
UCLA
UCLA Electronic Theses and Dissertations

Title

Physics-Aware Tiny Machine Learning

Permalink

https://escholarship.org/uc/item/8bs342bw

Author

Saha, Swapnil Sayan

Publication Date

2023
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8bs342bw
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA

Los Angeles

Physics-Aware Tiny Machine Learning

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Electrical and Computer Engineering

by

Swapnil Sayan Saha

2023



© Copyright by

Swapnil Sayan Saha

2023



ABSTRACT OF THE DISSERTATION

Physics-Aware Tiny Machine Learning

by

Swapnil Sayan Saha

Doctor of Philosophy in Electrical and Computer Engineering

University of California, Los Angeles, 2023

Professor Mani B. Srivastava, Chair

Tiny machine learning has enabled Internet of Things platforms to make intelligent inferences

for time-critical and remote applications from unstructured data. However, realizing edge

artificial intelligence systems that can perform long-term high-level reasoning and obey the

underlying system physics, rules, and constraints within the tight platform resource budget

is challenging. This dissertation explores how rich, robust, and intelligent inferences can be

made on extremely resource-constrained platforms in a platform-aware and automated fash-

ion. Firstly, we introduce a robust training pipeline that handles sampling rate variability,

missing data, and misaligned data timestamps through intelligent data augmentation tech-

niques during training time. We use a controlled jitter in window length and add artificial

misalignments in data timestamps between sensors, along with masking representations of

missing data. Secondly, we introduce TinyNS, a platform-aware neurosymbolic architecture

search framework for the automatic co-optimization and deployment of neural operators and

physics-based process models. TinyNS exploits fast, gradient-free, and black-box Bayesian

optimization to automatically construct the most performant learning-enabled, physics, and

context-aware edge artificial intelligence program from a search space containing neural and
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symbolic operators within the platform resource constraints. To guarantee deployability,

TinyNS receives hardware metrics directly from the target hardware during the optimiza-

tion process. Thirdly, we introduce the concept of neurosymbolic tiny machine learning,

where we showcase recipes for defining the physics-aware tiny machine learning program

synthesis search space from five neurosymbolic program categories. Neurosymbolic artificial

intelligence combines the context awareness and integrity of symbolic techniques with the

robustness and performance of machine learning models. We develop parsers to automati-

cally write microcontroller code for neurosymbolic programs and showcase several previously

unseen TinyML applications. These include onboard physics-aware neural-inertial naviga-

tion, on-device human activity recognition, on-chip fall detection, neural-Kalman filtering,

and co-optimization of neural and symbolic processes. Finally, we showcase techniques to

personalize and adapt tiny machine learning systems to the target domain and application.

We illustrate the use of transfer learning, resource-efficient unsupervised template creation

and matching, and foundation models as pathways to realize generalizable, domain-aware,

and data-efficient edge artificial intelligence systems.
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CHAPTER 1

Introduction

Over the past decade, deep learning (DL) has been extensively used to make robust inferences

from unstructured, noisy, and high-dimensional data, such as in computer vision, LIDAR

point clouds, speech processing, drug discovery, time-series processing, and genetics [LBH15].

Deep neural networks (DNN) have been shown to provide rich and complex inferences over

the first-principle approaches for sensor data analytics [SSS22a]. Thereby, it is desirable to

port DNN pipelines onto low-end Internet-of-Things (IoT) nodes adopted in resource-limited

applications, turning them from simple data harvesters to learning-enabled inference gener-

ators [SSA23]. Applications such as fitness activity detection, sleep monitoring, underwater

biologging, anomaly detection, batteryless imaging, and keyword spotting require on-board

intelligence, made possible through tiny machine learning (TinyML) [SSS22a]

TinyML refers to hardware and software suites that enable always-on, ultra-low-power (≤

1 mW), and on-device sensor data analytics on low-end (≤ 1-2 MB of SRAM and eFlash) IoT

platforms [DB21, RKA22, STR21, Ray21, SSS22a, SSA23]. TinyML holds the key to making

on-board intelligent inferences from unstructured data for time-critical and remote applica-

tions, such as aerial robotics [ROF21], underwater navigation [SSG22], industrial machinery

debugging [BRT21], picosatellite machine inference [DL19], and wildlife monitoring [DNB22].

2.5 billion TinyML platforms are expected to ship in 2030 [AI22].

Fig. 1.1 illustrates the typical workflow for porting ML models to commodity IoT plat-

forms. First, in the model development phase, data engineering (1) performs acquisition,

analytics, and storage of raw sensor streams [MCB21, SSS22a, RHW19, LKR15]. Next, op-
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Figure 1.1: Closed-loop workflow of porting machine learning models onto microcontrollers.

Step (3) to Step (8) are repeated until the desired performance is achieved [SSS22a].

tional feature projection (2) applies linear methods [DZB14, LS99, Com94, BG98], non-

linear methods [RHW85, MH08, SSM97], or domain-specific feature extraction [GGN08] for

dimensionality reduction while preserving data variance [EMK19]. Afterward, models are

chosen from a lightweight model zoo (3) geared towards embedded deployment based

on the application and hardware specifications [KGV17, GSG17, IHM16, HZC17, KSB18,

VKE19, TFZ21, ODZ16, LVR16, WFS20]. The parameters of the backbone are optimized

automatically using neural architecture search (NAS) given a cost function and the pa-

rameter search space based on the target device constraints (4) [BZF21, FMT22, SAS21,

LDL21, LCL20]. In the model deployment phase, the trained candidate model is ported to

a TinyML compiler suite (5) [DDJ21, LCL20, CMJ18, GRC20, LSC18, GLB19], which

performs operator and inference engine optimizations [YLD19, LCL20, CMT94, DKA19],

deep compression [HMD16], and code generation [SSS22a, WS19] (6). The generated em-

bedded C file system is flashed onto the microcontroller via a command line interface (7).

On-device training [RAR21b, LN20, CGZ20] or federated learning are used occasionally

to account for shifts in incoming data distribution (9) [MBG21, KLB22].
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1.1 Challenges of Deploying TinyML Sensing Systems

The first generation efforts in TinyML focused on the exploration (lightweight model blocks),

optimization (NAS, AutoML), and integration (compiler suites) of standalone DNN within

the device platform constraints [SSS22a, SSA23]. However, several issues plague the deploy-

ment of standalone ML models for robust, context-aware, and platform-aware sensor data

analytics [SSS22a, SDS23b].

1.1.1 Addressing Spatial and Timing Uncertainty in Sensor Streams

Sensor data in the wild suffer from missing data, cross-channel timestamp misalignment,

and window jitter [SSS20, SAN19, SNA20]. These uncertainties may stem from scheduling

and timing stack delays, system clock imperfections, sensor malfunction, memory overflow,

or power constraints [SBB15, HAR20]. Sensing uncertainty can reduce the performance of

TinyML models, particularly for complex event processing [SSS20].

1.1.2 Injecting Platform-Awareness in AutoML

TinyML hardware platforms have tight memory, power, and compute budgets [LCL20]. A

typical ARM Cortex-M4 microcontroller has only 128 kB of SRAM and 1 MB of eFlash,

while a smartphone or cloud server can have RAM and storage in the order of tens of

gigabytes and terabytes, respectively [SSS22a, BZF21]. However, directly porting ML models

designed for high-end edge devices such as mobile phones or single-board computers are not

suitable for microcontrollers. While AutoML and NAS frameworks have been proposed for

optimizing lightweight NN backbones for TinyML platforms [SAS21, BZF21, LCL20, LDL21,

JZS19, PCA20, PCA22, FMT22], existing AutoML tools lack platform-awareness, unable to

guarantee error-free deployment of ML models [SSS22a, DSS23, SSG22, SSP22, SAS21].

These frameworks optimize a single model backbone at the architectural level and do not go

down to the execution (compiler) level to include operator optimization, run-time dynamics,
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or inference optimizations [SSS22a, SSA23]. Thus, existing NAS frameworks are not suitable

to perform platform-aware optimization of IoT programs that go beyond a standalone ML

model [SSS22a, SSA23], such as a NN and a Kalman filter operating jointly [DSS23].

1.1.3 Obeying Underlying Physics, Context, and Rules

Real-world IoT applications must obey specific rules, physics, and heuristics for provably cor-

rect operation, context awareness, and explainability [SSS22a, MGF20, SZE21, XGV20]. For

example, a UAV cannot exceed a certain bank angle without compromising stability [DRT09].

In complex event processing, specific granular action primitives (e.g., cooking a dish) must

always precede other primitives (e.g., chopping vegetables) [RAA12]. Neural networks can-

not assure that the learned distributions and decision trace obey all the rules, symmetries,

and physics of the underlying system [MGF20, SSG22, SFM20, CGH20, KKL21]. Further-

more, the limited contextual field (few minutes) [RAR21a, XGV20, APS21, VXT21, MTC22]

and lack of interpretability of ML models makes them unsuitable for high-level reasoning on

atomic events [MGK18, MTC22, GGL19, YWG18, Pea19, SSS22b]. Given the ultra-resource

constraints of TinyML platforms, manually crafting a context-aware, learning-enabled, and

physics-aware sensing system is arduous and challenging [SSA23, RAR21a].

1.1.4 Personalizing to Target Domain and Application

Underparametrized models are less robust across domains and applications compared to

vanilla models [SSP22]. Thus, TinyML models in the wild need to be fine-tuned peri-

odically to ensure robustness across domain shifts in incoming data distribution [LN20].

The inference requirements may deviate from the training time requirements during deploy-

ment [CS23]. However, software-centric resource constraints, constrained learning theories,

and static resource budgets prevent on-device learning from being a viable alternative to

cloud-based training for microcontrollers [DGL21]. Moreover, collecting labeled data in the
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target domain for fine-tuning pre-trained models via transfer learning by non-experts is

challenging [DSS23, SDS23b].

1.2 Research Objective

This dissertation explores ”physics, platform, domain, and uncertainty-aware auto tiny ma-

chine learning” through the lens of inertial sensors.

1.3 Contributions and Dissertation Outline

The contributions of this dissertation directly tackle the four challenges identified in the

previous section.

1.3.1 Uncertainty-Aware Robust Deep Learning

Chapter 2 introduces a robust training pipeline for handling sensing and timing uncertainties

in DL frameworks during training time. The pipeline uses controlled jitter in window length

and adds artificial misalignments in data timestamps between sensors, along with masking

and window-aligned representations of missing data [SSS20].

1.3.2 Platform-Aware AutoML

Chapter 3 introduces TinyNS, a platform-in-the-loop framework for automatic optimiza-

tion and deployment of neurosymbolic programs on commodity microcontrollers. A neu-

rosymbolic program contains both ML and symbolic components, allowing the realization of

physics and context-aware TinyML. Given a search space containing the parameters, logical

association rules, and constraints of symbolic and ML (neural or non-neural) model opera-

tors, TinyNS automatically finds the best combination of symbolic and ML operators and

parameters within the target device memory, latency, and energy constraints. To guaran-
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tee program deployability, the framework communicates with the target hardware during

the optimization process to receive hardware and program runtime metrics instead of rely-

ing on hardware proxies. The framework builds on top of a state-of-the-art, gradient-free,

black-box Bayesian optimizer [SAF20, SAS21] designed to optimize non-gradient-friendly

and expensive objective functions within a few epochs [SAS21, SSA23].

1.3.3 Neurosymbolic Tiny Machine Learning

Building on TinyNS, Chapter 4 introduces recipes and search space definition to map neu-

rosymbolic program atoms from a prototyping language (e.g., Python) to a TinyML de-

ployment language (e.g., C). Using case studies, TinyNS showcases recipes for defining

the neurosymbolic program synthesis search space for five neurosymbolic program cate-

gories [SZE21]. The framework includes parsers that automatically write microcontroller

code according to these recipes. Chapter 4 also showcases several unseen TinyML appli-

cations made possible by joint optimization of neural and symbolic components [SSA23].

These applications include:

• Hardware-aware neural inertial navigation [SSG22, SDS23b].

• Onboard human activity recognition and fall detection for earables [SSP22].

• Co-optimizing features and multiple model backbones for on-device human activity

recognition [SSA23].

• Neural-Kalman filtering [DSS23].

• Co-optimizing neural object detector and symbolic object tracker [SSA23].

1.3.4 Fine-Tuning, Online Learning, and Foundation Models

Chapter 5 firstly showcases the utility of transfer learning for personalizing pre-trained mod-

els in the target domain with as little as 1 minute of labeled data [SSG22, SDS23b]. The
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chapter also introduces an automated pipeline to generate labeled inertial sensor data in the

target domain for fine-tuning [DSS23, SDS23b]. Secondly, the chapter briefly outlines an

ultra-lightweight, application-agnostic, and on-device learning and inference algorithm for

on-sensor motion recognition [CS23]. Lastly, the chapter introduces ongoing work on foun-

dation inertial-language models as a path towards realizing generalizable motion sensing

applications.

Finally, Chapter 6 provides concluding remarks and future directions.
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CHAPTER 2

Handling Spatial and Temporal Uncertainties

Sensing systems in the wild have to deal with data from multiple noisy sensors with variable

sampling rates [SBB15], misaligned time stamps [SNA20], and missing data [HI19]. Tra-

ditional model training approaches are unable to deal with abnormal data on their own,

requiring handcrafted features and domain knowledge [HI19][JLX18].

2.1 Contributions

We describe intelligent data augmentation and informative missingness injection techniques

to make learning-enabled sensing systems robust to runtime sensing uncertainties during

training time without feature engineering. Specifically, we use a controlled jitter in win-

dow length and add artificial misalignments in data timestamps between sensors, along with

masking representations of missing data during training time. We evaluate our pipeline

on the Cooking Activity Dataset with Macro and Micro Activities [ALT21], benchmark-

ing the performance of a deep neural network complex activity detection classifier. In

our evaluations, our framework achieves test accuracies of 88% and 72% respectively for

macro and micro-activity classification, bringing in an 11% and 24% improvement in macro

and micro-activity classification over uncertainty-unaware classifiers. Compared to com-

petitors in the Cooking Activity Recognition Challenge, our framework provides 16% im-

provement over uncertainty-unaware machine-learning pipelines. The code is available at

https://github.com/nesl/Robust-Deep-Learning-Pipeline.
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Figure 2.1: Handling missing data in temporal streams. (Left) Window alignment with

contained samples popped ahead. (Right) Mask metadata channel to characterize missing

data location.

2.2 Handling Missing Data

Consider a multimodal sensor stream s with d channels (inputs) feeding data to a NN f(·)

in chunks of fixed size n (called windows w). Adversarial elements such as communication

outages, sensor malfunction, power outages, limited memory, timing errors, and sampling

rate jitter can cause samples to be dropped from the channels, leading to missing data in

the input stream [HI19][HGA18][HAR20]. It has been shown that missing data can hurt

vanilla DL-based time-series processors, degrading medical data imputation accuracy by

18-65%, medical data classification by 2-5%, and complex activity recognition by 11-24%

[CPC18][YZS18][SSS20]. To handle missing data, we use a combination of independent mask

metadata channels to characterize missing samples and window alignment with contained

samples popped ahead at the start of the windows during training [CPC18][SSS20]:

md
t =


1, sdt ∈ ∅

0, otherwise

(2.1)


sdt:t+n → sdt:t+n−γ ∀|sdt:t+n| = n− γ, γ > 0

sdt+n−γ+1:t+n = α, α /∈ E(sd)

(2.2)

The mask vector md
t consists of zeros at timestamps where data in channel d is missing and

one at all other points. However, the masking approach may fail when the timestamps across

the channels are misaligned or the actual window size is jittery. Thus, instead of aligning
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Figure 2.2: (Left) Handling sampling rate jitter. (Right) Time shift data augmentation.

the sample points, the individual overlapping windows are aligned based on the initial and

terminal timestamps of each window, appending α for missing samples while choosing an

average sampling rate for each window. The drawback of this approach is that α might be

interpreted as part of the actual sensor stream. As a result, α must be chosen as a constant

outside the expected value of input data. Both approaches are shown in Fig. 2.1.

2.3 Handling Window Jitter and Timestamp Misalignment

We apply intelligent data augmentation techniques when creating sensor windows during the

training phase, shown in Fig. 2.2. Our augmentations exploit the observation that timing

characteristics are variable and unstable for the devices capturing data during training and

deployment settings. For example, the sampling rate of smartphone peripherals can vary

wildly, with the inertial sensor sampling rate varying between 40 and 100 Hz for a 100

Hz accelerometer and the microphone sampling rate oscillating between 189 kHz and 195

kHz for 192 kHz/24-bit recording [SBB15][SAN19]. Several factors, including delay in the

operating system time stamping and variable instantaneous I/O load, are responsible for

this variation. For fixed sampling rates, the general approach is to use a fixed duration for

window creation. Aware of the sampling rate instability, we introduce a controlled timing

jitter δ in the window length when creating windows from the training files. We hypothesize
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that the introduced jitter in the window length, sampled from a uniform distribution U,

explicitly exposes f(·) to the variable sampling rate, allowing them to generalize on the test

data [SAN19]:

|sdt:t+n| → |sdt:t+n| ± δ, δ ∼ U

(
0.5(a1 + b1),

√
(b1 − a1)2

12

)
(2.3)

In multimodal sensing, Sandha et al. [SNA20] have shown that data timestamps across

sensors can have significant timing errors that can misalign the modalities. For example, the

timing stack on Android smartphones can have as much as 5 seconds of error. A 1000 mS

timestamp misalignment can drop multimodal fusion classification accuracy by 6% [SNA20].

Causes of misaligned modalities include poor management of the timing stack by the operat-

ing system and the choice of time synchronization techniques used by edge devices. This can

result in overfitting of f(·) on the timing characteristics of data, with poor generalization in

the deployment scenarios [SBB15]. To avoid this situation, we use the proposed time-shift

data augmentation approach [SNA20] of adding artificial misalignments across the device’s

data timestamps when creating windows. This artificial misalignment helps f(·) maintain

accuracy in the presence of variable timing characteristics in the wild:

s1t:t+n, s
2
t:t+n → s1t±ϵ:t±ϵ+n, s

2
t∓ϵ:t∓ϵ+n, ϵ ∼ U

(
0.5(a2 + b2),

√
(b2 − a2)2

12

)
(2.4)

2.4 Experimental Setup

In this section, we discuss the dataset used to evaluate our uncertainty-aware training pipeline

(Section 2.4.1), as well as chosen models and baselines (Section 2.4.2 and Section 2.4.3).

2.4.1 Benchmark Dataset

The 2020 Cooking Activity Recognition Challenge [ALT21] embraces the hurdles of uncer-

tainty and abnormality in sensor-based complex activity detection in the wild, intending to

build a classifier to classify 3 distinct macro and 10 distinct micro-activities as follows:
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• Making a sandwich - cut, wash, take, put, other

• Preparing fruit-salad - cut, take, peel, add, mix, put, other

• Preparing cereal - cut, take, pour, peel, put, open, other

The training dataset consists of 30-second windows from 3 subjects in 288 data frames/files.

Sensors include 4 triaxial accelerometers placed at the left wrist, right wrist, right arm, and

left hip and 29 triaxial motion capture (mo-cap) markers placed at random locations of the

body, totaling 99 sensor channels. Each frame corresponds to a single macro-activity, with

one-to-multiple possible micro-activities. Mo-cap samples are captured at approximately 100

Hz, while the accelerometers’ sampling rates vary between 50 Hz - 100 Hz. The starting and

terminal timestamps for each micro-activity are absent. The test dataset contains unlabeled

data from a 4th subject.

For our experiments, we chose to omit the 3 left-wrist channels due to the high frequency

of wrongly annotated timestamps and missing data in all files. Furthermore, mo-cap supplies

absolute position rather than motion signatures unique to each action primitive. In our

experiments, the motion capture data did not improve the validation accuracy. Thus, we

trained the final models using 9 accelerometer channels (right wrist, right arm, and left hip).

For classification, the files in the training set were split into 60:20:20 (train: validation: test)

ratio randomly for both macro and micro-activity classification. The dataset was split into

files (sessions/trials).

2.4.2 Model Implementation Specifics

We use an ensemble of 10 deep-convolutional bidirectional LSTM (DCBL) classifiers with

majority voting decision fusion to classify macro-activities and conditionally select some of

20 micro-activity DCBL binary classifiers (one-vs-all, ensemble of 2) based on the macro-

activity label. A sliding overlapping window of length 10 seconds (other candidates included

3 and 6 seconds) was used, with a stride of 1 second. No feature extraction or post-processing
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Figure 2.3: Overview of the model architecture for uncertainty-aware complex event pro-

cessing. The uncertainty injection is done during training time.

techniques were applied to the final models. Fig. 2.3 shows the architecture of the proposed

model. The models were implemented in Jupyter notebook (Python), using Keras and

Scikit-learn via a Tensorflow backend, with MATLAB being used for minor errands such as

generating labels and splitting the training set. All models were trained on a GPU machine

with 128 GB RAM, 2x 12 GB Nvidia GeForce GTX 1080 Ti, and 3.4GHz AMD Ryzen

Threadripper 1950X 16-core CPU.

2.4.3 Baselines and Variations

For uncertainty-aware complex activity detection, we evaluate the following baselines:
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• Vanilla deep neural network (DNN): We tested the performance of the DCBL without

any uncertainty injection.

• DNN with normalization and interpolation: Vanilla DNN with classical uncertainty

pre-processing techniques such as bandpass filtering (using 20 Hz Butterworth low-

pass filter), normalization (z-normalization, uni-variance, and min-max scaling), and

vanilla interpolation (linear, spline, autoregression).

• DNN with mo-cap data: Multi-label classifiers trained on motion capture data instead

of accelerometer signals.

• DNN with time-shift augmentation and window jitter : We add controlled artificial shifts

and sampling rate jitter to the training data. To handle missing data, we follow the

push ahead contained samples (no masking). We use the hierarchical DNN architecture

discussed in Section 2.4.2.

• DNN with time-shift augmentation, window jitter, and masking : Same as previous, but

with mask metadata channel included.

• Top 10 competitors : We also compare the performance of our approach with the top

10 (out of 78) competitors in the Cooking Activity Recognition Challenge. Models

include convolutional neural network (CNN), CNN-LSTM, deep convolutional gated

recurrent unit (DC-GRU), light gradient boosting machines (LightGBM), naive-Bayes

(NB), Graph CNN, k-nearest neighbors (kNN), hidden Markov models (HMM), and

multi-sampling classifiers [ALT21].

2.5 Evaluation

We provide results of locally run benchmarks of our pipeline (Section 2.5.1), as well as per-

formance in the 2020 Cooking Activity Recognition Challenge in this section (Section 2.5.2).
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Table 2.1: Summary of local benchmarks for our uncertainty-aware training pipeline.
Method Test Accuracy

Vanilla DCBL Macro: 0.78, Micro: 0.48

DCBL with normalization and interpolation Macro: 0.30-0.77

DCBL with mo-cap data Macro: 0.37-0.44

DCBL with time-shift augmentation and window jitter Macro: 0.83, Micro: 0.72

DNN with time-shift augmentation, window jitter, and missing data handling Macro: 0.88, Micro: 0.72

2.5.1 Local Benchmarks

Table 2.1 summarizes the results of our local benchmarks, containing all baselines except

the competition baselines. From our evaluation, we see that the performance of vanilla

classifiers improves significantly when we incorporate our proposed training pipeline in the

channel. Classical approaches such as interpolation, filtering, normalization, and feature

extraction (on mo-cap data) do not yield significant (in some cases lessen accuracy) perfor-

mance improvement over vanilla classifiers. We hypothesize that classical approaches fail to

converge due to the unnatural way the missing data was emulated in the dataset, consisting

of long blocks of missing and abnormally aligned samples not normally encountered in the

real world, coupled with the innate trade-off and time-evolving issues of classical methods.

The uncommon nature of the dataset hurts micro-activity classification performance gains

when we incorporate masking in the pipeline along with jitter and augmentation, yielding

negligible performance improvement. This occurs because masking assumes perfect sample

alignment among adjacent sensors. Thus, the gains obtained from ”space-aware” neural

architectures are nullified by the natural misalignments of sensor samples in the dataset.

However, our proposed pipeline component, namely augmentation, and jitter clusters the

non-missing samples within a window at the beginning, ultimately yielding 24% performance

improvement for complex activity recognition over vanilla approaches and thus exhibiting

promising performance characteristics in worst-case multimodal sensing scenarios.
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Table 2.2: Summary of the top teams in the 2020 Cooking Activity Recognition Challenge

[ALT21].
Rank Method Used Modalities Competition Accuracy Relabeling Uncertainty-aware

1 HMM MoCap 92.08% Yes No

2 kNN MoCap, Accelerometer 61.05% Yes No

3 Ours (Robust DL) Accelerometer 59.11% No Yes

4 Graph CNN MoCap, Accelerometer 56.63% Yes No

5 LightGBM, NB MoCap, Accelerometer 55.00% Yes No

6 CNN-LSTM Accelerometer 52.79% No No

7 Multi-sampling MoCap, Accelerometer 43.39% Yes No

8 DC-GRU Accelerometer 42.16% No No

9 CNN Accelerometer 32.75% No No

2.5.2 Performance in the Cooking Activity Recognition Challenge

For the test dataset (without labels) provided for the competition, we used an ensemble of

the 10 macro-activity classifiers (5 with masking and 5 without masking), while for macro-

activity classification, we used 20 micro-activity binary classifiers, with 2 classifiers (masked

and non-masked) for each of 10 micro-activities. Table 2.2 illustrates the performance of our

model on the unlabelled test set versus other contestants. We ranked 3rd in the competition.

Out of all the teams using DNN, our framework scored the highest and acknowledged the

issues of missing data, sampling rate jitter, and timestamp misalignment in the dataset.

The top two teams required manual relabeling of the training and test set using reference

videos generated from the Mo-cap data. Our pipeline, on the other hand, is completely

autonomous and agnostic of the test data characteristics. Among the best-performing teams

using only the inertial sensor data, Team 6 performed ∼ 6% worse than our framework,

while on average, our framework provides 16% improvement in classification accuracy over

other teams using only the inertial sensor data.
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2.6 Discussion

We introduced a robust deep-learning pipeline to handle data from multiple sensors in the

presence of missing data, misaligned samples, and variable sampling rates. We evaluated

the applicability of the time-shift data augmentation, controlled window jitter, and masks

to handle the hurdles mentioned above, benchmarking our pipeline using state-of-the-art

convolutional-LSTM architecture. Our evaluations yield 11% and 24% performance im-

provement for macro and micro-activity recognition over vanilla architectures. The proposed

changes to the training pipeline can be incorporated into any DL framework to yield models

robust to runtime uncertainties beyond simple activity detection applications.

There are several scopes of improvement to our work. While we have focused on making

models robust to missing data during training, an alternative approach is to impute the miss-

ing samples synthetically using generative adversarial models (GAN) [YJS18][LJM18][ACS17],

followed by training. Synthetic data generation is useful when analyzing microscopic granu-

larities in temporal streams as well as data augmentation. In addition, the proposed training

pipeline needs to be benchmarked on scenarios where multiple inertial sensors may be avail-

able intermittently, requiring spatially independent approaches [JLS19][XSB18].
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CHAPTER 3

Platform-Aware Neurosymbolic Architecture Search

TinyML compiler suites enable the transfer of trained machine learning models generated

by well-known libraries to microcontrollers [SSS22a]. These libraries provide comprehen-

sive sets of optimized ML operators, algorithms, and tools, perform pruning, quantization

(fixed and mixed precision), and model compression [HMD16], and convert models to de-

ployable C code [DDJ21, LSC18, GRC20]. However, the suites assume that the trained

model can fit within the device resource constraints. To satisfy the tighter hardware con-

straints of low-end IoT devices, neural architecture search (NAS) optimizes a given model

backbone regularized by the target hardware specifications to strike a balance between ac-

curacy and efficiency [FAM19, LCL20]. NAS is the automated process of finding the most

optimal neural network within a neural network search space given target architecture and

network architecture constraints, achieving a balance between accuracy, latency, and energy

usage [RXC21][ZL17][BGN17]. While plentiful AutoML and NAS frameworks have been

proposed for optimizing NN for TinyML platforms [SAS21, BZF21, LCL20, LDL21, JZS19,

PCA20, PCA22, FMT22], these frameworks are not designed to perform platform-aware

joint optimization of neural and symbolic components [SSS22a]. Given the ultra-resource

constraints of TinyML platforms, manually finding the optimal synergy between the hy-

perparameters of the NN and the symbolic program is arduous and challenging [RAR21a],

necessitating the need for AutoML platforms that can perform neurosymbolic optimiza-

tion [SSA23] for deploying physics-aware TinyML programs.
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3.1 Contributions

We introduce TinyNS, a platform-in-the-loop framework for automatic optimization and de-

ployment of neurosymbolic programs on commodity microcontrollers. Given a search space

containing the hyperparameters, logical association rules, and constraints of symbolic and

ML (neural or non-neural) model operators, TinyNS automatically finds the best combina-

tion of symbolic and ML operators and hyperparameters within the target device memory,

latency, and energy constraints. The ML models may be feedforward, residual, or recurrent.

To guarantee program deployability, TinyNS communicates with the target hardware dur-

ing the optimization process to receive hardware and program runtime metrics instead of

relying on proxies. We use a fast, parallel, gradient-free, and application-agnostic Bayesian

optimizer that can handle non-gradient friendly objectives, categorical and conditional search

spaces, and expensive objective functions, all while converging to near-global optima within a

few iterations [SAF20, SAS21]. The optimizer forms the basis for our search algorithm. Our

framework automatically synthesizes the most performant neurosymbolic program from a

symbolic and ML operator search space within the target platform constraints. The Bayesian

optimizer is available at: https://github.com/ARM-software/mango. TinyNS is available

at: https://github.com/nesl/neurosymbolic-tinyml.

3.2 Mango: Fast, Parallel and Gradient-free Bayesian Optimizer

TinyNS adopts Mango [SAF20, SAS21], which is an efficient realization of Bayesian opti-

mization. Bayesian optimization provides a state-of-the-art approach to optimize expensive

objective functions in a few iterations, approximated by a surrogate model.
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3.2.1 Surrogate Model

Typical surrogate models used in Bayesian optimization libraries are Gaussian processes,

tree-structured Parzen estimators, and random forests. Among the available surrogate mod-

els, Mango uses the Gaussian process surrogate (GP) over the search space (Ω) due to its

ability to provide a tractable assessment of prediction uncertainty incorporating the effect

of data scarcity [SLA12]. The Gaussian process is a non-parametric machine learning model

specified using a mean (µ) and a kernel function (k).

f̂(Ω) ∼ GP(µ(Ω), k(Ω,Ω’)) (3.1)

Vanilla GP models work well on continuous search spaces but struggle to deal with the

discontinuity in the search spaces induced by categorical, mixed, and hierarchical search

spaces. Naive rounding or one-hot encoding causes the GP to get stuck to the same candidate

model. Thereby, Mango adopts the solution proposed by Garrido-Merchan et al. [GH20],

which modifies the GP covariance function to account for regions in the search space where

the objective function becomes constant due to one-hot encoding or rounding inside the

objective function evaluator wrapper. The constant behavior cannot be modeled by GP. We

use a transformation of the input variables that rounds real-valued hyperparameters and

performs one-hot encoding of categorical variables, causing the Cartesian distance between

the sample points with the same configuration becoming 0. This allows the GP to indirectly

model the expected constant behavior, as the transformation enforces maximum correlation

between the function evaluations at the sample points with the same configuration under

the GP.

3.2.2 Acquisition Function

The exploration-exploitation is handled using the upper confidence bound as the acquisition

function. In upper confidence bound the next sample (Ωt) at iteration t is sampled from

the search space (Ω) using the predicted mean (µt−1) and the corresponding variance (σ2
t−1)
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at iteration t − 1. The exploration factor (β) balances the contributions of the mean and

variance.

Ωt = arg max
Ω

(µt−1(Ω) + β0.5σt−1(Ω)) (3.2)

The first term (mean) in the acquisition function refers to the goodness of the current sam-

pled point (exploitation), while the second term refers to the uncertainty of the sampled point

(exploration). Mango adopts UCB because of four reasons. Firstly, UCB is robust to uncer-

tainty and noise in the function evaluations without pre-processing. . Secondly, UCB allows

efficient sampling for cases where picking a suboptimal point may cause a time-consuming

and expensive function evaluation. Thirdly, UCB balances exploration and exploitation by

sampling points that are not just likely to improve the final score (exploitation), but also sam-

pling points that have high uncertainty (exploration). This not only prevents the optimizer

from getting stuck in a local optimum but also provides both a coarse and a fine-grained

view of the objective plane, allowing the score to achieve theoretical optimal values at the

boundary of violating deployability constraints. Lastly, UCB uses of an adaptive β with the-

oretical convergence guarantees within 90% of the optimal value [SKK10, SKK12, DKB14].

β is heuristically decided based on the complexity of the search space (domain size) |Ω|, the

current iteration count t, and the variance (uncertainty) σ2
t−1(Ω) at iteration t− 1.

β = α · exp(2 · C), α =
√

2 log(0.6 · |Ω| · t2 · π2), C =
8

log(1 + 1
δ+σt−1(Ω)

)
, δ = 1e−6 (3.3)

Firstly, if the search space is bigger, α will increase logarithmically, leading to a bigger β.

This will cause the acquisition function to be dominated by exploration. Secondly, as the

search progresses, α increases logarithmically. This impels the acquisition function to be

exploration dominant in the later iterations. Thirdly, sample points near already explored

regions will return a lower value of σ2
t−1(Ω), leading to a lower value of β. Lastly, if a region is

invalid or bad, then µt−1(Ω) will be higher, causing the acquisition function to be dominated

by exploration. If a region is valid or good or near the theoretical optimal boundary, then

µt−1(Ω) will be lower, causing the acquisition function to be dominated by exploitation. The
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four factors cause Mango to perform what is known as sampling to find the boundaries in

the objective plane. t ensures that exploration never stops in case Mango has not found a

“hidden” region where global optima may reside. However, exploration dependent on t is

logarithmic, leading to only a small increase in the β with each passing iteration. σ2
t−1(Ω)

ensures that as more regions of the objective plane are explored, Mango moves from pri-

marily exploration-driven to exploitation-driven sampling, which allows Mango to perform

fine-grained sampling at later iterations. µt−1(Ω) ensures that this fine-grained sampling is

being performed at the boundaries close to the theoretical optimal value with 90% probabil-

ity. The entire formulation makes Mango explore all unexplored boundaries (coarse-grained

sampling), and then find the points close to the theoretical optimal value (fine-grained sam-

pling).

3.2.3 Handling Mixed Search Spaces

Traditionally, gradient-driven optimizers (e.g., GpyOpt [aut16a] and Skopt [aut16b]) are used

to find the next promising sample, such as in SpArSe [FAM19]. Sandha et al. [SAF20, SAS21]

showed that gradient-driven optimization in complex search spaces having discrete or cate-

gorical values can provide sub-optimal solutions by evaluating gradients at invalid configura-

tions of the search space. Mango realizes a gradient-free optimizer for handling non-gradient-

friendly values. Mango directly supports discrete integer values and continuous values and

converts pure categorical to one-hot encoding. However, this comes with the challenge that

the decision boundary of the acquisition function becomes discontinuous due to the discrete

values. Further, one-hot encoding of categorical variables increases the dimensionality of

the search. To handle the discontinuous decision boundary, Mango adopts a gradient-free

optimizer that doesn’t assume the continuity of gradient in the acquisition function search

space. This is based on the Monte Carlo optimization of the acquisition function. Since

the evaluation of the acquisition function is very cheap, this approach is scalable to search

decision boundaries extensively to parallelly select the next optimal points. The acquisition
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function is evaluated at thousands of valid samples in the search space; thus, there is no

mismatch between the proposed and actual evaluations. This approach also works directly

for the one-hot encoded spaces by doing evaluations only at the valid regions of the one-hot

encoding without sampling the intermediate regions between 1 and 0 where no valid real sam-

ple exists. It is to be noted that in a gradient-driven approach, the optimal point is finally

converted to the correct sample either by rounding-off that can degrade the search results,

which is not the case in Mango. This sampling-based approach also reduces the computa-

tional complexity [SAS21] of the optimizer compared to the gradient-based methods used in

other Bayesian optimization libraries [aut16a, aut16b, FAM19].

To reduce the search space complexity even further, TinyNS proposes the use of slider

matrices, enumerated trees, and ordinal masks. Instead of exposing Mango directly to the

heterogeneous variables, for high-dimensional search spaces, TinyNS exposes Mango to the

normalized slider matrix, inspired by the wrapper-based approach proposed in Garrido-

Merchanet al. [GH20]. The slider matrix is a continuous formulation of the mixed parameter

space normalized between 0 and 1. The one-hot encoding or rounding is performed inside

the objective function evaluator wrapper as proposed in [GH20] via a mapping that maps the

terms in the slider matrix to the mixed parameter space. For even more complicated search

spaces, TinyNS uses tree enumeration algorithms to generate program tree candidates and

exposes TinyNS to an ordinal mask that selects one of the trees.

3.2.4 Parallelization

Another challenge in solving Eq. 3.2 is parallelizing the sequential search process, selecting a

batch of values to ensure exploration or diversity in the batch. The straightforward approach

of ranking the search choices according to the acquisition function and then selecting the

top picks is sub-optimal due to limited exploration [DKB14]. To enable parallel search,

Mango provides a clustering search algorithm on the samples drawn from the acquisition

function. The clustering search selects promising domain samples from different clusters
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based on their distance in the search space. The different clusters are far from each other

in the hyperparameters space to enable exploration or diversity. The number of clusters is

equal to the batch size and is flexible.

3.2.5 Addition to Mango

TinyNS expands the state-of-the-art Bayesian optimizer to perform neurosymbolic architec-

ture search in three ways. Firstly, while Mango internally handles categorical and continuous

variables, the optimizer alone cannot deal with complex neurosymbolic search spaces on its

own. We provide recipes to show how Mango can deal with neurosymbolic search spaces

through the intelligent use of slider matrices, Boolean masks, and enumerated trees. This

significantly increases the types of problems Mango can handle. Secondly, to prevent wasting

valuable GPU hours and improve convergence time, we use a guided optimization strategy.

Specifically, we do not train programs that violate deployability constraints or induce faults.

We penalize Mango by a constant number when it makes wrong choices. Yet, we design the

optimization function in such a way that Mango is still able to find the boundaries in the

objective plane even in complex search spaces and achieve near-optimal results. Thirdly, we

make Mango platform-aware by allowing it to talk to the target hardware during deployment

time. This allows guaranteed program deployment and accurate profiling.

3.2.6 Evaluation: Parallel Search in Mango

We visualize the parallel search enabled by Mango in Fig. 3.1 (Left). Four iterations of the

clustering search algorithm are shown for a 1-D function having multiple optimal points.

The ground-truth function is represented by objective. The samples are the points that

have been evaluated, and hence the true objective function values are known. A batch

size of 3 is used, representing the parallel evaluation of 3 samples in each iteration. The

Surrogate function shows the internal approximation of the ground-truth objective based on
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the evaluated samples. The acquisition function is based on the upper confidence bound.

The three clusters created in different regions of the acquisition function are shown. The

next sampling locations represent the points selected from each cluster for evaluation in the

next iteration. We observe that the ground-truth max optimal is found by Mango in the

fourth iteration, which occurs at -1.0 and has a value of 4.72.

3.2.7 Evaluation: Comparison Against Other Bayesian Optimizers

We compare Mango for hyperparameter tuning with existing state-of-the-art Bayesian opti-

mization libraries using the multiple criteria methodology proposed by Dewancker et al. [DMC16].

Specifically, we measure the performance of an optimizer by considering the solution’s prox-

imity to the optimal point (accuracy) and the number of iterations required to reach the

optima (speed). We compared the performance for hyperparameter tuning of three ML clas-

sifiers: Xgboost, K-Nearest Neighbor (KNN), Support Vector Machines (SVM) to maximize

the 3-way cross-validation accuracy for the iris plants dataset, wine recognition dataset, and

breast cancer Wisconsin (diagnostic) dataset taken from Scikit-learn [PVG11], i.e., a total of

9 tuning tasks (three classifiers trained using three datasets). The search space includes con-

tinuous, integer, and categorical hyperparameters with the exact definitions available [San21].

We tune each classifier for 80 iterations and repeat each tuning experiment 30 times. Results

are shown in Fig. 3.1 (Right). Mango performs better than all other libraries in 6 or more

tasks out of 9 in hyperparameter tuning for classifiers with mixed hyperparameters (contin-

uous, integer, and categorical) spaces. Overall, Mango offers state-of-the-art optimization

capabilities handling complex search spaces.
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Figure 3.1: (Left) Visualizing parallel optimization in Mango. (Right) Sequential opti-

mization performance of Mango on 9 ML classification tasks versus 5 other state-of-the-art

Bayesian optimizers.
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3.3 Platform-Aware Neurosymbolic Optimization

TinyNS treats neurosymbolic architecture search as nonlinear programming [Ber16] over

the search space Ω:

min f(Ω), s.t. f(Ω) ≤ b (3.4)

where

f(·) = λk

∑
n

gk(Ω), Ω = {{V,E}, [θm,m,w], [θs, s, u]},
∑
n

λk = 1, k ∈ [1, n] (3.5)

Ω contains both ML components and symbolic components. The ML components include

the ML hyperparameters θm, trainable ML parameters w (e.g., NN weights and biases),

and ML operators m (e.g., convolution, pooling, support vector kernel, fully connected,

etc.). The symbolic components include the fixed symbolic hyperparameters θs, numerical

parameters to be optimized u (e.g., Kalman filter gain), and symbolic program atoms s (e.g.,

predicates, terms, features, etc.). Candidate neurosymbolic programs constructed from Ω

can be thought of as directed acyclic graphs qΩ(X) with edges E, vertices V and input

tensor X. The goal is to find a neurosymbolic program that satisfies the aggregate constraint

f(Ω) ≤ b. In other words, the objective function seeks a Pareto-frontier configuration Ω∗

under competing objectives [FAM19] such that:

fk(Ω∗) <= fk(Ω) ∀k,Ω ∧ ∃j : fj(Ω
∗) < fj(Ω) ∀Ω ̸= Ω∗ (3.6)

The aggregate constraint function f(·) is a linear combination of individual objectives g(·)

weighted by random scalarizers λ. Let A be a complete Boolean algebra, ωω be the ordinal

set, and A be a fixed set of names. Then, g(·) and Ω have the following properties:

• d ∨ ¬d, d = (∃gk(·) ∧ ∃c ∈ Ω) ⇒
(
∄ lim

x→c
gk(x) ∨ ∄g(c) ∨ lim

x→c
gk(x) ̸= g(c)

)
︸ ︷︷ ︸

discontinuity condition
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•

∃z ∈ Ω ⇒
[

z ∈ R︸ ︷︷ ︸
continuous,
numeric

∨ [z ∈ B,B ⊆ R, f : B → N]︸ ︷︷ ︸
discrete, numeric

∨ [((∀q ∈ q̄)πq = q) ⇒ π · z = z, π ∈ Perm A]︸ ︷︷ ︸
categorical, nominal

∨ z ∈ ωω︸ ︷︷ ︸
categorical,

ordinal

]

•
∃x|a ∈ X, x ∈ Ω, a, b ∈ A ⇒

[
(a = b ⇒ x|a = y|b) ∧ (x|b = y|b ⇒ x|a = y|a)∧(

∀(ai)i∈I ∈ A,∀(xi)i∈I ∈ X,∀i ∈ I ⇒ ∃!x(x|ai = xi|ai)
)]︸ ︷︷ ︸

conditional inclusion

The base formulation of Eq. 3.4 and Eq. 3.5 is given as:

min fopt, fopt = λ1ferror(Ω) + λ2fflash(Ω) + λ3fSRAM(Ω) + λ4flatency(Ω) (3.7)

where,

fflash(Ω) =


γf ⇔

|γf | < 1 ∧ ϵflag = 0︸ ︷︷ ︸
fault flag

 , γf =

−||hFB(w, {V,E})||0
flashmax︸ ︷︷ ︸

model proxy

+ ξf︸︷︷︸
slack for
symbolic

∨−Compiler-reported flash

flashmax︸ ︷︷ ︸
real measurement


αf , αf ≫ flashmax

(3.8)

fSRAM(Ω) =


γs ⇔

|γs| < 1 ∧ ϵflag = 0︸ ︷︷ ︸
fault flag

 , γs =

−
maxl∈[1,L]{||xl||0 + ||al||0}

SRAMmax︸ ︷︷ ︸
model proxy

+ ξs︸︷︷︸
slack for
symbolic

∨−Compiler-reported SRAM

SRAMmax︸ ︷︷ ︸
real measurement


αs, αs ≫ SRAMmax

(3.9)

flatency(Ω) =


FLOPS

FLOPStarget︸ ︷︷ ︸
model proxy

∨ RTOS-reported latency

latencytarget︸ ︷︷ ︸
real measurement

⇔ ϵflag = 0︸ ︷︷ ︸
fault flag

αl, αl ≫ FLOPStarget ∨ latencytarget

(3.10)

The goal of the base formulation is to find a Pareto-optimal neurosymbolic program with

the lowest possible runtime latency but maximizes the device’s full SRAM and flash capacity

without inducing overflow or faults. The performance of a candidate neurosymbolic program

on the validation dataset at each iteration in the search provides ferror(Ω). When the tar-

get hardware is connected to the training server, the compiler provides the program SRAM

consumption fSRAM(Ω) and flash consumptionfflash(Ω), while the onboard real-time operat-

ing system (RTOS) reports the program runtime latency flatency(Ω). The measurements are
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conditioned on the absence of faults, indicated by ϵflag. We set λ1 to 1.0, λ2 to 0.01, λ3 to

0.01, and λ4 to 0.05. TinyNS has the following fault detection capabilities:

• Flash, SRAM, or model arena buffer overflow (the program is too big to fit).

• Use of unsupported ML operators.

• Compilation errors.

• Runtime RTOS faults.

If ϵflag = 0, the hardware metrics are normalized by the device SRAM and flash capacities

(SRAMmax, flashmax), and target latency (latencytarget) to a common scale. If ϵflag ̸= 0, the

hardware metrics are set to a value much larger than the device capacity or target latency. We

set αf = 125, αs = 125, αl = 50, resulting in fopt being 5.0 whenever deployability constraints

are violated. This policy, called hard thresholding, achieves full device capability exploitation.

Since violating deployability constraints always returns an fopt of 5, after sufficient iterations,

TinyNS can observe and exploit the small but valid linear region of SRAM and flash usage

between -1 and 0 (γf and γs are valid between -1 and 0), striving to move γf and γs towards

-1. Yet, TinyNS is aware that certain choices of ML operators and symbolic atoms would

make γf and γs more negative (hence the objective should ideally be minimized even further)

but are invalid. In other words, the optimizer is penalized by a large constant number when

it picks candidate models that do not fit within the device or induce faults and instead

encourages the acquisition function to not pick too many points in the regime where the

violation may occur. After sampling sufficient points in the small but valid linear region

and the invalid regions, the surrogate function smooths out sufficiently to match the linear

region in the objective plane where the accuracy improvement is proportional to memory

usage without inducing faults. Hard thresholding is possible thanks to the adoption of

parallel version [DKB14] of GP-UCB [SKK10, SKK12]. During exploitation, GP-UCB picks

candidate models which are likely to minimize fopt. The sample points in this phase will be
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close to one or more of the “successful” points in the linear/valid region found during previous

iterations. Exploitation, thereby, provides a finer-grained view of the objective plane. During

exploration, GP-UCB will either pick points in the valid or invalid region to make sure the

optimizer is not stuck in local optima. Exploration, thereby, provides a coarse-grained view

of the objective plane. With sufficient iterations, the acquisition function moves from being

exploration driven to exploitation driven, converging near theoretical optimal value at the

boundary of violating deployability constraints. The parallel implementation allows the

optimizer to have access to more “batches of sample points” at each iteration. The policy

of hard thresholding is not possible to implement with gradient-based optimizers due to

discontinuous penalization. For those optimizers, one would have to train the model to get

the accuracy even if GPU hours are wasted, calculate the memory usage, and penalize in a

continuous fashion proportional to the memory usage (referred to as coupling of deployability

and performances). Since we do not train a candidate model once deployability constraints

have been violated, hard thresholding (combined with fault detection) also prevents TinyNS

from training a candidate model that does not satisfy all the constraints, saving valuable

GPU hours by as much as 50% over gradient-based optimizers.

Note that SpArSe [FAM19] treats λ as a super-hyperparameter bring drawn from a ran-

dom distribution at each iteration. However, realizing λ as a super-hyperparameter in com-

plex neurosymbolic search spaces with a gradient-free and black-box optimizer is challenging

as compared to the gradient-based optimizer in SpArSe. For the same program candi-

date, different values of λ will yield different values of fopt at each iteration, resulting in a

large number of iterations needed to achieve acceptable performance. We are aware that

our choices of λ and α may not provide the most optimal neurosymbolic program for each

application, but, as we will showcase, are able to guarantee high-utility and deployable neu-

rosymbolic programs that significantly outperform the state-of-the-art.

When the target device is absent, TinyNS relies on well-known analytical proxies to

provide device resource usage estimates. fflash(Ω) is given by the size of the flatbuffer model
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schema hFB(·) [DDJ21]. fSRAM(Ω) is given by the standard NN SRAM usage model, with

intermediate layer-wise activation maps and tensors stored in the SRAM [FAM19]. flatency(Ω)

is provided by the FLOPS count [BZF21]. Assuming the ML component dominates resource

usage over symbolic components, a static slack constant ξ is added to the SRAM and flash

proxies to account for SRAM and flash usage by the symbolic program. There are, however,

several issues with this profiling approach:

• Proxies are inaccurate and do not work for a wide variety of ML operators (e.g., well-

known proxies were developed only for convolutional models) [SSG22, SSP22]. Proxies

do not even exist for symbolic programs.

• Model proxies tend to overestimate device capabilities without considering overhead

from symbolic programs, runtime inference engines, RTOS, or data stacks [SSG22,

SSP22].

• Proxies cannot capture all the faults that the platform-in-the-loop approach can.

Hence, the correctness of the neurosymbolic program is not guaranteed.

• Proxies cannot take into account compiler suite optimizations at the execution level,

often yielding sub-optimal models compared to the platform-in-the-loop approach.

For each candidate neurosymbolic program, TinyNS automatically writes embedded C code

for microcontrollers from Python constructs using parsers. The recipes used by the parsers

are discussed in Chapter 4.

3.4 TinyNS Evaluation for Neural Architecture Search

We provide a qualitative comparison of TinyNS against state-of-the-art NAS frameworks de-

signed for microcontrollers in Section 3.4.1. Afterward, we validate the viability of TinyNS

for generating performant microcontroller-class models on the industry-standard MLPerf

Tiny v0.5 Inference Benchmark [BRT21] in Section 3.4.2.
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3.4.1 Neural Architecture Search for Microcontrollers

Table 3.1 compares prominent NAS frameworks for microcontrollers against TinyNS. In

particular, TinyNS adopts a black-box, Bayesian, gradient-free, and platform-in-the-loop

search strategy to balance training infrastructure cost, NAS convergence time, guaranteed ex-

ecution, application support, and neurosymbolic search space characteristics. iNAS [MKH21]

uses RL to formulate the NAS multi-objective optimization process as a Markov decision pro-

cess, with the ability to support complex and discontinuous search spaces with thousands of

dimensions [SSS22a]. However, RL has a long convergence time (e.g., 5 GPU years) with ad-

ditional fine-tuning costs [SSS22a, CGW19]. MCUNet [LCL20, LCC21] and µNAS [LDL21]

use evolutionary search on RL search spaces to achieve faster convergence. In particu-

lar, MCUNet uses weight-sharing to decouple training from search, mutating, and cross-

ing Pareto-optimal sub-network populations from a ”once-for-all” supernetwork [CGW19].

This allows networks for several target hardware to be optimized together. Neverthe-

less, evolutionary NAS with weight sharing requires GPU infrastructure capable of super-

network training, suffers from fine-tuning costs, and has a convergence time of 3-8 GPU

weeks [SSS22a, CGW19]. MicroNets [BZF21] and UDC [FMT22] use differentiable NAS

(DNAS), which performs continuous gradient descent relaxation of weights and architec-

tural encodings jointly with approximate gradients via path binarization [LSY18, CZH18].

This reduces the convergence time to 1-3 GPU weeks [CGW19]. However, DNAS cannot

directly model loss contour discontinuities (e.g., categorical or conditional hyperparame-

ters) and have high GPU memory usage owing to the over-parametrized network formula-

tion [MKH21, SSS22a]. Bayesian optimization can handle discontinuous search spaces and

cost functions while being executable on commodity GPU workstations [SSG22, SSP22], fur-

ther reducing the convergence time to 1-10 GPU days [FAM19]. However, vanilla Bayesian

optimization struggles in search spaces beyond a dozen hyperparameters and assumes dense

distribution of performant models in the search space [FMT22, DEB22]. Since neurosymbolic

search space dimensions can be orders of magnitude higher than NN search spaces, TinyNS
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uses Monte Carlo sampling with Upper Confidence Bound (UCB) as the acquisition func-

tion instead of the gradient-based approach of SpArSe [FAM19] to perform exploration and

exploitation similar to UDC [FMT22]. This prevents TinyNS from being stuck to local op-

tima or evaluating invalid configurations [SSG22, SAF20] even in complex RL search spaces.

Moreover, TinyNS adopts a black-box approach similar to RL or evolutionary NAS. The

black-box approach allows optimization of any scalar term beyond model performance and

hardware metrics in the cost function and eventually permits the inclusion of both symbolic

and ML operators in the search space beyond convolutional operators. Further, TinyNS

talks to the target hardware during the NAS process to get resource metrics instead of relying

on proxies. Platform-in-the-loop not only guarantees the deployability of the neurosymbolic

code, but also allows TinyNS to ignore neurosymbolic programs that induce faults, runtime

errors, compilation errors, or flash overflow, saving on convergence time. In fact, TinyNS

automatically writes the C code of the neurosymbolic program from Python constructs using

proposed neurosymbolic recipes without user intervention.

3.4.2 MLPerf Tiny v0.5 Inference Benchmark

The MLPerf Tiny v0.5 Benchmark Suite contains four classification tasks and quality target

metrics representing a wide array of TinyML applications [BRT21, SSS22a]. The tasks in-

clude image classification (CIFAR10 dataset [Kri09]), unsupervised anomaly detection (Toy-

ADMOS dataset [KSU19]), keyword spotting (Google Speech Commands dataset [War18]),

and visual wake words detection (Visual Wake Words dataset [CWS19]). We benchmark

TinyNS on the first three tasks.

3.4.2.1 Dataset Splits and Pre-processing

We use the standard dataset splits and pre-processing functions provided by the benchmark

suite. For CIFAR10, 50000 32×32×3 images are used for training, and 10000 images are
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Table 3.1: Qualitative comparison of existing microcontroller NAS versus TinyNS
Method Search Strategy Profiler Search Space Cost Function

Hyperparameters

Inference

Engine

Compression

Awareness

Open

Source

SpArSe

[FAM19]

Gradient-driven

Bayesian

Analytical Conv2D (regular,

depthwise,

downsampled)

Error, SRAM,

Flash

uTensor Pruning

(structured,

unstructured)

No

MCUNet

[LCL20,

LCC21]

Evolutionary

(with weight

sharing)

Lookup tables,

prediction

models

Conv2D (elastic) Error, SRAM,

Flash, Latency

TinyEngine

[LCL20]

None No

MicroNets

[BZF21]

One-shot DNAS Analytical Conv2D (MbNetv2,

DS-CNN)

Error, SRAM,

Flash, Latency

TFLite

Micro [DDJ21],

CMix-NN

[CRF20]

Quantization

(sub-byte)

No

µNAS

[LDL21]

Evolutionary

(no weight sharing)

Analytical Conv2D (regular, depth-

wise)

Error, SRAM,

Flash, Latency

TFLite

Micro [DDJ21]

Structured

Pruning

Yes

iNAS

[MKH21]∧
Reinforcement

Learning

Lookup tables,

analytical

Conv2D, tile size, loop

order, preservation batch

size

Error, Flash,

Latency*,

Volatile Buffer,

Power-Cycle

Energy@

Accelerated

intermittent

Quantization

(2 bytes)

Yes

UDC

[FMT22]

DNAS with

exploration and

exploitation

Analytical Conv2D, sparsity,

bitwidth

Error, Flash Vela NPU Unstructured

pruning,

quantization

(sub-byte)

No

TinyNS Gradient-free

Bayesian with

exploration and

exploitation

Real

measurements,

analytical

Any supported ML

operator and symbolic

program atoms

Any scalar term TFLite

Micro [DDJ21]

Quantization

(1 byte)

Yes

∧ intermittent-aware NAS

* sum of progress preservation, progress recovery, battery recharge, and compute cost

@ sum of progress preservation, progress recovery, and compute cost
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used for testing. The dataset has 10 output classes. For ToyADMOS, 3600 and 400 non-

anomalous sound samples from 4 toy cars mixed with ambient noise are used for training

and validation, respectively, and 2500 anomalous and non-anomalous sound samples from

the same 4 toy cars are used for testing. The pre-processor extracts the Mel-scaled power

spectrogram from the raw WAVE files using 128 Mel bands, 5 frames, an FFT window length

of 1024, and a hop length of 512. The spectrogram is converted to log Mel energy, clipped

to keep the central portion, and concatenated with other frames to generate features. Each

input tensor is a vector of length 640. For Google Speech Commands, the 100503 1-second

keywords from 2618 speakers are divided into 85511, 10102, and 4890 utterances for training,

validation, and testing, respectively. The dataset has 12 output classes. The pre-processor

extracts the log Mel-frequency cepstral coefficient (MFCC) fingerprints from the raw 16

KHz WAVE files after decoding, volume scaling, random time-shifting (100 mS), and adding

background noise to the raw audio data. The window size is 30 mS and the stride is 20 mS.

10 MFCC coefficients are used, resulting in each model input being a 49×10×1 tensor.

3.4.2.2 Model Backbones, Training Details, and Search Space Definition

For image recognition, we optimize the ResNet [HZR16] backbone provided in the bench-

mark suite. Following the settings in the MLPerf Tiny v0.5 Benchmark [BRT21] and state-

of-the-art NAS frameworks for microcontrollers [LCL20, BZF21, PCA22, LDL21, EMH19b,

FMT22], we train each candidate model for a fixed number of epochs of 500. While green

AI advocates for training epochs to be considered as a hyperparameter [SDS20] to be opti-

mized, the additional hyperparameter may lead to a longer NAS convergence time from more

candidate models being trained to achieve acceptable accuracy, minimizing the reduction in

the total number of training epochs. In addition, TinyML neural architectures are either

well-known (e.g., ResNet [HZR16], MobileNets [HZC17], or SqueezeNet [IHM16]) or compact

(e.g., FastGRNN [KSB18], Bonsai [KGV17], ProtoNN [GSG17] or temporal CNN [LVR16]),

allowing the use of known and fixed training epochs or a small number of training epochs to
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achieve acceptable performance [SSS22a]. We use the Adam optimizer with a learning rate

scheduler having an initial learning rate of 0.001 and decaying by a factor of 0.99 with each

passing epoch. The batch size is 32, the loss is categorical cross-entropy, and the NAS error

metric is training accuracy. The optimization hyperparameters include:

• Number of convolutional stacks: range (1, 5)

• Kernel size: [1, 3, 5, 7]

• Number of filters (initial layer): [2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24]

• Use batch normalization: [True, False]

• Use activations: [True, False]

For anomaly detection, we optimize a temporal convolutional autoencoder (denoted as 1D-

CNN in the rest of the paper) backbone inspired by Thill et al. [TKB20]. The encoder is a

TCN [ODZ16, LVR16] without dilated kernels, followed by a 1D convolutional layer (linear

activation) with a quarter and one-third of the number of filters and kernel size of the TCN

layer, respectively. The decoder includes the same layers but in reverse, followed by a fully-

connected layer with 640 units and linear activation. Each candidate model is trained for

350 epochs, using the AMSGrad variant of the Adam optimizer with a learning rate of 0.001,

β1 of 0.9, β2 of 0.999, and ϵ of 1e-8. The batch size is 1024, the loss is the mean squared

error, and the NAS error metric is validation loss. The search space is as follows:

• Number of layers per stack: range (3, 8)

• Number of TCN stacks: [1, 2, 3]

• Number of filters in the TCN layers: range (3, 64)

• Kernel size in the TCN layers: range (3, 16)
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• Skip connections in TCN: [True, False]

For keyword spotting, we optimize a TCN, which can handle spatial and temporal features

hierarchically without the explosion of parameter count [ODZ16, LVR16]. The TCN layer

is followed by a dense layer with 12 units and softmax activation. Each candidate model is

trained for 60 epochs, using the Adam optimizer with a step function learning rate scheduler.

The batch size is 1000, the loss is sparse categorical cross-entropy, and the NAS error metric

is sparse categorical accuracy. The search space is as follows:

• Number of layers per stack: range (3, 8)

• Number of TCN stacks: [1, 2, 3]

• Number of filters in the TCN layers: range (2, 64)

• Kernel size in the TCN layers: range( 2, 16)

• Skip connections in TCN: [True, False]

• Dilation factor choices: [1, 2, 4, 8, 16, 32, 64, 128, 256]

3.4.2.3 Overall Performance

Fig. 3.2 (Left) and Fig. 3.3 showcases the Pareto-optimal frontier generated by TinyNS

versus competing frontiers and microcontroller models. TinyNS exceeds the benchmark

accuracy by 4.3% and 5.5% for image recognition and anomaly detection, respectively, while

consuming 1.14×-3.09× lower flash. For image recognition, TinyNS outperforms mod-

els generated SpArSe [FAM19] and µNAS [LDL21] by 4.5%-17.5% while taking 1.7×-7.7×

lower convergence time (shown in Fig. 3.2 (Right)). Compared to LEMONADE [EMH19a],

TinyNS provides 2.2× smaller models at the cost of 1.3% accuracy loss. TinyNS converges

faster than gradient-based or evolutionary NAS due to two key properties. Firstly, TinyNS
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Figure 3.2: (Left) Test accuracy versus model size of CIFAR10 ResNet models found by

TinyNS versus competing CIFAR10 models designed for microcontrollers. (Right) NAS

convergence time for TinyNS and competing microcontroller NAS frameworks on the CI-

FAR10 dataset.

can eliminate infeasible candidate models in the search space without training, thanks to ac-

curate hardware profiling using real microcontrollers during the search process. Proxies are

unable to take into account the compiler runtime optimizations, and the dynamic overhead

from RTOS, data stacks, and model interpreters. For all three tasks, the models generated

by proxied TinyNS not only have sub-optimal accuracy (1.6%-5.5% lower) and flash us-

age (4.2× higher) compared to proxy less TinyNS but also have higher convergence time

(2.3× higher). Secondly, the exploration-exploitation philosophy of the acquisition function,

coupled with parallel search capabilities and the computationally-tractable sampling-based

approach allows TinyNS to approach the global optimum without requiring evaluation of

thousands of candidate architectures. Each model in the Pareto-frontier is generated within

10-50 steps.

For anomaly detection, TinyNS outperforms attention-based OutlierNets [AFS21] by

6.3% and guarantees deployability over MobileNetv2 [SHZ18], but underperforms over Mi-

croNets [BZF21] models. We hypothesize that flattening the log MFCC in the 1D-CNN

backbone loses spatial correlation across the feature coefficients. This phenomenon also gen-
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Figure 3.3: (Left) Test AUC versus the model size of anomaly detection models (1D-CNN)

found by TinyNS versus competing anomaly detection models designed for microcontrollers

on the ToyADMOS dataset. (Right) Test accuracy versus the model size of keyword spotting

models (TCN) found by TinyNS versus competing keyword spotting models designed for

microcontrollers on the Google Speech Commands dataset.

erates sub-optimal TinyNS models for keyword spotting, failing to cross the benchmark

accuracy of 90% as shown in Fig. 3.3 (Right). This showcases the importance of perform-

ing NAS not just over a single model backbone, but over multiple model backbones. In

Chapter 4, we showcase how TinyNS operating on a search space with multiple models can

generate models with the lowest flash usage and highest accuracy. Regardless, given an ideal

model backbone, TinyNS can generate models with the highest accuracy and guaranteed

deployability within a few evaluations without requiring expensive training infrastructure.

3.4.2.4 Architectural Adaptation Based on Resource Availability

Table 3.2, Table 3.3, and Table 3.4 show the hyperparameters of the model backbones for

the three tasks generated by TinyNS for four different STM32 microcontrollers with varying

SRAM and flash limits. In general, as the device capabilities increase, TinyNS generates

models that have higher FLOPS, and higher SRAM and flash usage. Instead of providing

the smallest model with the highest accuracy, TinyNS adapts hyperparameters such as the

39



Table 3.2: Chosen ResNet model hyperparameters for each target hardware by TinyNS on

the CIFAR10 dataset. The SRAM and flash limits of the hardware are given in parenthesis

in kB in the form (SRAM, Flash).
Device Profiling SRAM Usage Latency (s), FLOPS Filters Kernel size Stacks Batch Normalization Activations

F446RE (128, 512)
Real 107 kB 0.58 (L) 10 5 4 True True

Proxy 95.8 kB 12.9M (F) 4 7 4 True True

L476RG (128, 1024)
Real 87.8 kB 3.13 (L) 24 5 2 True True

Proxy 56.5 kB 3.82M (F) 6 3 3 True True

F746ZG (320, 1024)
Real 308 kB 1.39 (L) 22 7 2 True True

Proxy 286 kB 55.9M (F) 24 3 3 True True

L4R5ZI P (640, 2048)
Real 608 kB 1.13 (L) 20 3 4 True True

Proxy 309 kB 40.9M (F) 18 3 4 False True

Table 3.3: Chosen 1D-CNN model hyperparameters for each target hardware by TinyNS on

the ToyADMOS dataset. The SRAM and flash limits of the hardware are given in parenthesis

in kB in the form (SRAM, Flash).
Device Profiling SRAM Usage Latency (s), FLOPS Filters Kernel size Layers per stack Stacks Skip connection

F446RE (128, 512)
Real 87.8 kB 0.01 (L) 50 3 5 1 True

Proxy 81.3 kB 0.32M (F) 16 10 4 1 True

L476RG (128, 1024)
Real 88.2 kB 0.06 (L) 38 10 6 1 True

Proxy 62.0 kB 0.24M (F) 26 3 5 1 True

F746ZG (320, 1024)
Real 288 kB 0.01 (L) 42 4 4 3 True

Proxy 78.1 kB 0.31M (F) 30 4 3 1 True

L4R5ZI P (640, 2048)
Real 608 kB 0.03 (L) 63 3 5 1 True

Proxy 444 kB 1.77M (F) 57 6 4 2 True

Table 3.4: Chosen TCN model hyperparameters for each target hardware by TinyNS on the

Google Speech Commands dataset. The SRAM and flash limits of the hardware are given

in parenthesis in kB in the form (SRAM, Flash).
Device Profiling SRAM Usage Latency (s), FLOPS Filters Kernel size Dilations, layers per stack Stacks Skip conn.

F446RE (128, 512)
Real 106 kB 0.31 (L) 51 9 [1,8,64,128], 4 2 True

Proxy 77.8 kB 21.6M (F) 27 9 [1,2,16,32,64,128], 6 2 True

L476RG (128, 1024)
Real 95.4 kB 0.65 (L) 44 7 [1,2,4,8,16,128], 6 2 True

Proxy 79.4 kB 22.0M (F) 30 9 [1,2,8,16,128], 5 2 True

F746ZG (320, 1024)
Real 286 kB 0.04 (L) 45 4 [1,4,16,64,128], 5 1 True

Proxy 147 kB 32.4M (F) 56 4 [1,4,8,64], 4 3 True

L4R5ZI P (640, 2048)
Real 606 kB 1.66 (L) 63 8 [1,4,8,16,32,64,128,256], 8 3 True

Proxy 210 kB 68.2M (F) 55 8 [1,16,128], 3 3 True
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number of kernels, size of kernels, and the number of convolutional stacks with increasing

device capabilities to maximize accuracy. Fig. 3.4 and Fig. 3.5 show visual examples of

such architectural adaptation for three of the four microcontrollers. As the SRAM and flash

capacity increases, TinyNS automatically adjusts the number of layers per stack, the number

of stacks, the kernel size, and the number of filters depending on an increase in SRAM or

flash. For example, a model with more parameters but a smaller kernel size and filter count

are likely to benefit from an increase in flash but no change in SRAM. Likewise, when dilated

convolutions are used, TinyNS assigns a small dilation factor to earlier layers and a large

dilation factor in later layers when it cannot increase the number of layers due to resource

limits. This allows a TCN with a limited layer count to have the same receptive field (albeit

less fine-grained) as a TCN with more layer count, capturing both short-term local context

and long-term global time-series inter-dependencies. Table 3.2, Table 3.3, and Table 3.4

further showcase the problem with proxies as opposed to real-hardware profiling. These

models have a higher number of parameters but a lower number of filters and kernel size

than proxy-less models. Since proxies are unable to take into account compiler optimizations,

the generated models underestimate the available SRAM and overestimate the flash usage,

yielding models with poor accuracy.

3.4.2.5 Convergence Time of Proxyless versus Proxied TinyNS

Fig. 3.6 shows the number of steps needed to reach the best optimization score for proxy

less and proxied TinyNS for all three tasks. For both profiling techniques, tighter hardware

constraints (lower SRAM and flash capacities) equate to more steps required for conver-

gence. However, proxy less TinyNS converges 3.2×-12.6× faster to the highest performing

model compared to proxied TinyNS. Intuitively, platform-in-the-loop should be slow while

analytical proxies should be fast, as real measurements have compilation time and profiling

time overhead and are not immediate. However, since proxies are inaccurate and do not

reflect the execution level dynamics, more infeasible model candidates are trained rather
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Figure 3.4: Architectural adaptation and device capability exploitation by TinyNS on the

ToyADMOS dataset. The SRAM and flash limits of the hardware are given in parenthesis

in kB in the form (SRAM, Flash). jLi refers to ith layer of the 1D-CNN in the jth stack.

Figure 3.5: Architectural adaptation and device capability exploitation by TinyNS on the

Speech Commands dataset. The SRAM and flash limits of the hardware are given in paren-

thesis in kB in the form (SRAM, Flash). jLi refers to ith layer of the TCN in the jth stack.
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Figure 3.6: Convergence steps required for proxy less and proxied TinyNS. (Left) CIFAR10,

(Center) ToyADMOS, (Right) Google Speech Commands. The SRAM and flash limits of

the hardware are given in parenthesis in kB in the form (SRAM, Flash). Note that a higher

score for proxied TinyNS does not necessarily guarantee deployability, while the highest

score for proxy less TinyNS guarantees deployability on the target microcontroller.

than discarded, wasting valuable computing time and increasing the search completion time.

In our evaluation, we found the platform-in-the-loop approach to be 50% faster than using

proxies for hardware profiling. Even though proxied TinyNS achieves a higher score than

proxy less TinyNS, the deployability of models generated by proxied TinyNS is not guar-

anteed due to high flash consumption. Further, we have seen earlier that these models do

not fully exploit the SRAM capabilities and have lower accuracy than proxy-less models.

The increased score achieved by proxied TinyNS is contributed by model candidates with

a high flash footprint.

3.5 Discussion

TinyNS provides a stepping stone in automating the deployment of neurosymbolic frame-

works onto ultra-resource-constrained IoT devices like microcontrollers. The Bayesian op-

timization formulation provides an inexpensive method to iterate over complex neurosym-

bolic search spaces, providing Pareto-optimal models depending upon resource availability.

GP-UCB and hard thresholding policy allow fine-grained search space exploration and ex-
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ploitation and improved convergence time.

Our framework only supports TensorFlow Lite Micro (TFLM) [DDJ21] so far for model

parsing. However, there are other inference engines for which support must be added. More-

over, while our Bayesian optimizer provides a user-friendly and problem-agnostic way to

inexpensively optimize complex search spaces, the approach is likely sub-optimal to RL or

evolutionary approaches. A detailed benchmark needs to be performed to study the viability

of RL or evolutionary techniques as the search algorithm.
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CHAPTER 4

Neurosymbolic Tiny Machine Learning

While ML models have achieved superior performance on unstructured, multimodal, and

noisy sensor inputs over human-engineered symbolic techniques, three issues plague the de-

ployment of standalone ML models for context-aware sensor data analytics. Firstly, even

with large datasets, ML models cannot guarantee the learned feature representations obey

all the rules, symmetries, and physics of the underlying system [SSG22, SFM20, CGH20,

KKL21]. Secondly, the contextual field of ML models (even transformers) is limited to a

few minutes, making them unsuitable for high-level reasoning on atomic events that can

span several hours (if not days) with spatial and temporal constraints [RAR21a, XGV20,

APS21, VXT21, MTC22]. Thirdly, ML models lack transparency and interpretability, with

the decision trace (e.g., causation versus correlation) and learned features difficult to under-

stand [MGK18, MTC22, GGL19, YWG18, Pea19, SSS22b].

Neurosymbolic artificial intelligence (AI) is a potential bridge to connect the inter-

pretability, verifiability, data efficiency, and context awareness of symbolic techniques with

the scalability, flexibility, robustness, and performance of NNs [MGF20, XGV20, MGK18,

MDK18, PMS17, GBB22, SG16, GDY19, YPJ19, SZS20, SZE21]. Neurosymbolic AI in-

tegrates NNs with expert principles expressed as probabilistic reasoning modules, logical

reasoning modules, knowledge graphs, question/answering engines, and constraint satisfac-

tion functions [SZE21, GBB22]. Concatenation of neural and symbolic reasoning has been

successful in a broad spectrum of challenging problems. These include complex event recogni-

tion [XGV20, VXT21, APS21, RAR21a, WSW22], commonsense reasoning [SLA19, BRS19],
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visual question answering [MGK18, YWG18], oceanographic forecasting [CA98, FC03], au-

tonomous driving [SSH21, SSS17, GTC20], business management [CBP04, BBC11], and

bioinformatics [AKM17, KKH18]. Thereby, neurosymbolic AI can enable rich, complex, and

intelligent inferences at the extreme edge beyond the perception of atomic events [SSS22a,

RAR21a, VVM21]. However, real-time adoption of neurosymbolic frameworks on extremely

resource-constrained platforms such as microcontrollers. Directly porting existing neurosym-

bolic frameworks on microcontrollers, in-sensor processors [CD18], and field-programmable

gate arrays [JZS19] is not computationally tractable.

4.1 Contributions

Building upon the neurosymbolic architecture search framework described in Chapter 3, we

showcase the neurosymbolic program formulation in TinyNS. Using case studies, we show-

case recipes for defining the neurosymbolic program synthesis search space for all five neu-

rosymbolic program categories [SZE21]. Our framework includes parsers that automatically

write microcontroller code according to these recipes. TinyNS provides recipes to map neu-

rosymbolic program atoms from a prototyping language (e.g., Python) to a deployment lan-

guage (e.g., C). We showcase several unseen TinyML applications made possible by the joint

optimization of neural and symbolic components [SSA23, SDS23b, DSS23, SDS23a, SSP22].

4.2 What is Neurosymbolic Artificial Intelligence?

Over the past decade, deep learning (DL) has been extensively used to make complex

inferences from unstructured, noisy, and high-dimensional data, such as in computer vi-

sion, LIDAR point clouds, speech processing, drug discovery, time-series processing and

genetics [LBH15]. However, traditional DL is data-hungry even for simple tasks, lacks

interpretability and explainability, does not guarantee to follow rules, physics, and con-
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Figure 4.1: The five categories of neurosymbolic artificial intelligence [Kau22, SZE21].

straints, fails on feature distribution shifts, and struggles to learn long-range temporal

patterns [CGH20, GGL19, SSS22b, Pea19, GBB22]. The flipside is symbolic AI, which

was once the dominant trend of AI research several decades ago before the prevalence of

DL [Smo87, New80]. Symbolic programs are data efficient, interpretable, and good at rea-

soning over the long-term, but suffer when solving NP-hard problems and dealing with

spatial and temporal uncertainties in the input data [SZE21]. Neurosymbolic AI cou-

ples DL with symbolic methods to have fast computation time, deal with unstructured

data and uncertainty effortlessly, maintain explainable models, and capture complex rela-

tions [GBB22, GDY19, Kau22, MDK18, PMS17, SZE21]. Neurosymbolic learning is anal-

ogous to the two types of human reasoning [Kah11]: type 1 reasoning is fast and intuitive,

corresponding to pattern recognition in DL, and type 2 is slower and logical, corresponding

to symbolic algorithms and logical reasoning.

4.2.1 Taxonomy of Neurosymbolic AI

Neurosymbolic AI systems are categorized into five groups [SZE21, Kau22], as illustrated in

Fig. 4.1:

• Symbolic Neuro Symbolic or Neural-after-Symbolic: This is the most com-

47



mon paradigm [Kau22]. The inputs are symbolic, while the processing is purely neu-

ral. The neural component either learns the relations between the symbols or learns

to focus on some specific symbols based on needs. Examples include inference over

human-engineered features [KKN14] and graph NN inference with pre-processed graph

nodes [SGT08]. While this technique allows applying human-engineered functions on

the inputs, the synergy between neural and symbolic components is weak, with no

high-level reasoning possible over the outputs.

• Neuro→Symbol or Symbolic-after-Neural: In this approach, NNs process raw

inputs and output structured data, which are fed to symbolic programs for further

reasoning. Examples include DUA [MTC22] and DeepProbLog [MDK18]. In DUA,

a symbolic meta-policy learning module with common sense background knowledge

combines primitive actions from a deep RL agent. In DeepProbLog, NNs are trained

to output probabilistic predicates, which are fed to a logic program to evaluate user-

defined logic rules. The technique allows the flow of gradients from the symbolic output

through the network but suffers from the high compute cost of the reasoning module.

• Neuro ∪ Compile (Symbolic) or Symbolically-constrained Neural: This tech-

nique adds a symbolic component to the learning process of a neural model to follow

constraints, norms, or rules, which are compiled away during training [LC19]. An

example includes Pylon [ALT22], where user-defined constraints on the output are

converted to an additional loss added to the traditional error cost. While constraints

are simple to express using this method, the network is not guaranteed to satisfy hard

thresholds.

• Symbolic[Neuro] or Neurosymbolic Aggregation: In this method, a neural model

and symbolic program aggregate their results to achieve more robust inference. The

neural component models errors resulting from uncertainties of the symbolic program,

or the symbolic program forces the NN to follow some constraints or rules. In STL-
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net [MGF20], a neural student model learns to predict succeeding output sequences by

learning temporal logic relations, while a symbolic teacher model generates an output

sequence most similar to that prediction within the given relational constraints.

• Neuro[Symbolic] or Neurally-accelerated Symbolic or Symbolically-structured

Neural: This is the preferred neurosymbolic paradigm [Kau22], where the NN archi-

tecture is generated using (or has layers embedded with) symbolic reasoning. A neural

model replaces slow or non-differentiable symbolic programs while keeping the latter’s

functionality. Examples include logic Tensor Networks [SG16], which generates a first-

order logic language into TensorFlow computational graphs. Pix2rule [CR22] embeds

a differentiable linear layer in a deep NN, which is biased to capture the semantics of

AND and OR to extract spatial symbolic rules. Neuroplex [XGV20] adopts a knowl-

edge distillation approach to train a neural model that can replace the logic reasoner for

complex event pattern detection. While allowing pure type 2 reasoning, this method

may include special ML operators unsupported on TinyML hardware.

4.2.2 Neurosymbolic Language Tools

Neurosymbolic language tools synthesize programs from user-defined rules. DeepProbLog [MDK18]

is a probabilistic logic programming language where users can define logical rules and network

architectures. The symbolic reasoning module is differentiable, allowing backpropagation of

target labels at the output of the logic program through the NN. Pylon [ALT22] is a PyTorch

framework that learns deep NNs with constraints. It automatically converts constraints de-

fined by users into a constraint loss, and the NN is trained using the summation of this

constraint loss and a regular loss function. Gen [CSL19] is a probabilistic programming

language designed for general-purpose neurosymbolic program synthesis. It can build gener-

ative models to represent data-generating processes, supports flexible DL and differentiable

programming, and can make probabilistic inferences.
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4.2.3 Recent Trends in Neurosymbolic Artificial Intelligence

Recent research in neurosymbolic AI focuses on handling domain shifts, performing er-

ror correction, increasing data efficiency, and improving the interpretability of ML sys-

tems [SZE21, GBB22]. Symbolic background knowledge allows extrapolation when dealing

with input distribution different from training data [MFL19]. Error correction designs ro-

bust ML systems enabling streamlined recovery from wrong outputs without retraining on

new data [BKS18]. Symbolic reasoning allows NNs to be trainable with less data [SZE21].

Improving the interpretability of ML systems makes NN decisions more transparent and

explainable [MA20]. Unfortunately, the deployment of neurosymbolic programs on IoT plat-

forms or for real-time inference has received little attention. µCEP [RAR21a] is the only

framework that allows complex event processing on neural outputs using logical rules on

commodity microcontrollers. However, µCEP is hard-coded for a single application (com-

plex activity detection), few network architectures (fully-connected and convolutional), and

a specific neurosymbolic AI category (Neuro→Symbol), with no notion of co-optimization of

neural and symbolic components or platform-awareness. In contrast, our framework allows

platform-aware automatic co-design of ML (neural or non-neural) and symbolic components

regardless of application, choosing the best synergy of ML operators and symbolic hyperpa-

rameters within the tight resource bounds of TinyML platforms.

4.3 TinyML Neurosymbolic Problem Formulation

The recipes used by the parsers in TinyNS are discussed in this section.

4.3.1 Symbolic Neuro Symbolic

Problem Formulation (Symbolic). Consider a vector of independent domain-engineered

functions z(·) constructed from s in Ω that operate on X. During the search process, each
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function in z(·) can be accessed through a binary mask c, signifying the activation and

deactivation of a collection of elements of z(·).

Xfeat
i = zUi

i (X) ⇔ ci = 1, i ∈ [1, n], ci ∈ 0 ∨ 1 (4.1)

U is a 2D hyperparameter data structure for z(·). ith row of U correspond to the hyperpa-

rameters for zi. The number of columns of U is the number of optimization parameters for

that zi which takes the maximum number of hyperparameter arguments, e. Each element

in U corresponds to the range of possible floating point numbers in the search space for the

(i, j)th hyperparameter, expressed as a list. Boolean hyperparameters are converted to (0.0,

1.0), and nominal variables are converted to ordinal choices (e.g, 1.0, 2.0, 3.0, 4.0, 5.0). The

length of each element in U varies.

U =



[α1,1
1 , α1,1

2 , ..., α1,1

γ1
1

] [α1,2
1 , α1,2

2 , ..., α1,2

γ1
2

] ... [α1,e
1 , α1,e

2 , ..., α1,e
γ1
e

]

[α2,1
1 , α2,1

2 , ..., α2,1

γ2
1

] [α2,2
1 , α2,2

2 , ..., α2,2

γ2
2

] ... [α2,e
1 , α2,e

2 , ..., α2,e
γ2
e

]

. . ... .

. . ... .

. . ... .

[αn,1
1 , αn,1

2 , ..., αn,1
γn
1

] [αn,2
1 , αn,2

2 , ..., αn,2
γn
2

] ... [αn,e
1 , αn,e

2 , ..., αn,e
γn
e

]


(4.2)

An example of U is shown below. There are 3 feature functions in z. The first feature

takes 4 hyperparameter arguments, the second feature takes 1 hyperparameter argument,

and the third feature takes 2 hyperparameter arguments. All the functions are programmed

to accept 4 arguments, but each function may not use all 4 arguments. The arguments are

internally processed by each function to the correct form.

Usample =


[0.0, 1.0] range(3.0, 64.0) uniform(−5.0, 10.0) [1.2, 5.2]

[0.2, 0.5, 0.8, 1.5, 2.3] [0.0] [0.0] [0.0]

[1.0, 2.0, 3.0, 4.0] linspace(−22.0, 22.0, 100) [0.0] [0.0]


(4.3)
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Figure 4.2: Mapping hyperparameter data structure to slider matrix.

To normalize each element in U to the same scale and make the search tractable, TinyNS

uses a slider matrix Uslider during the search process instead of being directly exposed to U.

Uslider =



ζ1,1 ζ1,1 ... ζ1,e

ζ2,1 ζ2,2 ... ζ2,e

. . ... .

. . ... .

. . ... .

ζn,1 ζn,2 ... ζn,e


, ζi,j =


linspace(0, 1, δ) ⇔

∣∣∣[αi,j
1 , αi,j

2 , ..., αi,j

γi
j
]
∣∣∣ ̸= 1

0

(4.4)

δ represents the granularity factor, which controls how finely each element in U can be

chosen. Ideally, δ should be equal to the length of the largest array in U. Let ηi,j be a value

in an array element in U. The mapping between ζi,j and ηi,j is:

ηi,j = αi,j
κ , κ = round

(
ζi,j ·

∣∣∣[αi,j
1 , αi,j

2 , ..., αi,j

γi
j
]
∣∣∣) , µi,j ∈ [0, 1] (4.5)

The search space for the symbolic components, thereby, is composed of the binary mask c

and Uslider. Fig. 4.2 illustrates the mapping.

Problem Formulation (Neural). Consider a collection of k model backbones ϕ con-

structed from m in Ω. During each iteration in the search process, only one of the models
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is considered via an ordinal mask d.

modeliterationt = ϕi, i ∈ d, d = [1, 2, ..., k] (4.6)

Each model will have its own optimization hyperparameters (e.g., number of convolutional

layers, kernel size, support vector kernel type, etc.). We modify the concept of hyperparam-

eter data structure and slider matrix from the symbolic search space to account for ordinal

model choice. Let V be the 2D hyperparameter data structure for ϕ. The structure of V

remains the same as that of U, now with k rows of hyperparameter. The number of columns

of V is equal to the number of optimization hyperparameters for that ϕi which takes the

maximum number of arguments f .

V =



[β1,1
1 , β1,1

2 , ..., β1,1

γ1
1

] [β1,2
1 , β1,2

2 , ..., β1,2

γ1
2

] ... [β1,f
1 , β1,f

2 , ..., β1,f

γ1
f

]

[β2,1
1 , β2,1

2 , ..., β2,1

γ2
1

] [β2,2
1 , β2,2

2 , ..., β2,2

γ2
2

] ... [β2,f
1 , β2,f

2 , ..., β2,f

γ2
f

]

. . ... .

. . ... .

. . ... .

[βk,1
1 , βk,1

2 , ..., βk,1

γk
1

] [βk,2
1 , βk,2

2 , ..., βk,2

γk
2

] ... [βk,f
1 , βk,f

2 , ..., βk,f

γk
f

]


(4.7)

An example of V is shown below. The first row corresponds to the hyperparameters for

a temporal convolutional network (TCN) [ODZ16], and the second row corresponds to the

hyperparameters for Bonsai [KGV17].

Vsample =


range(2, 64)︸ ︷︷ ︸

kernel size

[1.0, 2.0, 5.0]︸ ︷︷ ︸
stack count

[[1, 2, 4], [1, 2, 4, 8], [1, 4, 8, 32]]︸ ︷︷ ︸
dilation factors

uniform(0.0, 1.0)︸ ︷︷ ︸
dropout

range(40, 60)︸ ︷︷ ︸
prototype count

range(1, 4)︸ ︷︷ ︸
sigmoid parameter

range(1, 6)︸ ︷︷ ︸
depth

[0.0]


(4.8)

Since d is ordinal, Vslider takes a vector form:

Vslider =
[
χ1,1 χ1,2 ... χ1,f

]
, χi,j =


linspace(0, 1, δ) ⇔

∣∣∣[βi,j
1 , βi,j

2 , ..., βi,j

γi
j
]
∣∣∣ ̸= 1

0

(4.9)
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Algorithm 1 Example of

extract symbolic() for Symbolic Neuro

Symbolic parsing
#include "_____.h"

.

.

#define MAX_PARAM_COUNT 3 //written by parser

#define MAX_NUMBER_OF_FUNC 4

const int func_output_size[MAX_NUMBER_OF_FUNC] = {1,1,1,4};

int mask_array[MAX_NUMBER_OF_FUNC] = {1,1,0,1}; //written by parser

float params_array[MAX_NUMBER_OF_FUNC*MAX_PARAM_COUNT] =

{2.2,39,-23,1.2,0.0,0.0,23.5,2.2,0.0,-5.1,0.95,0.0}; //written by parser

void func_1(float* input_ar, float* output_ar, float* param_ar){

}

void func_2(float* input_ar, float* output_ar, float* param_ar){

}

void func_3(float* input_ar, float* output_ar, float* param_ar){

}

void func_4(float* input_ar, float* output_ar, float* param_ar){

}

void extract_symbolic(float *raw_data, float *output_feat,

int *mask, float* params){

typedef void (*f)(float[], float[], float[]);

int j = 0;

float param_ar[MAX_PARAM_COUNT] = {0.0};

f func[MAX_NUMBER_OF_FUNC] = {&func_1, &func_2, &func_3, &func_4};

for(int i = 0; i < MAX_NUMBER_OF_FUNC; i++){

for (int k = 0; k<MAX_PARAM_COUNT; k++){

param_ar[k] = params[i*MAX_PARAM_COUNT + k];

}

if (mask[i] == 1){

float temp_buff[func_output_size[i]];

func[i](raw_data, temp_buff, param_ar);

for (int k = 0; k < func_output_size[i]; k++){

output_feat[j] = temp_buff[k];

k = k+1;

j = j+1;

}

}

}

}

Algorithm 2 Example of main.cc for Sym-

bolic Neuro Symbolic parsing
#include "_____.h"

.

.

Timer t;

constexpr int kTensorArenaSize = 500 * 1024; //written by parser

alignas(16) uint8_t tensor_arena[kTensorArenaSize];

tflite::MicroModelRunner<float, float, 13> *runner; //written by parser

float raw_data[kInputSize]; //written by parser

float input_model[kModelInputSize]; //written by parser

int main() {

static tflite::MicroMutableOpResolver<13> resolver; //written by parser

resolver.AddShape(); //written by parser

resolver.AddStridedSlice(); //written by parser

.

.

static tflite::MicroModelRunner<float, float, 13>model_runner(

g_featnn_model_data, resolver, tensor_arena,

kTensorArenaSize); //written by parser

runner = &model_runner;

get_sensor_data(raw_data);

extract_symbolic(raw_data, input_model, mask_array, params_array);

t.start();

runner->SetInput(input_model);

runner->Invoke();

t.stop();

for (size_t i = 0; i < kCategoryCount; i++) {

float converted = runner->GetOutput()[i]; //written by parser

printf("%0.3f", converted);

if (i < (kCategoryCount - 1)) {

printf(",");

}

}

printf("\n");

printf("timer output: %f\n", t.read());

t.reset();

}

The search space for the neural components, thereby, is composed of the ordinal mask d and

Vslider. Note that when k = 1, the elements in V are directly fed to the search algorithm.
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Parsing (Symbolic). The Python constructs for each function in z(·) have equivalent

C constructs, declared in a .h file and defined in a .cc file. The .cc file also includes

an extract symbolic(raw data[], output feat[], mask[], params[]) function, which

takes the windowed and raw sensor data as input (raw data[]), picks functions according

to a binary mask array (mask[]), applies the corresponding hyperparameters to the chosen

functions (params[]), and outputs the processed data (output feat[]). TinyNS writes

the Pareto-optimal mask c∗ as mask[], the Pareto-optimal values in the 2D hyperparameter

data structure U∗ as flattened array params[], and the maximum number of arguments each

function can take MAX PARAM COUNT to the .cc file. Algorithm 1 provides example implemen-

tation for the extract symbolic() function. All of the functions are programmed to take a

hyperparameter array of length MAX PARAM COUNT, internally processing the arguments to the

correct form like in Python. An array of function pointers of type f allows flexible addition,

removal, and access to functions, retaining the same order of functions from Python and

allowing sequential application of each function to the raw input data. The output channel

count for each function is variable and defined in func output size[].

Parsing (Neural). TinyNS uses the TensorFlow Lite Micro (TFLM) [DDJ21] Mbed

RTOS C file system for real-time model inference on microcontrollers. Algorithm 2 shows

the main.cc file of the file system. We choose TFLM as the runtime inference engine

due to its widespread public use, portable design philosophy, heterogenous hardware sup-

port, memory efficient paradigms, static memory allocation, and pathways for easy model

replacement [DDJ21, SSS22a]. First, the model backbone in Python is constructed using

Keras [GP17] or Keras/TensorFlow wrappers for Scikit-learn [PVG11] with TensorFlow back-

end [ABC16]. Next, the Keras model is converted to a .tflite model, with appropriate

quantization schemes applied during conversion (e.g., no quantization or full integer quan-

tization using a representative dataset). The parser now needs to check if the operators in

the .tflite file are present in the TFLM operator resolver list. The steps are:
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• Read the .tflite file as a flatbuffer byte array.

• Decode the value at the start of the flatbuffer using packer type flatbuffers.packer.uoffset

to create a model object.

• Unpack the model object into a graph of flatbuffer objects.

• Convert the hierarchy of flatbuffer objects to a nested opcode dictionary.

• Match the opcode keys in the model to the opcode names in the BUILTIN OPCODE2NAME

dictionary provided with the TFLite API.

• Check if the resulting set of names is present in the AVAILABLE TFLM OPS list.

If all the operators in the model are supported by TFLM, then, the .tflite file is converted

to a flatbuffer model schema using Linux hex dump, generating .cc file of the model. The

parser opens the main.cc file and makes the following changes:

• Declare the TFLM arena size depending on target hardware constraints. The arena is

a stack in the SRAM used for initialization and runtime variable storage.

• Declare the arrays for storing raw data and processed output from extract symbolic,

which is also the input to the model. The arrays can be float or int depending on

model quantization. In TFLM, flattened input arrays are internally reshaped to match

the input tensor shape of the model.

• Declare a TFLM interpreter instance (MicroModelRunner), which resolves the model

graph during runtime. The data types should be the input and output data types of

the model, and the last number indicates the number of unique ML operators that

need to be called by the operator resolver.

• Declare the TFLM operator resolver instance (MicroMutableOpResolver), which links

only the essential ML operators to the model graph.
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Figure 4.3: Architecture of automated neurosymbolic parsing for Symbolic Neuro Symbolic.

• Add the operators necessary to resolve the graph from the intersection of the set of

model opcode names and the AVAILABLE TFLM OPS list.

• Pass the flatbuffer model schema, the operator resolver, and the arena to the inter-

preter.

• Dequantize the outputs if the model output is quantized.

Fig. 4.3 summarizes the parser operation between the Python file system and the TFLM

Mbed RTOS C file system.

Examples. An example includes finding the best set of features for on-device wearable

human activity recognition. Another example includes finding the best model among a set

of models for on-device wearable fall detection under 2 kB of memory. We showcase the

examples in Section 4.4.1 and Section 4.4.2. In the first example, the search algorithm is

given a model backbone and several temporal, statistical, and spectral features that can

operate on the raw, windowed data. The goal is to find the best model hyperparameters

and features that work well to give maximal activity detection accuracy within the hardware

constraints. In the second example, the goal is to find the best model and its corresponding

57



Figure 4.4: Sample program supergraph generated from the DSL operator space for Neuro

→ Symbol [PMS17, SZS20, TSK21]. Green nodes represent non-terminal nodes and purple

nodes represent goal nodes.

hyperparameters that can detect falls within a tight memory budget.

4.3.2 Neuro→Symbol

Problem Formulation. There are two ways to realize this paradigm. Firstly, if a static

domain-engineered function z(·) with hyperparameter data vector u operates on the output

of the model to produce high-level reasoning, then the symbolic search space only contains

u.

u =
[
[α1,1

1 , α1,1
2 , ..., α1,1

γ1
1

] [α1,2
1 , α1,2

2 , ..., α1,2

γ1
2

] ... [α1,e
1 , α1,e

2 , ..., α1,e
γ1
e

]
]

(4.10)

u is similar in form as U from Section 4.3.1, but only corresponds to the optimization

hyperparameter space for a single function. The neural search space is the same as that

shown in Section 4.3.1.

Secondly, consider a collection of logical (e.g., AND, OR, NOT) operators Λ, relational

(e.g., equivalence, less than or equal to, greater than or equal to) operators ℜ, arithmetic

(e.g., add, multiply) operators Ξ, and conditional (e.g., if else then) operators Υ, expressed

in a Domain-Specific Language (DSL) [PMS17]. Given maximum tree depth ℘ and a finite
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number of trees N , the symbolic atoms can be combined to synthesize candidate program

graphs (or program decision trees) that can perform high-level reasoning over several neural

output timesteps.

G = GenerateProgramTree({Λ,ℜ,Ξ,Υ}, ℘,N) (4.11)

Fig. 4.4 shows an example program supergraph generated from the DSL operator space,

from which candidate trees can be extracted. The GenerateProgramTree() is an enumeration

algorithm [PMS17, TSK21] that generates all possible combinations of program graphs G

given ℘ and N using context-free grammar. The rules of connection are fixed by the DSL.

Ideally, the path cost of the program graph should be low for interpretability and resource

savings, yet have high accuracy. In other words, in Fig. 4.4, the goal is to find the top-

performing shortest path to Decision A and Decision B. The symbolic search space is an

ordinal mask j that represents one of N program subgraphs extracted from the program

supergraph.

programiterationt = Gi, Gi ∈ G, i ∈ j, j = [1, 2, ..., N ] (4.12)

The neural search space is the same as that shown in Section 4.3.1.

Parsing. Neuro→Symbol follows the same model parsing strategy discussed in Section 4.3.1,

Algorithm 2 and Fig. 4.3. For symbolic parsing, in the first case, the symbolic parser passes

the Pareto-optimal u∗ as hyperparameter vector[] to the main.cc file, where the function

z(·) is defined as symbolic function(). This function operates on the output of the model.

An example of this case is shown in Algorithm 3. In the second case, the program decision

tree along with the grammar and the parser runtime are ported as header files. The steps

to port a program tree generated using ANTLR [Par13] are:

• Port the graph as a .txt or .h file, expressed in DSL.

• Define the lexer rules in a .g4 files. The lexer rules are necessary to tokenize the DSL

program tree.
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• Run the ANTLR runtime engine with the lexer.g4 file in the target language (Python

or C) to create the necessary lexer files.

• Define the grammar in another .g4 file. The grammar defines the relations between

the class of tokens, assigning labels using the DSL operator space.

• Run the ANTLR runtime engine again, but with the grammar.g4 file to create the

parser files, which processes the program graph to create a hierarchical abstract syntax

tree. Specify the -visitor flag when running the engine to have control over the query

traversal.

• Create a visitor, which will traverse the tree according to the parser grammar.

• Pass the DSL graph from the .txt or .h file to the lexer as a string argument. The

tokenized tree is passed to the parser to generate the syntax tree, which is finally passed

to the visitor for traversal.

Examples. An example of the first approach includes joint optimization of a symbolic

object tracker with a neural object detector using the CenterNet algorithm [ZKK20]. We

showcase this example in Section 4.4.3. The object detector backbone is a ResNet-34 + De-

formable Convolutional Network, with the optimization hyperparameters being the number

of convolutional stacks, the kernel size, whether to use layer-wise activations or not, and the

head convolutional value. Given an input image I t ∈ RW×H×3, the model outputs the center

points D̂pi
and bounding box dimensions Ŝpi

of the detected objects, as well as a heatmap

of the centroid of the objects Ŷxyc, Ŷ ∈ [0, 1]
W
R
×H

R
×C) based on the rendering function R with

Gaussian Kernel σi for each class c ∈ {0, 1, ..., C − 1}.

Rq({p0,p1, ...}) = max
i

exp

(
(pi − q)2

2σ2
i

)
,q ∈ R2,p ∈ R2 (4.13)

q is a position on the image. To track and associate objects across frames, the network is

also fed the previous frame I t−1 and prior detection heatmaps R(pt−1). The network then
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Algorithm 3 Example of main.cc for the

first case of Neuro→Symbol
SAME AS ALGORITHM 2

.

.

float hyperparameter_vector[3] = [-2.4, 1.1, 2.0]; //written by parser

void symbolic_function(float* inp, float* out, float* params){

}

float raw_data[kInputSize]; //written by parser

float model_output[kOutputSize]; //written by parser

float symbolic_output[kSymbolicSize]; //written by parser

int main() {

SAME AS ALGORITHM 2

.

.

runner = &model_runner;

get_sensor_data(raw_data);

t.start();

runner->SetInput(raw_data);

runner->Invoke()

for(size_t i = 0; i< kCategoryCount; i++){

model_output[i] = runner->GetOutput()[i]; //written by parser

}

symbolic_function(model_output, symbolic_output, hyperparameter_vector);

t.stop();

for(size_t i = 0; i< kSymbolicSize; i++){

printf("%0.3f\n", symbolic_output[i]);

}

printf("\n");

printf("timer output: %f\n", t.read());

t.reset();

}

Algorithm 4 Example of main.cc for the

second case of Neuro→Symbol
SAME AS ALGORITHM 2

.

.

INCLUDE TREE, PARSER RUNTIME AND GRAMMAR HEADER FILES HERE

float raw_data[kInputSize]; //written by parser

float model_output[kOutputSize]; //written by parser

float symbolic_output[kSymbolicSize]; //written by parser

int main() {

SAME AS ALGORITHM 2

.

.

runner = &model_runner;

get_sensor_data(raw_data);

t.start();

runner->SetInput(raw_data);

runner->Invoke()

for(size_t i = 0; i< kCategoryCount; i++){

model_output[i] = runner->GetOutput()[i]; //written by parser

}

program_graph_runtime(model_output, symbolic_output); //lexer->parser->visitor

t.stop();

for(size_t i = 0; i< kSymbolicSize; i++){

printf("%0.3f\n", symbolic_output[i]);

}

printf("\n");

printf("timer output: %f\n", t.read());

t.reset();

}

outputs the 2D offset of the object dt, with associations performed using greedy matching.

Thus, the network is trained via a weighted sum of the focal loss Lk (based on ground

truth heatmap Yxyc, Y ∈ [0, 1]
W
R
×H

R
×C), the size Lsize (based on ground truth bounding box

dimensions s), and the local location regression Loff (based on ground truth object positions

pi).

Lk =
1

N

∑
xyc


(1 − Ŷxyc)

2 log(Ŷxyc) ⇔ Yxyc = 1

(1 − Yxyc)
4(Ŷxyc)

2 log(1 − Ŷxyc)

(4.14)
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Lsize =
1

N

N∑
i=1

|Ŝpi
− si| (4.15)

Loff =
1

N

N∑
i=1

∣∣∣D̂pt
i
− (pt−1

i − pt
i)
∣∣∣ (4.16)

A filter is used to discard heatmaps below a certain rendering threshold τ or objects whose

detection confidence scores w,w ∈ [0, 1] are below a certain threshold θ. These thresholds

form the optimization hyperparameters for the symbolic component (the filter). The error

metric is the sum of the multi-object tracking accuracy (MOTA) and the minimal cost change

from the predicted identification of objects to the correct identification (IDF1) [ZKK20].

4.3.3 Neuro ∪ Compile (Symbolic)

Problem Formulation. There are two ways to realize this paradigm. Firstly, if the rules

are non-differentiable, the rules are characteristic of certain architectural encodings post-

training, or the rules cannot be explicitly expressed in the model learning algorithm, then

the constraints can be expressed as regularizer terms in Eq. 3.7:

min fopt, fopt = λ1ferror(Ω
′)+λ2fflash(Ω′)+λ3fSRAM(Ω′)+λ4flatency(Ω

′)+λ5frule 1(Ω
′)+λ6frule 2(Ω

′)+...

(4.17)

Ω′ contains only the ML components (i.e., Ω′ = {{V,E}, θm,m,w}), reducing the neurosym-

bolic architecture search to a NAS problem, regularized by additional scalar rules. The rules

can form soft constraints that do not form piecewise penalization functions, or hard con-

straints like SRAM and flash consumption to strongly penalize the search algorithm beyond

a small, valid region of Ω′. Secondly, if the rules are differentiable, or the rules can be

compiled away during training as input-output pairs, then the constraints can be included

as physics metadata channels in the learning algorithm as inputs to the model graph q:

min fopt, fopt = λ1ferror(Ω
′) + λ2fflash(Ω′) + λ3fSRAM(Ω′) + λ4flatency(Ω

′) (4.18)

where,

ferror(Ω
′) = Lvalidation(Y′,Y), Y′ = qΩ

′
(X,xphysics metadata channel) (4.19)

62



Parsing. In the first case, the parsers only need to map the model from Python to C,

following the recipe of model parsing in Section 4.3.1, Algorithm 2 and Fig. 4.3. In the

second case, since the rules and hyperparameters are static and operate on the input data,

there is no concept of symbolic optimization or symbolic parsing. Rather, there exists a

function called extract physics() in main.cc that operates on the raw data to generate

the physics metadata channel, shown in Algorithm 5. The channel is appended to the end

of the raw data, which is then fed to the model as an input tensor.

Algorithm 5 Example of main.cc for the second case of Neuro ∪ Compile (Symbolic)
SAME AS ALGORITHM 2

.

.

float raw_data[kInputSize]; //written by parser

float physics_channel[kPhysicsSize];

float input_model[kInputSize + kPhysicsSize]; //written by parser

int main() {

SAME AS ALGORITHM 2

.

.

runner = &model_runner;

get_sensor_data(raw_data);

extract_physics(raw_data, physics_channel);

for (int i = 0; i < kInputSize; i++){

input_model[i] = raw_data[i];

}

int j = 0;

for (int i = kInputSize; i < kInputSize + kPhysicsSize; i++){

input_model[i] = physics_channel[j];

j = j+1;

}

t.start();

.

.

SAME AS ALGORITHM 2

}

Examples. An example of the first technique includes finding adversarially robust TinyML
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models, where frule 1(Ω
′) denotes the white-box adversarial robustness score from Robust-

Bench [CAS21] or AutoAttack [CH20] benchmarks on a perturbed validation set (e.g., per-

turbed using fast gradient sign method (FGSM) or projected gradient descent (PGD)) versus

the clean validation set.

frule 1(Ω
′) = 1 − 1

N

N∑
i=0

qi, qi =


1 ⇔ y′xi = y′xi,perturbed

0

(4.20)

where,

xi,perturbed =
[
xi + ε · sign

(
∇xi

Lvalidation(qΩ
′
(xi), y

i)
)]

︸ ︷︷ ︸
FGSM

∨
[
clipε

(
xt
i + α · sign

(
∇xi

Lvalidation(qΩ
′
(xi)

t, yi)
))]

︸ ︷︷ ︸
PGD

(4.21)

α and ε are attack strength hyperparameters in Eq. 4.21. An example of the second tech-

nique includes supplying a neural inertial navigation model with local-variance step detector

binary mask or mean Fourier transform coefficients of accelerometer readings I â, signifying

transportation modes. The goal is to prevent the network from outputting invalid displace-

ments when the object is static [SSG22].

xphysics metadata channel = c(I â), cj(
I â) =


1 ⇔ âI

L,∆t > ζ ·

√∑
k∈∆t

(
âI
L,k−âI

L,∆t

)2

n

0︸ ︷︷ ︸
step detector

∨ |FFT(|âI
∆t|)||︸ ︷︷ ︸

Fourier transform

(4.22)

where, j is the measurement epoch, ∆t is the length of current time window, âI
L,∆t =

G5,fc(|âI
∆t|) −G5,fc(|âI

∆t|), ζ is a tunable parameter and G5,fc(·) represents a 5th order low-

pass filter with cutoff fc. The model is expected to output zero displacements when the

physics metadata channel value drops below a threshold τ .

E(y′j) → 0 | xj,physics metadata channel < τ (4.23)

We showcase the examples in Section 4.4.4 and Section 4.4.5.
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4.3.4 Symbolic[Neuro]

Problem Formulation. Consider a dynamical system such that g : x̂k+1|k → uk+1, x̂k | g is non-linear.

x̂k+1|k represents the state at epoch k+ 1, x̂k represents the state at epoch k, g(·) is a neural

network backbone, and uk+1 represents the control input (sensor measurements) at iteration

k + 1. The neural system evolution is given as follows:

x̂k+1|k = gv(x̂k,uk+1,wk+1) (4.24)

wk+1 is the additive White Gaussian process noise with covariance Q. Now, consider mea-

surement updates zk+1 coming from a symbolic observation model h(·) via complementary

sensor measurements.

x̂k+1|k+1 = x̂k+1|k + Kk+1

zk+1 − hu(x̂k+1|k,vk︸ ︷︷ ︸
measurement residual

)

 (4.25)

vk is the additive White Gaussian measurement noise with covariance R and Kk+1 is a gain

factor. The goal is to optimally fuse the neural system model and the symbolic measurement

model. Assuming Markov property, modeling the uncertainty in g(·) and h(·) using Kalman

filter theory allows optimal fusion [DSS23].

Pk+1|k = APkA
T + Bk+1UkB

T
k+1 + Qk, Ak+1 =

∂g

∂x

∣∣∣∣
x̂k,uk+1,wk+1

, Bk+1 =
∂g

∂u

∣∣∣∣
x̂k,uk+1,wk+1

(4.26)

Pk+1|k+1 = (I−Kk+1Hk+1)Pk+1|k, Hk+1 =
∂h

∂x

∣∣∣∣
x̂k+1|k,vk

(4.27)

where,

Kk+1 = Pk+1|kH
T
k+1

Hk+1Pk+1|kH
T
k+1 + Rk+1︸ ︷︷ ︸

innovation covariance

−1

(4.28)

Ak+1 and Bk+1 represents the linearized Jacobian of the neural network w.r.t. the past state

and control inputs, while Hk+1 represents the linearized partial derivative of the observation

model w.r.t. the past state. The predicted process covariance P̂ is given by the Lyapunov

equation and updated during measurements using algebraic Riccati recursion [SSF04]. The
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goal of the search algorithm is to find the optimal hyperparameters of g(·) and h(·), given

by hyperparameter vectors v and u, respectively:

u =
[
[α1,1

1 , α1,1
2 , ..., α1,1

γ1
1

] [α1,2
1 , α1,2

2 , ..., α1,2

γ1
2

] ... [α1,e
1 , α1,e

2 , ..., α1,e
γ1
e

]
]

(4.29)

v =

[
[β1,1

1 , β1,1
2 , ..., β1,1

γ1
1

] [β1,2
1 , β1,2

2 , ..., β1,2

γ1
2

] ... [β1,f
1 , β1,f

2 , ..., β1,f

γ1
f

]

]
(4.30)

Parsing. The model parsing follows the same recipe shown in Section 4.3.1, Algorithm 2,

and Fig. 4.3. The symbolic parser sends the optimal u∗ to main.cc. Algorithm 6 shows

an example of the main.cc. The program extensively uses matrix operations (obtainable

through CMSIS-NN library [LSC18] available through TFLM) to compute the Kalman hy-

perparameters. CMSIS-NN matrix operation constructs are used in reshape jacobian(),

lyapunov eq(), measurement update(), get pd(), compute kalman gain(), and ricatti()

functions to accelerate matrix operations through vector processors found in some Cortex-M

microcontrollers. However, a key challenge in realizing the Symbolic[Neuro] form is the lack

of on-board Jacobian computation support (GetJacobian()).

Examples. We showcase a Neural-Kalman filter that fuses GPS measurements with a neural

inertial odometry model to regress an object’s position [DSS23]. The example is shown in

Section 4.4.6. The neural network regresses the object’s 2D velocity vx, vy from accelerometer

âI , gyroscope ŵI and magnetometer m̂I readings:

(vx,k, vy,k) = g
(
vI(0),gI

0,N
I
0, â

I
q:q+n, ŵ

I
q:q+n, m̂

I
q:q+n, ck(I â)

)
, ck(I â) =

∣∣∣|FFT(|âI
q:q+n|)|

∣∣∣ .
(4.31)

The system propagation is given as follows:

x̂k+1|k = Ax̂k + f(uk+1) (4.32)

Pk+1|k = APkA
T + Bk+1UkB

T
k+1, Bk+1 =

∂f

∂u

∣∣∣∣
x̂k,uk+1
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Algorithm 6 Example of main.cc for Symbolic[Neuro]
SAME AS ALGORITHM 2

.

INCLUDE CMSIS_NN HEADERS HERE

#define STATE_SIZE 3

float raw_data[kRawData];

float input_model[kRawData + STATE_SIZE];

float obs_model_params[4] = {-2.0, 1.0, 0.0, 37.5}; //written by parser

cur_state[3] = {0.0,0.0,0.0}

float jacobian[kJacobianSize] = {0.0};

float reshaped_jacobian[kA][kB];

float P[kC][kD];

float K[kE][kF];

float H[kG][kH];

float out[koutsize] = {0.0};

void reshape_jacobian(float* flattened_jacobian[], float* 2D_jacobian[][]){

}

void lyapunov_eq(float* covariance_mat[][], float* 2D_jacobian[][], float* sensor_data[]){

}

void measurement_update(float* state[], float* gain_matrix[][], float* sensor_data[]){

}

void get_pd(float* obs_model[][], float* output_obs_model[]){

}

void obs_model(float* out[], float* state[], float* params[]){

}

void compute_kalman_gain(float* gain_matrix[][], float* covariance_mat[][], float* out[]){

}

void ricatti(float* covariance_mat[][], float* gain_matrix[][], float* out[]){

}

int main() {

SAME AS ALGORITHM 2

.

//////////////////////LOOP/////////////////////////

get_sensor_data(raw_data);

for(int i = 0; i < kRawData; i++){

input_model[i] = raw_data[i]

}

for(int i = kRawData; i < kRawData + STATE_SIZE; i++){

input_model[i] = cur_state[i];

}

t.start();

runner->SetInput(input_model);

runner->Invoke();

for (size_t i = 0; i < STATE_SIZE; i++) {

cur_state[i] = runner->GetOutput()[i]; //neural system model

}

for (size_t i = 0; i < STATE_SIZE; i++) {

jacob[i] = runner->GetJacobian()[i];

}

reshape_jacobian(jacob,reshaped_jacobian); //reshape flattened Jacobian to 2D matrix

lyapunov_eq(P, reshaped_jacobian, raw_data); //compute P for neural system model

get_comp_sensor_data(raw_data);
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measurement_update(cur_state, K, raw_data); //update state

for (size_t i = 0; i < STATE_SIZE; i++) {

printf("%f", cur_state[i]);

}

obs_model(out, cur_state, obs_model_params); //get observations

get_pd(H,out); //compute partial derivative

compute_kalman_gain(K, P, H) //compute the gain matrix

ricatti(P, K, H); //update P during measurement update

t.stop();

printf("\n");

printf("timer output: %f\n", t.read());

t.reset();

//////////////////////LOOP/////////////////////////

}

where,

x̂ =


L̂x

L̂y

vx

vy

 , u =


aI
q:q+n

wI
q:q+n

mI
q:q+n

c(aI
q:q+n)

 , A =

I2×2 02×2

02×2 02×2

 , Bk+1 =



∆t∂gv(·)x
∂aI

q:q+n

∆t∂gv(·)x
∂wI

q:q+n

∆t∂gv(·)x
∂mI

q:q+n

∆t∂gv(·)x
∂c(aI

q:q+n)

∆t∂gv(·)y
∂aI

q:q+n

∆t∂gv(·)y
∂wI

q:q+n

∆t∂gv(·)y
∂mI

q:q+n

∆t∂gv(·)y
∂c(aI

q:q+n)

∂gv(·)x
∂aI

q:q+n

∂gv(·)x
∂wI

q:q+n

∂gv(·)x
∂mI

q:q+n

∂gv(·)x
∂c(aI

q:q+n)

∂gv(·)y
∂aI

q:q+n

∂gv(·)y
∂wI

q:q+n

∂gv(·)y
∂mI

q:q+n

∂gv(·)y
∂c(aI

q:q+n)


(4.33)

f(·) =

∆t · I2×2

I2×2

 · gv(·), ∆t =
s

n− s
, s = stride, n = window size (4.34)

U consists of Allan variance parameters [EHN07] of the inertial measurement unit. The

measurement updates z come from the GPS module. h denotes the inverse mapping from

longitude-latitude to 2D Cartesian coordinates. The hyperparameters of the neural network

and the Kalman filter are optimized jointly.

4.3.5 Neuro[Symbolic]

Problem Formulation and Parsing. This paradigm is equivalent to a model with special

operators or layers. The search space, therefore, contains the hyperparameters of the model

backbone to be optimized. The model parsing follows the same recipe shown in Section 4.3.1,

Algorithm 2, and Fig. 4.3, with no symbolic parsing. However, the special layers must be

68



added as custom operators first to TFLite, and then to TFLM. The steps are as follows:

• Create the custom operator in TensorFlow.

• Clone Tensorflow repository.

• Define the init(), free(), prepare(), and eval() functions for the operator in the

OPERATOR NAME.cc file in tensorflow/lite/kernels/ directory.

• Register the operator in tensorflow/lite/kernels/register.cc and register ref.cc.

Add the registration under namespace custom and

BuiltinRefOpResolver::BuiltinRefOpResolver(). In the BUILD file, under cc library(

name = "builtin op kernels", add the operator .cc file names under srcs. Add the

dependencies under deps.

• Configure, build, and install the modified TensorFlow. Load the model with the custom

operator in the TFLite interpreter in Python to verify the correct operation.

• From tensorflow/lite/core/api/flatbuffer conversions.cc, under ParseOpDataTfLite,

extract the code for parsing the operator into a function.

• Extract the reference for the operator to a standalone header from

tensorflow/lite/kernels/internal/ reference/. Add the new header to

tensorflow/lite/kernels/internal/BUILD.

• Copy the operator code from tensorflow/lite/kernels/OPERATOR NAME.cc to

tensorflow/lite/micro/ kernels/OPERATOR NAME.cc. Remove TFLite-specific code.

Add the operator registrations in micro ops.h, micro mutable op resolver.h, and

all op resolver.cc.
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4.4 Evaluation

In this section, we evaluate the performance of TinyNS on six different case studies resem-

bling four neurosymbolic architecture search recipes (Section 4.4.1 to Section 4.4.6)

4.4.1 Optimization of Features and Neural Weights (Symbolic Neuro Symbolic)

In this case study, we showcase how TinyNS provides the best combination of features and

neural network hyperparameters for various target hardware.

4.4.1.1 Dataset and Task Description

We use the UCI-HAR dataset [AGO13] for this case study. The task is to classify 6 human

activities (walking, walking upstairs, walking downstairs, sitting, laying, and standing) from

a single waist-mounted x-axis accelerometer data sampled at 50 Hz from 30 volunteers. The

dataset is split with leave-7 out, i.e., data from 21 volunteers are in the training set, and

data from the rest 7 volunteers are in the test set. As suggested by the dataset authors, we

use a window size of 128 (2.56 s) with a stride of 64. 10% of the training data is used for

validation.

4.4.1.2 Model Backbones, Training Details, and Search Space Definition

The model backbone consists of a TCN. The TCN layer is followed by a dense layer with

6 units and softmax activation. Each candidate model is trained for 150 epochs, using the

Adam optimizer with default parameters. The loss is categorical cross-entropy, and the NAS

error metric is validation accuracy. The search space for the model is as follows:

• Number of layers per stack: range (3, 8)

• Number of TCN stacks: [1, 2, 3]
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Table 4.1: Chosen features (shaded) for each target hardware for neurosymbolic optimization

of input feature choices and model backbone. The SRAM and flash limits of the hardware

are given in parenthesis in kB in the form (SRAM, Flash).
Device Features

ISPU

(8, 32)

Mean IQR Maximum Median Variance MAD Abs. Energy Entropy Peak-to-Peak FFT Mean Coeff. Fundamental Freq. Max. Power Spec.

F446RE

(128, 512)

Mean IQR Maximum Median Variance MAD Abs. Energy Entropy Peak-to-Peak FFT Mean Coeff. Fundamental Freq. Max. Power Spec.

L476RG

(128,

1024)

Mean IQR Maximum Median Variance MAD Abs. Energy Entropy Peak-to-Peak FFT Mean Coeff. Fundamental Freq. Max. Power Spec.

F746ZG

(320,

1024)

Mean IQR Maximum Median Variance MAD Abs. Energy Entropy Peak-to-Peak FFT Mean Coeff. Fundamental Freq. Max. Power Spec.

L4R5ZI P

(640,

2048)

Mean IQR Maximum Median Variance MAD Abs. Energy Entropy Peak-to-Peak FFT Mean Coeff. Fundamental Freq. Max. Power Spec.

• Number of filters in the TCN layers: range (3, 64)

• Kernel size in the TCN layers: range(3, 16)

• Skip connections in TCN: [True, False]

• Dilation factor choices: [1, 2, 4, 8, 16, 32, 64, 128]

The feature space consists of 12 features listed in Table 4.1. There are 6 statistical features,

3 temporal features, and 3 spectral features to choose from. The search space for the features

is defined using the binary mask technique shown in Section 4.3.1.

4.4.1.3 Target Hardware

We perform neurosymbolic optimization for the same four microcontrollers from Section 3.4.2.

In addition, we also perform optimization for an integrated sensor processing unit (ISPU)

from STMicroelectronics. The ISPU is an ultra-low-power 10 MHz 32-bit RISC processor

(architecture: STRED) embedded within the LSM6DSOIS and ISM330IS 6DoF MEMS in-

ertial sensor. The processor uses a proprietary version of TFLM (called q2c) to run on-chip
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Figure 4.5: (Left) Flash usage of models found via neurosymbolic optimization of features

and model hyperparameters. The accuracy of the said models operating on all features

and directly on the raw data is also shown. Flash limits of the target hardware are shown

in parentheses. (Center) SRAM usage of models found via neurosymbolic optimization

of features and model hyperparameters. SRAM limits of the target hardware are shown

in parentheses. (Right) FLOPS count of models found via neurosymbolic optimization of

features and model hyperparameters.

neural networks without needing a power-hungry microcontroller in the loop and uses the

STRED/ISPU toolchain to compile C++ programs. The processor has 8kB SRAM and

32kB flash [MRS22, RSZ22].

4.4.1.4 Overall Performance

Fig. 4.5 (Left) shows the Pareto-frontier generated by TinyNS versus using all the features

and directly operating on the raw accelerometer data. On average, TinyNS provides up

to 2% improvement in accuracy over the same model operating on raw data or operating

on all the features. Extracting all the features is computationally intensive (especially for

the ISPU) while operating on raw data without a gyroscope or magnetometer or other axes

of the accelerometer results in performance degradation. Table 4.1 and Table 4.2 show the

chosen features and model hyperparameters for each target hardware. Surprisingly, TinyNS

learns to pick only the most important features (e.g., peak-to-peak, FFT mean coefficients,

entropy, and variance) for the ISPU and the microcontrollers with the lowest SRAM and flash
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Table 4.2: Chosen model hyperparameters for each target hardware for neurosymbolic opti-

mization of input feature choices and model backbone. The SRAM and flash limits of the

hardware are given in parenthesis in kB in the form (SRAM, Flash).
Device Number of filters Kernel size Number of stacks Dilations, number of layers per stack Skip connections

ISPU (8, 32) 3 5 1 [1,2,4,32,64,128], 6 False

F446RE(128,

512)

5 3 3 [1,2,16,32,128], 5 False

L476RG (128,

1024)

7 7 2 [1,2,4,32,128], 5 False

F746ZG (320,

1024)

3 10 3 [1,2,8,16,32], 5 True

L4R5ZI P (640,

2048)

29 6 1 [1,4,16,64,128], 5 True

capacities. These features are well-known to have the highest effect on classifier performance

in human activity recognition literature [AMD15, WCY19]. As the device capabilities in-

crease, TinyNS selects other features in the feature set. TinyNS also performs architectural

adaptation and device capability exploitation seen in Section 3.4.2, increasing the number

of filters, the kernel size, and the number of stacks of the model candidates. To prevent ex-

ploding and vanishing gradient problem, TinyNS learns to add skip connections to deeper

TCN models. The SRAM usage and FLOPS count of the models steadily increase with in-

creasing device capabilities as shown in Fig. 4.5 (Center) and Fig. 4.5 (Right). The median

SRAM saturation is around 20%, with the saturation being higher for devices with higher

flash availability, showing full resource exploitation by TinyNS for each target hardware.

Overall, choosing the best synergy of features and model hyperparameters makes it possible

to run models on extremely resource-constrained platforms beyond microcontrollers like the

ISPU.

4.4.2 Fall Detection under 2 kB and Activity Recognition (Symbolic Neuro

Symbolic)

In this case study, we showcase how TinyNS picks the best model backbone (neural or

non-neural) and its hyperparameters out of a zoo of TinyML model backbones.
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4.4.2.1 Dataset and Task Description

We use the Auritus dataset [SSP22] for this case study. There are two tasks. The first

task is to distinguish between fall and non-fall activities under a 2 kB memory constraint

(suitable for ISPU) using an ear-mounted 6DoF inertial measurement unit called earable.

The second task is to classify 9 human activities (walking, jogging, standing, sitting, laying,

turning left, turning right, jumping, and falling). The dataset is sampled at 100 Hz from

45 volunteers. We split the dataset in two ways: split with no unseen participants and split

with leave-1 out. In the first splitting technique, we use 80% of the data for training, 10%

for validation, and 10% for testing. In the second splitting technique, we perform 10-way

cross-validation by leaving a random participant out of the training set. The data from the

chosen 44 participants are split 90:10 for training: validation. The stride was set to 0.5

seconds and the window size was optimized as a hyperparameter.

4.4.2.2 Model Backbones, Training Details, Target Hardware, and Search Space

Definition

We set 5 different model backbones (3 neural, 2 non-neural) in the search space, each with

its own set of optimization hyperparameters and shown in Fig. 4.6.

• Temporal Convolution: Without explosion of parameter, memory footprint, layer

count, or overfitting, TCN kernels allow the network to discover the global context in

long inertial sequences while maintaining input resolution and coverage. In TCN, the

convolution operation has three desirable properties:

– Causality : The output of the operator at the current timestep t depends only on

the current and past inputs but not future inputs. This ensures temporal ordering

of the input sequences without requiring recurrent connections. The ordering is

maintained via weight sharing among the input chunks.

74



Figure 4.6: Illustration of lightweight model architectures geared towards TinyML devices.

(a) The addition of a residual connection with two scalars (α, β) stabilizes vanilla RNN

training while taking advantage of the relative lightweightness of vanilla RNN against gated

RNN. (b) Converting the residual connection to a gate while enforcing U and W to be

LSQ yields lightweight yet accurate gated RNN. (c) Sparsely projecting input features to a

low-dimensional space allows DT and kNN to be computationally efficient. (d) Enforcing

causal convolution and dilated kernels allows spatial and temporal feature extraction in long

time-series sequences without requiring recurrent connections or significant compute.
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– Dilated Convolution: The receptive field Fi of each unit in the ith layer in a TCN

dilated causal kernel of size k × k with dilation factor l is given by:

Fi,TCN = Fi−1 + (kl − 1) × l, F0 = 1 (4.35)

Fi,TCN is larger than Fi,CNN, which is i×(k−1)+k. When dilated CNN are stacked

on top of each other, the dilation factor increases exponentially, increasing model

capacity and receptive field size with fewer layers and parameter count over vanilla

CNN or RNN

– Residual Blocks: Two stacks of dilated causal convolution layers, f and g, are

fused through gated residual blocks z for expressive yet bounded non-linearity,

complex interactions, and temporal correlation modeling in the input sequence:

z = tanh(Wf,k ∗ x) ⊙ σ(Wg,k ∗ x) (4.36)

where W are the weights in each layer, σ is the sigmoid function and x is the

input.

• Stabilized RNN with LSQ Matrices: Vanilla RNN, albeit lightweight, suffers

from exploding and vanishing gradient problem (EVGP) for long temporal sequences.

Existing solutions to EVGP (e.g., gated RNN (long short-term memory (LSTM) and

unitary RNN) come at the cost of either accuracy loss or increased memory and latency

overhead. Fast RNN [KSB18] solves EVGP by adding a weighted residual connection

with two scalars (α, β) to generate well-conditioned gradients:

h̃t = σ(Wxt + Uht−1 + b), ht = αh̃t + βht−1 (4.37)

where 0 ≤ α ≪ 1, β ≈ 1−α, β ≤ 1, σ is a non-linear activation function, W and U are

RNN matrices, b is bias vector, h is the hidden state and x is the input. By varying α

and β, we can control the update extent of ht based on xt. Fast GRNN [KSB18] then

converts this residual connection to a gate while enforcing W and U to be low-rank,
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sparse, and quantized (LSQ):

h̃t = tanh(W′xt + U′ht−1 + bh) (4.38)

ht = (ζ(1− zt) + v) ⊙ h̃t + zt ⊙ ht−1, zt = σ(W′xt + U′ht−1 + bz) (4.39)

W′ = W1(W2)⊤, U′ = U1(U2)⊤ (4.40)

where, ζ ≥ 0, v ≤ 1. Fast GRNN, thus, is able to provide the capabilities of gated

RNN without the associated compute overhead.

• Sparse Low-Dimensional Projection: Bonsai [KGV17] is a shallow and sparse DT

with non-linear activations, making inferences on data projected in low-dimensional

space called prototypes. Similarly, ProtoNN [GSG17] is a lightweight k-nearest neigh-

bor (kNN) classifier designed to operate on prototypes. The sparse projection matrix

is learned using stochastic gradient descent and iterative hard thresholding. Sparsely

projecting high-dimensional feature space onto a low-dimensional linear manifold re-

duces parameter count for Bonsai and ProtoNN, allowing them to be computationally

efficient.

The search space is as follows:

• TCN (neural) [ODZ16, LVR16] - number of filters in the TCN layers: range (2, 64);

kernel size in the TCN layers: range (2, 16); skip connections in TCN: [True, False]; the

number of layers per stack: range (3,8); dilation factor choices: [1,2,4,8,16,32,64,128,256].

• FastGRNN (neural) [KSB18] - number of hidden units: range (20, 60).

• FastRNN (neural) [KSB18] - number of hidden units: range (20, 60).

• Bonsai (non-neural) [KGV17] - projection dimension: range (10, 70); sigmoid param-

eter: uniform (1.0, 4.0); depth: range(1, 6).
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• ProtoNN (non-neural) [GSG17] - projection dimension: range (10, 70); γ: uniform

(0.0015, 0.05); the number of prototypes: range (10, 70).

In addition, for all the models, the search space for the window size is [1, 2, 3, 5] seconds. For

TCN, we generate Pareto-frontier for 4 different STM32 microcontrollers (F446RE, L476RG,

F407VET6, and F746ZG) and the Qualcomm CSR8670 microcontroller found inside the

earable. We use proxies for profiling the CSR processor as it does not support firmware

modification. For the STM32 microcontrollers, we use platform-in-the-loop profiling. For

Bonsai and ProtoNN, we apply five features on the accelerometer and gyroscope vector sums:

maxima, minima, range, variance, and standard deviation. The rest of the models operate

directly on the raw data. The loss is categorical cross-entropy for all the models, except for

Bonsai, which uses multi-class hinge loss. The NAS error metric is validation accuracy for

TCN and training accuracy for the rest of the classifiers.

4.4.2.3 Overall Results

Fig. 4.7 summarizes the accuracy and model size for the highest performing models for each

of the 5 backbones against competing models, while Table 4.3 shows the hyperparameters

of the said models. TinyNS achieves state-of-the-art improvement in both accuracy and

model size reduction, providing earable activity detection models that are 98×-740× smaller

yet 3%-6% more accurate than competing models. The activity recognition models are as

small as 6-13 kB. Further, TinyNS achieves 98% earable fall detection accuracy with a

model as small as 2.3 kB. The case study illustrates the importance of optimizing several

model backbones rather than a single backbone, particularly in unseen domains void of

expert knowledge. Notably, models with more parameters do not necessarily provide higher

accuracies. Appropriate architectural encodings make it possible to achieve the same or

better accuracy with a lower parameter count (e.g., a CNN is likely to outperform a fully-

connected neural network due to the ability to extract spatial relations, even though the latter
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Figure 4.7: (Left) Highest performing models found by TinyNS for earable fall detection

under 2 kB memory constraint when optimizing several model backbones. (Center and

Right) Test accuracy and leave 1-out test accuracy of highest performing models found by

TinyNS versus state-of-the-art earable activity detection classifiers when optimizing several

model backbones. The TCN backbone is optimized for 5 different target hardware (eSense

earable, F446RE, L476RG, F407VET6, and F746ZG).

may have more parameters). Even if one architecture performs poorly, the search algorithm

would have other architectures to choose from. Thereby, exploring various architectures is

important for squeezing highly performant models beyond microcontrollers, such as ISPU.

4.4.3 Optimization of Neural Detector Weights and Symbolic Object Tracker

(Neuro→Symbol)

In this case study, we show the ability of TinyNS to jointly optimize neural and symbolic

modules, where the symbolic module makes high-level reasoning over the neural outputs.

4.4.3.1 Dataset and Task Description

We use the MOT17 dataset [MLR16] for this case study. The goal is to develop multiple

people tracking algorithms from a single camera feed under model size constraints. The

dataset is pre-processed using the ByteTrack library [ZSJ22].
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Table 4.3: Chosen model hyperparameters for each backbone found by TinyNS when opti-

mizing several model backbones for earable activity detection. The SRAM and flash limits

of the hardware are given in parenthesis in kB in the form (SRAM, Flash).

Model Backbone Device
Hyperparameters

Number of filters Kernel size Dilations, number of layers per stack Skip connections

TCN

F446RE (128, 512) 18 2 [2, 4, 8, 16, 32, 64, 128, 256], 8 Yes

L476RG (128, 1024) 13 7 [1, 4, 16, 32], 4 No

eSense earable (128, 16000) 15 2 [1, 2, 4, 8, 32, 128, 256], 7 Yes

F407VET6 (192, 512) 17 3 [2, 4, 32, 128, 256], 5 No

F746ZG (320, 1024) 21 2 [2, 8, 16, 64, 128, 256], 6 Yes

None (hardware-agnostic)

Hidden Units

FastGRNN 50

FastRNN 32

Projection Dimension Sigmoid Parameter Depth

Bonsai 22 1.0 3

Projection Dimension Prototypes γ

ProtoNN 70 70 0.004

4.4.3.2 Model Backbones and Search Space Definition

We use the ByteTrack library [ZSJ22] to implement the CenterNet algorithm [ZKK20], which

was discussed in Section 4.3.2. Each candidate model is trained for 70 epochs with a batch

size of 16. The search space for the ResNet + Deformable Convolutional Network and the

tracking filter are:

• Number of convolutional stacks: range (1, 5)

• Kernel size: [1, 3, 5, 7, 9,..., 23]

• Layer-wise activations: [True, False]

• Head convolutional value: [50, 100, 150,..., 300]

• Rendering threshold: linspace (0.1, 0.9, 9)

• Confidence threshold: linspace (0.1, 0.9, 9)
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Table 4.4: Chosen object detector and tracking filter hyperparameters for CenterNet algo-

rithm under different size limits.
Constraint Flash Usage (MB)

Performance Model hyperparameters Filter hyperparameters

MOTA IDF1 Kernel size Stack count Head convolution Activations Rendering Confidence

Handcrafted (none) 238 36.5 55.0 1 1 128 True 0.4 0.5

250 MB limit 238 36.1 54.6 1 1 150 True 0.3 0.4

500 MB limit 270 38.0 57.2 9 1 100 False 0.7 0.5

4.4.3.3 Overall Results

Table 4.4 shows the performance, resource usage, and hyperparameters of the CenterNet

algorithm under hard memory constraints compared to the handcrafted algorithm with de-

fault hyperparameters. Note that the MOTA and IDF1 for all the models are low as no

pre-training or fine-tuning on additional data is performed. The 250 MB model achieves

MOTA and IDFf within 1% of the handcrafted model, while the 500 MB model exceeds the

MOTA and IDF by 4.5%. The case study showcases that TinyNS can achieve the perfor-

mance of neurosymbolic models hand-tuned using hundreds of human hours automatically,

and even exceed the performance when device constraints relax. Compared to a human

designer, TinyNS can find models whose hyperparameters may be counter-intuitive (e.g.,

reducing the head convolutional value from 150 to 100 and removing layer-wise activations

for the 500 MB model) but provide superior performance.

4.4.4 Improving Adversarial Robustness of TinyML Models (Neuro ∪ Compile

(Symbolic))

In this case study, we showcase how TinyNS can find model architectures that follow some

coveted architecture-dependent constraints.

4.4.4.1 Dataset and Task Description

We use the Auritus dataset in this case study (the same dataset used in Section 4.4.2).

The goal and the dataset splits are the same as that in Section 4.4.2, except that now we
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Figure 4.8: (Left) Test accuracy, adversarial accuracy, and model size of TCN backbones

for three different target hardware (F446RE, L476RG, and F746ZG). (Right) Test accuracy,

adversarial accuracy, and model size for ProtoNN and Bonsai backbones. For all three model

backbones, the results are shown for NAS with adversarial robustness term, NAS without

adversarial robustness term, and handcrafted models.

want TinyML models that not only have the highest accuracy within the device constraints

but are also adversarially robust to white-box attacks (discussed in Section 4.3.3).

4.4.4.2 Model Backbones, Training Details, Target Hardware, and Search Space

Definition

We use the TCN, Bonsai, and ProtoNN backbones using the same model search space defined

in Section 4.4.2. The window size is fixed to 5 seconds. For the TCN, we generate Pareto-

frontier for F446RE, L476RG, and F746ZG. The rest of the training details are the same as

Section 4.4.2.

4.4.4.3 Overall Results

Fig. 4.8 shows the test accuracy, adversarial accuracy, and the model size of TinyNS gener-

ated models with adversarial robustness optimization, versus handcrafted models and mod-

els generated by TinyNS with no adversarial robustness optimization. TinyNS generates
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models that are 1%-26% (9% on average more adversarially robust than competing models

while maintaining or exceeding the accuracy on the main task. This comes at the cost of

increased model size, albeit well within the flash constraints of the target hardware. This is

because larger models have more parameters and are therefore more robust to small input

perturbations. In addition, models generated by TinyNS without adversarial robustness

optimization are more sensitive to small perturbations compared to handcrafted models.

This is probably due to high loss smoothness and low gradient variance in the loss contour

of NAS-generated models [PXJ22].

4.4.5 Physics-Aware Neural Inertial Localization (Neuro ∪ Compile (Symbolic))

In this case study, we showcase how TinyNS can force models to follow some coveted

constraints via the inclusion of physics channels.

4.4.5.1 Dataset and Task Description

We use 5 inertial odometry datasets spanning 4 applications for this case study. These

include two datasets for human tracking namely OxIOD [CZL20] and RoNIN [HYF20],

AQUALOC [FCM19] unmanned underwater vehicle (UUV) tracking, EuRoC MAV [BNG16]

undermanned aerial vehicle (UAV) tracking, and the GunDog [GHS21] animal tracking. The

split information for all the datasets is shown in Table 4.5. The goal is to train a model

Table 4.5: Window size, stride, training-validation-test splits, and training epochs used in

the inertial odometry datasets
Dataset Sampling Rate (Hz) Window Size Stride Splits (Tr, Val, Te) (%) Model Epochs

OxIOD 100 200 10 85, 5, 10 900

RoNIN 200 400 20 70, 5, 25 900

AQUALOC 200 400 20 80, 5, 15 300

EuRoC MAV 200 50 5 80, 10, 10 300

GunDog 40 10 10 45*, 5*, 50 300

* Training trajectory split into 2 parts for train and validation splits.
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to predict the position of an object using inertial sensor data without GPS updates while

mitigating position explosion error innate in inertial sensors due to bias and drift. The model

must be able to detect when sufficient translational movement has not happened, thereby

not updating the position (physics-aware).

4.4.5.2 Model Backbones, Training Details, Target Hardware, and Search Space

Definition

We use a TCN backbone. The outputs of the TCN are reshaped, pooled, and flattened, and

then fed to a 32-unit dense layer with linear activations. The loss is a mean-squared error,

the optimizer is Adam with a learning rate of 0.001, and the NAS error metric is validation

loss. The search space for the model is as follows:

• Number of layers per stack: range (3, 8)

• Dropout: uniform (0.0, 1.0)

• Normalization: [Weight, Layer, Batch]

• Number of filters in the TCN layers: range (2, 64)

• Kernel size in the TCN layers: range (2, 16)

• Skip connections in TCN: [True, False]

• Dilation factor choices: [1, 2, 4, 8, 16, 32, 64, 128, 256]

We generate the Pareto-frontier for the 4 STM32 microcontrollers outlined in Section 4.4.2.
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Figure 4.9: Odometric resolution of physics-aware neurosymbolic-inertial odometry models

(TinyOdom) found via neurosymbolic architecture search, versus state-of-the-art handcrafted

neural and symbolic models for tracking humans, animals, unmanned underwater vehicles

(UUV), and unmanned aerial vehicles (UAV).

4.4.5.3 Overall Results

Fig. 4.9 shows the odometric resolution of models found by TinyNS (called TinyOdom)

versus handcrafted state-of-the-art neural and symbolic models. TinyNS models outper-

form purely neural and purely symbolic models on all four applications by 1.15× while being

31×-134× smaller. In other words, TinyNS not only exceeds the resolution of human-

designed neural and symbolic models but also ensures the deployability of the models on

Table 4.6: Effect of removing the physics channel of proposed neural-inertial odometry

models on 3 inertial odometry datasets.

Dataset
Absolute Trajectory Error (m) Relative Trajectory Error (m)

With Physics Without Physics With Physics Without Physics

OxIOD 3.35 3.86 0.90 1.24

AQUALOC 3.36 3.71 2.44 2.53

Agrobot (Phase 1) 7.85 9.13 1.10 1.33
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Figure 4.10: Architectural adaptation and device capability exploitation by TinyNS on the

AQUALOC dataset. The SRAM and flash limits of the hardware are given in parenthesis

in kB in the form (SRAM, Flash). Li refers to ith layer of the TCN.

microcontrollers. The superior performance is possible partly due to the inclusion of the

physics channel, which improves the resolution by 1.1× on average, as showcased in Ta-

ble 4.6. The physics channel ensures that lightweight and under-parameterized models such

as those generated by TinyNS are able to follow the underlying system physics as well

as over-parametrized baselines. Fig. 4.10 visualizes the architectural adaptation and de-

vice capability exploitation by TinyNS when generating the Pareto-frontier. As observed

in previous sections, TinyNS changes the appropriate hyperparameters to improve device

resource usage and resolution.

4.4.6 Neural-Kalman Sensor Fusion (Symbolic[Neuro])

In this case study, we showcase how TinyNS can optimally combine a neural system model

with a symbolic measurement model using Kalman filter theory.
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4.4.6.1 Dataset and Task Description

We use the AgroBot dataset [DSS23] in this case study. The goal is to perform precision

localization of an agricultural robot using neural inertial localization, with intermittent GPS

updates. The underlying system must fuse the smoothness and short-term resolution of

neural inertial localization with the long-term precision of GPS. The dataset contains 6.5

hours and 4.5 km of inertial and GPS data. We used 80% of the dataset for training and

20% for testing.

4.4.6.2 Model Backbones, Training Details, Target Hardware, and Search Space

Definition

We used the same model backbone and search space outlined in Section 4.4.5. In addition,

we optimize noise parameters in the Kalman filter Allan variance matrix:

• accelerometer noise variance: linspace (0, 1, 10000)

• gyroscope noise variance: linspace (0, 1, 10000)

• magnetometer noise variance: linspace (0, 1, 10000)

The batch size, optimizer, and training epochs were set to 256, Adam (learning rate: 0.001),

and 3000, respectively. The NAS error metric is the absolute trajectory error during training.

The model size constraint is set to 2 MB.

4.4.6.3 Overall Results

Table 4.7 outlines the performance of TinyNS generated neurosymbolic model versus human-

engineered state-of-the-art neural and symbolic approaches of localization. Compared to

competing neural models, TinyNS model without GPS lowers model size and absolute tra-

jectory error by 1.5× - 27× and 1.4× - 5.8×, respectively. Compared to competing symbolic
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Table 4.7: Odometric resolution and flash usage of proposed neural-Kalman GPS-INS fu-

sion for locating precision agricultural robots versus state-of-the-art neural and symbolic

approaches.
Paradigm Method Code Size

(MB)

Absolute Trajectory

Error (m)

Relative Trajectory

Error (m)

Neural

IONet [CLM18] 1.71 5.58 — 10.1 0.92 — 0.57

L-IONet [CZL20] 0.55 8.11 — 18.6 0.91 — 1.40

AbolDeepIO [EWW19] 12.5 7.24 — 20.5 0.96 — 0.93

VeTorch [GXZ21] 29.6 2.86 — 15.6 0.44 — 0.84

Symbolic

UKF-M INS+GPS [BBC17] 0.192 5.50 0.49

EKF INS+GPS [QM02] 0.077 3.31 0.58

GPS only - 1.89 0.42

Neurosymbolic
Ours (no GPS, w physics) 1.10 1.76 — 9.12 0.28 — 1.55

Ours (w GPS, w physics) 1.12 1.02 — 1.81 0.28 — 0.64

first term in the error is on seen trajectory, second term is on unseen trajectory; single term is on unseen trajectory

models, TinyNS model with GPS lowers absolute trajectory error and relative trajectory

error by 1.2× - 11× and 1.1× - 3.8×. The neural-Kalman fusion exploited by TinyNS

combines the long-term precision of symbolic models with the short-term robustness and

resolution of neural networks within the 2 MB limit set forth in this case study.

4.5 Discussion

Neurosymbolic AI provides a pathway for making context-aware, physics-aware, robust, in-

terpretable, and performant AI systems. Through TinyNS, we have showcased state-of-the-

art performance in various unseen applications. Directions for future work for our framework

are as follows:

• There is an absence of general-purpose parsers, lexers, and visitors needed to realize

symbolic program graphs on microcontrollers. We need tools that are similar to TFLM

but for parsing program decision trees.
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• The process of porting a custom symbolic layer from TF to TFLM is convoluted, with

support for mostly the layers available in TFL. To run such custom layers, a user-

friendly framework for the automatic porting of custom TF operators to TFLM is

necessary.
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CHAPTER 5

Fine-Tuning, Online Learning, and Foundation Models

DL is innately data-hungry and struggles to personalize to deployment-time data distri-

bution. For robust inference, onboard TinyML models need to be adaptively personalized

using unlabeled data streams with minimal user input to account for domain shifts [SSS22a,

SDS23b].

5.1 Contributions

We showcase three techniques to personalize and adapt TinyML models to target domains

and applications. We start by showcasing the viability of transfer learning to adapt pre-

trained models to deployment time feature characteristics using as little as 1 minute of

labeled data. For collecting the labeled data, we introduce a user-friendly video-processing

toolbox to generate high-resolution data for fine-tuning pre-trained models in the field for

inertial odometry [SSG22, DSS23, SDS23b]. Next, we propose a method for personalized

and online on-device learning for on-chip classification, inference, and information fusion

applications for motion sensing. The framework requires no human-engineered parameters

and allows for the personalization and addition of new motion artifacts [CS23]. Finally,

we outline ongoing work on large language-inertial models (LLIM) to extract generalizable

physics with language context from unlabeled data, which can be fine-tuned for domain-

specific applications through few-shot learning.
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Table 5.1: RTE (m) of neural-inertial models across different datasets (left) and applications

(right) without fine-tuning. The training dataset or application is shown in parentheses.
Method OxIOD RoNIN

IONet (OxIOD) 2.84 4.7

IONet (RoNIN) 7.65 7.63

LIONet (OxIOD) 2.82 4.7

LIONet (RoNIN) 8.35 14.84

RoNIN TCN (OxIOD) 0.42 13.4

RoNIN TCN (RoNIN) 10.3 1.21

TinyOdom (OxIOD) 1.26 97.2

TinyOdom (RoNIN) 3.16 6.74

Method PDR UUV

IONet (PDR) 2.84 5.15

LIONet (PDR) 2.82 3.94

RoNIN TCN (PDR) 0.42 14.96

TinyOdom (PDR) 1.26 7.83

NavNet (UUV) 93 2.96

TinyOdom (UUV) 5.82 2.45

5.2 Fine-Tuning Pre-trained Models

Autoregressive applications such as neural-inertial navigation need large amounts of high-

resolution training data in the target domain for providing acceptable resolution [SSG22,

DSS23, SDS23a]. Table 5.1 shows an example of resolution degradation of neural-inertial

models across domains. In general, these models perform well within the learned data

distribution but fail to adapt to different motion artifacts and IMU characteristics in a new

domain due to differences in learned physical embeddings across domains. Moreover, under-

parameterized TinyML models overfit on the dataset-specific spatiotemporal features due to

a lack of redundant weights, poorly generalizing across domains.

5.2.1 Data-Efficient Transfer-Learning

Instead of training new models from scratch using large amounts of training data in the new

domain, we propose using transfer learning [PY10] to fine-tune pre-trained models using as

little as 1 minute of labeled data in the target domain. We freeze some of the lower layers

of the pre-trained NN and make the higher layers trainable.

Table 5.2 and Table 5.3 showcase the data efficiency and resolution improvement brought

on by transfer learning. For the first case, fine-tuning reduces RTE by 1.6 - 13.6× in the

target domain, while increasing data efficiency by >20×. In other words, 1 minute of fine-

tuning exceeds training from scratch on 20 minutes of labeled data by 1.3×. For the second
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Table 5.2: Fine-tuning pre-trained models across different phases of the AgroBot dataset

Training Dataset
RTE (m) on Inference Dataset (Unseen Trajectory)

P1 P1 (FT) P2 P2 (FT) P3 P3 (FT)

P1 1.10 14.5 1.45 15.0 4.96

P2 2.71 1.09 0.97 4.25 2.63

P3 1.85 0.76 1.93 1.15 2.58

Method
RTE (m) with T minutes of data in the new domain*

T = 1 T = 5 T = 20

Train from scratch 26.8 3.29 2.55

Fine-tune* 1.92 1.62 1.45

P1: Phase 1, P2: Phase 2, P3: Phase 3

FT: Fine-tuning with 20 minutes of data in the new domain for 100 epochs

* The pre-trained model was trained on Phase 1 data; target dataset: Phase 2

Table 5.3: Fine-tuning pre-trained OxIOD TinyOdom model on the AgroBot dataset

Method
RTE (m) with T minutes of data in the new domain*

T= 1 T= 3 T= 5 T= 10 T= 20 T= 40 T= 75 T= 100

Train from scratch 3.26 1.39 1.09 0.94 0.86 0.83 0.81 0.80

Fine-tine 1.09 0.85 0.81 0.80 0.80 0.80 0.80 0.80

case, 1 minute of fine-tuning reduces the RTE by 8× for a pre-trained model with no fine-

tuning, while 5 minutes of fine-tuning equals training from scratch on 100 minutes of labeled

data. Pre-trained models already have some notion of inertial dynamics in a different domain,

which models trained from scratch must learn, resulting in fine-tuning being data-efficient.

5.2.2 Collecting Labeled Data in New Domain

Fine-tuning still requires some high-resolution labeled inertial odometry data. Specialized

motion capture systems suffer from limited coverage, high cost, use of specialized software,

high computational requirements, and ambient lighting conditions [SLC20]. Vanilla GPS is

noisy, with a maximum resolution of around 2 m [SDS23a, DSS23] (unless differential GPS is

used, which can achieve centimeter-level accuracy at the cost of limited coverage, complexity,

and time delay [MJ95]). We develop an automated data extraction framework operating

on overhead quadrotor video feeds [DSS23] that mitigates the aforementioned limitations.
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Figure 5.1: Automated pipeline to extract labeled inertial odometry data from monocular

quadrotor video feeds.

Fig. 5.1 illustrates the automated inertial odometry data extraction pipeline. The user

places several printed checkerboard patterns as reference landmarks at the boundaries of

the quadrotor camera’s field of view (FOV). The horizontal distance, h between landmark

i and j, and the vertical distance, v between landmarks k and l are measured and noted.

The object to be tracked is then moved within the FOV of the quadrotor camera. The IMU

data is logged onboard the object, while the quadrotor camera records the object moving.

The camera frames are synchronized with the IMU data using ”static-rotate-static” motion

patterns. The pipeline has three steps:

Video Pre-Processing: After converting the RGB video frames to grayscale, extended

maxima transform [Soi99] and morphological opening [VV92] are applied to leave only the

landmark and the object to be tracked in the frame.

Object Tracking: The user marks the bounding boxes for the object and the landmarks

in the first frame. The Kanade-Lucas-Tomasi tracker [TK91], coupled with a minimum

eigenvalue feature extractor [ST94], tracks the bounding boxes across subsequent frames.

Pixel to Position Transformation: The centroids of the bounding boxes are derived from

the corner points, which are corrected for quadrotor wind drift by observing the movement

of static landmarks. The user provides warm starts when the tracker loses the object or the
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landmarks due to light intensity changes. Linear interpolation fills the gaps between warm-

starts and the last known object location. Median filtering [Jus81] cancels high-frequency

tracking noise. Finally, the derived pixel positions are scaled with the scale factor sx, sy to

convert to global coordinates as follows:

sx =
|Ci

x,1 − Cj
x,1|

h
, sy =

|Ck
y,1 − C l

y,1|
v

, sx ≈ sy. (5.1)

Cc
a,b is the centroid of landmark c at frame b for axis a. The pipeline, executable on com-

modity computers, provides ground truth locations at a resolution of ±5.0 cm.

5.3 Online Motion Recognition

Motion classification algorithms deployed in the wild require the ability to handle domain

shifts in incoming data distribution, fit customer inference classes, and adapt to varying

application scenarios [SSS22a, SSP22, CMI20, BBL19]. The same motion primitive can have

multiple feature representation distributions across different users [SSP22, CZY21, GKS19,

FMM20]. On-device fine-tuning and personalization are necessary for achieving robust algo-

rithmic performance [SSS22a], preventing the adoption of static human-engineered heuristics.

Moreover, each customer may have specific inference requirements depending on the applica-

tion. For example, customer A may want to perform motion recognition for full-body fitness

monitoring. Customer B may want a solution for anomaly detection of fan blades. Customer

C may want to detect hand gestures. The diversity and variability in required motion prim-

itives among users prevent the adoption of static ML classifiers, which can only detect the

classes present in the training dataset. During fine-tuning, the incoming data stream must

be properly segmented to store only the portion of data concerning the event of interest. The

customer should not be burdened with the task of selecting the start and end times of the

event of interest during training. In addition, the segmentation algorithm should fit within

the compute and resource budget of the low-end IoT processor [SHS17, WSJ16, KB15].
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Table 5.4: Existing TinyML On-Device Learning Techniques Versus Proposed Algorithm
Method Framework Supported Hardware∗ Application Personalizing

Output Classes

Automatic

Learning

Transfer learning

LITW [LN20] TI MSP430 (66 kB) Image recognition No (static CNN) Per-output feature

distribution

divergence

TinyOL [RAR21b] ARM Cortex-M (256 kB) Inertial anomaly

detection

No (static

autoencoder)

Running mean and

variance of streaming

input

TinyTL [CGZ20] ARM Cortex-A

(32-66 MB)

Image recognition No (static MBNet) None

Incremental training Train++ [SYB21] ARM Cortex-M, ARM

Cortex-A, Espressif

ESP32, Xtensa LX

(6 kB - 860 kB)

Image recognition,

mHealth

No (static binary

classifiers)

Confidence score of

prediction

Optimized

backpropagation

ML-MCU [Sud21] ARM Cortex-M, Espressif

ESP32 (6kB - 241 kB)

Image recognition,

mHealth

No (static binary clas-

sifiers)

None

TTE [LZC22] ARM Cortex-M (256 kB) Image recognition No (static MBNet,

MCUNet)

None

Continual learning QLR-CL [RRN21] PULP (64 MB) Image recognition No (static MBNetV1) None

Template matching

(ours)

This work Any MCU, ISPU (8 kB) Inertial motion

recognition

Yes (template

modification)

Running mean and

variance of streaming

input

∗ Parenthesis shows working memory (SRAM) usage

5.3.1 On-Sensor Learning and Classification

We designed an on-device inertial motion learning and classification framework for the execu-

tion on-sensor and on low-end microcontrollers. During the learning phase, the user performs

the target event of interest with the IMU mounted on the target device. Our pipeline uses

an inexpensive event segmentation method that can automatically identify the start and end

points of the target motion primitive during the training phase without user intervention.

The segmented data stream is then converted to an image template. The template and axes

variance information is stored on the sensor. During inference, image templates are created

in real-time from IMU data windows. These templates are matched against stored templates

using image similarity and axes variance metrics to provide the detected class label. Cus-

tomers can replace or remove stored classes with new motion primitives on-the-fly, allowing

personalization and tuning for a broad application spectrum. The pipeline is fully automated

and requires no user-supplied parameters. The whole algorithm fits within the tight mem-
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Table 5.5: Existing IoT Inertial Motion Recognition Frameworks Versus Proposed Algorithm
Framework SRAM Usage Online Learn-

ing

Segmentation Personalized Output

Classes

Application Rep

Count

No

Manual

Tuning

Machine Learning-Based Approaches

MiLift [SHS17] < 512 MB on

Moto 360

SVM confidence

scores

Hierarchical ML

pipeline

No (static CRF, DT +

HMM, and SVM)

Workout tracking Revisit-

Based

No

GesturePod

[PDP19]

∼2 kB on Cortex-

M0+

None None No (static ProtoNN) Gesture

recognition

None No

Auritus [SSP22] ∼2 kB on Cortex

MCU

None None No (static FastGRNN,

Bonsai, ProtoNN)

Activity

recognition

None No

FastGRNN

[KSB18]

∼2 kB on AVR

RISC

None None No (static FastGRNN) Activity

recognition

None No

TinyOL [RAR21b] < 256 kB on

Cortex-M4

Transfer Learning Running mean

and variance

No (static autoencoder) Anomaly

detection

None No

Coelho et al.

DT [CSF21]

< 128 kB on

Cortex-M4

None None No (static DT) Activity

recognition

None No

Active

Learning [SHK17]

< 512 MB on

Gear Live

Active learning

(querying)

None No (static RF, DT, NB,

SVM)

Activity

recognition

None No

Elsts et al.

CNN [EM21]

< 96 kB on

Cortex-M3

None None No (static CNN) Activity

recognition

None No

T’Jonck et al.

CNN [TKV21]

< 256 kB on

Cortex-M4

None None No (static CNN) Bed activity,

anomaly

None No

Finite State Machines (FSM) and Functional Programs

FSM

Sequence [KG15]

< 3 GB on

Core 2 Duo

Sequence

matching

Smoothing Yes (Fast learning FSM) Gesture

recognition

None Yes

FnSM [WR15] < 512 MB on

Sony Watch 3

None None No (static functional FSM) Gesture

recognition

None No

Bosch GDL

[WGD19]

< 44 kB on

integrated pro-

cessor

GDL evaluation

and regex

(Supported) Yes (GDL

+ Non-deterministic FSM)

Gesture

recognition

Yes Yes

Template Matching

Ours <8 kB on ISPU Template-based Running mean

and variance

Yes (template

modification)

All of the above Adaptive Yes

ory bounds of an intelligent sensor processing unit (ISPU) from STMicroelectronics [RSZ22],

consuming less than 8 kB of memory, achieving 2000× memory savings over competing tech-

niques designed for microcontrollers. We qualitatively compare our framework against other

on-device learning and motion inference frameworks (Section 5.3.2), discuss the automatic

segmentation and learning process (Section 5.3.3), and the inference and personalization

pipeline (Section 5.3.4).
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5.3.2 On-device Learning and Motion Inference

Table 5.4 summarizes online learning techniques developed for low-end IoT platforms. Exist-

ing on-device learning paradigms (how to learn) for ML models can be classified into four

classes. Transfer learning fine-tunes the last few layers of a frozen network graph [PY10].

Efficient transfer learning algorithms include reusing feedforward propagation representa-

tion maps for backpropagation [LN20], sample-wise stochastic gradient descent [RAR21b],

and performing bias updates via lite residual learning [CGZ20]. Transfer learning suffers

from catastrophic forgetting and limited capacity of unfrozen layers [CGZ20]. Incremental

training performs sample-wise and gradient-free weight updates using constrained optimiza-

tion [SYB21], suffering from limited supported model types. Optimized backpropagation

algorithms reduce training memory usage through sparse updates of the most important

network layers [LZC22], compile-time gradient calculation [LZC22], and combining the sta-

bility of gradient descent with the efficiency of stochastic gradient descent [Sud21]. On-device

auto differentiation has a higher learning capacity than transfer learning, but limits online

learning to either limited model types or processors with at least 256 kB of memory. Con-

tinual learning uses slow learning and a latent replay layer to store representation maps

from previous training samples, preventing catastrophic forgetting [RRN21]. However, con-

tinual learning has high resource usage. To detect feature distribution shift in the streaming

data and start the training process automatically (when to learn), the frameworks mon-

itor the moments in the input data window [RAR21b], the model prediction confidence

scores [SYB21], or the divergence in the covariate distribution of principal components in

the input data window [LN20].

Deploying existing online learning frameworks in the wild raises two issues. Firstly, these

techniques operate on a static ML classifier pre-trained on an application-specific dataset.

Thus, the customer cannot add, replace, or remove additional output classes from the model,

lacking personalization capabilities. Moreover, if the deployment-time task and data distri-

bution are significantly different from the original dataset and task, then these techniques
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fail to adapt. In contrast, our technique assumes no prior information about the customer

application or data distribution, allowing the user to create motion templates in the field

with only 10 seconds of IMU data per class. Training data segmentation is performed

automatically by observing the input stream moments. Secondly, existing online learning

techniques are not suitable for execution on on-sensor processors, usually requiring around

256 kB of SRAM. These frameworks also support limited processor architectures depending

upon the tinyML compiler suite and vector accelerators. In comparison, our method can run

on any commodity microcontroller and even on-sensor processors supporting C instructions,

requiring less than 8 kB of SRAM.

Table 5.5 showcases inertial motion recognition frameworks designed to be run in real-

time on IoT platforms. These frameworks can be divided into three categories.

Machine Learning-Based Approaches: These frameworks run static ultra-lightweight

ML classifiers to make inferences for a specific application. Specially-designed classifiers

with low-rank, sparse, shallow, and quantized parameters (e.g., Bonsai, ProtoNN, and Fast-

GRNN) [KSB18, GSG17, KGV17] allow motion recognition under 2 kB of SRAM [SSP22,

PDP19, KSB18] at the cost of domain generalizability [SSP22]. Vanilla convolutional neural

networks (CNN), decision trees (DT), and autoencoders can either be hand-tuned or opti-

mized using neural architecture search for making inferences under 256 kB SRAM [EM21,

TKV21, CSF21, RAR21b]. CNN and autoencoders also exploit post-training quantization

and weight pruning to lower latency and memory usage even further by 6-9× and 9-14×

without significant accuracy loss [HMD16, SSS22a]. These large sparse models are more

robust to domain shifts than small dense models [SSP22]. IoT devices with more relaxed

memory constraints (e.g., smartwatches) feature conventional ML classifiers such as condi-

tional random fields (CRF), random forests (RF), support vector machines (SVM), naive

Bayes (NB), and DT [SHS17, SHK17]. These devices feature online learning in the form

of binary classification (in-class or not) through the use of SVM confidence scores or en-

semble voting [SHS17, SHK17]. During online learning, observing the running moments of

98



the input stream or using additional ML classifiers can be used to detect the start and end

of specific motion primitives [RAR21b, SHS17]. Unfortunately, all ML-based approaches

are task-specific, lack the ability to add, remove or modify output classes, and require user

supervision (data processing) during training.

State Machines and Functional Programs: Finite state machines (FSM) are computa-

tional models that can take one of a finite number of states at a time and simulate sequential

logic, regex pattern matching, and directed graphs [Ric08]. A functional program is com-

posed of a sequence of subroutines (expression trees) [Hud89]. These approaches construct

motion expressions from an ordered sequence of atoms, which are repetitions of symbols

(predicates over raw data), described using a context-free grammar [WGD19]. Regex match-

ing detects new motion primitives by computing similarity scores with sample sequences.

The onboard FSM is updated to add the new motion primitive using the optimal event se-

quence [KG15, WGD19]. Smoothing removes noise and unwanted motion artifacts, keeping

only the desired training samples during segmentation [KG15]. While these techniques are

allow modification of classes, are task-agnostic, and support online learning, the accuracy of

these frameworks is around 75% [KG15, WR15], while ML-based approaches easily exceed

95% [SHS17, SSP22, KSB18, CSF21, TKV21, PDP19, MSG14]. The memory usage is at

least 40 kB, higher than the ISPU data memory.

Template Matching: Template matching converts time-series data into image templates

and stores them onboard. Images are created on-the-fly from the IMU data stream and

matched against stored templates using a similarity metric. This approach enjoys the ac-

curacy of ML-based approaches while allowing fully online on-device learning and person-

alization of output classes similar to state machines and functional programs. Training

data segmentation is performed by detecting ”static-motion” primitive via running mean

and variance. The technique consumes less than 8 kB of SRAM on the ISPU. While

the analysis of time-series data using image representation and template matching is well-

explored [BCC20, HGD18, YK09, HL10, JLG17, Fu11], the end-to-end integration of inertial
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template matching with on-device learning, automatic segmentation, rep counting, and per-

sonalizability on on-sensor processors is unexplored.

5.3.3 Unsupervised Segmentation and Online Learning

The training process follows data segmentation, template creation, and storage.

Automatic Segmentation: When the user starts the training phase, accelerometer samples

at are stored in a buffer a of size N . The user is asked to remain static for n seconds,

monitored using the sum of the rolling mean Rāt and the rolling variance Rσ
2
at for all three

accelerometer axes. Rσ
2
at is as follows:

Rσ
2
at = (1 − α) · (σ2

at + α · d2t ) (5.2)

where,

dt =
√

a2x,t + a2y,t + a2z,t −R āt (5.3)

Rāt =R āt + (α · dt), Rā0 =
√

a2x,0 + a2y,0 + a2z,0 (5.4)

α is a tunable parameter controlling the smoothness of the running moments. Static con-

dition is detected when the sum of rolling mean and variances is less than a pre-defined

threshold β. α and β were automatically selected using Bayesian optimization [SAS21], with

the objective function minimizing the difference between start and end times predicted by

the segmentation algorithm versus human-picked points for a task-specific dataset. If a sta-

tionary state of n seconds is detected, then the data collection for the motion primitive to

be detected starts, otherwise, the training phase is canceled. The user performs the desired

motion primitive for p seconds (until the buffer is full). Running moments are used to discard

the small number of samples that elapsed between the time the user was asked to perform

the motion primitive and when the user actually started the motion primitive. If the number

of static samples during this phase exceeds z% of the buffer length, the training is canceled.

This ”static-motion” based segmentation algorithm is computationally efficient over autocor-

relation, time-warping, revisit-based, or ML-based segmentation approaches [EA12, SHS17].
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Template Creation: First, the roll ϕ and pitch θ are calculated from the stored buffer a:
ϕt = arctan 2(ay,t, az,t)

θt = arcsin ax,t√
a2x,t+a2y,t+a2z,t

(5.5)

Next, the gravity vector swing g in each axis is calculated:
gx,t = sin θt

gy,t = cos θt sinϕt

gz,t = cos θt cosϕt

(5.6)

The variance of g is calculated for each axis:

σ2
g =

1

N

∑
t

(gt − ḡ)2 (5.7)

The two axes with the highest variance, ga and gb, are noted to retain maximal information

(principal components). Afterward, an m×m byte grid is created. The numerical values in

ga and gb are quantized into buckets as follows:

gquantizedu,t = 0.5
(

∆ · i + ∆ · (i− 1)
)

⇔
(
gu,t < ∆ · i

)
∧
(
gu,t > ∆ · i− 1

) (5.8)

where, i ∈ [1,m], u = {a, b}. Each element in the grid takes a value of gquantizedu,t . ∆ is the

quantization resolution, which can be calculated from either of the two axes a or b:

∆ =
max(gv) − min(gv)

m− 1
, v = {a, b} (5.9)

The quantized values are used to fill up the elements of the byte grid, with the maximum

value of a grid element equal to 255. The result is an m × m quantized image of ga and

gb plotted against each other. Fig. 5.2 shows 20 × 20 templates created for three different

exercise activities in real-time, namely bicep curl, lateral, and jack.

The motivation to convert accelerometer time series to 2D image templates are twofold.

Firstly, the gravity vector creates a spatial view of the motion primitive by overlapping
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Figure 5.2: Example templates generated by our algorithm for (Left) bicep curl (Center)

lateral (Right) jack exercises.

the accelerometer samples with the same gravity vector swing. It gets rid of the computa-

tional expense and algorithmic challenge to time align and then overlap consecutive motion

primitive sequences for a certain motion primitive. Secondly, 2D images provide more infor-

mation (variance) corresponding to real-world applications than 1D principal components.

Most real-world motion sensing applications (e.g., fitness monitoring, activity recognition,

and gesture detection) usually span two gravity vector axes.

Template Storage: The image and the name of the two axes with maximum variance are

stored as an element in an array of structures in the data memory of the ISPU. Each element

in the array of structures has 3 members: the quantized m ×m byte template, a character

specifying the axis with the highest variance, and a character specifying the axis with the

second highest variance. Additionally, a counter maintains how many of the elements in the

data structure have been used and is incremented by 1 when a new template is added.

5.3.4 Real-time Classification and Personalization

During inference, the buffer size is M , such that M < N . To promote variable reuse, we

use the same buffer used during training. When the buffer has M elements, templates are

created using the formulation described in Section 5.3.3. For each element in the array of
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structures, the two stored maximal axis variance names are matched with the two maximal

axis variance names for the inference-time gravity vector swing. If a match is found, then

the universal image quality index (UQI) [WB02] Q is calculated between the selected stored

candidate image template e and the inference image f :

Q =
4 · σef · ¯e · f̄

(σ2
e + σ2

f ) · (ē2 + f̄ 2)
(5.10)

where

ē =
1

m2

m2∑
i=1

ei, f̄ =
1

m2

m2∑
i=1

fi (5.11)

σ2
e =

1

m2 − 1

m2∑
i=1

(ei − ē), σ2
f =

1

m2 − 1

m2∑
i=1

(fi − f̄) (5.12)

σe,f =
1

m2 − 1

m2∑
i=1

(ei − ē) · (fi − f̄) (5.13)

Q varies between -1 and +1, with +1 signifying the two templates are identical, while -1

signifies the highest dissimilarity between the two templates. We perform the axis match

first to save valuable computation time needed to calculate the UQI by eliminating stored

image candidates whose axis does not align with the inference template. To handle domain

shifts caused by noise, sensor placement offset, and inertial disturbances, we downsample e

and f by applying uniform filtering:

wblurred = w ∗ Jk, w = {e, f} (5.14)

∗ is the convolution operator, performed only in the valid regions. J is the square unit matrix

of length k, also known as the blur kernel. The idea is inspired by how a CNN successively

downsamples an input image layer-by-layer by applying a convolution kernel to extract an

abstract yet generalizable representation map [GBC16].

For personalization, the onboard software provides the customer the option to replace or

erase an existing template. The user can choose to replace an existing template with a new

one, append new templates at the end of the array of structures (provided the maximum
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Figure 5.3: UQI heatmap and confusion matrix for workout tracking

number of allowable templates has not been reached), or erase the contents of the whole

array of structures. The training process described in Section 5.3.3 is followed during this

phase.

5.3.5 Evaluation

We evaluate the algorithm for workout activity recognition (Section 5.3.5.1), quantifying

resource usage for commodity microcontrollers and the ISPU (Section 5.3.5.2). We use an

internally collected IMU dataset containing 30 workout sessions from multiple volunteers

spanning 6 classes, namely bicep curl, jack, lateral, overhead, push-up, and squat exercises.

The participants wore the IMU on their wrist via a ST SensorTile.Box wristband in any

orientation they liked. The data was stored on an onboard SD card. The test dataset was

created by partitioning this dataset. The sensor core ODR was 26 Hz. n was 3, α was 0.01,

z was 50, m was 20, M was 52 (2 seconds), N was 260 (10 seconds), and k was 8. The array

of structures was limited to 6 templates.

104



5.3.5.1 Workout Tracking Accuracy

Fig. 5.3 shows a heatmap showing detected UQI values and the confusion matrix for workout

tracking for the 30 sessions across the 6 classes. Note that the goal at inference time is to

match the workout label among the 6 classes, and not necessarily the instance or session. For

example, if the algorithm detects an activity as ’squat’ but the match stems from a ’squat’

activity from a different workout session, then the inference is still valid. Our algorithm

achieves a 96.7% workout tracking accuracy, only misclassifying an instance of squat with

bicep curls. In other cases, the predicted class lies either on the diagonal (matched instance)

or the in-class bounds (matched workout label). For the sessions that correspond to the

same workout class (e.g., 0-7 corresponds to bicep curl and 8-10 corresponds to jack) the

highest UQI is always within the in-class bounds, signifying robustness to in-class domain

shifts of our algorithm. Without the uniform filter, our algorithm still achieves 90% +

accuracy. Other similarity metrics such as the mean squared error, structural similarity

index [Wan04], spatial correlation coefficient [ZCS98], peak signal-to-noise ratio [Wan04],

and spectral distortion index [AAB08] achieve 30-95% accuracy.

To ensure that the whole algorithm generalizes in real-world settings, we also performed a

real-world study where the algorithm was ported to an ISPU within the ST SensorTile.Box.

We asked two volunteers not present in the original dataset to test the training and inference

pipelines using their own choice of wristband orientation and activities. The algorithm

successfully segmented the region of interest during training and accurately detected the

user-defined activities in real time.

5.3.5.2 Resource Usage

Table 5.6 outlines the resource usage and latency of various components of our algorithm on a

general-purpose Cortex-M4 microcontroller and the ISPU. Template storage during training

is the slowest. However, template storage is not related to inference and only happens
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Table 5.6: Latency and Resource Usage of Our Algorithm

Algorithm Component
Latency (mS)

Cortex-M4 (84 MHz) ISPU (10 MHz)

Template creation 4-6 32-48

Template storage 65 130

Template retrieval 0.19 1.55

Template matching 0.27 2.11

Memory Component
Memory Usage (kB)

Cortex-M4 (84 MHz) ISPU (10 MHz)

Data 17.7 7.2

Program 45.0 24.0

during training. Template retrieval, matching, and rep counting have negligible latency on

both devices. Template creation takes 40 mS, which is roughly within the ISPU processing

cycle for 26 Hz ODR. The algorithm consumes less than 8 kB memory on the ISPU, which is

2.5× lower than the microcontroller implementation, and 2000× lower than existing online

learning frameworks thanks to the optimized instruction set.

5.4 Foundation Models

Autoregressive large language models (LLMs) [DCL19, BMR20, CND22, MDL23] have revo-

lutionized natural language processing (NLP) by showing unprecedented and high-bandwidth

performance across a broad spectrum of tasks through few-shot learning [BMR20], memo-

rization [TMZ22], and compositionality [ZSH22]. LLMs are neural networks that are trained

using large quantities of unlabeled text through self-supervised learning and have billions of

parameters [CND22]. LLMs generalize across a variety of tasks thanks to their parameter

count and input dataset size and can hallucinate and exhibit emergent abilities.

Architecture: LLMs embrace the transformer [VSP17] architecture, which has the ability

to process sequential input data, differentially weigh the importance and extract the context

of parts of the input data, and parallelize computations across layers and sequence posi-

tions. Unlike RNNs, transformers do not suffer from the exploding and vanishing gradient

problem or lack of parallelization, allowing more direct information flow and stable train-

106



ing [ZBI19]. Modern LLMs such as GPT-3 [BMR20], GPT-4 [Ope23], LaMBDA [TDH22],

PaLM [CND22], and Megatron–Turing NLG [SPN22] use a left-to-right, decoder-only archi-

tecture. Compared to bidirectional transformers (BERT) [DCL19], modern LLM architec-

tures can handle longer sequences due to their autoregressive nature, do not use masked

language modeling (generalizes to downstream tasks without fine-tuning), and are more ef-

ficient at runtime.

Pre-training: LLMs are pre-trained using unsupervised learning on a large unlabeled text

corpus to make the transformer learn the underlying semantics, relationship, and gram-

mar [CND22]. The text is first tokenized (split into words or subwords). The LLM is then

trained either using masked language modeling (MLM) or autoregressive language model-

ing (ALM). In MLM, the objective is to predict masked tokens based on the surrounding

(past and future) context [DCL19]. This prevents memorization, forces the model to learn

generalizable representations, and prevents the attention mechanism from seeing future in-

formation. In ALM, the objective is to predict the next token in the sequence given only the

past tokens [CND22]. ALM is suitable for tasks that are generative, need longer tokens, and

whose contexts are unidirectional in nature. However, MLM is less biased toward common

tokens, can handle missing data, and is more flexible.

Adapting for downstream tasks: There are several techniques to apply a pre-trained

LLM to a downstream task:

• Fine-tuning: The weights of the LLM are frozen to preserve learned knowledge from

pre-training. New layers are introduced at the output of the LLM, whose weights are

learned using supervised learning on the downstream dataset. This is the same as

transfer learning [GDC21].

• Prompting: Few-shot prompting formulates the problem to be solved via a text

prompt with a few or no (problem, solution) pairs [WWS22].

• Tuning from feedback: This is the continuous form of prompting. Reinforcement
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learning from human feedback performs supervised fine-tuning on a human-generated

(problem, solution) dataset, but a reward is provided to the LLM that was learned

from the dataset [CLB17, OWJ22]. Self-instruct fine-tunes the model on a dataset

generated by the LLM itself warm-started from a smaller human-generated (problem,

solution) dataset [WKM22].

• Knowledge distillation: A smaller model is trained to mimic the logits, intermediate

representations, or instance relations of the LLM using distillation loss. The smaller

model is more suited for edge deployment [GYM21].

• Multi-task learning: Sequence-to-sequence learning combined with prompting dur-

ing pre-training and downstream adaptation can yield multi-task LLM without requir-

ing extra task-specific layers [WYM22].

Multimodal Foundation Models: Multimodal foundation models can deal with multi-

ple modalities (e.g., text, image, audio, and video) simultaneously [GLL22, XYY23, KNC23,

RKH21, DXS23, HWC22, MDL23, WYM22]. The embeddings can be generated by modality-

specific frozen foundation models (e.g., BERT [DCL19] for text, and ViT for images [HWC22]),

which are concatenated using late fusion via self-attention and cross-modal attention mod-

ules [XYY23, RKH21]. The self-attention module outputs embeddings that are aware of

other embeddings (e.g., text-aware image embeddings). The fusion layers are fine-tuned via

a linear combination of modality-specific loss functions. Another approach trains a single

encoder-decoder architecture end-to-end to accept a vector containing the multimodal tokens

for supposed joint understanding [KNC23, GLL22, DXS23]. This is called early fusion.

5.4.1 Large Language-Inertial Models (LLIM)

While pre-trained foundation models for text, audio, and vision modalities are plentiful [ZLL23],

very little attention has been put forward developing pre-trained foundation models for in-

ertial sensors [XZT21]. Given the broad domain spectrum of inertial sensors [CDK19], we
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Figure 5.4: Overall architecture of LLIM showing pre-training and downstream adaptation.

present LLIM, a family of context-aware inertial foundation models, shown in Fig. 5.4. LLIM

consists of two encoders. Firstly, BERT generates text embeddings for the context of the

current inertial sensor window, such as activity primitive, sensor placement, change in orien-

tation, and change in velocity. Secondly, a modified LIMU-BERT [XZT21] encoder generates

embeddings for IMU data. LIMU-BERT is the only proposed foundation model architecture

for IMU data in literature [XZT21]. The two embeddings are fused via attention mech-

anisms using a fusion transformer, which generates shared embeddings. We pre-train the

modified LIMU-BERT architecture on large quantities of unlabeled IMU data using masked

sequence modeling. Afterward, the BERT and the LIMU-BERT encoder are frozen. The

fusion transformer and the shared decoder are then pre-trained on large quantities of ex-

isting labeled and unlabeled data using masked sequence-to-sequence reconstruction. The

generated embeddings can be used for almost all of the downstream tasks discussed in this

dissertation. Knowledge distillation can be used to hot-start and efficiently train gener-
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Figure 5.5: Architecture of modified LIMU-BERT.

alizable tinyML models suitable for edge deployment. We share the ongoing work in the

upcoming subsections (Section 5.4.2 to Section 5.4.5).

5.4.2 Modified LIMU-BERT

The core component in LLIM is the IMU encoder, for which we start with the LIMU-BERT

architecture [XZT21]. Fig. 5.5 shows the modified LIMU-BERT architecture. The sensor

data sequence is first normalized. During pre-training, the span masking algorithm [JCL20]

is used to probabilistically mask continuous regions of the input sequence. The masked se-

quence is projected to a high-dimensional space using a linear layer. The extracted implicit

features are normalized via layer normalization [BKH16]. The normalized features are added

with the output of the positional embedding function, and further normalized. The positional

encoding adds recurrence (sense of time) to the transformer architecture [VSP17]. The out-

put is then fed to the attention-centric block, which can be stacked one after the other with
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an increasing parameter count. There are three residual components with cross-layer pa-

rameter sharing in this block, namely the multi-attention block containing the self-attention

layers, the projection block, and the feedforward block. The projection block contains a

single neural network layer, while the feedforward block contains two neural network layers

with Gaussian error linear unit (GeLU) activation. GeLU provides a smoother and more

continuous shape than ReLU, making it suitable for learning complex patterns [HG16]. The

output of the attention-centric block represents the generalized IMU embeddings, which can

be fed to a decoder during LIMU-BERT pertaining, to the fusion transformer for pretraining

LLIM, or to IMU-only downstream tasks by adding task-specific layers. Our contribution to

the LIMU-BERT architecture is two-fold:

• We design the projection and feedforward blocks to be temporal convolutional. Convo-

lutional layers can extract fine-grained local patterns from the IMU input sequence, al-

lowing the transformer to extract both local and global dependencies [GQC20, WXC21].

• We allow stacking the attention-centric block several times to create a family of LIMU-

BERT architectures with different parameter counts, allowing for transformers that are

small and capable of running on edge devices, as well as large ones that have lower

reconstruction loss.

Additionally, we pre-train the modified LIMU-BERT on a much larger dataset (discussed in

Section 5.4.4. The hyperparameters to optimize include:

• Number of attention-centric blocks.

• Number of heads in the multi-head attention module.

• Number of hidden units in the first dense projection layer.

• Number of filters (or the number of hidden units) in the feedforward layer.
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• Kernel size of the filters in the projection and feedforward layers (only if convolution

is used)

In addition, the size of the input window is also a parameter to be chosen.

5.4.3 Fusion Transformer

The fusion transformer extracts cross-model semantics from the text and IMU embeddings in

a joint embedding space. The fusion transformer contains a stack of transformer blocks with

cross-attention, similar to ALBEF [LSG21], to yield multimodal text-inertial representa-

tions. The outputs of the transformer stack are fed to self-attention to extract dependencies

within the shared representation. In the future, we would like to prepend a universal lay-

ers module [XYY23] to generate text-aware inertial and inertial-aware text embeddings for

improved modality collaboration and modality disentanglement.

5.4.4 Pretraining

We use a pre-trained BERT encoder from Huggingface 1 for extracting text embeddings from

the text. We pre-train the LIMU-BERT and the fusion transformer from scratch.

5.4.4.1 Pretraining LIMU-BERT

The original LIMU-BERT was trained on only small human activity recognition datasets

individually containing 2000-11000 samples [XZT21]. In contrast, for our initial evaluation,

we pre-train the modified LIMU-BERT on a joint human activity recognition dataset con-

taining the Sussex-Huawei locomotion and transportation (SHL) dataset [GCW18], realistic

sensor displacement (RealDisp) dataset [BDP12], RealWorld [SS16], and the PAMAP2 phys-

ical activity monitoring dataset [RS12]. The combined dataset has 2777 hours of IMU data

1https://huggingface.co/
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from 44 volunteers performing 67 activity primitives across 21 different device placements.

We down/upsampled the data at 50 Hz and created 2 million files containing 5 seconds (se-

quence length: 250) of IMU data. We divided the dataset into training (80%), validation

(10%), and test splits (10%). We use the mean-squared error as the reconstruction loss

for initial evaluation, training the decoder to interpolate the masked values and comparing

them against the ground truth values at those positions. We plan to expand the dataset and

experiment with other loss functions in the future.

5.4.4.2 Pretraining the Fusion Transformer

For an initial evaluation, we pre-train the fusion transformer with a shared decoder that

reconstructs the IMU sequence and the activity label. The loss function should be a sum

of the reconstruction loss for the IMU and the text. There are several loss functions we are

experimenting with:

• Contrastive loss [WL21] for learning IMU-text pairs.

• Cross-entropy loss for IMU-captioning.

• Mean-squared error loss for IMU reconstruction [XZT21].

• Cross-entropy loss for text reconstruction [DCL19].

5.4.5 Downstream Adaptation

Currently, LLIM supports downstream adaptation either through fine-tuning or knowledge

distillation. So far, we have evaluated downstream adaptation for IMU-only activity recog-

nition tasks using our modified LIMU-BERT architecture. In contrast with the original

LIMU-BERT, which pre-trains and tests downstream tasks primarily on the same dataset,

we pre-train on the joint dataset described above and perform downstream adaptation via

fine-tuning on an entirely different dataset.
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Table 5.7: Human Activity Recognition Performance on Downstream Dataset (1% labeling

rate) for modified LIMU-BERT vs. vanilla LIMU-BERT.
Method Pre-Training Dataset Downstream Dataset Test Accuracy

LIMU-BERT

Shoaib [SBI14]

Shoaib

86.5

UCI [ROS16] 80.0

MotionSense [MCC19] 81.4

HHAR [SBB15] 81.3

Modified LIMU-BERT (ours) SHL, RealDisp, RealWorld, PAMAP2 Shoaib 84.0

LIMU-BERT

Shoaib [SBI14]

HHAR

56.2

UCI [ROS16] 51.5

MotionSense [MCC19] 56.4

HHAR [SBB15] 66.9

Modified LIMU-BERT (ours) SHL, RealDisp, RealWorld, PAMAP2 HHAR 60.3

Table 5.7 showcases the performance of modified LIMU-BERT and vanilla LIMU-BERT

for downstream adaptation on datasets not present in the training set. Both models have

the same number of parameters, but our model is trained on a larger dataset and has the

modified architecture. In terms of generalization on a new dataset, our method outperforms

the vanilla LIMU-BERT by 5%, showing the importance of pre-training foundation models

on large quantities of unlabeled data. In the future, we would like to evaluate the modified

LIMU-BERT for more downstream tasks, and ultimately move toward evaluating the overall

LLIM architecture.

5.5 Discussion

In this chapter, we discussed three techniques to adapt TinyML programs to a new domain

and application in the wild, namely fine-tuning, on-device learning (no neural component),

and foundation models.

Firstly, we presented the utility of transfer learning in adapting TinyML programs in a

new domain using a few minutes of labeled data. Transfer learning drastically reduces the

data inefficiency of TinyML programs, allowing the usage of user-friendly video pipelines to
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collect labeled data and deployment of pre-trained models in a new domain. The approach,

however, still requires labeled data. Moreover, transfer learning is limited in adapting to

data distributions that are extremely divergent, and is not application agnostic.

Next, we described an on-sensor inertial on-device learning and classification framework

that consumes less than 8 kB memory. The framework is application agnostic, allows person-

alization of output classes, supports online learning, and performs automatic segmentation

all without any user supervision. The framework needs no labeled data. Future directions

include quantifying in-field performance for other applications, automated hyperparameter

tuning, and optimizing complex mathematical operations.

Lastly, we briefly discussed the value of foundation models in generalizing across a broad

spectrum of tasks. We presented LLIM, a family of context-aware inertial models that

excels across various downstream tasks and downstream datasets, pre-trained purely us-

ing unlabeled data. Future directions include experimenting with various loss functions,

pre-training with more datasets, formalizing the fusion transformer architecture, evaluat-

ing LLIM on more downstream tasks, and evaluating knowledge distillation for generating

domain-invariant TinyML models.
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CHAPTER 6

Conclusion and Future Work

Tiny machine learning (TinyML) has opened a new opportunity to bring intelligence to

Internet-of-Things platforms and embedded systems ubiquitous around us. In this disser-

tation, we explored techniques to inject uncertainty awareness, platform awareness, context

awareness, physics awareness, and domain awareness into the existing TinyML workflow.

Firstly, starting with data collection, real-world sensors are imperfect, suffering from

spatial and temporal misalignments. Training time uncertainty augmentation can make

TinyML models robust to deployment time uncertainties.

Secondly, the optimization of TinyML backbones needs to take into account the deploy-

ment time and execution-level dynamics of the platform the TinyML program is going to

run on. A TinyML program may contain both neural and non-neural components, all of

which must be jointly handled and optimized for guaranteed deployment. Platform-aware,

black-box, Bayesian, and gradient-free neural architecture search can talk to the target plat-

form during the optimization process to examine runtime faults, while also being able to

efficiently handle mixed hyperparameter search spaces.

Thirdly, the TinyML program must obey certain bounds, rules, heuristics, and physics

of the underlying domain for safe, reliable, and provably correct operation. Neurosymbolic

tiny machine learning enables combining TinyML models with physics-based models within

the ultra-resource constraints of TinyML platforms. The optimal synergy of neural and

symbolic components opens up a broad spectrum of edge artificial intelligence applications

such as inertial navigation, object detection and tracking, on-chip activity recognition, and
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neural-Kalman filtering.

Fourthly, TinyML programs must be personalizable across dataset distributions and ap-

plications during deployment time. Transfer learning, on-device learning, and foundation

models pave the way for utilizing pre-trained models across a broad task spectrum.

There are several avenues of future work stemming from this dissertation.

6.0.1 Guiding the Training Towards Heuristic Goals

As models are shrunk, they become fragile in terms of generalizability, robustness, and

backward compatibility. The neuro ∪ compile [symbolic] paradigm does not guarantee strict

enforcement of user constraints, which are lost within the neural network embeddings. The

symbolic [neuro] paradigm allows the fusion of neural and physics-based components through

a Kalman filter, but the neural network is agnostic to the heuristic rules, physics, and

bounds being managed by the Kalman filter. The preferred paradigm is neuro [symbolic],

where the neural architecture is embedded with special symbolic reasoning layers. The

symbolic layer is biased to strictly enforce user-defined models and mimic a logical reasoning

module [Kau22, SZE21]. Since the loss flows through the whole neural network, the neural

network becomes aware of the intricacies of the symbolic layer. In other words, physics

awareness, robustness and backward compatibility ingrained in the network weights may

enable more trustworthy neurosymbolic systems. More work is required to implement such

physics-aware reasoning layers [GDY19, CGH20, YPJ19, LCS21, BGS22] for deployment

onto TinyML platforms.

6.0.2 Backward Compatibility

The changes in behavior when deploying an upstream model (e.g., a model on the cloud)

to microcontrollers through the TinyML workflow cannot be measured in isolation using

only the aggregate performance measures (such as accuracy) [SNK20] Even when a TinyML
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model (downstream model) and the upstream model have the same accuracy, they may

not be functionally equivalent and may have sample-wise inconsistencies [YXK21] resulting

in new failures impacting high stake domains such as healthcare. This notion of functional

equivalence between an upstream and a downstream model is known as backward compatibil-

ity. When previously unseen errors are observed in the downstream model, the downstream

model is said to be backward incompatible [BNK19] and has low fidelity [JCB20] and high

perceived regression [YXK21] with respect to the upstream model. As a result, to have

robust inference, the TinyML model must have both high accuracy and high fidelity with

its upstream counterpart. Proposed solutions, such as positive congruent training [YXK21]

and backward compatible learning [SXX20], are yet to be integrated and optimized for the

TinyML workflow.

6.0.3 Long Term Planning and Reasoning

TinyML models mostly focus on short windows. However, dealing with long sequences is im-

portant, especially for complex event processing [SSS20]. While neurosymbolic AI combines

the short-term perception power of neural networks with long-term context from symbolic

models, we lose out on any performance gains possible by long-term context extracted from

the data by a neural network. Thus, we need better spatial and temporal primitives for long-

term reasoning at the neural level to counteract performance loss through purely symbolic

reasoning methods. This is important for applications such as motion planning, simultane-

ous localization and mapping, and joint state control in the presence of noisy sensors and

actuators [NPD22].

6.0.4 TinyML as Part of Bigger Systems

So far, this dissertation has focused on TinyML as standalone independent systems. However,

TinyML systems can be part of bigger systems, each containing multiple individual TinyML
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components. The optimal way to distribute a system’s computation paradigm across these

independent TinyML platforms under dynamic and ever-changing resource constraints is an

open research challenge [TIR20], especially in control problems.

Moreover, even with the advent of edge artificial intelligence, one cannot discount the

value of the cloud, especially given the meteoric rise of foundation models [YZY22]. The

TinyML program may occasionally tap a more accurate and compute-intensive foundation

model on the cloud [RZH19]. Finding the optimal time to tap the cloud such that the com-

munication latency and energy incurred in cloud inference are outweighed by performance

gains under communication outages and a stochastic scheduling environment is challenging.

6.0.5 Security and Privacy in TinyML

While constraining private data within the TinyML platform node reduces the chance of pri-

vacy and security leaks associated with cloud-based inference, the attack surface on TinyML

platforms is wide open. Compressed models are prone to adversarial attacks and false data

injection with a higher success rate than larger models [LGH18][GWY19][YXL19]. At the

sensing layer, microarchitectural and physical side channels can leak information from micro-

controller chips through cache leaks, power analysis, and electromagnetic analysis [HCS19].

Direct attacks on TinyML devices include malware injection, model extraction, access con-

trol, man-in-the-middle, flooding, and routing [HCS19]. Therefore, the neural architecture

search optimization function in the TinyML workflow should include adversarial robustness

goals to provide not only the smallest models but also the models most robust to adversarial

attacks [GWY19][YXL19][GYX20]. The workflow should also include attack surface analysis

and tools to defend the inference pipeline against attacks.
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6.0.6 Hardware/Software Co-Exploration

Much of the development in TinyML has been software-driven, with the hardware platform

being static. While TinyML platforms hosting microcontrollers are shrinking due to Moore’s

Law, the workload and the complexity of neural networks have skyrocketed [STR21][XDH18].

Proposed hardware innovations include the use of a systolic array, stochastic computing, in-

memory computing, near-data processing, spiking neural hardware, and non-von Neumann

architectures [STR21][XDH18][LLW20]. However, such architectural innovations are largely

disjoint from the TinyML software communities. Developments in TinyML software need to

be performed hand-in-hand with attention-directed hardware design, with the platform and

model being optimized jointly [JZS19][JYS20].
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Queralt-Rosinach, and Robert Hoehndorf. “Neuro-symbolic representation learn-
ing on biological knowledge graphs.” Bioinformatics, 33(17):2723–2730, 2017.

[ALT21] Sayeda Shamma Alia, Paula Lago, Shingo Takeda, Kohei Adachi, Brahim Be-
naissa, Md Atiqur Rahman Ahad, and Sozo Inoue. “Summary of the cooking
activity recognition challenge.” In Human Activity Recognition Challenge, pp.
1–13. Springer, 2021.

[ALT22] Kareem Ahmed, Tao Li, Thy Ton, Quan Guo, Kai-Wei Chang, Parisa Kord-
jamshidi, Vivek Srikumar, Guy Van den Broeck, and Sameer Singh. “PYLON:
A PyTorch framework for learning with constraints.” In NeurIPS 2021 Compe-
titions and Demonstrations Track, pp. 319–324. PMLR, 2022.

121



[AMD15] Ferhat Attal, Samer Mohammed, Mariam Dedabrishvili, Faicel Chamroukhi, Lat-
ifa Oukhellou, and Yacine Amirat. “Physical human activity recognition using
wearable sensors.” Sensors, 15(12):31314–31338, 2015.

[APS21] Gianluca Apriceno, Andrea Passerini, and Luciano Serafini. “A Neuro-Symbolic
Approach to Structured Event Recognition.” In 28th International Symposium
on Temporal Representation and Reasoning (TIME 2021), 2021.

[aut16a] The GPyOpt authors. “GPyOpt: A Bayesian Optimization framework in
python.” http://github.com/SheffieldML/GPyOpt, 2016.

[aut16b] The Skopt authors. “Skopt: scikit-optimize.” https://scikit-optimize.

github.io/, 2016.

[BBC11] M Lourdes Borrajo, Bruno Baruque, Emilio Corchado, Javier Bajo, and Juan M
Corchado. “Hybrid neural intelligent system to predict business failure in
small-to-medium-size enterprises.” International journal of neural systems,
21(04):277–296, 2011.

[BBC17] Martin Brossard, Silvere Bonnabel, and Jean-Philippe Condomines. “Unscented
Kalman filtering on Lie groups.” In 2017 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pp. 2485–2491. IEEE, 2017.

[BBL19] Valentina Bianchi, Marco Bassoli, Gianfranco Lombardo, Paolo Fornacciari,
Monica Mordonini, and Ilaria De Munari. “IoT wearable sensor and deep learn-
ing: An integrated approach for personalized human activity recognition in a
smart home environment.” IEEE Internet of Things Journal, 6(5), 2019.

[BCC20] Silvio Barra, Salvatore Mario Carta, Andrea Corriga, Alessandro Sebastian
Podda, and Diego Reforgiato Recupero. “Deep learning and time series-to-image
encoding for financial forecasting.” IEEE/CAA Journal of Automatica Sinica,
7(3), 2020.
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“Neuro-symbolic system for business internal control.” In Industrial conference
on data mining, pp. 1–10. Springer, 2004.

[CD18] Mahesh Chowdhary and Sankalp Dayal. “Reconfigurable sensor unit for elec-
tronic device.”, November 27 2018. US Patent 10,142,789.

[CDK19] Jussi Collin, Pavel Davidson, Martti Kirkko-Jaakkola, and Helena Leppäkoski.
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