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Control of Soft Pneumatic Actuators with Approximated
Dynamical Modeling

Wu-Te Yang1, Burak Kürkçü2, Motohiro Hirao3, Lingfeng Sun1, Xinghao Zhu1

Zhizhou Zhang1, Grace X. Gu1, and Masayoshi Tomizuka1

Abstract— This paper introduces a full system modeling
strategy for a syringe pump and soft pneumatic actua-
tors(SPAs). The soft actuator is conceptualized as a beam
structure, utilizing a second-order bending model. The equation
of natural frequency is derived from Euler’s bending theory,
while the damping ratio is estimated by fitting step responses
of soft pneumatic actuators. Evaluation of model uncertainty
underscores the robustness of our modeling methodology. To
validate our approach, we deploy it across four prototypes vary-
ing in dimensional parameters. Furthermore, a syringe pump is
designed to drive the actuator, and a pressure model is proposed
to construct a full system model. By employing this full system
model, the Linear-Quadratic Regulator (LQR) controller is
implemented to control the soft actuator, achieving high-speed
responses and high accuracy in both step response and square
wave function response tests. Both the modeling method and the
LQR controller are thoroughly evaluated through experiments.
Lastly, a gripper, consisting of two actuators with a feedback
controller, demonstrates stable grasping of delicate objects with
a significantly higher success rate.

I. INTRODUCTION

Soft robots, constructed from highly elastic materials,
have demonstrated superior performance compared to rigid
robots, particularly in scenarios involving unknown environ-
ments [1], [2], ensuring the safety of human-robot collab-
oration [3], and handling fragile objects in the food and
agriculture industry [4], [5]. These soft robots are typically
driven by soft actuators, such as electroactive polymers,
cable-driven systems, shape memory alloys, and soft pneu-
matic actuators [6], [7]. Among these options, soft pneumatic
actuators are widely used [6], [8] due to their lightweight,
cost-effectiveness, and high power density. However, their
complex geometric shapes and pressure-driven nature present
challenges for dynamical modeling and subsequent con-
trol [9], [10], particularly when implementing model-based
control methods [11].

Recently, a couple of works [10], [12]–[15] modeled
the soft pneumatic as the second-order dynamic system by
fitting systems’ responses to determine the damping ratio
and natural frequency. Unlike the analytical method, curve
fitting methods rely on experimental data to get accurate
system parameters. In addition, the full system model which

1The authors are with the Department of Mechanical Engineering,
University of California, Berkeley, USA. wtyang, lingfengsun,
zhuxh, zz zhang, ggu, tomizuka@berkeley.edu

2The author is with the Department of Computer Engineering, Hacettepe
University Turkey, and also is a Research Scholar at the University of
California, Berkeley, USA bkurkcu@berkeley.edu

3The author is a visiting fellowhsip with the NSK Ltd., Japan
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Fig. 1. The framework of this research. A full system modeling method is
proposed to model soft actuators and syringe pump. A soft gripper made of
two actuators driven by the syringe pump. The designed optimal controller
is programmed inside the microcontroller. The soft gripper is deployed in
an industrial robot arm.

includes models of the pneumatic system and soft actuator,
is important to the controller design. While some pressure
models of air tanks with solenoid valves [10], [13], [16]
have been developed to construct a comprehensive system
model, controlling the solenoid valve posed challenges. It
is driven by pulse-width modulation signals, whereas the
syringe pump is powered by a rotary motor, making it
comparatively easier to manage. Last but not least, previous
works implemented the adaptive controllers [12], [17] and
nonlinear controllers [10], [14], [15], [17] to deal with the
nonlinearity of soft robots. However, the optimal controllers
minimizing the errors of system states which is especially
important for grasping works were barely mentioned to
address soft actuators.

The aim of the paper is to build a full system model,
including models of a syringe pump and soft actuator, for
a soft pneumatic actuator. Then, an optimal controller is
designed for the system to achieve fast and precise responses.
Firstly, we approximate the complex-shaped structure of
the pneumatic actuator as a cantilever beam, as depicted
in Fig. 2 (a). The approximated structure is analyzed by
Euler’s bending beam theory [18] to determine the natural
frequency analytically. The damping ratio is obtained by
fitting the step responses of the actuator. Secondly, we
design a syringe pump by combining a linear actuator and a
commercial syringe to drive the soft actuator. Additionally,
the pressure model of the syringe pump is developed to
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predict the pressure changes inside the soft actuator. The
pressure model and the actuator’s model form a full model
for controller design. Lastly, the Linear-Quadratic Regulator
(LQR) controller is implemented to the full model to achieve
high-speed responses and reduce control errors.

The remainder of this paper is organized as follows.
Section II compares related works with the proposed method.
Section III describes the full system modeling for the SPA
and the syringe pump. Section IV discusses the controller
design and its simulation. Section V demonstrates the ex-
perimental results of the soft pneumatic actuator. Section VI
discusses the experimental results and concludes the work.

II. RELATED WORKS

1) Soft Actuator Modeling: Various modeling methods
are proposed for soft actuators. Bending models for soft
actuators are developed by using the piece-wise constant
curvature method [19], Euler’s bending beam theory [20],
Cosserat rod model [21], [22], and Lagrange equation [23],
[24]. Recent works modeled the soft actuators as second-
order systems by curve fitting or least square methods [10],
[12]–[15]. Instead, we propose an analytical method to
compute the natural frequency of soft actuator. The approach
serves as an alternative way to obtain the natural frequency.

2) Syringe Pump Modeling: Some syringe pumps de-
sign [25], [26] were proposed and applied to control soft
robots; however, they mainly focused on the performance
such as control accuracy. They did not develop the pressure
model of the syringe pump which had an influence on the
controller design. Thus, the pressure dynamic model of the
syringe pump is developed to build a full model for later
controller design.

3) Controller Design: The controllers can be developed
for the soft pneumatic actuator based on the dynamic model.
The straightforward strategies include open-loop control [27]
and closed-loop controller (PID controller) [21], [22], [28],
[29]. However, the fundamental controllers are primarily
used for preliminary simulations. On the other hand, the
model reference adaptive controller is adopted to handle
the model uncertainties caused by the soft materials [12],
[17]. Other advanced controllers such as the sliding mode
controller [14], [15], feedback linearization controller [10],
[16], and backstepping controller [13] are utilized to deal
with the unpredictable soft actuators. The state feedback
controllers [30], [31] placing poles at desired locations could
also achieve desired responses. Nonetheless, the LQR con-
troller which minimizes the state errors and control input is
rarely applied to handle the soft robots. Thus, we implement
the LQR controller in the system to attain rapid responses,
higher accuracy, and synchronized control across multiple
fingers.

Overall, we seek to produce an alternative and useful full
system modeling and controller design approach for the SPAs
driven by the syringe pump.

III. SYSTEM MODELING

In this section, we build the dynamical model for both the
soft actuator and the pneumatic control system. The data-

Fig. 2. (a) The nonlinear structure of soft pneumatic actuator is approx-
imated by a cantilever beam. (b) The approximated structure of the soft
actuator generates bending angle θ with a load F .

driven models are also constructed to verify the effectiveness
of the proposed modeling method.

A. Modeling of the Soft Actuator
SPAs consist of numerous discrete chambers, and these

irregular structures make them hard to model. Currently,
researchers might count on curve fitting method to get the
dynamic model [10], [12]–[15]. This paper approximates the
soft pneumatic actuator as a cantilever beam. The cantilever
beam is a typical example to study bending problems [14].
Standard analytical methods could quickly analyze the ap-
proximated structure, and we can derive the system param-
eters of dynamic model such as natural frequency. Damping
ratio becomes the only remaining parameter which can be
easily obtained by fitting step responses of the soft actuator.

The simplified structure of the soft actuator is shown
in Fig. 2 (a). Before we analyze the approximated beam
structure, we assume that the soft pneumatic actuator ex-
hibits linear deformations. Usually, the soft materials show a
nonlinear stress-strain relationship. However, if their defor-
mations are not large, they still show a linear relationship.
The stress-strain curve of soft silicone rubbers used in this
research, Ecoflex Dragon Skin, can be approximated as a
linear curve at strain around 100% [30].

We model the soft actuator (simplified beam) as the
second-order system to describe the dynamics of bending
angle. The validity of the second-order system is analyzed
in Sec. III-D. The standard form of the second-order model
of the system is expressed as

θ̈ +
C

M
θ̇ +

K

M
θ =

F

M
(1)

where M is the mass of the soft actuator, C is the damping
constant of the system, K is the spring constant of the
system, and F is the force acted at the beam generated by
the input pressure. The C

M and K
M can also be expressed as

2ζωn and ωn
2 respectively

θ̈ + 2ζωnθ̇ + ωn
2θ = F/M (2)
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Fig. 3. Step responses of the soft pneumatic actuator and the damping ratio
and its perturbation term are obtained by fitting the nominal and deviated
responses.

The analysis can be observed in Fig. 2 (b). When a force
is generated by input pressure, the beam structure deflects
and has a bending angle θ. The static equilibrium bending
angle can be described as [18]

θ =
FL2

2EI
(3)

where θ is the bending angle of the approximated beam, F is
the force acting at the end generated by input pressure, L is
the length of the actuator, E is Young’s modulus, and I is the
moment inertia of the approximated beam. We manipulate
the (3) and obtain

F

θ
=

2EI

L2
= K (4)

where K is the equivalent spring constant of the approxi-
mated beam structure under bending force. Hence, the spring
constant of (1) is obtained. Temporarily, the damping term
is ignored. Then, the (1) can be written as

θ̈ +
2EI

ML2
θ =

F

M
(5)

The 2EI
ML2 is the square of the natural frequency as the Eq.

(2), and the natural frequency is

ωn =

√
2EI

ML2
(6)

Next, the damping ratio is estimated by fitting the step
response of the soft pneumatic actuator with a step input
pressure (0.06 MPa) as in Fig. 3. Due to the nonlinearity
and unpredictability of the soft materials, the damping ratio
is not a constant, but it comes with a perturbation term. The
damping ratio of our soft actuators and its perturbation is
around ζ+∆ζ = 0.6±0.1. Note that, the perturbed parameter
introduces uncertainty to the model. However, the stability
and robustness of the modeling approach are maintained, as
discussed in Section III-D.

Fig. 4. The schematic of the syringe pump which includes a linear actuator
and a commercial syringe.

B. Design and Modeling of the Syringe Pump

Recent works usually utilize the syringe pump [25], [26]
or air pumps with a pressure regulator or solenoid valve to
generate air pressure for the pneumatic actuators and soft
robots [9], [29], [32]. The air pumps are easily accessible
but they are low in resolution and usually need extra bulky
reservoirs. Instead of using an air pump, we build a syringe
pump to provide differential air pressure change for the
pneumatic actuator. The pump does not need an air regulator.
Instead, it simplifies the pressure control to motor control and
can provide more precise air pressure. Moreover, the pressure
dynamic model of the syringe pump is proposed as follows

The schematic of the pressure control platform is displayed
in Fig. 4. A syringe could store air like the tank of the
air pump. The slider of the linear actuator is connected to
the syringe to push/pull and control the air pressure inside
the soft actuator. The modeling of the pneumatic control
platform is introduced in [33]. The process begins with the
relationship between motor speed and slider speed

vs =
l

2π
ωm (7)

where vs is the speed of the slider in the linear actuator, l
is the lead of the screw in the linear actuator, and ωm is the
speed of the motor inside the linear actuator. The air output
flow rate of the syringe is described as

Qs = Asvs =
lAs

2π
ωm (8)

where Qs is the air output flow rate of the syringe, and As

is the inside cross-sectional area of the syringe. Lastly, the
pressure changing rate inside the soft actuator is attained by
dividing Qs(Eq. (8)) by the capacity of soft actuator Cs

Ṗ =
Qs

Cs
=

lAs

2πCs
ωm (9)

Note that the capacity of the soft actuator will change
as it is pressurized. However, we treat it as a constant,
partly because the maximum expansion is still in the linear
deformation range during operations, and partly because we
would simplify the model and let the controller handle it.
Thus, it is assumed as a constant in the modeling stage.

C. Full System Model

The transfer function of the system can be obtained by
taking the Laplace transform of (2). Since we make a linear
model assumption, F = c× P (c is a constant) as in [34].
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TSPA =
cP/M

s2 + 2ζωns+ ωn
2

(10)

The transfer function of the pneumatic control system is
obtained by taking the Laplace transform of (9)

TPCS =
lAsωm

2πCs

1

s
(11)

We get the full system’s transfer function by replacing P in
(10) by (11).

TSY S =
lAsωmc/2πCsM

s3 + 2ζωns2 + ωn
2s

(12)

The full system is a third-order system.

D. Uncertain Model Evaluation

Mathematical models aim to represent reality by mapping
inputs to responses. Yet, the inherent differences between
mathematical representations and physical systems mean no
model can be entirely accurate. This necessitates a level of
trust among those employing these models. The challenge is
crafting a model that is simple enough for practical use but
detailed enough to be a reliable representation of reality.

While physical principles allow us to create analytical
representations of certain systems, refining these representa-
tions with experimental data is essential for enhancing their
accuracy and relevance. There are certain system dynam-
ics that are either too complex to model with traditional
physics or entirely elusive to such modeling efforts. This
complexity underscores that relying on a singular nominal
model may fall short of capturing the intricacies of physical
systems. Therefore, by increasing the number of repeatable
experiments and collected data, we can better approximate
the true system behavior [35]. By establishing a broader set
of nominal dynamic models (or all possible plant family
notions) based on this data, we increase our chances of
representing real-world conditions more effectively.

To substantiate our approach, we executed seven distinct
experiments, depicted in Fig. 3. The results show that,
under almost identical conditions, each open-loop experiment
yielded different outputs from the same setup. This indicates
potential gaps in our model parameters or that system dy-
namics varying based on unidentified factors. To establish
a comprehensive ”all possible plant family”, we initiate a
series of system identification processes for each experiment.
During this identification, we’ll apply the N4SID technique,
correlating identical inputs to their varied outputs as Fig. 5.
The efficacy of each system identification is detailed in Table
I, while the discrepancies between each experimental result
and its identified model are illustrated in Fig. 6.

The concept of the ”all possible plant family” defined by
T̂ is expressed as:

T̂ ∈ {T (1 + ∆WT ) | ∀ ∥∆∥∞ ≤ 1} (13)

where WT is a robustness weight function and ∆ is any
stable unstructured uncertainty function. A generic way to
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Fig. 5. Step responses of the fitted models in Table I.

TABLE I
FIT TO ESTIMATION DATA FOR EACH EXPERIMENT IN FIG. 3.

Experiment State-Space Order Fit to Estimation Data (%)
P1 5 97.07
P2 5 94.63
P3 4 96.05
P4 6 96.88
P5 6 96.44
P6 2 96.01
P7 4 93.61

describe the robustness weight function WT is given in [36]
as∣∣∣∣Mike

jϕik

Miejϕi
− 1

∣∣∣∣ ≤ |WT (jωi)| , i = 1, . . . ,m; k = 1, . . . , n

(14)

Here, the magnitude and phase are evaluated across a set of
frequencies, represented as ωi (spanning from i = 1, . . . ,m),
and the experiment is reiterated n = 7 times. (Mik, ϕik) de-
lineate the magnitude-phase pair measurements correspond-
ing to frequency ωi and the experiment iteration k. (Mi, ϕi)
denotes the magnitude-phase pairs for the nominal plant
T . The findings derived from adopting this methodology
are given in Fig. 5 with a harmony of Fig. 3. In our
evaluation process for the choice of the nominal model, we
find evidence, as illustrated in Fig. 5, that the analytical
system model derived from (10) aligns with the T̂ family.
This alignment not only reinforces the rationality behind our
model selection but also underscores its utility. Adopting this
nominal choice streamlines subsequent phases of design and
analysis, allowing for a cohesive and consistent approach

Finally, if the designed controller satisfies ∥WTTK(1 +
TK)−1∥∞ < 1, where K stands for the controller in a
compact form, the closed-loop system remains stable under
all possible perturbations as in Fig. 7.

IV. CONTROLLER DESIGN

This section aims to design a suitable controller for the soft
pneumatic actuators. We begin with the open-loop analysis
and then design the LQR for the soft actuators.
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A. Open Loop Analysis

With the system model (12), we can perform open-
loop analysis by examining the open-loop poles which are
0,−ζωn ± jωn

√
1− ζ2. There are one pole on the imagi-

nary axis and two poles on the left half-plane if −ζωn < 0.
Thus, the system is marginally stable. The system does not
have the resonance at the corner frequency and it begins to
show phase lag in low frequency due to the soft materials.

B. LQR Controller Design

A PID controller was designed to regulate the soft actuator
in our previous work [33] with an uncompensated steady-
state error. Thus, to address this steady-state error, meet the
robustness condition, and enhance the performance, we have
opted for an LQR controller to enhance performance. The
LQR controller design seeks to minimize a cost function,
J , representing a balance between state performance and
control effort: J =

∫∞
0

(xT (t)Qx(t)+uT (t)Ru(t)) dt Here,
xT (t)Qx(t) weighs the state deviations, while uT (t)Ru(t)
assesses the control effort. By selecting appropriate Q and R
matrices, the LQR fine-tunes this trade-off to achieve desired
system performance with optimal control effort.

At first, the state vector is defined as x = [θ θ̇ θ̈]T , and the
system model (12) is formulated as the controllable canonical
form as

ẋ = Ax+Bu, y = Cx (15)

where

A =

0 1 0
0 0 1
0 −ωn

2 −2ζωn

 , B =

00
1

 , C =

 lAsωmc
2πCsM

0
0

T

(16)

The LQR algorithm is an automated method of finding a
suitable state-feedback controller (u), which is attained by
solving the continuous-time algebraic Riccati equation [37]

ATY + Y A+ Y BR−1BTY +Q = 0 (17)
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Fig. 7. Robustness weight selection based on the relative modeling errors.

where R = 1 and

Q = p

1 0 0
0 0.1 0
0 0 0

 (18)

where we penalize the bending angle θ and its velocity θ̇,
and p ∈ R. Once we get the Y by solving (17), we have the
state-feedback controller

u = −R−1BTY x (19)

The stability of the system Eq. (15) can be checked by
defining a Lyapunov function

V = xTY x (20)

V̇ = ẋTY x+ xTY ẋ = xT (ATY + Y A)x (21)

Since the Y > 0, the Lyapunov function V is positive definite
and decrescent. The −V̇ is positive definite. Hence, the
system is uniformly globally stable based on the Lyapunov
stability criterion [38].

C. Simulation Results
Simulations are conducted in MATLAB/Simulink to evalu-

ate the performance of the controllers designed in Sec. IV-B
and numerically validate the robustness criteria derived in
Sec. III-D. The reference is the step function which is set
as θ = π/2. The simulations are conducted in two different
soft actuators. In addition, we intend to design a controller
that makes the soft actuators respond faster and reach states
precisely, so the selected indices are the settling time and
steady-state error. The smaller the settling time and steady-
state error, the better the controller.

The soft actuators were optimal designs in our previous
work [3], [34]. The former work relied on the data-driven
method to search for the optimal parameters, while the later
one implemented the model-based optimization approach to
explore the optimal parameters. The prototypes are used
to verify the modeling and controller design method. The
simulation results are demonstrated in Fig. 8 (a). Their
dynamical models are obtained by getting ζ and ωn discussed
in Sec. II. In Fig. 8(a), Design 1 is developed in [34] which is
made of a material whose Young’s modulus is 0.34 MPa [39].
The LQR controller reaches a settling time of around 0.8
seconds and nearly cancel the steady-state error by penalizing
the state θ and θ̇. Design 4 is designed in [3] which is made
of stiffer material whose Young’s modulus is around 10 MPa
determined by tensile test. Its settling time is approximately
0.5 seconds as in Fig. 8(a).
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Fig. 8. (a) The simulations and experimental validation of LQR controller
designed for the soft actuators (Design 1 and Design 4). (b) The square
wave function responses of Design 1 and Design 4 are demonstrated.

V. EXPERIMENTAL EVALUATION

A. Experimental Setup

The control block diagram and the experimental setup are
displayed in Fig. 9. Soft actuators are driven by the self-
designed syringe pump. An air pressure sensor (Walfront,
Lewes, DE) with a sensing range of 0 to 80 psi is utilized to
detect the air pressure for open-loop control. A flex sensor
(Walfront, Lewes, DE) is embedded inside the actuator to
observe the bending angle for feedback control. Both sensors
are synchronized with Arduino MEGA 2560 (SparkFun
Electronics, Niwot, CO). The microcontroller is based on
the Microchip ATmega 2560. The microcontroller is also
synchronized with a computer to log sensing data.

TABLE II
COMPARISONS OF TRUE NATURAL FREQUENCIES AND THE

ESTIMATIONS FROM THE DERIVED EQUATION

Unit [rad/s] True ωn Estimated ωn Error
Design 1 [34]

(E=0.34MPa, M=0.17N, L=0.94m) 1.900±0.035 1.812 4.86%

Design 2 [34]
(E=0.26MPa, M=0.24N, L=0.94m) 1.141±0.046 1.372 16.84%

Design 3 [34]
(E=0.34MPa, M=0.20N, L=0.106m) 1.523±0.046 1.422 7.10%

Design 4 [3]
(E=10MPa, M=0.04N, L=0.060m) 10.420±0.094 8.709 19.64%

Fig. 9. (a) The control block diagram in both MATLAB/Simulink
simulations and experiments. (b) The schematic of the experimental setup
and signal flows.

B. Single Soft Actuator Test

1) Verification of Dynamical Model: In Sec. III-B, we
build the second-order dynamical model for a soft actu-
ator. The damping ratio ζ is obtained by fitting the true
responses of the soft actuator, and the natural frequency
is determined by Eq. (6). Thus, this sub-section aims to
verify the accuracy of the natural frequency by comparing
the true natural frequencies and estimations of the equation.
Based on the Eq. (6), the natural frequency is influenced
by Young’s modulus (E), moment of inertia (I), mass of
actuator (M ), and its length (L). Since the moment of inertia
I of the actuators are decided during the design stage in our
previous works [3], [34], so they are fixed here. We use
different materials (E) and different lengths (L), and both
different materials and lengths will affect the mass (M ). The
comparison results are illustrated in Table II.

The error of the Eq. (6) ranges from approximately 4.86
% to 19.64 %, which is influenced by the E and L. Design
1 to Design 3 have the same shape, height, and width but
have different lengths or materials. Design 1 has the smallest
error 4.86 %. The longer the actuator and the smaller Young’s
modulus, the larger the errors of the Eq. (6). For example,
Design 2 has an error of 16.84 % because it is made of softer
material. Design 4 is made of harder material, has different
dimensional parameters, and has a quite distinct geometric
shape. The error is increased to about 19.64 %.

2) Step responses: Step response is the time-domain
behavior of the output of a system with a step-input com-
mand. Step response test helps gauge the performance of
the controller such as the steady-state error and the settling
time. The step responses of LQR controllers of Design 1 are
displayed in Fig. 8 (a). The experimental results of the LQR
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controller respond faster than the simulation result. The step
response has nearly zero steady-state error and the settling
time is around 0.8 seconds. The result of Design 4 is shown
in Fig. 8 (a). The performance is better due to the property
of stiffer material. The settling time is around 0.5 seconds.

In addition, we also test the step responses of the actuators
with reference 90 degrees (like Fig. 8(a)) in Table II 10 times
to get the averages and standard deviations as displayed in
Table III. All actuators are controlled by the LQR controller.
Again, Design 2 (softer material) and Design 3 (longer struc-
ture) have relatively larger errors and standard deviations.
Design 4 has a relatively smaller error and standard deviation
compared to Design 1.

TABLE III
THE AVERAGE OF STEP RESPONSES AND STANDARD DEVIATION OF THE

SOFT ACTUATORS IN TABLE II

Average [deg] STD [deg]
Design 1 [34] 91.1 1.13
Design 2 [34] 92.1 4.09
Design 3 [34] 91.9 2.23
Design 4 [3] 90.5 0.76

3) Square Wave Responses: The square wave response is
to know the performance of the soft actuator with contin-
uously changing input command. We can observe the soft
actuator’s errors and delay of responses. The square wave
responses are demonstrated in Fig. 8 (b). The Red dashed
line represents the result of Design 1 while the green dashed
line describes the response of Design 4. Again, Design 1
shows a slightly delay response compared to Design 4 due
to the material property. Also, the true response has slight
vibrations when the soft actuator is returning to the 0 degrees
because of the asymmetric structure of the soft actuator.

C. Two-fingered Gripper Test

Two soft actuators of Design 1s [34] are used to make a
two-fingered soft gripper. Usually, the open-loop controller
cannot synchronize the multiple fingers(different response
times) to hold an object stably stage, so we implement
the full system model and the LQR controller designed
in this research to address this issue. The experimental
results are demonstrated in Fig. 10. The gripper is used
to grasp food and vegetables. The asynchronized response
times of different fingers caused by the open-loop control
would weaken the manipulability of the soft gripper, and the
objects tend to drop. By contrast, the synchronized motions
of two fingers regulated by the feedback controller are able
to grasp the objects successfully. Thus, we control the robot
to grasp four different objects for 10 times. The total success
rate of the gripper with open-loop control is 67.5%, while
the success rate of the gripper with closed-loop control is
increased to 92.5%.

VI. CONCLUSION AND FUTURE WORKS

This work presents a full system modeling approach and
control strategy for a soft pneumatic actuator driven by

Fig. 10. The soft gripper with feedback controller is deployed on an
industrial robot arm to grasp various food such as cauliflower, bread, carrot,
and dumpling.

the syringe pump. The soft actuator is modeled based on
Euler’s bending theory. The analytical model of natural
frequency is proposed. The damping ratio is estimated by
curve fitting step responses of actuators. This modeling
approach is validated on four soft actuators designed by
both model-based and data-driven methods. The modelling
error can be as low as 4.86 %. Moreover, the modeling
method is proved to be stable and robust under model
uncertainty evaluation. Furthermore, the pressure dynamic
model of the syringe pump is derived to build the full
system model(models of syringe pump and soft actuator).
The optimal controller(LQR) is implemented to control the
full system. The LQR controller enables the system to
achieve fast responses and higher accuracy. Given the desired
reference(90 degrees), the settling time is reduced to 0.8
seconds from about 2.2 seconds and the standard deviation of
steady-state error is approximately 1 degree. The full system
with LQR controller also performs well in square wave
function test, and the experimental results are as good as
the model simulations in MATLAB environment. Finally, the
coordinated control of the gripper’s fingers imparts stability
and precision, enabling the successful and secure grasping
of diverse delicate objects, augmenting the success rate of
gripping operations.

Our future works include nonlinear parameter-varying
modeling and underactuated control for soft pneumatic ac-
tuators, using the soft pneumatic actuators for grasping [40]
tasks, and developing algorithms to apply the hardware to
the multiple tasks in real world using multi-task RL [41].
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