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ABSTRACT 

Among numerous damage identification techniques, those which are used for online damage identification have received 
considerable attention recently. One of the most widely-used vibration-based time-domain techniques for nonlinear system 
identification is the extended Kalman filter which exhibits a good performance when the parameter to be identified is a 
constant parameter. However, it is not as successful in identification of changes in time-varying system parameters which is 
essential for real-time identification. Alternatively, the extended Kalman-Bucy filter is recently brought back to attention due 
to its enhanced capabilities in parameter estimation compared with extended Kalman filter. On the other hand, chaotic and 
hyperchaotic dynamics when applied as the excitation in some attractor-based damage identification techniques, produce 
better outcome rather than the common stochastic white noise. The current study combines hyperchaotic excitations and the 
enhanced capabilities of extended Kalman-Bucy filter to propose a real-time approach for identification of damage in 
nonlinear structures. Simulation results show that the proposed approach is capable of online identification and assessment of 
damage in nonlinear elastic and hysteretic structures with single or multiple degree-of-freedom using noise-corrupted 
measured acceleration response. 
Keywords: [write 5 keywords] 
 

1. I�TRODUCTIO� 

Damage identification in structures can be divided into active (on-line) and passive (off-line) approaches. The active 
approach needs actuation (or excitation) of monitored structures and then real-time measurements and analysis of the 
resulting responses. While passive approach is satisfactory for traditional structures, it cannot be as desirable for some 
modern structures. If the structure under consideration is a smart structure, then the identification algorithm needs to provide 
instantaneous updates of the mechanical properties of the structure to some embedded or layered actuators in order for the 
structure to adaptively perform functions of sensing and actuating expected from a smart structure. For the online 
identification of damage, various time-domain approaches have been used in the literature with different degree of success. A 
few examples include least-square estimation [12-3], different filter approaches including the extended Kalman filter [45-67], �� filter [8], Monte Carlo filter [9], etc. The Monte Carlo method is capable of dealing with nonlinear systems with even 
non-Gaussian uncertainties. However, it is computationally expensive due to requiring a large number of sample points. 
Since the application of the least square estimation (LSE) for nonlinear structural systems identification requires 
displacement and velocity measurements, which may not always be readily available, the extended Kalman filter (EKF) is 
perhaps the most widely-used vibration-based time-domain techniques for identification of nonlinear systems. While the EKF 
method has a good performance when the parameter to be identified is a constant parameter, it is not as successful in 
identification of changes in time-varying system parameters [10]. A common technique used in the literature for 
identification of time-varying parameters is an extension of LSE approach. This technique makes use of a constant [11,12] or 
time-dependant [13] forgetting factor in LSE. This approach has some drawbacks and shows a good performance in some 
cases, however, it exhibits poor results when the stiffness of the structure has an abrupt change [10]. An adaptive tracking 
technique based on EKF to identify structural parameters is proposed in [10] which is particularly suitable for tracking the 
abrupt changes of the system parameters with the purpose of online evaluation of the structural damages.  
The extended Kalman-Bucy filter is an alternative filtering approach which is recently brought back to attention due to its 
enhanced capabilities in parameter estimation compared with extended Kalman filter [14]. On the other hand, an aspect of 



damage identification which is shown to be crucial from a detectability standpoint is the excitation. Chaotic and hyperchaotic 
dynamics when applied as the excitation in some attractor-based damage identification techniques, produce better outcome 
rather than the common stochastic white noise [151617-18192021]. The current study combines hyperchaotic excitations and the 
enhanced capabilities of extended Kalman-Bucy filter to develop a feasible real-time technique for identification of damage 
which can be used in nonlinear smart or self-healing structures. Simulation results show that the proposed approach is 
capable of real-time identification and assessment of damage in nonlinear elastic and hysteretic structures with single or 
multiple degree-of-freedom using noise-corrupted acceleration response. 

2. METHODOLOGY 

2.1. STOCHASTIC ESTIMATIO� PROBLEM 

In a general parametric identification problem (cf. non-parametric identification) it is assumed that the form of the model is 
known only approximately due to imperfect knowledge of the dynamical model that describes the motion and/or imperfect 
knowledge of parameters. The goal is to obtain the best estimate of the state as well as of model parameters based on 
measured data that has a random component due to observation errors. In addition, a second source of stochastic excitation 
typically appears in the state dynamics as so-called process noise. Both the stochastic excitation and the measurement noise 
are assumed to be additive in this paper. The optimal continuous-time filtering problem in the general form considered in this 
paper can be written as a set of Ito stochastic differential equations as 

����� =  
�����, ����, ���� +  ������, ������� ����� = ������, ����, ���� + ��������� �1� 
where ���� ∈ ℝ� is the state process, ���� ∈ ℝ� is the measurement process, ���� ∈ ℝ� is a vector of unknown parameters,  
 is 
the drift coefficient, � is the diffusion coefficient, � is the measurement model function, ���� is an arbitrary time-varying 
functions independent of �, and ���� and ���� are independent Brownian motion additive stochastic processes with �������� =E������� = 0, ��������� ���� = !�� and ��������� ���� = "�� where �� � represents the expectation operator. Note that in 
this paper the system is considered to be excited by additive noise only. Therefore, hereafter we will treat stochastic 
differential equations with the diffusion coefficient only depending on � and not the process �. Under this condition the 
filtering problem can also be formulated in terms of the stationary zero-mean Gaussian white noise processes formally 
defined as #��� = ���t�/�� , &��� = ���t�/�� and differential measurement '��� = �����/�� as [22] 

�(��� =  
�����, ����, �� +  ����#��� '��� = ������, ����, �� + ����&��� �2� 
where #��� and &��� are assumed to be both mutually independent and independent from the state and observation with 
constant covariance matrices of  * and +, respectively, i.e. #~-�0, *� and &~-�0, +�. Here in this paper, the stochastic term #��� (the “process noise”) functions as an approximation for the influence of the unknown dynamics of the process model. 
The time evolution of the states of the system and the unknown parameters of the stochastic model are to be identified using 
measurements of the output corrupted by the measurement noise term &���. The Ito and standard forms in Eqs. (1)-(2) are 
only equivalent, however, because the process and measurement noise are restricted to be additive and not multiplicative.  
Also, note that ���� can be a constant or time-varying vector and it is assumed to be Heaviside function later in this study. Eq. 
(2) defines a continuous-time state-space optimal filtering model. The purpose of the optimal continuous-time filtering 
problem is to recursively obtain estimates of the states and parameters from the mean, median, or mode of the time-varying 
conditional probability density 

.���t� |0'�1�  ∶   0 ≤ 1 ≤ �4� �3� 
To see how the filtering problem can be represented in the context of system identification, once again consider Eq.(2). As 
mentioned before, the assumed model of the system consists of the nonlinear function 
 which is a function of the state vector ���� and parameters ����. Suppose that ���� is unknown but is assumed to be piecewise constant. The Kalman-Bucy filter can 
be used to simultaneously estimate the states ���� and the parameters ����. The standard method employs the so-called state 
augmentation method, in which the parameter vector ���� is included in an augmented state vector 7��� = �����, �����  while 
being constrained to have a predefined rate of change (zero here), i.e. 

7( �t� = 8�7, �� + 9���#��� =  :
�����, ����, ��0 ; + :���� 0 ; #��� '��� = <�7, �� + ����&��� �4� 



The parameter vector ���� is assumed to initially have a Gaussian distribution with mean �> and covariance ?@. Note that 
there is no noise term in the equation for the unknown parameter dynamics. The reason is that the parameters are already 
assumed to be stationary. Therefore, the augmented state method along with optimal filtering problem provides a pertinent 
approach for simultaneous estimation of the state and parameters of a (possibly) nonlinear system.  

2.2. THE EXTE�DED KALMA�-BUCY FILTER 

The nonlinear optimal filtering problem described via the Ito differential form of Eq. (1) is considered where the nonlinear 
process and measurement function are now functions of the augmented state 7 (as in Eq. (4)), and ���� is the identity matrix. 
In order for the Kalman-Bucy filter to be applicable to the nonlinear system, the dynamics need to be linearized.  Rather than 
linearizing about a reference trajectory, the extended Kalman-Bucy filter employs a linearization about the state estimate 
itself. It can be derived by taking the expectation of the dynamic model and adding a feedback term consisting of the 
measurement residual times an (as yet) unknown gain matrix, i.e.  

�7A�t� =  ��8�7, ����� + B��������� − ��<�7, ������ �5� 
Defining the observer error as E�t� = 7�t� − 7A�t�, the differential observation error is obtained as 

�E��� = �F��� − �FA��� = 8�F, ���� − ��8�F, ����� − B����<�F, ���� − ��<�F, ������ + �G��� �6� 
where �G��� = 9����I��� − B�t��J��� is a Brownian motion process with 

���G��� �G���K� = �9���*���9���K + B���+���B���K��� �7� 
Defining MN�t� and ON �t� to be the Jacobian matrices  

MN��� ∶= PQ8�F,R�QF SFTFA    ,         ON ��� ∶= PQ<�F,R�QF SFTFA  �8� 
and linearizing about the current estimate yields 

8�F, �� = 8VFA, �W + MN���VF − FAW + X
�F, FA, �� <�F, �� = �VFA, �W + ON ���VF − FAW + X��F, FA, �� �9� 
from which ��8�7, ��� = 8V7A, �W + ��Z[V7, 7A, �W� and ��<�7, ��� = <V7A, �W + ��Z\�7, 7A, ��]. Z[�7, 7A, �� and Z\�7, 7A, �� represent the 
remaining higher order terms. Truncating the Taylor series after the first order terms yields the differential observation error 
as 

�E��� = ]MN��� − B���ON ���^E����� + �G��� �10� 
The error covariance matrix can be obtained by differentiating E�E��� E��� � using the Ito differential rule to obtain  

�?��� =  ]MN��� − B���ON ���^ ?����� + ?��� ]MN��� − B���ON ���^K�� + 9��� *��� 9��� �� + B��� +��� B��� �� �11� 
The optimal gain matrix B�t� which leads to a minimum variance estimator can be obtained by minimizing the cost function _ = Trace��?�t�� with respect to B�t� as 

∂∂B�t� �Trace��?����� = −2?�t�ON �t�f + 2B�t�+�t�f = 0 �12� 
which yields the B�t� matrix as 

B�t� = ?�t�ON g�t�+�t�hi �13� 
Therefore the propagation of the estimate is obtained as 

  �7A��� =  8V7A, �W�� + B�t�]�j��� − <V7A, �W��^ �14� 



while the following Riccati differential equation is obtained which propagates the error covariance ?���. 
�?��� =  MN��� ?����� + ?�t�MN���f�� + 9��� *��� 9���f�� − B��� ON �t� ?�t��� �15� 

The estimator so obtained is the extended Kalman-Bucy filter. Unlike discrete-time extended Kalman filter, the prediction 
and measurement update steps are combined in the continuous-time extended Kalman filter. 

2.3. TU�ED HYPERCHAOTIC EXCITATIO� 

Traditionally, broadband random signals have been widely used for exciting structures. The reason is that the broadband 
nature of noise ensures a full modal response, ideal for frequency domain approaches to system identification or feature 
extraction. The motivation for the use of a chaotic signal as the excitation mechanism in damage detection is due to various 
unique features intrinsic to a chaotic signal. Chaotic signals also tend to possess broadband frequency spectra. However, 
unlike noise, chaos is deterministic and intrinsically low-dimensional (a stochastic process is infinite dimensional). In fact 
many chaotic systems can be as low as three-dimensional when described as a continuous time process. In addition, a chaotic 
system is defined by a positive Lyapunov exponent (LE) implying extreme sensitivity to small changes in system parameters. 
The subtlety of damage-induced changes to a structure further motivates this choice as the mechanism of excitation. 
Hyperchaos can be defined as chaotic behavior where at least two LEs are positive. Having all the advantages that make a 
chaotic signal suitable for being used as an excitation, it is shown [20,21] that a hyperchaotic signal is even more sensitive to 
subtle changes in damage severity as a result of the trajectory being permitted to more fully explore the entire phase space. 
Thus, hyperchaotic oscillators can be an alternative excitation mechanism in damage detection when extra sensitivity to 
damage is required. However, in order for hyperchaotic excitation to have the best performance the excitation should be 
tuned for the structure. There are two tuning criteria based on attractor dimensionality. First, the Lyapunov spectrum of the 
oscillator must overlap that of the structure. This ensures that changes to the LEs of the structure, i.e. by damage, will alter 
the dimension of the filtered signal. Second, the dominant exponent associated with the oscillator must be minimized for a 
given degree of overlap in order to maintain the lowest possible dimensionality. Considering Kaplan-York conjecture in 
attractor dimensionality, these criteria become 

klmn k > |lip| 
|lip| > q l�n

r
�Ti  �16� 

where lsn  are the exponents associated with the t-dimensional hyperchaotic system, lup are the exponents of the --
dimensional structure, and . is the number of positive Lyapunov exponents of the t-dimensional oscillator. 
As mentioned before, the proposed approach takes advantage of the optimal filtering problem as the estimation technique for 
real-time identification of damage in structural systems. Therefore, the process equation in the optimal filtering problem of 
Eq. (4) is considered as 

 
�����, ����, �� = vV����, ����W + w x��� �17� 
where v describes the nonlinear structure of interest, y is the hyperchaotic excitation force, and the constant coefficient w 
determines which component of x to be used as the excitation and which degree-of-freedom of the structure is to be excited. 
Any of the hyperchaotic nonlinear systems may be used as an excitation. We use a hyperchaotic version of the well-known 
Lorenz oscillator shown below which has three positive LEs [23].  

z(i = �{�z| − zi� + z}�~z( | = �Zzi − z| − ziz� − z��~z( � = �ziz| − �z��~z( } = ��z} − ziz��~z( � = ��z|�~
 �18� 

where the oscillator exhibits hyperchaotic behavior with 3 positive LEs for { = 10, � = 28, � = �� , � = 2, � = 10. Note that if 
we eliminate states z} and z� from the first 3 states of the oscillator above, the resulting 3-dimensional oscillator is the well-
known Lorenz oscillator which exhibits chaotic behavior (one positive LE) for { = 10, � = 28, � = ��. The bandwidth control 
parameter ~  is used to tune the LEs of the excitation based on tuning criteria of Eq. (16). Values of ~  which are less than unity 
decrease the bandwidth of the input, while values greater than unity increase the bandwidth. In order to eliminate the transient 
dynamics when using the hyperchaotic oscillator as an excitation, the oscillator is initiated at a point on the attractor. 



3. SIMULATIO� RESULTS 

3.1. S-DOF HYSTERETIC �O�LI�EAR STRUCTURE 

Consider a single degree of (SDOF) nonlinear hysteretic Bouc–Wen system subject to the excitation �������  
m ����� + c �(��� + k Z��� = ������� �19� 

where Z��� is the Bouc–Wen hysteretic component with 
Z( = �( − �|�(  ||Z|�hiZ − ��( |Z|� �20� 

System parameters m =  1, c =  0.3, k =  9, � =  2, � =  1, � = 2 are chosen in the simulation. Considering � = ��, �( , Z� , the  v 
function in Eq. (17) that forms the process function 
 of the filtering problem for this system is 

vV����W = � �|����1 m⁄ ��−k ����� − c �|�����|��� − �|�|���||�����|�hi����� − ��|���|�����|�� �21� 
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Figure 1. Comparing damage identification with a) random, b) chaotic and c) hyperchaotic excitations in nonlinear system of Eq. (19) estimated from noise-
corrupted measurement using extended Kalman-Bucy filter (damage defined as a 50% stiffness and damping reduction at R = �>�). * = � × �>h��, + = � ×�>h��, ?> = � × �>h�� 

 

Damage is considered as 50% abrupt reduction in the stiffness and the damping coefficients of the system at time t = 50s. 
The mass of the system is assumed to be known throughout this simulation. The filtering sequence is initiated with values of 
the state and parameters (k, c� which are 50% deviated from the true values. Three types of excitation including a white 
noise, chaotic Lorenz excitation and hyperchaotic Lorenz excitation (Eq. (18)) are applied to the system under identical 
situation of measurement and process noise covariance (+, *) with identical initial error covariance ?. The measurement 
function � is considered to be identity function i.e. both displacement and velocity are measured. The extended Kalman-Bucy 
filter is used for real-time identification of the stiffness k and the damping coefficient c of the system. The value of ~ = 0.542 
can be shown to satisfy the tuning criteria for both the chaotic Lorenz oscillator and hyperchaotic Lorenz oscillator of Eq. 
(18) and is used for this simulation. The results of the identified parameters with each of the three excitations are shown in 
Figure 1. As is clear from the figure, in case of random excitation the change in system parameters is not sensed. However, 
when chaotic and hyperchaotic excitations are applied the approach successfully identifies the change. Note that in the case 
of hyperchaotic excitation the filter converges to the true value of the parameter faster than the case of chaotic excitation.  

 
Figure 2. Identification of 10% change in the stiffness of the nonlinear hysteretic system of Eq. (19) from acceleration measurements (Eq. (22)) using 

hyperchaotic excitation and extended Kalman-Bucy (EKB) filter �* = � × �>h��, + = � × �>h��, ?> = � × �>h���. 
 
In another simulation the proposed approach is applied for real-time identification of a 10% stiffness reduction in the 
hysteretic system of Eq. (19). System parameters are considered as mentioned previously and the hyperchaotic Lorenz 
oscillator of Eq. (18) is used for excitation. The value of ~ = 0.1 is used for this simulation which can be shown to satisfy the 
tuning criteria of Eq. (18) for the hyperchaotic Lorenz oscillator and the nonlinear system of Eq. (19). Since measurements of 
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displacement r and velocity x(  may not always be readily available, acceleration measurement which is more common is 
considered here. Acceleration measurements in this simulation are provided through using appropriate measurement function � based on the Eq. (19) as 

  ������, �� = i� V� ¡¢��� − c �(�t� − k Z���W �22� 
Note that the excitation force in Eq. (22) is assumed to be easily measurable via force transducers. The filtering sequence is 
initiated with values of the state and unknown parameters (k, c� which are 50% deviated from the true values.  As is clear 
from Figure 2, the approach is capable of real-time identification of a reduction of 10% at time � = 250£ in the stiffness of the 
nonlinear system of Eq. (19) with a good accuracy and a fast convergence from noise-corrupted measurements of 
acceleration. 
Although measuring acceleration sounds more realistic and practical than measuring both velocity �(  and displacement Z, 
the � function that is used for measuring acceleration is still not quite realistic for some modern structures. The arguable part 
is that the values of system parameters m, k and c used in � function are assumed to be known a priori. This may sound 
realistic in case of damage identification of traditional structures that the mechanical properties of the structure can be 
measured or identified before the occurrence of damage. However, if the structure under consideration is a smart structure, 
then the identification algorithm needs to provide instantaneous updates of the mechanical properties of the structure to some 
embedded or layered actuators in order for the structure to adaptively perform functions of sensing and actuating. Therefore, 
the measurement function of Eq.(22) is not applicable to a smart structures. Consequently, in another simulation the 
measurement function � is modified to incorporate the estimated values of system parameters instead of true values. 
Assuming the vector of unknown parameters in Eq. (2) to be composed of parameters m, k and c, i.e.  � = �m, k, c�, the 
modified � is 

  ������, ����, �� = �¤��R� V������� − ¥���� �(��� − ¥|��� Z���W �23� 
where ���� is identical to what used as the augmented state 7��� in Eq. (4) when forming the process function 8�7, �� in the 
process of using the EKB filter. The EKB filter estimates are thus simultaneously used in the measurement function � to 
relate the measured acceleration to the states of the system (�(  and Z). Note that in this simulation m, k and c are all assumed to 
be unknown.  

 

 
Figure 3. Identification of 10% change in the stiffness of the nonlinear hysteretic system of Eq. (19) from acceleration measurements (Eq. (22)) using 

hyperchaotic excitation and extended Kalman-Bucy (EKB) filter �* = � × �>h��, + = � × �>h��, ?> = � × �>h���. 
 

Again, the value of ~ = 0.1 is used for this simulation and the filtering sequence is initiated with values of the state and 
parameters (m, k and c� 50% deviated from the true values. Figure 3 demonstrates the simulation results. As is clear from the 
figure, in this simulation a stiffness reduction of 10% occurred at time � = 250 is accurately identified online in the nonlinear 
hysteretic system without any prior knowledge of the system parameters and by sole measurement of the acceleration 
response and the excitation force. In fact, the proposed technique first accurately identifies the values of the parameters from 
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noise-corrupted measurements of the acceleration response within the first 250 seconds of excitation, then successfully 
monitors the change in the system by identifying the parameter that has changed, the amount of change, and the instant of 
occurrence of the change. Therefore, the proposed adaptive identification technique is capable of real-time sensing of 
mechanical properties (m, k and c� in a S-DoF nonlinear smart structure. 
3.2. FOUR-STORY SHEAR-BEAM STRUCTURE 

Consider an idealized four-storey linear shear-beam type building with floor masses §s, inter-story stiffnesses �s, and inter-
story viscous damping coefficients ¨s where © = 1, … ,4. The structure is modeled with a linear spring–mass–damper system where 
the first spring is connected to the ground. The masses, spring stiffnesses and damping coefficients forming the «, B and ¬ 
matrices are set to §s = 5, �s = 8 and ¨s = 0.5. Considering the state-space vector � = �����, �( ����f, the v function of Eq. (17) 
for this system is a linear function as  

  vV����W =  ���� = ® > �−«h�B −«h�¬¯ ���� �24� 
 

 
Figure 4. Identification of 10% change in the stiffness 4-DoF linear system of Eq. (24) from acceleration measurements (Eq. (23)) using hyperchaotic 

excitation and extended Kalman-Bucy (EKB) filter �* = � × �>h°�, + = � × �>h±�, ?> = � × �>h±��. 
 

Damage is introduced as a 10% stiffness reduction in the third spring of the system occurring at time � = 350£. In order to 
implement the proposed real-time damage identification technique, the fourth mass is excited with the hyperchaotic Lorenz 
excitation of Eq. (18) with a value of ~ = 0.1 which can be shown to satisfy the tuning criteria of Eq (16). It is assumed that 
only the excitation force and the acceleration of the masses are measured. Thus, since the states of the system consist of 
velocity �(  and displacement �, an appropriate measurement function is required to enable acceleration measurement. For the 
first simulation, a measurement function similar to that of Eq. (22) is considered by replacing m, k and c respectively with «, B and ¬ matrices. All 12 components of the «, B and ¬ matrices are considered as unknown parameters to be identified. The 

0 100 200 300 400 500 600 700
0

5

10

m
1
(t

)

0 100 200 300 400 500 600 700
0

5

10

m
2
(t

)

0 100 200 300 400 500 600 700
0

2

4

6

8

10

m
3
(t

)

0 100 200 300 400 500 600 700
0

5

10

time

m
4
(t

)

0 100 200 300 400 500 600 700
0

5

10

15

k
1
(t

)

0 100 200 300 400 500 600 700
0

5

10

15

k
2
(t

)

0 100 200 300 400 500 600 700
0

5

10

15

k
3
(t

)

0 100 200 300 400 500 600 700
0

5

10

15

time

k
4
(t

)

0 100 200 300 400 500 600 700
0

0.5

1

1.5

2

c
1
(t

)

0 100 200 300 400 500 600 700
0

0.5

1

1.5

2

c
2
(t

)

0 100 200 300 400 500 600 700
0

0.5

1

1.5

2

c
3
(t

)

0 100 200 300 400 500 600 700
0

0.5

1

1.5

2

time

c
4
(t

)



filtering sequence is initiated with values of the state and unknown parameters 50% deviated from the true values. The 
system is excited for 700 seconds by the hyperchaotic Lorenz excitation and the parameters are identified using the current 
approach. The real-time values of all 12 parameters of the 4-DoF system are depicted in Figure 4. The identified parameters 
converge to the true value within the first 300 seconds. Upon the occurrence of damage, the identified values of some 
parameters experience a disturbance without losing convergence. The identified stiffness of the third spring clearly monitors 
10% reduction at time � = 350£.   
In a second simulation, a measurement function similar to that of Eq. (23) is used. Again, all 12 components of the «, B and ¬ matrices are considered as unknown parameters and the estimated values of those parameters are employed in the 
measurement function to relate the acceleration measurements to the states of the process. The same damage scenario 
occurring at time � = 300£ is applied with identical excitation strategy as used in the first simulation. The filtering sequence 
here is initiated with values of the state and unknown parameters 20% deviated from the true values. Figure 5 demonstrates 
the results. As seen in the figure, the identified parameters converge to the true value with a good accuracy (except for §| 
which only has an acceptable accuracy) within the first 300 seconds. Upon the occurrence of damage, the identified values of 
some parameters experience a disturbance and given enough time they will retrieve convergence. The identified stiffness of 
the third spring monitors 10% reduction at time � = 300£. The simulation results show that the technique needs a longer 
excitation than just 500 seconds for a better accuracy.  Therefore, using the proposed technique, a stiffness reduction of 10% 
occurred at time � = 300 is identified in the 4-DoF system without any prior knowledge of the system parameters and by sole 
measurement of the acceleration response and the excitation force. 

 
Figure 5. Identification of 10% change in the stiffness 4-DoF linear system of Eq. (24) from acceleration measurements (Eq. (23)) using hyperchaotic 

excitation and extended Kalman-Bucy (EKB) filter �* = � × �>h°�, + = � × �>h±�, ?> = � × �>h±��. 
 

4. CO�CLUSIO�S 

The current study combines hyperchaotic excitations, which has been previously shown to produce improved outcome when 
applied as the excitation in some attractor-based damage identification techniques, with the stochastic estimation technique of 
extended Kalman-Bucy filter, which is recently brought back to attention owing to its enhanced estimation capabilities over 
similar filtering techniques. As a result, a novel feasible technique for identification of damage in nonlinear structures is 
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developed that can be used in smart or self-healing structures for real-time identification of damage. Simulation results 
performed on single- and multi-DoF linear and nonlinear structural systems show that the proposed technique is capable of 
identifying modal parameters of structures from noise-corrupted measurements of acceleration response. The current 
technique is also capable of monitoring changes in the identified parameters by determining the parameter that has changed, 
the amount of change, and the instant of occurrence of the change. Therefore, the proposed adaptive identification technique 
is capable of real-time monitoring of damage based on the response of the system to a hyperchaotic probe.  
The results in this study are obtained with a time step of 0.01s. Considering the continuous-time nature of the filtering 
algorithm used in this approach, more accurate estimates are expected to be achieved upon using finer time steps for 
integration. 
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