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Abstract
IRTree models have been receiving increasing attention. However, to date, there are limited sources that provide a systematic 
introduction to Bayesian modeling techniques using modern probabilistic programming frameworks for the implementation 
of IRTree models. To facilitate the research and application of IRTree models, this paper introduces how to perform two 
families of Bayesian IRTree models (i.e., response tree models and latent tree models) in Stan and how to extend them in 
an explanatory way. Some suggestions on executing Stan codes and checking convergence are also provided. An empirical 
study based on the Oxford Achieving Resilience during COVID-19 data was conducted as an example to further illustrate 
how to apply Bayesian IRTree models to address research questions. Finally, strengths and future directions are discussed.

Keywords Bayesian estimation · IRTree models · Response styles · Explanatory IRT · Stan

Item response tree (IRTree) models have been emerging as 
a promising tool for addressing responses consisting of mul-
tiple processes due to their easy implementation, high inter-
pretability, and flexibility (Ames & Leventhal, 2023; Debeer 
et al., 2014; Plieninger, 2021). As their names suggest, they 
take the form of a tree structure with each node representing 
a different process, and typically assume unidimensionality 
within each process. In the field of psychological assessments, 
IRTree models are typically applied in detecting and control-
ling for response styles – a kind of tendency to choose specific 
options regardless of the content of the item, such as extreme 
responses and middle responses (Ames & Myers, 2021; Jeon 
& De Boeck, 2019; LaHuis et al., 2019; Park, 2021). In the 
field of educational assessment, researchers have employed 
IRTree models to investigate test-taking behaviors, like skip-
ping, not reaching (Debeer et al., 2017), and missing (Debeer 
et al., 2014). Extensions of IRTree models have been proposed 
as well. Khorramdel et al. (2019), Huang (2020), and Kim 
and Bolt (2021) incorporate mixture distribution into IRTree 
models. Ames and Leventhal (2021) extend IRTree models in 

a longitudinal manner. Jeon and De Boeck (2016) proposed 
a general IRTree model, which can accommodate multidi-
mensionality and explanatory covariates, etc. Similarly, per-
son- and item-side covariates have also been considered in the 
new IRTree models developed by Ames and Myers (2021). 
Moreover, the binary IRT function within some nodes can be 
replaced by a polytomous and multidimensional IRT function 
(Meiser et al., 2019; Park & Wu, 2019).

Despite the proliferation of the development and application 
of IRTree models, tutorials on how to perform IRTree models 
remain limited. As of today, the most cited and relevant tutorial 
paper is contributed by De Boeck and Partchev (2012), which 
is under the framework of generalized linear mixed models 
(GLMMs) and employs the lme4 R package. However, lme4 
cannot handle generalized nonlinear models, which makes it 
impossible to incorporate two parameters IRT models into 
IRTree models. Moreover, lme4 only adopts frequentist mecha-
nisms in model design and parameter estimation.

On the other hand, Bayesian statistics provide a conceptu-
ally and practically coherent tool for addressing these broader 
and increasingly sophisticated problems because of its advan-
tages in straightforward and easy implementation, support 
in quantifying uncertainty in statistical inferences with a 
full probability model, availability of various prior distribu-
tions, and flexibility of extending traditional psychometric 
models (Fox & Glas, 2001; Levy & Mislevy, 2017). There-
fore, Bayesian IRTree models can be more appealing than 
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frequentist-based IRTree models in many real applications. 
With the popularity of probabilistic programming languages, it 
is easy to implement the Markov chain Monte Carlo (MCMC) 
technique for any customized Bayesian model design. Thus, 
an introduction to performing Bayesian IRTree models on 
MCMC software would be meaningful and practical.

There are several well-known and widely used MCMC 
software programs that free researchers from directly writing 
the sampling algorithms and enable them to focus more on 
the models. Popular MCMC software includes BUGS (Lunn 
et al., 2000), JAGS (Plummer, 2003), and Stan (Carpenter et al., 
2017). Furthermore, a myriad of tutorials on Bayesian IRT pro-
vided by researchers have also made it flourish. Examples can 
be found in a series of Bayesian IRT publications on Stan (Luo 
& Jiao, 2018), JAGS, BUGS (Curtis, 2010), and SAS (Ames 
& Samonte, 2015), and this paper shares the same ambition.

This paper aims to facilitate the application and devel-
opment of IRTree models and contribute to the field by 
introducing how to perform Bayesian IRTree models in 
Stan, where the two-parameter logistic model (2PL) and 
the graded response model (GRM) are used in response 
tree models and latent tree models, respectively. Thus, this 
paper goes beyond the Rasch family model used in previous 
tutorials on IRTree, where discrimination parameters will 
be obtained, and items have different weights in estimating 
latent traits, which can result in better model and item fits. 
The second contribution of this paper is to extend IRTree 
models in an explanatory way on both person and item sides 
in Stan, so more explanatory information can be extracted 
from IRTree analyses. The article is organized as follows: 
first, two families of IRTree models and Bayesian estima-
tion are introduced; then, a general description of Stan is 
presented as the basis of the Stan codes for Bayesian IRTree 

models; third, a detailed introduction of how to perform 
Bayesian IRTree models and how to extend them to explana-
tory IRTree models is given; fourth, one empirical study 
using the Bayesian IRTree models are presented; and finally, 
we will discuss the strengths and future research direction of 
Bayesian IRTree models.

IRTree models

The rationale of IRTree models lies in the assumption that multi-
ple processes exist in a single response, which can be represented 
as a tree structure. Roughly speaking, there are two families of 
IRTree models (De Boeck & Partchev, 2012), and the classifi-
cation rests on where the multiple processes occur – either in 
responses or in latent traits, and they hereafter are referred to as 
the response tree model and the latent tree model, respectively.

Response tree models

Response tree models decompose observed ordered 
responses (or responses with missingness) into various sub-
responses (aka pseudo-item responses) through prespecified 
nodes that represent different traits of interest.

Figure 1 demonstrates an example of a response tree model 
of a four-point Likert scale item with options from ‘strongly 
disagree’ to ‘strongly ‘agree’. The observed response Ypi of 
respondent p to item i is decomposed into three pseudo-item 
responses through three nodes. The top node is related to the 
targeted trait, say personality (LaHuis et al., 2019), while the 
bottom two nodes concern the tendency to extreme responses. 
Specifically, the bottom left node represents the respondents’ 
extreme response style conditional on disagreement on the 

Target trait

agree(1)disagree(0)

ERS ERS

yes(1) no(0) yes(1)no(0)

1 2 3 4
Strongly

disagree Disagree
Strongly

agreeAgree

∗ ∗

∗

Fig. 1  An example of response tree models. Note. ERS= extreme response style; the number within parentheses indicates the pseudo-item 
response
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targeted trait, while the bottom right node is respondents’ 
extreme response style conditional on agreement on the tar-
geted trait. Consequently, there are two processes underlying 
one observed response – that is, determining whether he/she has 
a high level of the targeted trait and choosing between extreme 
and non-extreme responses. Take one point as an instance – it 
is a composition of disagreement of the targeted trait and pref-
erence for extreme responses. Table 1 displays the mapping 
schemes corresponding to Fig. 1, which bridges theoretical 
expectation and mathematical expression. In Table 1, NA stands 
for not applicable where the observed response does not go 
through that node. For example, the observed score 1 doesn’t 
go through node 3 and should be recoded into a pseudo-item 
response vector (0, 1, NA). Generally speaking, the scheme of 
mapping pseudo-items responses reflects researchers’ assump-
tions about the processes underlying the observed responses.

After obtaining pseudo-item responses, a unidimen-
sional IRT model for binary response is used within each 
node to formulate the probability of Y∗

pik
= 1 . As of today, 

most research relies on the one-parameter logistic model 
within the framework of GLMMs (e.g., Ames & Leventhal, 
2021; Debeer et al., 2014; Plieninger, 2021). Alternatively, 
more general IRT designs, such as a two-parameter logistic 
model (e.g., Jeon & De Boeck, 2016; Kim & Bolt, 2021), 
could also be used, which follows the equation below:

where α, β, and θ denote discrimination parameters, diffi-
culty parameters, and latent traits, respectively, while p, i, 
and k index person, item, and node, respectively. Because 
each observed response is specified as a combination of 
pseudo-item response vector from different processes, mul-
tiplication is used to calculate its joint probability. Thus, the 
likelihood of response IRTree model takes the form:

where cmr and dmr are indicators for endorsement and appli-
cableness. When a pseudo-item involving score m is NA, the 
probability is multiplied by 1, which means this pseudo-item 

(1)P
(
Y∗
pik

= 1
)
=

exp
(
�ik�pk + �ik

)

1 + exp
(
�ik�pk + �ik

)

(2)P
(
Ypi = m

)
=

K∏

k=1

[
exp

(
�ik�pk + �ik

)cmk

1 + exp
(
�ik�pk + �ik

)

]dmk

has no influence on the probability of getting m. In Stan, we 
don’t have to directly define Eq. (2), rather than we can use 
the conditional statement and Eq. (1) to achieve the same 
function because for a given observed score, the branch and 
the pseudo-item responses in the IRTree model are known 
(e.g., see Table 1), and mapping observed responses to 
pseudo-item responses within Stan makes IRTree analysis 
more fluid and future researchers using our codes can avoid 
transforming data outside Stan. The details of the condi-
tional statement are presented in the codes section. Note 
that we use the 2PL form of αikθpk + βik here, instead of 
αik(θpk + βik) in that it has been used in some of the previ-
ous studies on IRTree models and explanatory IRT (e.g., 
Ames & Myers, 2021; Jeon & De Boeck, 2016) and make 
the interpretation of explanatory IRT models on item sides 
more straightforward as interpreting the effect of predictors 
on response probability does not involve αik.

Latent tree models

On the other hand, latent tree models focus on describing the 
complex cognitive structure of latent traits, which can also 
be viewed as a special kind of multidimensional IRT model.

Figure 2 displays a latent tree model, in which circle nodes 
represent latent traits of interest, diamonds represent the sum-
mation of all preceding traits leading to this node (e.g., �1 = ��

1
 , 

�2 = ��
1 + ��

2
 , and �3 = ��

1 + ��
2 + ��

3
 for unweighted summa-

tion), and rectangles represent observed responses. In De Boeck 

Table 1  A mapping scheme for a response tree model

NA represents not applicable

Ypi Y∗
pi
1 Y∗

pi
2 Y∗

pi
3

1 0 1 NA
2 0 0 NA
3 1 NA 0
4 1 NA 1

Fig. 2  An example of latent tree models
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and Partchev’s example (2012), the weighted summation is 
dropped due to the limitation of GLMM. A mapping scheme 
is also needed for the summation (see Table 2). For weighted 
summation, a weight vector is also necessary for each θ′. The 
latent IRTree model in the framework of Fig. 2 might be useful 
for modeling the change in latent trait, where �′

2
 and �′

3
 are the 

provisional growth at corresponding time points. In addition, 
latent tree models can formulate a wide range of multidimen-
sional IRT models, such as bifactor models and compensatory 
multidimensional IRT models (De Boeck & Partchev, 2012).

Taking a latent tree model with dichotomous responses 
using 2PL as an example:

Here p, k, and i denote index of respondents, nodes, 
and items, respectively; qik comes from the mapping 
matrix and αik stands for corresponding weights; �′

pk
 

denotes respondent p’s latent trait at node k; and βi is the 
difficulty parameters of item i. For polytomous responses, 
we can exploit partial credit models, graded response 
models, and so on.

Explanatory IRTree models

The flexibility of Bayesian IRT enables numerous exten-
sions. This section introduces how to incorporate explana-
tory variables into IRTree models in the framework proposed 
by Wilson and De Boeck (2004). As illustrated in Table 3, 
explanatory variables can be included on the person and 
item sides. For example, if researchers are interested in how 
negatively worded items differ from positively worded items 
in difficulty parameters, a binary covariate can be included 

(3)P
�
Ypik = 1

�
=

exp
�∑K

k=1

�
qik�ik�

�
pk
− �i

��

1 + exp
�∑K

k=1

�
qik�ik�

�
pk
− �i

��

as item covariate; if group differences in latent traits are of 
main importance, say gender, a covariate about gender can 
be incorporated as person covariate.

Moreover, in doubly explanatory response tree models, we 
need to take into account that the effects of the same explanatory 
variable might vary across the pseudo-items, that is, the coef-
ficients for the same explanatory variable might not be the same 
when it comes to different pseudo-items. Therefore, the doubly 
explanatory variables are incorporated to both sides, latent traits 
and difficulty parameters of Eq. (1) are formulated as:

where k still denotes the kth pseudo-item, and Z and X are 
covariates for person and items, respectively, and their cor-
responding coefficients are λ and γ. ηpk and δik are normally 
distributed random effects. The same formulation also holds 
true for explanatory latent tree models except there are not 
pseudo-items (see Stan codes in appendices).

Bayesian estimation

The key to Bayesian estimation is Bayes’ theorem:

where on the left side, p(a|D) is the posterior distribution of 
the parameters of interest (denoted as a) given data observed 
(denoted as D); on the right side, p(a|D) is the likelihood of 
obtaining data D given parameter a, p(a) is the prior dis-
tribution for parameter a, representing our belief of a, and 
p(D) is the marginal distribution, which can be considered 
as the normalizing constant of the numerator and is of least 
importance. Therefore, in Eq. (4), we only set the likelihood 
function and prior distribution.

In the case of Bayesian IRTree models, the likelihood 
function can be obtained from Eqs. (2) and (3), and prior 
distributions can be set according to the prior information 
and belief about the parameters to be estimated. For exam-
ple, they can be set as below:

(4)�pk = Σj�jkZpj + �pk

(5)�ik = Σv�vkXiv + �ik

(6)P(a|D) = P(D|a) ∙ P(a)
P(D)

Table 2  A mapping scheme for a latent tree model

�′
1

�′
2

�′
3

θ1 1 0 0
θ2 1 1 0
θ3 1 1 1

Table 3  Explanatory IRT models adapted from Wilson and De Boeck (2004)

Person side

Absence of properties (person 
indicators)

Inclusion of proper-
ties (person proper-
ties)

Item side Absence of properties (item indicators) Doubly descriptive Person explanatory
Inclusion of properties (item properties) Item explanatory Doubly explanatory
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For person trait vector θ:

where the mean vector μ is set as 0s and the covariance 
matrix as an identity matrix, a common way to determine 
the identification of scaling in IRT.

For pseudo-item discrimination parameters α, we can use 
lognormal prior distribution because log multivariate normal 
distribution is not available in Stan.:

with hyper-prior distributions:

For pseudo-item difficulty parameters β, following the 
same vein of θ, we can use multivariate normal distribution:

with each element of μβ sampling from a normal distribution:

and the diagonal elements of Σβ sampling from

and the elements are set to 0.
The trickiest step in Bayesian estimation lies in calculating 

the evidence in posterior distributions. To solve this problem, 
MCMC methods are generally applied to calculating numer 
ical appro ximat ions of multi- dimen siona l integ rals. In run-
ning MCMC estimation, we need to determine the number 
of chains because poor starting values might cause slow con-
vergence, and one chain limits our possibility of diagnos-
ing the convergence, e.g., Rhats compare the between- and 
within-chain variance of parameters estimates (Vehtari et al., 
2021). Then, we need to decide the number of iterations of 
each MCMC chain, and how many iterations to throw away 
as warm-up iterations. After running MCMC, it is impor-
tant to check its convergence and precision before extracting 
and summarizing parameters. There are many techniques to 
examine the convergence of MCMC. For example, as rules of 
thumb, we can check whether the trace plot of each parameter 
shows a caterpillar shape (e.g., see Fig. 3); whether Rhats 
are smaller than 1.1 (Gelman et al., 2014) or strictly speak-
ing, 1.05 (Vehtari et al., 2021); For precision, we can check 
whether the bulk and tail effective sample sizes of estimates 
in each chain are larger than 100, or more strictly than 1000 
(Vehtari et al., 2021; Zitzmann & Hecht, 2019). In addition to 
convergence and effective sample sizes, another big challenge 
of MCMC is time intensive. There are at least four ways to 

� ∼ N
(
�,Σθ

)
,

a ∼ lognormal
(
�a, �a

)

�a ∼ N(0, 1)

�a ∼ Cauchy(0, 5)

� ∼ N
(
�� ,��

)

�� ∼ N(0, 1)

�� ∼ Cauchy(0, 5),

alleviate it: (1) adopting appropriate MCMC software, e.g., 
Stan and JAGS; (2) parallel computing; (3) avoiding unnec-
essary looping (see codes below); (4) improving hardware 
conditions, e.g., computers with powerful CPU.

A general description of Stan

Stan is a free, open-source probabilistic programming 
language for specifying statistical models and performing 
MCMC (Carpenter et al., 2017). Several sampling algo-
rithms are available on Stan, such as the No-U-Turn sampler 
(NUTS; Hoffman & Gelman, 2014) and Hamiltonian Monte 
Carlo sampling. It can be called from Stata, R, Python, Mat-
lab, or Julia. It is also worth noting that debates on the com-
parison of computation efficiency among different MCMC 
programs have not been settled. For example, Hecht et al. 
(2021) found that JAGS has better performance in estimating 
multilevel models under certain simulation conditions while 
Gelman et al. (2015) claimed that Stan is expected to be 
more efficient for complex models and scales better than its 
counterparts in MCMC (e.g., JAGS and WinBUGS) and in 
a comparison study on structural equation modeling, Merkle 
et al. (2021) provided evidence in favor of Stan. Despite the 
ongoing debates, Stan has been widely used in many fields 
and numerous settings due to its flexibility, ease of use, and 
free access (e.g., Korner-Nievergelt et al., 2015; Luo & Jiao, 
2018; Monnahan et al., 2017).

In running a model on Stan, three blocks are required, that 
is, data, parameters, and model. In a data block, users specify 
the relevant data information. A parameters block states the 
parameters needed to estimate and required in the model block. 
The model block is the key to Stan codes and describes proba-
bilistic models to connect data and parameters, which includes 
the prior distribution of parameters and the likelihood of the 
model. In addition to required blocks, three optional blocks are 
also worth mentioning – i.e., transformed data, transformed 
parameters, and generated quantities. Transformed data and 
transformed parameters blocks allow an elegant way of data 
manipulation and parameter transformation. Generated quan-
tities block can generate many useful quantities, such as log-
likelihoods, deviances, posterior prediction, etc. Thus, users 
who want to calculate model fits and compare model fitness 
can specify the generated quantities block.

Stan codes for IRTree models

Stan codes for response tree models

Every block of Stan starts with a block type statement, and 
the content is wrapped within a pair of curly brackets {}, 
where each line ends with a semicolon. Statements within 

https://en.wikipedia.org/wiki/Numerical_analysis
https://en.wikipedia.org/wiki/Numerical_analysis
https://en.wikipedia.org/wiki/Multiple_integral
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< >, following data and parameters declaration, specify the 
constraints imposed on the data and parameters, such as the 
data type and ranges. It’s also good practice to write com-
ments (//) on some lines of code to explain their purpose, 
especially when you want to share them with others.

As shown in Box 1, the first required block is the 
data block. This tutorial uses long format data, where 
each row contains one response of a respondent to an 
item. In the data block, we declare the number of items, 
persons, total responses, and data structure of each item, 
their indices, and responses. As stated in the previous 
section, the key to IRTree models lies in the construction 
of pseudo-items. That’s also what needs to be specified 

in the data block. Two points are worth mentioning 
here – 1) we only need to specify the pseudo items 
responses for each possible observed category rather 
than all responses, which results in a C×K mapping 
matrix, where C and K are the numbers of categories 
and pseudo-items, respectively; 2) Stan doesn't allow 
missingness, so a new placeholder is in need, and this 
tutorial chooses -1. Therefore, in the example of Fig. 1 
and Table 1, considering a target trait and an extreme 
response tendency for a scale with four-point items, the 
pseudo-items matrix is defined in Table 4.

Box 1 Stan codes: the data block of a response tree 
model

Fig. 3  Trace plots of the six coefficients of interest. Note. lambdas denote the coefficients for adolescents–parents differences in self-esteem and 
two conditional extreme response styles; gammas denote the coefficients for the effects of worded direction
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Box 2 demonstrates the parameters block. We use vectors 
to specify a person’s latent traits, with P vectors in the size 
of K. In other words, for each respondent, there is a vector 
that consists of K latent traits. There are good reasons to use 
vectors rather than matrices in Stan, that is, vectorization will 
help speed up the sampling procedures and avoid some loops. 
For item parameters, we first declare the mean and variance 

of the prior distribution for pseudo-item difficulty param-
eters. Then pseudo-item difficulty parameters are specified 
as ‘vector[K] beta[I]’, where ‘beta[i]’ is the vector for the ith 
item, which encompasses K pseudo-item difficulties. So are 
settings for pseudo-items discrimination parameters.

Box 2 Stan codes: the parameters block of the response 
tree model

Box 3 displays the model block for the IRTree Stan 
code, where all the parameters specified in the param-
eters block will be sampled and probabilistic models are 
made. As stated in the Bayesian estimation section, the 
mean vector and variance vector of the prior distribution 
for difficulty are sampled from hyper normal and Cauchy 
distributions, respectively, and difficulties are drawn from 
a multivariate normal distribution with the sampled mean 
and variances. Note that we only enumerate items instead 

Table 4  An example of pseudo-items used in stan that includes a tar-
geted trait and extreme response style

-1 represents not applicable

Y Y1* Y2* Y3*

1 0 1 -1
2 0 0 -1
3 1 -1 0
4 1 -1 1

data {

  int<lower=1> I;               // # of items

  int<lower=1> P;               // # of persons

  int<lower=1> N;               // # of total responses

  int<lower=1> C;               // # of categories

  int<lower=1> K;               // # of pseudo categories

  int<lower=1, upper=I> ii[N];  // item for n

  int<lower=1, upper=P> pp[N];  // person for n

  int y[N];                     // endorsement or correctness for n

  int mapping[C,K];             // mapping pseudo-items

}

parameters {

  vector[K] theta[P];           // latent traits matrix

 

  vector[K] mu_beta;            // mean vector of difficulty parameters

  vector<lower=0>[K] sigma_beta;// variance vector of difficulty parameters

  vector[K] beta[I];            // difficulty parameters of pseudo items

  

  real mu_alpha;                // mean of discrimination parameters

  real<lower=0>sigma_alpha;     // variance of discrimination parameters

  vector<lower=0>[K] alpha[I];  // discrimination parameters of pseudo items

}
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of their pseudo-items because we have declared vectoriza-
tion in the parameter block and the sampling procedure 
in the model block will automatically sample a vector for 
each item. Likewise, the sampling procedures occur to dis-
crimination parameters and latent traits.

On the probabilistic model for the IRTree models, a 
for-loop is used to enumerate all the observed responses, 
and within each response, another for-loop is used to 

enumerate the corresponding pseudo-items responses 
as specified by the mapping matrix. The if statement 
excludes not applicable pseudo-item responses (denoted 
as -1 in the Stan codes). Then bernoulli_logit is the prob-
abilistic model connecting the parameters and dichoto-
mous pseudo-items responses.

Box 3 Stan codes: the model block of the response tree 
model

Box 4 displays the optional generated quantities block. 
For the purpose of assessing model fits, we generate log-
likelihood in this block. Typical fit indices in Bayesian 
statistics include Watanabe–Akaike information criterion 

(WAIC), deviance information criterion (DIC), and leave-
one-out cross-validation (LOO-CV).

Box 4 Stan codes: the generated quantities block of the 
response tree model

model {

  mu_beta ~ normal(0,1);       //hyper-prior distribution for difficulty: mean  

  sigma_beta ~ cauchy(0,5);    //hyper-prior distribution for difficulty: variance

  beta ~ multi_normal(mu_beta, diag_matrix(sigma_beta)); //prior for difficulty

  mu_alpha ~ normal(0,1);      //hyper-prior distribution for discrimination: mean  

  sigma_alpha ~ cauchy(0,5);   //hyper-prior distribution for discrimination: variance

  for (i in 1:I){

      alpha[i] ~ lognormal(mu_alpha,sigma_alpha);       //prior for discrimination

  }

  

  theta ~ multi_normal(rep_vector(0,K), diag_matrix(rep_vector(1,K))); //prior for latent traits

// enumerate every response

  for (n in 1:N){

    for (k in 1:K){

        if(mapping[y[n],k] != -1){ //exclude NA nodes

          mapping[y[n],k]~bernoulli_logit(alpha[ii[n],k]*(theta[pp[n],k]-beta[ii[n],k])); 

        }

    }

  }

  

}
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Stan codes for latent tree models

Given the limited space and similarities to response tree 
models, this section will not go through all the blocks of the 
Stan codes for latent tree models. Instead, this part will only 
introduce the model block (see Box 5), and the complete 
Stan codes are provided in appendices.

In Box 5, I, L, and N stand for the number of items, the 
number of latent traits, and the number of total observed 

responses, respectively. In the last for-loop, we use the 
ordered_logistic function in Stan, which will be turned into the 
2PL model for dichotomous observed responses and GRMs for 
observed polytomous responses. Within the ordered_logistic 
function, we use element-wise multiplication (denoted as .*) 
and summation to calculate respondents’ traits as indicated in 
equation (3).

Box 5 Stan codes: the model block of the latent tree 
model

generated quantities {

  // a matrix to store log-likelihood

  matrix[N,P] log_lik;

  // generate log-likelihood for each response

  for (n in 1: N){

      for (p in 1:P){

        if(mapping[y[n],p] != -1){

          log_lik[n,p]=bernoulli_logit_lpmf(mapping[y[n],p]|alpha[ii[n],p]*(theta[jj[n],p]-

beta[ii[n],p]));

        }else{

          log_lik[n,p]=0;

        }

    }

      }

}

model {

  mu_beta ~ normal(0,1);       //hyper-prior distribution for the mean of difficulties  

  sigma_beta ~ cauchy(0,5);    //hyper-prior distribution for the variance of difficulty

  mu_alpha ~ normal(0,1);      //hyper-prior distribution for the mean of discrimination 

  sigma_alpha ~ cauchy(0,5);   //hyper-prior distribution for the variance of discrimination

  for (i in 1:I){

    beta[i] ~ normal(mu_alpha,sigma_alpha);

    alpha[i] ~ lognormal(mu_beta,sigma_beta);

  }

  theta ~ multi_normal(rep_vector(0,L), diag_matrix(rep_vector(1,L)));

  for (n in 1:N){

  y[n] ~ ordered_logistic(sum(alpha[ii[n]].*theta[pp[n]].*mapping[dd[n]]),beta[ii[n]]);

  }

}
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Stan codes for explanatory IRTree models

Box 6 shows the Stan codes for the doubly explanatory 
response tree models. Compared with the codes for response 
tree models, covariates are specified in the data block, we 

declare η, δ, λ, and γ in the parameter block and Eqs. (5) 
and (6) in the transformed parameters block. For the model 
block, η, δ, λ, and γ are sampled.

Box 6 Stan codes: doubly explanatory response tree 
model

model {

  for (j in 1:J){

    lambda[j] ~ normal(0,3);    //coeffient on person side

  }

  eta ~ multi_normal(rep_vector(0,K), diag_matrix(rep_vector(1,K)));

  for (v in 1:V){

    gamma[v] ~ normal(0,3);     //coeffient on item side

  } 

  sigma_delta ~ cauchy(0,5);

  mu_delta ~ normal(0,1);

  delta ~ multi_normal(mu_delta, diag_matrix(sigma_delta));

  sigma_alpha ~ cauchy(0,5);

  mu_alpha ~ normal(0,1);

  for (i in 1:I){

      alpha[i] ~ lognormal(mu_alpha,sigma_alpha);

  }

  for (n in 1:N){

    for (k in 1:K){

        if(mapping[y[n],k] != -1){

          mapping[y[n],k]~bernoulli_logit(alpha[ii[n],k]*(theta[pp[n],k]-beta[ii[n],k]));

        }

    }

  }

}
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Executing Stan model

After setting up the Stan models above, the next step is to 
execute the model, which can be done in R, Python, Cmd, 
etc. Despite the differences in these platforms, some set-
tings are common, such as the number and the length of 
the MCMC chain and warms-up iteration. In this tutorial, 
I take Rstan as an example.

In Box 7, taking stan function as an example, five 
parameters are set. First, the file option specifies the loca-
tion of your Stan code. Second, the data option specifies 
the data that we have prepared for the Stan model with 
all the elements mentioned in the data block of the Stan 
code. Third, the chain option specified the number of 
Markov chains. Though its default number is four, three 
chains are also common. Fourth, the iter option speci-
fies the number of iterations of each chain, which should 
“adequately" approximate the posterior distribution of 
interest. There is no general rule of thumb. But Raftery 
and Lewis (1992) investigated several posterior distri-
butions and found that 5000 iterations typically lead to 
reasonable accuracy and 1000 iterations are acceptable 
when the posterior distribution is known to have a small 
tail. In our IRTree examples, 3,000 iterations can pro-
duce satisfactory results. Furthermore, researchers can 
also use the effective sample size and Rhats to determine 
to increase the number of iterations. Fifth, the warmup 

option specifies the number of iterations we want to throw 
away as warm-up iterations, and the default setting is half 
of the number of iterations. Finally, the cores options 
specify how many cores you want to use in executing the 
Markov chains in parallel. We first have to consider the 
number of cores in our computer. Then a typical setting is 
the same number of Markov chains. We strongly recom-
mend specifying this option as parallel computation can 
substantially decrease the running time.

After executing the Stan model, we can obtain poste-
rior point estimates, credible intervals, Rhats, and effec-
tive sample size by using the summary method. The latter 
two values are useful in evaluating the convergence and 
effectiveness of the MCMC estimation. Rhats generally 
indicate convergence when they are smaller than 1.05 or 
1.1. Note that for effective sample sizes, Stan will pose a 
warning when the bulk effective sample size (useful for 
point estimates) or tail effective sample size (useful for 
credible intervals) per Markov chain is smaller than 100. 
In addition, we can also call traceplot function in the rstan 
package to draw the trace of MCMC sampling to examine 
convergence, and the pars option specify what parameters 
we want to check.

Upon finishing the above steps and obtaining convergent 
results, we can move on to visualizing and making infer-
ences on the estimated parameters.

Box 7 Executing Stan model in R

Empirical study

To illustrate the application of Bayesian IRTree models, 
we conducted an empirical study on the data collected in 
the Oxford Achieving Resilience during COVID-19 (ARC) 
study (Parsons et al., 2022) using an explanatory response 
tree model (for an empirical study on latent tree models, 
please refer to supplementary material). It is a longitudinal 

study, which took place between March 2020 and August 
2021. It covered several mental health assessments and the 
targeted population was adolescents (aged 13 to 18) and 
their parents. For our empirical studies, we concentrate on 
the Rosenberg self-esteem scale, which consists of four 
negatively worded items and six positively worded items 
on a four-point scale. All negatively worded items were 
recoded before analysis.

fit_rse_ex <- stan(file='Documents/explanatory_irtree_2pl.stan', data=data_rse_ex, chain=3, 

cores=3, iter = 3000, warmup=1500)

fit_rse_summary <- summary(fit_rse)$summary

traceplot(fit_rse, pars = c('alpha','beta'))
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In the study, we used doubly explanatory response tree 
models to address two research questions: 1) whether 
pseudo-item difficulties differentiate in terms of the worded 
direction (negative = 0 vs. positive = 1); 2) whether there 
is a significant difference in self-esteem and extreme 
response style between adolescents and parents (adoles-
cents = 0 vs. parents = 1). To assess the targeted trait and 
extreme response styles, we employed the pseudo-items 
mapping schemes displayed in Table 2 and 2PL for each 
pseudo-item. Therefore, there were three coefficients 
related to research question one, representing the effect of 
worded direction on difficulties of the targeted trait pseudo-
item (γ1), extreme response style pseudo-item at lower tar-
geted trait (γ2), and extreme response style pseudo-item 
at higher targeted trait (γ3). Likewise, there are also three 
coefficients accounting for the adolescent-parent differ-
ence in self-esteem (λ1) and extreme response style (λ2 at 
lower self-esteem, λ3 at higher self-esteem). In terms of the 
amount of data, we only kept the first wave data and used 
listwise deletion to avoid over complications in dealing 
with repeated measurement and missingness, which ended 
up with 1499 respondents. In executing the Stan code, we 
used three chains, each of which contained 3000 iterations, 
with the first half as warm up. Then we checked the conver-
gence of the Bayesian IRTree models using trace plots and 
Rhats, extracted the posterior distribution of parameters of 
interest, and made inference from them.

Results

Figure 3 illustrates the trace plots of the six coefficients 
related to research question one and two. The trace plot 
indicated the convergence of the estimated parameters. 
Besides, the Rhat values of the six coefficients were less 
than 1.05, and the smallest effective size is 705. According 
to the rule of thumb, they showed a sight of convergence 
and effectiveness.

Figure 4 displays the 95% credible intervals of the pos-
terior distribution for the parameters of interest on both 
person and item sides. Results show that parents have sig-
nificantly higher self-esteem (λ1) and extreme response 
style conditional on agreement on self-esteem (λ3) than 
adolescents. For the extreme response style conditional 
on disagreement on self-esteem (λ2), parents show sig-
nificantly lower scores than adolescents. In other words, 

parents tend to choose extreme high categories while ado-
lescents prefer extreme low categories.

On the item side, positively worded items have signifi-
cantly lower difficulties in endorsement than negatively 
worded items (γ1). Moreover, negatively worded direction 
tends to elicit more extreme responses than positively-
worded items as evidenced by the significantly lower dif-
ficulties of the pseudo-items concerning extreme response 
difficulties at (γ2).

Discussion and conclusion

IRTree models help reveal the multiple processes underly-
ing observed responses through the combination of IRT 
and expert-defined mapping schemes, whereby item qual-
ity can be investigated in more detail, interpretability can 
be enhanced, and some of respondents' biases can be con-
trolled. For example, response styles are a serious bias in 
surveys (van Vaerenbergh & Thomas, 2013), and IRTree 
models show some promising features in controlling for 
such biases. There is no wonder the last decade has seen 

Fig. 4  95% Credible intervals of posterior distributions for adoles-
cents–parents differences and the effects of worded direction on 
pseudo-items. Note. Dark blue shades indicate 50% credible intervals; 
light blue lines indicate 95% credible intervals; circles indicate mean 
estimates; lambdas denote the coefficients for adolescents–parents dif-
ferences in self-esteem and two conditional extreme response styles; 
gammas denote the coefficients for the effects of worded direction
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the proliferation of IRTree models. Nevertheless, relevant 
tutorials remain limited, which hinders their applications. 
This paper introduces the Stan codes for IRTree models 
and their extension to the explanatory IRT framework with 
an aim to facilitate a wider application and research of 
IRTree models. The Bayesian approach can employ vari-
ous prior distributions on the parameters of interest based 
on the available information and produce posterior distri-
butions, where credible intervals are easy to obtain. The 
flexibility of Bayesian IRT not only makes running IRTree 
models possible but also enables a variety of extensions, 
such as in an explanatory way. Bayesian IRTree models 
show promising features in controlling biases, increas-
ing interpretability, and opening to numerous extensions, 
such as hierarchical structure, exploratory IRTree models, 
etc. Researchers and practitioners can alter the codes to 
accommodate their own research questions but need to be 
cautious that information captured by nodes might not be 
mutually independent, for example, the extreme response 
style nodes might contain some information that should be 
captured the node of the target trait. In this paper, we dem-
onstrate how to incorporate both item and respondents’ 
properties into IRTree models to address two research 
questions in the empirical study and how to make infer-
ence of the Stan results.

On the other hand, although MCMC has advantages 
in calculating high-dimensional posterior distributions, 
we acknowledge that challenges exist in terms of conver-
gence, effective sample size, acceptance rates, and time-
consuming procedure, and thus this paper also presents 
ways to assess convergence and effectiveness (e.g., Rhats, 
bulk and tail effective sample sizes) and provides some 
suggestions to tackle with some of these challenges, such 
as using vectorization.

Moreover, there are many opportunities for future 
research. First, the Bayesian IRTree models used in this 
paper don’t address the long-standing question that the 
sequential order of the IRTree processes is not fixed, that 
is, different orders of pseudo-items result in the same math-
ematical formulation. For example, in the response tree 
model, we assume that respondents go through the first node 
concerning targeted traits and then through the second node 
about extreme response tendency. However, mathemati-
cally speaking, this restriction has not been imposed yet. 
Respondents can first deal with extreme response tenden-
cies and then consider their agreement on targeted traits, 
which will result in the same mathematical formulation as 
shown in Eq. (2). Future research can go beyond the con-
ventional statistical models and explore how to incorporate 
the sequence of nodes into Bayesian IRTree models. Second, 
to date, the pseudo-items are prespecified by experts and 
researchers. Though it guarantees high interpretability, we 
lose some power of exploration. For example, there might be 
more than one response style in the surveys and complicated 
mechanisms. An exploratory Bayesian IRTree model can 
help shed light on such questions. Third, since this is a Stan 
tutorial, JAGS and BUGS codes for IRTree models are out 
of scope, but they have some similarities in coding, and thus 
future researchers can also consider writing the JAGS and 
BUGS codes by adopting the ideas mentioned in this paper.

Appendices

A. Stan codes

Box A Full Stan code for response tree models
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data {

  int<lower=1> I;               // # of items

  int<lower=1> P;               // # of persons

  int<lower=1> N;               // # of total responses

  int<lower=1> C;               // # of categories

  int<lower=1> K;               // # of pseudo categories

  int<lower=1, upper=I> ii[N];  // item for n

  int<lower=1, upper=P> pp[N];  // person for n

  int y[N];                     // endorsement or correctness for n

  int mapping[C,K];             // mapping pseudo items

}

parameters {

  vector[K] theta[P];           // latent traits matrix

 

  vector[K] mu_beta;            // mean vector of difficulty parameters

  vector<lower=0>[K] sigma_beta;// variance vector of difficulty parameters

  vector[K] beta[I];            // difficulty parameters of pseudo items

  

  real mu_alpha;                // mean of discrimination parameters

  real<lower=0>sigma_alpha;     // variance of discrimination parameters

  vector<lower=0>[K] alpha[I];  // discrimination parameters of pseudo items

}

model {

  mu_beta ~ normal(0,1);       //hyper-prior distribution for difficulty: mean  

  sigma_beta ~ cauchy(0,5);    //hyper-prior distribution for difficulty: variance

  beta ~ multi_normal(mu_beta, diag_matrix(sigma_beta)); //prior for difficulty

  mu_alpha ~ normal(0,1);      //hyper-prior distribution for discrimination: mean  

  sigma_alpha ~ cauchy(0,5);   //hyper-prior distribution for discrimination: variance

  for (i in 1:I){

      alpha[i] ~ lognormal(mu_alpha,sigma_alpha);       //prior for discrimination

  }

  

  theta ~ multi_normal(rep_vector(0,K), diag_matrix(rep_vector(1,K))); //prior for latent traits

// enumerate every response

  for (n in 1:N){

    for (k in 1:K){

        if(mapping[y[n],k] != -1){ //exclude NA node

          mapping[y[n],k]~bernoulli_logit(alpha[ii[n],k]*(theta[pp[n],k]-beta[ii[n],k])); // Likelihood

        }

    }

  }

}
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Box B Full Stan codes for doubly explanatory response 
tree models

data {

  int<lower=1> I;               // # of items

  int<lower=1> P;               // # of persons

  int<lower=1> N;               // # of total responses

  int<lower=1> C;               // # of categories

  int<lower=1> K;               // # of pseudo categories

  int<lower=1, upper=I> ii[N];  // item for n

  int<lower=1, upper=P> pp[N];  // person for n

  int y[N];                     // endorsement or correctness for n

  int mapping[C,K];             // mapping pseudo items

  int<lower=1> J;               // # of person covariates  

  int<lower=1> V;               // # of item covariates

  matrix[P,J] personcov;          // covariates for persons

  matrix[I,V] itemcov;            // covariates for items

}

parameters {

  vector[K] eta[P];             

  real mu_alpha;

  real<lower=0>sigma_alpha;      // variance of discrimination parameters

  vector<lower=0>[K] alpha[I];   //  discrimination parameters 

  vector[K] mu_delta;            

  vector<lower=0>[K] sigma_delta;   

  vector[K] delta[I];             

  vector[J] lambda[K];          //coefficients for person properties

  vector[V] gamma[K];           //coefficients for item properties

}

transformed parameters {

  vector[K] theta[P];           // latent traits

  vector[K] beta[I];            // difficulties

  for (p in 1:P){

    for(k in 1:K){

      theta[p,k] = sum(lambda[k,]*personcov[p,])+eta[p,k];

    }

  }

  for (i in 1:I){

    for(k in 1:K){

      beta[i,k] = sum(gamma[k,]*itemcov[i,]) +delta[i,k];

    }   

  }  

}

model {

  for (j in 1:J){

    lambda[j] ~ normal(0,3);    //coeffient on person side

  }

  eta ~ multi_normal(rep_vector(0,K), diag_matrix(rep_vector(1,K)));

  for (v in 1:V){

    gamma[v] ~ normal(0,3);     //coeffient on item side

  } 

  sigma_delta ~ cauchy(0,5);

  mu_delta ~ normal(0,1);

  delta ~ multi_normal(mu_delta, diag_matrix(sigma_delta));

  sigma_alpha ~ cauchy(0,5);

  mu_alpha ~ normal(0,1);

  for (i in 1:I){

      alpha[i] ~ lognormal(mu_alpha,sigma_alpha);

  }

  for (n in 1:N){

    for (k in 1:K){

        if(mapping[y[n],k] != -1){

          mapping[y[n],k]~bernoulli_logit(alpha[ii[n],k]*(theta[pp[n],k]-beta[ii[n],k]));

        }

    }

  }

}
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Box C Full Stan codes for latent tree models

data {

  int<lower=1> I;               // # of items

  int<lower=1> P;               // # of persons

  int<lower=1> N;               // # total responses

  int<lower=1> C;               // # of categories

  int<lower=1> L;               // # of latent traits

  int<lower=1> K;               // # of nodes

  int<lower=1, upper=I> ii[N];  // item for n

  int<lower=1, upper=P> pp[N];  // person for n

  int<lower=1, upper=K> dd[N];  // nodes for n

  int y[N];                     // correctness for n

  vector[L] mapping[K];             // mapping pseudo items

}

parameters {

  vector[L] theta[P];              // abilities

  real mu_alpha;                // mean of discrimination parameters

  real<lower=0>sigma_alpha;     // variance of discrimination parameters

  vector<lower=0>[L] alpha[I];      //discrimination parameters of pseudo items

  real mu_beta;            // mean vector of difficulty parameters

  real<lower=0> sigma_beta;// variance vector of difficulty parameters

  ordered[C-1] beta[I];             //category difficulty

}

model {

  mu_beta ~ normal(0,1);       //hyper-prior distribution for difficulty: mean  

  sigma_beta ~ cauchy(0,5);    //hyper-prior distribution for difficulty: variance

  mu_alpha ~ normal(0,1);      //hyper-prior distribution for discrimination: mean  

  sigma_alpha ~ cauchy(0,5);   //hyper-prior distribution for discrimination: variance

  for (i in 1:I){

    beta[i] ~ normal(mu_beta,sigma_beta);

    alpha[i] ~ lognormal(mu_alpha,sigma_alpha);

  }

  theta ~ multi_normal(rep_vector(0,L), diag_matrix(rep_vector(1,L)));

  for (n in 1:N){

  y[n] ~ ordered_logistic(sum(alpha[ii[n]].*theta[pp[n]].*mapping[dd[n]]),beta[ii[n]]);

  }

}
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Box C Full Stan code for explanatory latent tree models

data {

  int<lower=1> I;               // # of items

  int<lower=1> P;               // # of persons

  int<lower=1> N;               // # total responses

  int<lower=1> C;               // # of categories

  int<lower=1> L;               // # of latent traits

  int<lower=1> K;               // # of nodes

  int<lower=1, upper=I> ii[N];  // item for n

  int<lower=1, upper=P> pp[N];  // person for n

  int<lower=1, upper=K> dd[N];  // nodes for n

  int y[N];                     // correctness for n

  vector[L] mapping[K];             // mapping pseudo items

  int<lower=1> J;               // # of person covariates  

  int<lower=1> V;               // # of item covariates

  matrix[P,J] personcov;          // covariates for persons

  matrix[I,V] itemcov;            // covariates for items

}

parameters {

  vector[K] eta[P];             

  real mu_alpha;

  real<lower=0>sigma_alpha;      // variance of discrimination parameters

  vector<lower=0>[K] alpha[I];   //  discrimination parameters

  real mu_delta;            

  real<lower=0> sigma_delta;   

  ordered[C-1] delta[I];

  vector[J] lambda[K];          //coefficients for person properties

  vector[V] gamma;           //coefficients for item properties

}

transformed parameters {

  vector[K] theta[P];           // latent traits

  vector[K] beta[I];            // difficulties

  for (p in 1:P){

    for(k in 1:K){

      theta[p,k] = sum(lambda[k,]*personcov[p,])+eta[p,k];

    }

  }

  for (i in 1:I){

      beta[i] = sum(gamma .* to_vector(itemcov[i,])) +delta[i];

  }

}

model {

  for (j in 1:J){

    lambda[j] ~ normal(0,3);    //coeffient on person side

  }

  eta ~ multi_normal(rep_vector(0,K), diag_matrix(rep_vector(1,K)));

  for (v in 1:V){

    gamma[v] ~ normal(0,3);     //coeffient on item side

  } 

  mu_delta ~ normal(0,1);       //hyper-prior distribution for difficulty: mean  

  sigma_delta ~ cauchy(0,5);    //hyper-prior distribution for difficulty: variance

  mu_alpha ~ normal(0,1);      //hyper-prior distribution for discrimination: mean  

  sigma_alpha ~ cauchy(0,5);   //hyper-prior distribution for discrimination: variance

  for (i in 1:I){

    delta[i] ~ normal(mu_delta,sigma_delta);

    alpha[i] ~ lognormal(mu_alpha,sigma_alpha);

  }

  for (n in 1:N){

  y[n] ~ ordered_logistic(sum(alpha[ii[n]].*theta[pp[n]].*mapping[dd[n]]),beta[ii[n]]);

  } 

}



 Behavior Research Methods

1 3

B. R Codes for the empirical study

########################################

####    explanatory response tree model     #####

########################################

### negatively-worded = 0; positively-worded = 1

itemcov <- rep(1,10)

itemcov[c(2,5,6,8,9)] <- 0

### child=0; parent/carer=1

personcov <- oxf[,c('record_id','group')]

personcov <- personcov[personcov$record_id %in% rse_u$record_id,]

personcov <- personcov[!duplicated(personcov$record_id),]-1

data_rse_ex <- 

list(I=length(unique(dt_rse$item)),P=length(unique(dt_rse$person)),N=nrow(dt_rse),

                    C=4,K=3,mapping=map_rse,

ii=as.integer(factor(x=dt_rse$item)),pp=as.integer(factor(x=dt_rse$person)),y=dt_rse$respons

e,

                    V=1,J=1,itemcov=matrix(itemcov), personcov=matrix(personcov$group)

)

### run stan model

fit_rse_ex <- stan(file='explanatory_response_irtree_2pl.stan',data=data_rse_ex,

                   chain=3,iter = 3000, warmup=1500,cores=3)

### summarize results

fit_rse_ex_summary <- summary(fit_rse_ex)$summary

traceplot(fit_rse_ex,c('gamma','lambda'))

### visualize results

mcmc_intervals(as.array(fit_rse_ex),pars=c('lambda[1,1]','lambda[2,1]','lambda[3,1]',

                                           'gamma[1,1]','gamma[2,1]','gamma[3,1]'),prob_outer=0.95)
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Empirical study II: Latent tree models
In empirical study II, the research question is how self-

esteem changed over time. There were three waves of data, 
including baseline self-esteem and two growths in self-
esteem, whose mapping scheme is given in Table 2. GRM 
was the probabilistic model that connected responses and 
latent traits. Nevertheless, not all respondents completed the 
three waves of the survey. In this study, we selected respond-
ents who responded to at least two waves of the survey. In 
total, there were 224 respondents.

Results
Since there were hundreds of parameters but limited 

space, Appendix Fig. 5 only demonstrated six exemplar 
trace plots, which showed a mixed and caterpillar-like shape. 

Their Rhat values were less than 1.05, and the smallest effec-
tive sample size is larger than 438. Hence, the parameters of 
interest converged.

Appendix Fig. 6 displays the growth in self-esteem 
between the first and second waves. Adolescents had a dis-
tribution with a mean around zero, while parents’ growth 
distribution had a negative mean. Nevertheless, they did 
not differ significantly. Appendix Fig. 7 shows the distri-
bution of growth between the second and third waves. It 
became denser than in Appendix Fig. 6. Taken together, 
the change in self-esteem between first and second wave 
is larger than that between second and third wave and not 
much difference was observed between the adolescent and 
parent groups.

Fig. 5  Trace plot examples of the latent tree models
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Fig. 6  The distribution of growth in self-esteem between the first and second wave

Fig. 7  The distribution of growth in self-esteem between the second and third wave
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