

is first passed through a low-pass filter. Subsequently, the K nearest past days (and, in particular, the K nearest
week-days for a week-day or the K nearest weekend-days for a weekend-day) are selected, and the predictions

are estimated. Finally, the predictions are refined using a series of Penner’s easing transformations and the

partial current day vector.

the beginning of the day until the current time (please note that demand samples
can be used instead to directly predict demand if those are available as discussed
above). Note that this vector extends to 3.5 hours in the past in order for our ap-
proach to perform adequately at the beginning of a day. Now, c is passed through
a centered moving average filter of λ minutes. This acts as a low-pass filter, esti-
mating the base consumption pattern. λ considers an adjustable parameter.

II Find the K most similar filtered historical days using the K-nearest neighbours
based on the euclidean distance of the two vectors (where K is an integer). Notably,
our approach distinguishes week from weekend days, i.e., predictions for week and
weekend days are computed only from past week and weekend days, respectively
(since the household activity pattern is generally quite distinct between these
two). The average of the remainder of these filtered days is computed to estimate
a future consumption vector, ĉ.3 K is also an adjustable parameter.

III A series of easing steps are performed to smooth out the transition from the
observed consumption towards the predicted one and derive the final prediction
vector, c′. Inspired by techniques used in animation design, we use Penner’s easing
functions (Izdebski & Sawicki, 2016) and, in particular, the circular ease out

function, i.e., f(t) =
√

1− (t− 1)2; and the ease out sine function, i.e., g(t) =
sin(π2 t); where t ∈ [0, 1].4 The Penner’s easing functions used are illustrated in
figures 2a and 2b, respectively.

In more detail, the circular ease out function is used to ease out the last N-

3We note that the reminder of the day can be appropriately augmented according to the predictive horizon
needs of the application.
4This easing technique has been selected after experimenting with various other easing techniques and consid-

ering its low complexity (when compared, for instance, with Gaussian-processes-based easing (A. Panagopoulos

et al., 2017)).
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(a) Circular ease out function (f(t) =√
1− (t− 1)2 where 0 ≤ t ≤ 1).
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Figure 2. Penner’s easing functions utilized.

minute average consumption m = 1
N

∑|c|
i=|c|−N ci, where N ≤ |c| and |c| denotes

the size of c. The ease out sine function (operating on top of the circular ease out
one) is used to ease out the last observed consumption value c|c|. More formally,
given an initial house consumption prediction during interval τ of length δ, ĉτ ,
the final eased-out prediction c′τ is calculated as:

c′τ =

tτ+δ∫
tτ


c|c| − g( t−t

0

ta−t0 )
(
(c|c| +m)+

+f( t−t
0

tb−t0 )(m+ ĉτ )
)

t0 ≤ t < ta

m− f( t−t
0

tb−t0 )(m+ ĉτ ) ta ≤ t < tb

ĉτ tb ≤ t

dt

where t0 is the time at the beginning of the predictive horizon; tτ is the beginning
time of interval τ ; tb is the time until when f(t) is used to ease out m; and ta

is the time until when g(t) is used to ease out c|c|. As such, 0 ≤ t0 ≤ tτ and

t0 < ta < tb; and N, ta and tb are also adjustable parameters to be calibrated.5

Given the above steps, our approach has a number of adjustable parameters, i.e.,
λ, K, N, ta and tb which can be selected with various means, such as via a targeted
initial grid search using a dedicated training-set. In the following sections we detail
our evaluation of the proposed approach and show its efficiency. There we also provide
an instantiation of our approach for the case study considered.

4. Evaluation

In this section we provide an evaluation of the proposed approach and show its effi-
ciency. In the following paragraphs, we first detail our case study and how we instan-
tiated our approach. Subsequently we discuss the evaluation results.

5A discussion on adjusting these parameters is provided in Section 4 where, essentially, a grid search approach
is followed to instantiate our approach for our case study data-set.
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Figure 3. Short-term (up to 12 hours ahead) house demand prediction evaluation results. The bars correspond

to the standard error of the mean.

Prediction time 
 (2012-12-17 06:19:00 UTC)

2 4 6 8 10

                 Hours ahead 
                (with respect to the prediction time)

0

1

2

3

kW

Improved similarity-based
SARIMA
Similarity-based
Ground truth

Figure 4. Short-term (up to 12 hours ahead) predictions for a typical day weekday based on SARIMA,
Similarity-based and Improved similarity based methods.

4.1. Case Study

For our evaluation case study we consider 8 months of house consumption data (i.e.,
[6/2012-2/2013]) from the publicly available Electricity Consumption & Occupancy
(ECO) data-set (Beckel, Kleiminger, Cicchetti, Staake, & Santini, 2014) of a typical
detached, average-sized family house in Switzerland. The most suitable values for the
adjustable parameters of our approach, i.e., ta and tb, λ, K and N (defined above), were
identified using 1 month of consumption data, as this amount has been shown to be
adequate to this end. Based on a grid search we concluded on: λ=140m, K=9 N=250m,
ta=25m and tb=250m. As a rule of thumb, we identified that smoothing intervals that
are ∼10 times greater than the average spike intervals (which are typically ∼15 minutes
in our data-set) perform best. Notably, this (training) month is excluded from our
evaluation (testing) data-set.

Finally, we evaluate the approaches considered using ∼30,000 (uniformly drawn) in-
stances within our training data-set and making predictions for all 15 minute intervals
in the future for 12 hours ahead. Subsequently, the mean square error (MSE), for each
prediction interval is calculated:

MSE =
1

n

n∑
i=1

(Yi − Ŷi)2

where n is the number of data points, Y is the vector of observed values of the variable
being predicted, and Ŷi are the predicted values.
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Figure 5. Illustration of the low-pass filter pre-processing effect.

4.2. Evaluation results

In order to evaluate our improved similarity-based demand prediction approach, we
compare against a simpler approach that does not include time-series prepossessing
or easing, i.e., the simple similarity-based approach in (Yang et al., 2011), and a sea-
sonal auto-regressive integrated moving average (SARIMA) model (Dagnely et al.,
2015). Importantly, the later performs equally well or better when compared to far
more advanced machine learning approaches, as discussed in Section 2 (Dagnely et
al., 2015). At the same time its complexity is significantly lower when compared to
advanced machine learning approaches (Dagnely et al., 2015; Edwards et al., 2012).
As such, evaluating against this approach allows us to get an understanding of where
we stand with respect to the state-of-the-art. Given that our approach is also of low
complexity, this is also a fair comparison from such a perspective. Figure 3 collec-
tively reports our evaluation results, where the bars correspond to the standard er-
ror of the mean. Interestingly, the simple similarity-based approach outperforms the
more-complex SARIMA model. This improvement is statistically significant as further
confirmed via t-tests at the 0.05 significance level. Furthermore, our approach also
improves on the simple similarity-based one in a statistically significant manner (con-
firmed by t-tests at a 0.05 significance level). Specifically, the predictive accuracy is
improved by ∼10%. This confirms that filtering and easing can improve the predictive
accuracy of similarity-based approaches.

In more detail, the improved similarity-based approach has a considerably lower
MSE when very-short predictive horizons are considered. This improvement is at-
tributed to easing, which appropriately takes into account the observed data. That
said, the improved similarity-based approach further and consistently outperforms the
simple similarity-based approach when all predictive horizon intervals are considered
(in a statistically significant manner at the 0.05 significance level). Further investiga-
tion suggests that ∼90% of the overall improvement of the improved-similarity-based
approach is due to time-series prepossessing and specifically due to the low-pass filter-
ing. Easing seems to attribute for the rest smaller fraction of ∼10%.

To expand on the points raised above, Figure 4. focuses on short-term predictions for
the SARIMA, similarity-based and improved similarity-based approaches for a typical
weekday (a Monday) from our dataset. As can be seen, both SARIMA and the basic
similarity-based approach predict demand peaks that overestimate the demand. These
high peaks aim to predict demand spikes. However demand spikes are highly dynamic
and easy to mis-predict, deteriorating the overall predictive accuracy. By contrast, our
improved similarity-based approach is less sensitive to this effect due to the smoothing
of demand spikes through appropriate low-pass filtering (as discussed in Section 2).
The effects of low pass filtering for our typical day are also illustrated in Figure 5.

9



Figure 5 shows how the demand spikes are appropriately filtered resulting in a smooth
”base” demand curve.

To conclude, Dagnely et al. selected the title “Predicting hourly energy consump-
tion. Can you beat an auto-regressive model” for their work in Dagnely et al. (2015).
By so doing, they highlighted the primary outcome of their line of research, namely
that a simple auto-regressive model outperforms far more complex approaches (such as
neural networks and support vector machines) in predicting the energy consumption
of a building over short-term horizons when non-intrusive approaches are considered.
Our results here (based on real data) suggest that an arguably even simpler similarity-
based approach can outperform the auto-regressive model (i.e., SARIMA) proposed
by Dagnely et al. (2015) in this task while appropriate prepossessing and easing can
enhance its performance even further.

5. Conclusions

In this work, we proposed a novel non-intrusive approach to predict the energy de-
mand of a building over a short-term prediction horizon (of up to 12 hours ahead).
Our approach relies on a K-nearest neighbours search and incorporates time-series
pre-processing filtering and easing. We provide a thorough evaluation of our approach
to show that it outperforms a simple similarity-based approach as well as a SARIMA
model (by up to ∼10%). Importantly, since the SARIMA model outperforms far more
complex statistical or machine learning approaches in this task, the fact that our ap-
proach outperforms SARIMA provides implicit support to the strength of our method.

Imminent future work includes incorporating our energy demand prediction
approach in an advanced intelligent electric vehicle charging system. Moreover,
since machine learning approaches have been shown to perform adequately when
very-short-term prediction horizons are considered (as discussed in the Background
section), we intend to incorporate them in our approach to enhance further the
transition from real data to the initial predictions. Furthermore, our approach relies
on several adjustable parameters which are calibrated during an initial calibration
session. Defining a dedicated procedure to re-calibrate these parameters as new
data become available, could potentially enhance the reliability of our approach
by enabling the adaptation to (seasonal or other arbitrary) changes in the demand
pattern. Therefore, developing an adaptive improved-similarity-based approach is an
additional and promising future work direction. Lastly, at this time our approach
distinguishes weekend from week days. This can be extended to also account for
vacation days. Investigating to what extend these enhancements improve the efficiency
of the algorithm is an additional research direction.
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