
Lawrence Berkeley National Laboratory
LBL Publications

Title

Comparing regional precipitation and temperature extremes in climate model and 
reanalysis products

Permalink

https://escholarship.org/uc/item/8bs1h8sg

Authors

Angélil, Oliver
Perkins-Kirkpatrick, Sarah
Alexander, Lisa V
et al.

Publication Date

2016-09-01

DOI

10.1016/j.wace.2016.07.001

Supplemental Material

https://escholarship.org/uc/item/8bs1h8sg#supplemental
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8bs1h8sg
https://escholarship.org/uc/item/8bs1h8sg#author
https://escholarship.org/uc/item/8bs1h8sg#supplemental
https://escholarship.org
http://www.cdlib.org/


Weather and Climate Extremes 13 (2016) 35–43
Contents lists available at ScienceDirect
Weather and Climate Extremes
http://dx.doi.org/10.101
2212-0947/Crown Copy
(http://creativecommon

n Corresponding auth
E-mail address: oliv
journal homepage: www.elsevier.com/locate/wace
Comparing regional precipitation and temperature extremes in climate
model and reanalysis products

Oliver Angélil a,n, Sarah Perkins-Kirkpatrick a, Lisa V. Alexander a, Dáithí Stone b,
Markus G. Donat a, Michael Wehner b, Hideo Shiogama c, Andrew Ciavarella d,
Nikolaos Christidis d

a Climate Change Research Centre and ARC Centre of Excellence for Climate System Science, UNSW Australia, Sydney NSW 2052, Australia
b Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
c National Institute for Environmental Studies, Tsukuba, Ibaraki 305-8506, Japan
d Met Office Hadley Centre, Exeter EX1 3PB, UK
a r t i c l e i n f o

Article history:
Received 2 May 2016
Received in revised form
30 June 2016
Accepted 10 July 2016
Available online 12 July 2016

Keywords:
Extremes
Evaluation
Event attribution
CAM5.1
MIROC5
HadGEM3-A-N216
6/j.wace.2016.07.001
right & 2016 Published by Els
s.org/licenses/by-nc-nd/4.0/).

or.
er.angelil@student.unsw.edu.a
a b s t r a c t

A growing field of research aims to characterise the contribution of anthropogenic emissions to the
likelihood of extreme weather and climate events. These analyses can be sensitive to the shapes of the
tails of simulated distributions. If tails are found to be unrealistically short or long, the anthropogenic
signal emerges more or less clearly, respectively, from the noise of possible weather. Here we compare
the chance of daily land-surface precipitation and near-surface temperature extremes generated by three
Atmospheric Global Climate Models typically used for event attribution, with distributions from six re-
analysis products. The likelihoods of extremes are compared for area-averages over grid cell and regional
sized spatial domains. Results suggest a bias favouring overly strong attribution estimates for hot and
cold events over many regions of Africa and Australia, and a bias favouring overly weak attribution
estimates over regions of North America and Asia. For rainfall, results are more sensitive to geographic
location. Although the three models show similar results over many regions, they do disagree over
others. Equally, results highlight the discrepancy amongst reanalyses products. This emphasises the
importance of using multiple reanalysis and/or observation products, as well as multiple models in event
attribution studies.
Crown Copyright & 2016 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

As the climate continues to change under the influence of an-
thropogenic emissions, there has been a growing interest in how
the occurrence of extreme weather events fit within the climate
change context (Seneviratne et al., 2012). A common method of
characterising the anthropogenic contribution to extreme weather
is to analyse the relative probabilities of exceeding an extreme
threshold in two simulated distributions (Stone and Allen, 2005;
Stott et al., 2004, 2013). These distributions can be constructed
from two large ensembles of simulations generated by a dynamical
climate model, each run under a different climate scenario: a
historical ‘real world’ (RW) representative of recent observed cli-
mate, and a counter-factual ‘natural world’ (NAT) representative of
a climate without human interference in the climate system.
Purpose-built model evaluation should underpin the probabilistic
evier B.V. This is an open access a

u (O. Angélil).
event attribution framework used in these studies, whereby the
probabilities of extremes are compared across the historical model
output and a number of observation and/or reanalysis products.
This is necessary as attribution statements are highly sensitive to
the shapes of the tails from which they are calculated (Angélil
et al., 2014b; Fischer and Knutti, 2015; Jeon et al., 2016). For ex-
ample, the use of simulated RW and NAT distributions with
shorter tails than those of observed distributions lead to ex-
aggerated attribution statements – the shorter tails increase the
relative strength of the anthropogenic signal from the noise of
natural variability (Bellprat and Doblas-Reyes, 2016). In such an
evaluation the use of multiple observation and/or reanalysis pro-
ducts must be considered, as their representation of extremes can
differ remarkably (Donat et al., 2014).

Many event attribution studies however typically fail to in-
corporate multiple observation and/or reanalysis products to
evaluate the extreme tails of simulated distributions (Stott et al.,
2004; Pall et al., 2011; Peterson et al., 2012, 2013; Herring et al.,
2014, 2015). One possible reason for the paucity of such evaluation
is the lack of long (∼50 years) historical simulations, and long
rticle under the CC BY-NC-ND license
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spatially and temporally complete observational records required
for the evaluation of extremes. For example, evaluating one-in-
ten-year extremes with datasets ten years in length is both chal-
lenging and unreliable.

Using datasets 35 years in length (1979–2013), we evaluate the
likelihood of exceeding (or falling below for cold events) one-in-
one- and one-in-ten-year daily temperature and precipitation
thresholds (defined according to a reference product) over land
regions of the world, in ensembles of historical simulations gen-
erated by three Atmospheric Global Climate Models (AGCMs). The
primary aim of this study is to explore observational uncertainties
in model evaluation relevant for extreme event attribution, at the
regional scale.
2. Data

2.1. Atmospheric Global Climate Model data

Output was generated by three AGCMs as part of the C20Cþ
Detection and Attribution Project (see http://portal.nersc.gov/c20c
for more information, Folland et al. 2014). Since Pall et al. (2011)
numerous event attribution studies have been published utilising
output from AGCMs in order to produce the large ensembles
needed to accurately resolve the statistics of rare weather events.
Here we use CAM5.1, MIROC5 and HadGEM3-A-N216 (‘HadGEM3’
hereinafter), the first three AGCMs to have a sufficient number of
simulations submitted to the C20Cþ archive. As there are 10 en-
semble members generated by MIROC5 (run at ∼ °1.4 ) which span
a number of decades, we use the first 10 historical ensemble
members from CAM5.1 and HadGEM3, run at ∼ °1 and ∼ °0.5 re-
solution respectively. The members in each ensemble differ from
each other only in their initial conditions. Simulations from all
AGCMs are roughly 50 years in length but have been trimmed to
match availability of the AGCM and reanalyses products used.

The AGCMs are forced under observed boundary conditions.
These boundary conditions include greenhouse gases, tropo-
spheric aerosols, volcanic aerosols, ozone concentrations, solar
luminosity, sea surface temperature (SST), sea ice coverage (SIC),
and land cover. In CAM5.1, prescribed SSTs up to 1982 are an ad-
justed version of the HadISST1 dataset (Rayner et al., 2003), after
which the NOAA-OI.v2 dataset is used (Hurrell et al., 2008). The
HadGEM3 (Christidis et al., 2013) and MIROC5 (Shiogama et al.,
2013, 2014) prescribed monthly SST and SIC were taken from the
HadISST1 dataset.

2.2. Reanalyses

We compare the probabilities of daily extremes in the three
AGCMs with four reanalysis products (results using two additional
reanalyses products can be found in the Supplementary Material).
We firstly examine the ECMWF Interim Reanalysis (ERA-Interim,
Dee et al. (2011)) as it has been found that temperature extremes
in ERA-Interim correlate more strongly with gridded observations
than a selection of other reanalysis products (Donat et al., 2014).
Because there is some uncertainty in the representation of ex-
treme weather between observations and reanalyses products
(Donat et al., 2014), we complement ERA-Interim with three ad-
ditional products from the current state-of-the-art generation
(Rienecker et al., 2011). These are: NCEP Climate Forecast System
Reanalysis (CFSR, Saha et al., (2010)); National Aeronautics and
Space Administration (NASA)'s Modern-Era Retrospective Analysis
for Research and Applications (MERRA, Rienecker et al., (2011));
and most recently available, the Japanese 55-year Reanalysis (JRA-
55, Kobayashi et al. (2015)).

As they are still widely used products, results using the
National Centers for Environmental Prediction/National Centre for
Atmospheric Research (NCEP/NCAR) Reanalysis 1 (NCEP1, Kalnay
et al., (1996)) and NCEP Department of Energy (DOE) Reanalysis 2
(NCEP2, Kanamitsu and Ebisuzaki, (2002)) are included in the
Supplementary Material. Despite NCEP1 being shown to perform
poorly relative to other reanalyses and observation products for
temperature extremes (Donat et al., 2014), it has been widely used
in recent event attribution studies (Herring et al., 2014, 2015).

HadGHCND (Caesar et al., 2006) – the only quasi-global long-
running in situ-based observation product consisting of daily
temperature fields, was excluded from this study not only because
it is spatially and temporally incomplete, but also as it is developed
at coarse resolution ( ° × °)3.75 2.5 relative to other products in this
study. As all data in this study are remapped to the resolution of
the coarsest product, we have opted for high resolution analysis
over using HadGHCND. All AGCM and reanalysis data have been
interpolated to the NCEP1/NCEP2 grid (192�94 grid; 1.9°), using a
first-order conservative remapping technique (Jones, 1999).

Since reanalyses are different from observations as they are
essentially an assimilation of observations through an atmospheric
model, we use gridded observations of daily temperature and
precipitation over Australia, from the Australian Water Availability
Project (AWAP, Jones et al., (2009)). Observations over only Aus-
tralia are used because existing gridded observations of daily
temperature and precipitation are spatially incomplete. Hot, cold,
and wet extremes over three Australian regions are compared
between AWAP and ERA-Interim (see Fig. S7).

It should be noted however, that caution should be taken when
comparing gridded observations with models due to the “issue of
scale” (Avila et al., 2015), which leads to a mismatch between the
two types of products. Gridded observations represent regularly
spaced values derived from point locations, while output from
models represent area averages. There is an additional issue at
play in gridded observations such as HadEX2 and GHCNDEX: the
order of operations applied to calculate extremes differ from
products that provide daily grids of temperature and precipitation,
such as climate models and reanalyses. Extremes are first calcu-
lated at point locations and then gridded, while in models, ex-
tremes are calculated from the gridbox average. This creates a
systematic bias where the difference in hot and cold extremes in
models are smaller than those found in GHCNDEX and HadEX2.
3. Method

For the evaluation of extremes, thresholds of one-in-one-year
( 1

365
chance of occurrence) and one-in-ten-year ( 1

3650
chance of

occurrence) hot, cold, and wet days occurring at the grid and re-
gional scales have been defined from daily anomalies in ERA-In-
terim, with the base period being the 1979–2013 climatology at
each grid cell or region. ERA-Interim serves as our reference pro-
duct in order to clearly demonstrate differences amongst all
AGCMs and reanalyses products. Although perhaps less relevant
for extreme event attribution, the selection of the one-in-one-year
thresholds allows us to examine extreme anomalies for which
sampling should not be problematic considering the length of the
period examined. When the desired percentile was between two
data points, the nearest point to a linearly interpolated value be-
tween the two points was chosen.

The regions used are demarcated by the 58 regions (see Fig. 1
and Angélil et al., (2014b)) in the Weather Risk Attribution Fore-
cast (WRAF, http://web.csag.uct.ac.za/�daithi/forecast/). Each re-
gion, roughly ·2 10 km6 2, is based on political-economic borders,
and omits regions dominated by small islands (for which the
statistical characteristics of extreme atmospheric weather will be

http://portal.nersc.gov/c20c
http://web.csag.uct.ac.za/~daithi/forecast/
http://web.csag.uct.ac.za/~daithi/forecast/


Fig. 1. Weather Risk Attribution Forecast regions colour-coded according to their continents. Each region is roughly ·2 10 km6 2.
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strongly constrained under imposed-ocean conditions).
Before we calculate the probability of exceeding the thresholds

defined from ERA-Interim in the AGCMs and reanalyses, we con-
vert the raw data at every grid cell/region to daily anomalies based
on the 1979–2013 climatologies. We do this instead of calculating
anomalies based on seasonal climatology, as we are mostly inter-
ested in extremes occurring anytime within the annual cycle –

those being typically hazardous to humans and their built en-
vironments. Correcting for mean bias is an essential step before
comparing the shapes of the distributions, as the raw values be-
tween products can differ substantially. This procedure is per-
formed separately for each reanalysis product and ensemble
member.
4. Results

Return period curves are first shown for selected regions
(Fig. 2). Next, the probabilities of exceeding (or falling below for
extremely cold events) the one-in-one- and one-in-ten-year
thresholds (defined in ERA-Interim) in the datasets, are plotted as
return periods. For the maps (panels (a) to (f) in Figs. 3–5), the
resulting return periods from the CAM5.1, MIROC5, and HadGEM3
ensembles, are averaged in order to gauge the mean exceedance in
the entire ensemble. For the panels (panels ‘g′ in Figs. 3–5)
Fig. 2. Return Periods of hot (a), cold (b), and wet (c) average daily near-surface tempera
and 3 (western Australia) respectively. Red, blue, and yellow lines are from the 10 MIROC
Interim. Each distribution covers the 1979–2013 period. Dashed lines show the return
reference product, ERA-interim.
comparing the probabilities of extremes occurring over the WRAF
regions, results from the ensemble members are plotted separately
such that spread within the ensemble can be visualised.

Fig. 2 shows return periods curves of 1979–2013 daily mean
temperature/precipitation anomalies from ERA-Interim and every
member in each of the AGCMs, over three WRAF regions. Panels a,
b, and c are for hot, cold, and wet weather over southern Africa,
central Canada and western Australia respectively. Relative to ERA-
interim, all AGCMs underestimate the probability of hot extremes
over southern Africa; CAM5.1 and HadGEM3 under- and over-
estimate the probability of cold extremes over central Canada re-
spectively; and all AGCMs overestimate the probability of wet
extremes over western Australia.

While these biases from the AGCMs appear fairly large, the
question remains as to how they compare against possible biases
in the reanalyses. We can get some indication of this by comparing
against other reanalyses. Fig. 2 highlights the spread of return
periods for two different return values based on one-in-one- and
one-in-ten-year anomalies in ERA-interim. Figs. 3–5 show return
periods that one-in-one-year extremes defined in ERA-Interim
have of occurring in CAM5.1, MIROC5, HadGEM3, MERRA, CFSR,
and JRA-55, over grid cells and all WRAF regions (results for one-
in-ten-year extremes, NCEP1, and NCEP2 can be found in the
Supplementary Information). In the maps, cyan colours (high re-
turn periods) indicate the chance of exceeding (falling below for
ture / precipitation anomalies over regions 24 (southern Africa), 18 (central Canada),
5, CAM5.1 and HadGEM3 simulations respectively, while the black line is from ERA-
values for events having a one-in-one- and one-in-ten-year return period in the



Fig. 3. Return periods of one-in-one-year hot days defined from ERA-Interim. To account for mean bias, before calculating return periods, anomalies were calculated based
on 1979–2013 means at every grid cell. Data for the 1979–2013 period have been used to calculate return periods. Panels shown are CAM5.1 (a), MIROC5 (b), HadGEM3 (c),
MERRA (d), CFSR (e) and JRA-55 (f). Panel g shows the same but for hot extremes occurring over the Weather Risk Attribution Forecast regions. Numbers and colours on the
x-axis refer to regions and continents in Fig. 1 respectively. Markers above the solid line have a return period of infinity, i.e. the event did not occur in the dataset. The dashed
line represents the return period of the reference (ERA-Interim).
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cold events) the threshold is lower than in ERA-Interim, while
golds (low return periods) indicate the chance of exceeding/falling
below the threshold is greater. Panel (g) in Figs. 3–5 depict return
periods for extremes occurring over the regions demarcated in
Fig. 1 – with the colours and numbers along the x-axis re-
presenting continents and WRAF regions respectively. For ex-
ample, as in Fig. 2a, Fig. 3g shows high return periods for the
AGCMs over region 24, relative to ERA-interim (represented by the
dashed line).

In all panels of Figs. 3–5, return periods can vary considerably
between regions and/or continents. It therefore makes sense to
avoid drawing conclusions about a product as a whole, but rather
to judge AGCM performance according to regions. If we weigh
each reanalysis equally we can take a consensual approach to
gauge the agreement/credibility of the reanalyses. The greater the
agreement between reanalyses the more suitable they are to gauge
AGCM performance at simulating the frequency of extremes. Be-
fore looking at comparisons between the reanalyses and AGCMs in
more detail, the reader is directed to figure S7. Here we test ERA-
Interim against gridded observations from the Australian Water
Availability Project (AWAP). The hot, cold, and wet tails of dis-
tributions of daily temperature and rainfall are compared over
regions 1 (Northeastern Australia), 2 (Southeastern Australia), and
3 (Western Australia) as demarcated in Fig. 1. The tails of the
distributions align well (differences in the return periods for one-
in-one-year return levels from ERA-Interim, are less than one
month in all panels) – such a result is not unexpected as these are
regions that are well sampled with in situ observations. Reanalyses
performance are however expected to be reduced over regions
which are poorly sampled with in situ observations.

The spatial distribution of return periods relative to the re-
ference product for hot extremes in Fig. 3 looks similar to those for



Fig. 4. Same as Fig. 3 but for one-in-one-year cold days.
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one-in-ten-year extremes in Fig. S1, the latter exhibiting amplified
values of the former (markers tend away from the reference). Such
a result is expected as a shift in focus to more extreme anomalies
means the count of days beyond these thresholds is fewer, ren-
dering our results more sensitive to differences between ERA-In-
terim and the other datasets. This can additionally be seen be-
tween the cold and wet pairs of figures, and agrees with results
found by Fischer and Knutti (2015). Since extreme event attribu-
tion studies typically examine extremes occurring less frequently
than once a year, the results pertaining to one-in-ten-year ex-
tremes, although less accurate by definition, may have more
relevance.

In Fig. 3, over much of Australia, CAM5.1 underestimates the
frequency of hot days relative to the reanalyses (from here on-
wards the reader should assume all statements regarding the
‘under-simulation’ or ‘over-simulation’ of the frequency of
extremes in the AGCMs to be relative to the reanalyses). The re-
levant markers in panels g of Figs. 3 and S1 show large spread
amongst the CAM5.1 ensemble members. This characteristic can
again be explained by a shift (of the threshold) further out into the
tails of the ensemble mean. As a consequence of poor AGCM
sampling in this case, fewer counts beyond the threshold return
increasingly sensitive results to slight variations in those counts –

the reason the spread amongst CAM5.1 simulations over Australia
is greater than that of the MIROC5 and HadGEM3 simulations.
Equally, the frequency of hot extremes over much of the tropics in
all AGCMs are underestimated (in many cases occur roughly 10
times less frequently in the AGCMs than in reanalyses), while the
frequency of hot extremes over most of the Northern Hemisphere
are overestimated relative to ERA-interim and JRA-55 (roughly 10
times more frequent in the AGCMs), and moderately relative to
MERRA and CFSR. Over WRAF regions 31 (West Africa) and 56



Fig. 5. Same as Fig. 3 but for one-in-one-year wet days.
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(South-east China) no events in MERRA exceed a one-in-one-year
hot event in ERA-Interim. NCEP1 stands out from the other re-
analyses as being the product with the highest occurrence of in-
finity high return periods for hot days over the WRAF regions (Fig.
S4).

For cold extremes (Fig. 4) the AGCMs underestimate the fre-
quency of cold extremes over much of Australia, Southern Africa,
and South America (return periods tend to be anywhere between
1 and 10 times higher in the AGCMs). Over Western Europe return
periods correspond relatively well with the reanalysis, while over
Northern North America, Eastern Europe and most of Asia, MIR-
OC5 and HadGEM3 perform well but CAM5.1 overestimate the
frequency of extremes by roughly a factor of 5. In JRA-55 over
region 44 (Eastern Russia), no events fall below the one-in-one-
year cold thresholds defined in ERA-Interim. In Fig. S5 we again
see more occurrences of return periods of infinity in NCEP1 than in
any other product. Where exactly it under-performs is however
highly contextual.

The spread amongst the different datasets is less in the results
for precipitation (Fig. 5) than for temperature. The spread between
return periods for one-in-one-year wet events lie within an order
of magnitude between the datasets over Northern Asia, Europe,
and much of North America. Less agreement is generally found in
tropical regions (particularly of South America, Africa, and
Southern Asia). In the maps and panel g, CFSR stands out as having
a tendency to simulate the chance of wet extremes more often
than the other datasets. MERRA on the contrary underestimates
the frequency of wet extremes relative to the AGCMs and other
reanalyses. We see increased uncertainty in results for one-in-ten-
year events (Fig. S3) due to poorer sampling because we are ex-
amining one-in-ten-year extremes in a series 35-years in length.
Fig. S6 depicts NCEP1 as having strikingly different results from



Fig. 6. Summary figure illustrating whether the three AGCMs are likely to underestimate, overestimate, or accurately estimate (see text for explanation of definitions)
attribution statements for hot, cold, and wet one-in-one-year events, over each of the 58 WRAF regions. Grey colours denote AGCM results that fall within a large spread of
reanalyses – uncertainty is deemed too large to make a statement regarding AGCM performance.

Fig. 7. Same as Fig. 6 but for one-in-ten-year events.
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the other datasets over regions of Africa and South America.
For their simulation of hot, cold, and wet events over each re-

gion, each AGCM is, in two summary figures (Fig. 6 for one-in-one-
year events and Fig. 7 for one-in-ten-year events), assigned one of
six statements suggesting attribution statements to be either
“overestimated”, “overestimated/good”, “good”, “underestimated/
good”, “underestimated”, or “reanalyses inadequate”. Statements
are assigned as follows. A z-score is calculated for each reanalysis,
i.e. the number of standard deviations its exceedance probability
lies from the mean of the distribution of exceedance probabilities,
assuming Gaussianity amongst the probabilities – one value for
each of the 10 ensemble members (note that a Gaussian is not fit
to distributions of rainfall or temperature, but rather to the ex-
ceedance probabilities from the 10 ensemble members). Z-scores
are converted to p-values before a trinomial value is assigned to
each p-value. 2 or 0 is assigned for p-values less than 0.01 or
greater than 0.99, respectively. Unity is assigned to all remaining
p-values. The colour of each square in Figs. 6 and 7 is ultimately
assigned according to the combination of four (one per reanalyses)
trinomial values. “0000″ suggests the AGCM has underestimated
the frequency, suggesting an “overestimated” attribution state-
ment; “0001″, “0011″, or “0111″ is assigned “overestimated/good”;
“1111″ is assigned “good”; “1112″, “1122″, or “1222″, or is assigned
“underestimated/good”; “2222″ is assigned “underestimated”, and
lastly all remaining combinations, which by definition have the
highest standard deviations, are assigned “reanalyses inadequate”.

Fig. 6 summarises the panels (g) from Figs. 3, 4, and 5. Reds,
blues and whites suggest overestimated, underestimated, and re-
liable attribution statements respectively, while greys suggest
large discrepancy amongst reanalyses products rendering them
inadequate for evaluation. For hot and cold events we see clus-
tering of similar colours across continents or neighbouring re-
gions. For example results suggest a bias towards stronger attri-
bution statements for hot and cold events over Australia, South
America and Africa, while these events are more likely to be un-
derestimated over North America and Asia. Such a characteristic
over large spatial domains is less prominent for wet events. Also
noteworthy is that the AGCMs rarely exhibit strongly opposing
results over individual regions, i.e. there are few cases where one
AGCM is “overestimated” while another is “underestimated” or vice
versa. Therefore, if only one of the three AGCMs is used in an event
attribution study, there is more chance than not that the other two
would show a similar tendency in its bias.

We notice that the AGCMs generally tend to underestimate the
frequency one-in-ten-year events (Fig. 7), suggesting a greater
chance of overestimating attribution statements, consistent with
Bellprat and Doblas-Reyes (2016). While results between neigh-
bouring regions or even across continents tend to be similar
(particularly for hot and cold events), it is evidently possible for
them to vary significantly. This characteristic should caution sci-
entists to avoid drawing generalisations about whether attribution
statements are overly strong or weak. While there may be a slight
bias for attribution statements pertaining to one-in-ten-year
events to be overly strong, in agreement with Bellprat and Doblas-
Reyes (2016), our results suggest that there is still bias favouring
overly weak attribution statements over many regions of the
world, for example for hot extremes over most of North America
and Asia (Fig. 7). Bellprat and Doblas-Reyes (2016) draw from
other studies that simulated distributions from the current gen-
eration of climate models are characterised by having ensemble
spreads that are too narrow (Weisheimer and Palmer, 2014). It is
however possible for models to be under-dispersive (characterised
by U-shaped rank histograms) but have tails which are longer than
those of observations or reanalyses. Such cases would result in a
bias favouring overly weak attribution statements. This study
however only compares variability between the AGCMs and re-
analyses in distributions covering a 35-year period. Biased attri-
bution statements can also result from: errors in the trend, which
would incorrectly position the distribution given a particular sub-
period analysed (van Oldenborgh et al., 2013); as well an incorrect
response to ocean forcing during the period and over the region of
the event being attributed.
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5. Discussion and conclusions

The results presented in Figs. 6 and 7 are only a guideline,
suggesting underestimated, overestimated or accurate attribution
statements. In addition to the other potential errors in models
(leading to biased attribution statements when looking at real
extreme events rather than spread over a 35-year period), as
mentioned in the previous section, probabilistically-derived attri-
bution statements can also be influenced by response bias, i.e. the
difference between the means of the historically and naturally
forced distributions, which has not been explored in this study.

The spread of ensemble members and their proximity to re-
analyses can provide information about uncertainties in model
evaluation relevant for event attribution. Attribution statements
calculated over a particular region (for a particular variable), over
which the AGCM-derived return periods fall within a large spread
of return periods obtained from reanalyses, should be taken with
caution. These cases are therefore greyed out in the summary
figures. Over these regions it may currently be best practise to
avoid publishing any attribution statement, as disagreement
amongst reanalyses begs the question “toward which reanalysis/
observation product should one scale? ”. Answering this question
would require further analysis in order to weight different ob-
servation/reanalyses products.

If simulated extremes are found to have a low chance of oc-
currence over a region relative to reanalyses (higher return peri-
ods), then since the tails are “too short”, any attribution statement
calculated for an extreme over the region and AGCM under in-
vestigation, is likely be overestimated. The use of an “over-
estimated attribution statement” refers to an unrealistically high
quantification of anthropogenic responsibility. This is because the
signal-to-noise ratios between the historical and natural dis-
tributions would be greater than otherwise suggested by re-
analyses. The opposite would hold for regions over which ex-
tremes are simulated “too frequently” by the AGCMs.

Generally, the rarer the event examined, the greater the small-
scale variability in results, i.e. neighbouring grid cells can exhibit
increasingly different return periods (see the figures for one-in-
ten-year events in the Supplementary Material). This characteristic
is not necessarily a consequence of poor sampling as shown by
Angélil et al., (2014a). Rather, the exact magnitude of an event may
be increasingly sensitive to topography the rarer the event.

Differences between the AGCMs may be partially due to
CAM5.1 using prescribed aerosol burdens, while MIROC5 and
HadGEM3 simulate aerosol distributions from prescribed aerosol
emissions. The MIROC5 and HadGEM3 experimental setups
therefore allow for interactions between the simulated weather
and atmospheric chemistry, while in CAM5.1 the absence of this
interaction may prevent the occurrence of feed-backs relevant in
the simulation of extremes.

The final panels (g) from Figs. 3, 4, 5, S1, S2, S3, S4, S5, and S6
depict actual return periods, while Figs. 6 and 6 offer a summary
highlighting how AGCM-reanalyses differences bias attribution
statements. One weakness of the summary figures is that results
are slightly more arbitrary: the threshold (0.01 and 0.99) used to
define boundaries between definitions could easily be adjusted.
Our approach however only assigns clear-cut labels (“over-
estimated”, “good” or “underestimated”) when the evidence is ei-
ther that the reanalyses are mutually consistent enough to be
considered robust, or when all reanalyses lie far from the AGCM
distribution.

In cases where attribution statements are found to be “over-
estimated” or “underestimated”, an artificial adjustment of the
extreme threshold used to calculate exceedance probabilities in
the model runs is advised (Jeon et al., 2016). Jeon et al. (2016)
detail a basic procedure to ensure the exceedance probability in
the historical model runs and the observations are the same. For
example, our results suggest a bias towards overly strong attri-
bution statements for hot extremes over Africa (shorter tails lead
to unrealistically high signal to noise ratios). Here, the observed
threshold used to calculated exceedance probabilities would be
shifted towards the mean of the distribution. Attribution state-
ments can now be calculated using the adjusted threshold. The
method is desirable not only because it is straightforward, but as it
reduces biases in a physically consistent way.

Sippel et al. (2016) demonstrate a resampling procedure to
alleviate observation-model biases, which also preserves physical
consistencies. If output from multiple models are available, their
approach can be expanded to account for a counter-factual world
had human activity not inferred with the climate system. Here, the
ratio of runs used from each model which collectively reduce
biases in the ‘real world’ scenario, should be applied to form a
subset of runs in the counter-factual world.

Our results draw attention to the large discrepancies amongst
commonly used reanalysis products, and agree with results found
by Sillmann et al. (2013) and Donat et al. (2014). These dis-
crepancies should expose the danger of using one or even two
reanalysis/observation products for evaluation. The results of this
analysis highlight the importance for attribution studies targeting
specific extremes to evaluate the shapes of the tails of distribu-
tions with a number of products, ideally using a combination of
reanalysis and observations if the period under evaluation and the
length of the extreme permits. Additionally, although different
AGCMs can be similar in their biases, we encourage the use of
multiple AGCMs when performing event attribution, as AGCM
results can still vary considerably.
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