UC Irvine UC Irvine Previously Published Works

Title

Pollution-tolerant invertebrates enhance greenhouse gas flux in urban wetlands.

Permalink https://escholarship.org/uc/item/8bt3f1dc

Journal

Ecological applications : a publication of the Ecological Society of America, 27(6)

ISSN 1051-0761

Authors

Mehring, Andrew S Cook, Perran LM Evrard, Victor <u>et al.</u>

Publication Date 2017-09-01

DOI

10.1002/eap.1572

Peer reviewed

1	Running head: Invertebrates enhance wetland gas flux
2	Pollution-tolerant invertebrates enhance greenhouse gas flux in urban wetlands
3	
4	
5	Andrew S. Mehring ^{1*} , Perran L. M. Cook ² , Victor Evrard ³ , Stanley B. Grant ⁴ , Lisa A. Levin ^{1,5}
6	
7	¹ Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92093-
8	0218, USA
9	² Water Studies Center, School of Chemistry, Monash University, Clayton, Victoria, 3800,
10	Australia
11	³ Department of Environmental Sciences, University of Basel, Schönbeinstrasse 6, CH-4056
12	Basel, Switzerland
13	⁴ Department of Civil and Environmental Engineering, Henry Samueli School of Engineering,
14	University of California, Irvine, Irvine, CA, 92697, USA
15	⁵ Center for Marine Biodiversity and Conservation, Scripps Institution of Oceanography, La Jolla,
16	CA 92093-0218
17	
18	
19	*Correspondance: Email: amehring@ucsd.edu, Phone : 717-398-9162, Fax : 858-822-0562
20	

21 Abstract

22 One of the goals of urban ecology is to link community structure to ecosystem function in 23 urban habitats. Pollution-tolerant wetland invertebrates have been shown to enhance greenhouse 24 gas (GHG) flux in controlled laboratory experiments, suggesting that they may influence urban 25 wetland roles as sources or sinks of GHG. However, it is unclear if their effects can be detected in highly variable conditions in a field setting. Here we use an extensive dataset on carbon 26 27 dioxide (CO₂), methane (CH₄), and nitrous oxide (N₂O) flux in sediment cores (n = 103) collected from ten urban wetlands in Melbourne, Australia during summer and winter in order to 28 29 test for invertebrate enhancement of GHG flux. We detected significant multiplicative enhancement effects of temperature, sediment carbon content, and invertebrate density on CH4 30 and CO₂ flux. Each doubling in density of oligochaete worms or large benthic invertebrates 31 (oligochaete worms and midge larvae) corresponded to ~42% and ~15% increases in average 32 CH₄ and CO₂ flux, respectively. However, despite exceptionally high densities, invertebrates did 33 not appear to enhance N₂O flux. This was likely due to fairly high organic carbon content in 34 sediments (range: 2.1-12.6%), and relatively low nitrate availability (median 1.96 μ M NO₃⁻-N), 35 which highlights the context-dependent nature of community structural effects on ecosystem 36 function. The invertebrates enhancing GHG flux in this study are ubiquitous, and frequently 37 38 dominate faunal communities in impaired aquatic ecosystems. Therefore, invertebrate effects on CO₂ and CH₄ flux may be common in wetlands impacted by urbanization, and urban wetlands 39 40 may make greater contributions to the total GHG budgets of cities if the negative impacts of 41 urbanization on wetlands are left unchecked.

43 Key Words: carbon dioxide, Chironomidae, climate change, constructed wetland, golf course,

44 methane, Naididae, nitrous oxide, Oligochaeta, Tubificidae, Tubificinae, urbanization

45 Introduction

46 One of the objectives of urban ecology is to search for generalizable processes and 47 community structures that influence ecosystem function within urban habitats (McPhearson et al. 2016). Faunal community structure in aquatic ecosystems can be altered by several 48 49 environmental impacts associated with urbanization, such as increased mobility of metals, nutrients, and pesticides (Carpenter et al. 1998, Walsh et al. 2005, Kaye et al. 2006, Kaushal et 50 51 al. 2008, Allinson et al. 2015), introduction of exotic predators (Hamer and Parris 2013), and 52 increased prevalence of hypoxia (Jenny et al. 2016). Urbanization is a major factor contributing to the global loss and degradation of natural wetlands (van Asselen et al. 2013), but urbanization 53 also spurs the construction of new wetlands for storage of water supplies, for recreation (such as 54 golf course ponds), and for stormwater and wastewater treatment (Davidson 2014). Although 55 urban wetlands may contribute to biodiversity at the landscape scale (Hill et al. 2016), they can 56 seldom be considered analogs of natural wetlands as far as community structure is concerned 57 58 (Hassall 2014). Because urban wetlands intercept heavy metals and other toxic substances that often become associated with sediments, pollutant accumulation and associated negative impacts 59 60 may be greatest for benthic fauna, an important functional component of the faunal community (Covich et al. 1999). Furthermore, because treatment wetlands are designed to intercept and treat 61 large inputs of carbon (C) and nitrogen (N), one of the primary concerns associated with their 62 increased adoption is the potential for enhanced greenhouse gas (GHG) emissions (Verhoeven et 63 64 al. 2006, Burgin et al. 2013, Mander et al. 2014). Wetland roles as sinks or sources of GHG are 65 strongly controlled by environmental drivers such as temperature and the availability of C and N,

66	which can stimulate emission of nitrous oxide (N ₂ O), methane (CH ₄), and carbon dioxide (CO ₂)
67	(Cao et al. 1996, Burgin et al. 2013, Nisbet et al. 2014, Butman et al. 2016, Deemer et al. 2016).
68	Human-made wetlands in natural and urban environments are important contributors to global
69	aquatic emissions of N_2O and CH_4 (Deemer et al. 2016), which have been rapidly increasing in
70	recent years (Syakila and Kroeze 2011, Nisbet et al. 2014). An understanding of controls on
71	GHG emissions in these built environments is critical to the assessment of urban wetland
72	contributions to global GHG budgets (Burgin et al. 2013, Mitsch et al. 2013, Mander et al. 2014).
73	Pollution-tolerant oligochaete and midge species are able to reach high densities in
74	severely impacted aquatic environments where other taxa may be excluded (Datry et al. 2003,
75	Pigneret et al. 2016). They have also been shown to enhance nutrient, metal, and GHG flux in
76	controlled laboratory experiments (Lagauzère et al. 2009, Stief et al. 2009, Nogaro and Burgin
77	2014, Hölker et al. 2015), and therefore may exert strong influence on multiple ecosystem
78	functions in urban wetlands. However, addressing the effects of invertebrates on GHG flux can
79	be challenging for multi-species assemblages. Previous studies demonstrating enhancement of
80	GHG flux by oligochaetes and midge larvae have done so under highly-controlled conditions in
81	laboratories, primarily with single species, and often with elevated nutrient concentrations (Stief
82	et al. 2009, Stief et al. 2010, Nogaro and Burgin 2014, Poulsen et al. 2014). While controlled
83	conditions have allowed for effective isolation of invertebrate effects, an assessment of the
84	effects of mixed assemblages under variable conditions is important to our understanding of
85	faunal influence on GHG fluxes in aquatic ecosystems. Sediment-dwelling taxa may have
86	synergistic or antagonistic effects when present in combination, due to their different modes of
87	bioturbation. For example, midge larvae bioirrigate sediments through construction and
88	ventilation of U-shaped tubes, but oligochaetes redistribute sediments to a greater degree and at

89 greater depths than midge larvae, via "conveyor-belt feeding" (Fig. 1) (Lagauzère et al. 2009). 90 Furthermore, given the variable environmental conditions present in field settings, the degree to 91 which invertebrate effects can be detected relative to other drivers of GHG flux amidst the 92 "noise" in urban environments requires further investigation. 93 Our objectives were to (1) compare benthic fluxes of N_2O_2 , CH_4 , and CO_2 in golf course ponds and constructed stormwater treatment wetlands, (2) characterize the representation and 94 95 densities of dominant invertebrates with potential to alter GHG fluxes, and (3) determine if benthic invertebrate density can help to predict GHG flux in field-collected samples. We 96 97 hypothesized that (1) GHG flux would be higher in constructed wetlands than in golf course 98 ponds, due to their design goals of intercepting and treating stormwater pollutants, and (2) both oligochaetes and chironomids would be present in high densities due to their abilities to tolerate 99 100 conditions in degraded aquatic environments, and (3) the density of aquatic worms and midge 101 larvae would be positively correlated to GHG flux, and would substantially improve the 102 predictive ability GHG flux models.

103 Materials and Methods

Study sites – We collected 104 sediment cores (four per site) from ten urban wetlands 104 (five stormwater treatment wetlands and five golf course ponds [hereafter referred to as 105 treatment wetlands and gc ponds]) in the suburbs of Melbourne, Victoria, Australia during 106 107 summer (January 29 – March 4) and winter/early spring (August 5 – September 16, hereafter 108 referred to as "winter") 2014 (see Appendix S1: Table S1 for site information). In three of the 109 five treatment wetland sites, both inlets and outlets were sampled for comparison. To measure 110 GHG flux and benthic invertebrate density, sediment cores $(27.5 \times 6.6 \text{ cm acrylic cylinders})$ 111 were collected from four spatially-separated locations haphazardly chosen in each site, in areas without emergent vegetation. After gently inserting a core to roughly half its length into the sediment, cores were capped with rubber stoppers, carefully removed to prevent shaking and disturbance of sediments, and returned to the laboratory at Monash University Water Studies Center. Surface water samples were also collected for analysis of chlorophyll and nutrients, and other environmental parameters (oxygen, temperature, pH) were measured with Horiba probes

117 (Appendix S1: Table S2).

118 Lab methods

119 Core incubations - To link invertebrate densities to benthic GHG emissions, four 120 sediment cores from each site were incubated following methods described by Roberts et al. 121 (2012). Briefly, intact cores were placed in a water bath controlled to within 1.3 ± 0.3 °C (mean \pm 95% C.I.) of *in situ* temperature, and equilibrated overnight while core water was gently aerated. 122 123 On the following day, aeration was ceased, cores were capped, and dissolved oxygen (DO) 124 measurements were taken through a sealable port in the cap with an optical DO probe (HACH 125 HQ40d Portable Meter, LDO101 Rugged Optical Dissolved Oxygen Probe). Water overlying sediment in each core was stirred gently and continuously throughout the incubation by a 126 suspended magnetic bar, with a stirring rate below levels that would cause sediment disturbance. 127 12.5 mL of overlying water were removed through a port in the cap every few hours, placed into 128 129 12.5-mL Exetainers® (Labco Ltd., UK) with gas-tight septa, and preserved with HgCl₂ until 130 analysis for CO₂, CH₄, and N₂O concentrations with a gas chromatograph (GC) (Shimadzu 131 GC17A) equipped with a Methanizer (SRI Instruments, USA). Changes in GHG concentration 132 over time were used to calculate the flux of the three GHGs. Aliquots of water removed during 133 incubation were replaced with an equal volume of water collected from the same site, and care 134 was taken during all procedures to prevent the creation of headspace or entrapment of air bubbles

135	during incubation periods. The water volume and surface area of the sediment were taken into
136	consideration when calculating fluxes, along with correction for the addition or dilution of
137	constituents by the replacement of water (Roberts et al. 2012).
138	<i>Water quality parameters</i> - Water samples were analyzed for total N and P, PO_4^{3-} , NO_3^{-} ,
139	NH_4^+ in the Water Studies Center of Monash University. Nutrient samples (NO_x , NO_2^- and NH_4^+)
140	were analyzed via flow injection analysis (FIA) (Lachat Quickchem 8000 Flow injection
141	Analyzer, spectrophotometric detector), following standard procedures (APHA 2012).
142	Chlorophyll was measured on pre-combusted glass fiber filters using spectrophotometric
143	methods described by Lorenzen (1967).
144	Core processing – Immediately following each incubation, overlying water was carefully
145	removed (with syringe) from above the sediment-water interface. To estimate sediment porosity,
146	a sub-sample (~ 3 cm ³) of surface sediments was pulled into a syringe, volume recorded, then
147	sediments were placed into a conical bottom tube, wet weight was recorded, sediment was dried
148	at 60°C for 4 days, and finally dry weight was recorded. Sediment porosity (mL pore volume per
149	mL sample volume) was calculated as water volume (sample wet weight – dry weight) divided
150	by sample volume. Dried sediments were later ground until they were capable of passing through
151	a 250-um sieve and analyzed for elemental organic C (C _{org}), organic N (N _{org}), δ^{13} C (‰) and δ^{13} N
152	(‰) using an ANCA GSL2 elemental analyzer interfaced to a Hydra 20-22 continuous-flow
153	isotope ratio mass-spectrometer (Sercon Ltd., UK) at the Water Studies Centre, Monash
154	University. This was repeated for sediments at depths greater than 10 cm within the core as well.
155	Remaining core material was rinsed over a 300-um sieve. To evaluate trophic position and the
156	contribution of methanotrophic bacteria to invertebrate diets, midge larvae and oligochaetes were
157	analyzed for $\delta^{13}C$ (‰) and $\delta^{13}N$ (‰). A few specimens were removed from each core, allowed to

clear their guts for 24 hours, and dried at 60°C for 48 hours. These were weighed to the nearest µg, and then analyzed for C_{org} and N_{org} content and stable isotope ratios ($\delta^{13}C$, $\delta^{13}N$) using the methods described above. Data are provided in the supporting information (Appendix S1: Fig. S1).

Faunal density – To sort and enumerate invertebrates, remaining core material was
 washed through a 300-μm mesh sieve, and retained material was preserved in 10% phosphate buffered formalin and stored until invertebrates could be sorted from sediments using a binocular
 dissecting microscope. When a sample was sorted, formalin was decanted off the top, and
 sediments were re-suspended in water. Sediments were then rinsed over nested 1-mm and 300 μm sieves to sort invertebrates into large (> 1mm) and small (0.3-1mm) size classes.

168 Statistical analysis

To determine the relative importance of invertebrate density among a set of factors best 169 explaining variability in benthic fluxes of CH₄, N₂O, and CO₂, we compared multiple linear 170 regression models using Akaike's Information Criterion (AIC) and an information theoretic 171 approach (Burnham and Anderson 2002). For all parameters, values from individual sediment 172 cores (four per site) were averaged together in a given season, and treated as a single replicate. 173 Parameters initially selected for possible inclusion in multiple regression models were 174 invertebrate density, which included density of oligochaetes and midge larvae (Tanypodinae 175 176 and/or non-Tanypodinae), in both large (>1mm) and small (0.3-1 mm) size classes. In addition, 177 temperature, water column chlorophyll, sediment %C, and dissolved oxygen saturation (DO%) 178 were included as environmental factors that may influence GHG flux. DO% was included both 179 for the inhibitory effects that oxygen availability has on denitrification and CH₄ production, and 180 also as an indicator of the presence of benthic microalgae, which may compete with N_2O -

181	producing bacteria for NO ₃ , and would not be detected with water column chlorophyll
182	measurements. For N_2O flux models, water column NO_x (nitrate + nitrite) concentration was
183	included as a model parameter, but water column nutrients were excluded from other models
184	after initial examination failed to show statistically significant correlations with response
185	variables.
186	Explanatory variables were tested for multicollinearity with Pearson's correlation
187	coefficient (r) matrices and variance inflation factors (VIF), and any two variables with $r \ge 0.60$
188	were not included in the same model. The predictive abilities of models were compared by using
189	leave-one-out cross-validation (LOOCV) (James et al. 2013). Predicted GHG flux values were
190	regressed against observed GHG fluxes, and root-mean-squared errors (RMSE) were calculated
191	for each model, with lower RMSE indicating improved predictive power. All analyses were
192	conducted in R software (R Development Core Team 2008).
193	Average CO ₂ , CH ₄ , and N ₂ O fluxes were predicted for increasing densities of benthic
194	invertebrates using parameter estimates from the model with lowest RMSE for each GHG. For
195	CO ₂ and CH ₄ , the average flux was reported for four different scenarios: (1) low temperature and
196	low sediment C concentration (C_{org}), (2) low temperature and high C_{org} , (3) high temperature and
197	low C_{org} , and (4) high temperature and high C_{org} . Low and high values for temp and C_{org} were set
198	at the 1st and 3rd quartile of field-collected data: 13 and 25°C, and 4 and 8% Corg in sediments.
199	For N_2O , average flux was predicted for high and low temperatures, for 1^{st} and 3^{rd} quartiles of
200	NO_x -N availability (0.7 and 40 μ M), and also for 10^{th} and 90^{th} percentiles (48 and 151%) of
201	dissolved oxygen saturation.
202	Results

203 Benthic greenhouse gas flux

204	Benthic fluxes of CO ₂ and CH ₄ were higher in summer than in winter (Fig. 2, $F_{1,22}$ =
205	23.89 and 5.10, $p < 0.001$ and < 0.05 , respectively), and seasonal differences were strongest in
206	stormwater treatment wetlands (hereafter referred to as treatment wetlands), where benthic fluxes
207	were higher in inlets during the summer than in outlets for CH ₄ (season×inlet $F_{1,8}$ = 21.06, <i>p</i> <
208	0.005) and CO ₂ (season×inlet $F_{1,8}$ = 16.35, <i>p</i> < 0.005). While overall fluxes of GHG were not
209	significantly different between wetland types, inlet fluxes in treatment wetlands were higher than
210	fluxes in golf course ponds (hereafter referred to as gc ponds) during the summer for CH_4
211	(season×site $F_{2,16}$ = 11.26, $p < 0.001$) and CO_2 (season×site $F_{2,16}$ = 11.04, $p < 0.001$, Fig. 2).
212	There were no significant differences in benthic N ₂ O fluxes either seasonally, among site types,
213	or among locations within sites.
214	Benthic invertebrates
215	Invertebrate communities in all sites were dominated by oligochaetes and midge larvae.
216	Oligochaetes accounted for ~82 ±10% and $60 \pm 20\%$ (mean ± 95% C.I.) of average total
217	invertebrate density in treatment wetlands and gc ponds, respectively (Fig. 3, Appendix S1:
218	
	Table S3). Tubificinae (family Naididae) was the most abundant subfamily of oligochaetes,
219	Table S3). Tubificinae (family Naididae) was the most abundant subfamily of oligochaetes, accounting for $78 \pm 9\%$ and $85 \pm 14\%$ of all oligochaetes encountered in treatment wetlands and
219 220	S
	accounting for $78 \pm 9\%$ and $85 \pm 14\%$ of all oligochaetes encountered in treatment wetlands and
220	accounting for $78 \pm 9\%$ and $85 \pm 14\%$ of all oligochaetes encountered in treatment wetlands and gc ponds (Appendix S1: Table S4). Oligochaete density did not differ significantly between
220 221	accounting for $78 \pm 9\%$ and $85 \pm 14\%$ of all oligochaetes encountered in treatment wetlands and gc ponds (Appendix S1: Table S4). Oligochaete density did not differ significantly between treatment wetlands and gc ponds (F _{1,22} = 2.15, <i>p</i> = 0.16), or between inlets and outlets within
220 221 222	accounting for $78 \pm 9\%$ and $85 \pm 14\%$ of all oligochaetes encountered in treatment wetlands and gc ponds (Appendix S1: Table S4). Oligochaete density did not differ significantly between treatment wetlands and gc ponds (F _{1,22} = 2.15, <i>p</i> = 0.16), or between inlets and outlets within treatment wetlands (F _{1,8} = 2.36, <i>p</i> = 0.16). However, oligochaete density was significantly higher
220221222223	accounting for $78 \pm 9\%$ and $85 \pm 14\%$ of all oligochaetes encountered in treatment wetlands and gc ponds (Appendix S1: Table S4). Oligochaete density did not differ significantly between treatment wetlands and gc ponds ($F_{1,22} = 2.15$, $p = 0.16$), or between inlets and outlets within treatment wetlands ($F_{1,8} = 2.36$, $p = 0.16$). However, oligochaete density was significantly higher in inlets of treatment wetlands than in gc ponds ($F_{1,12} = 5.73$, $p < 0.05$), with densities as high as

226	Huntingdale Road treatment wetland, following the removal of upper layers of sediment during
227	wetland maintenance (reduced from $478,634 \pm 24,580$ to $11,472 \pm 4,231^{-2}$ [mean $\pm 95\%$ C.I.]).
228	Midge larvae accounted for $16 \pm 7\%$ and $34 \pm 19\%$ of average total invertebrate density
229	in treatment wetlands and gc ponds, respectively (Appendix S1: Tables S3, S5). Midge larval
230	density did not differ significantly between seasons or site types, and there was no significant
231	difference in midge larval density between the families Tanypodinae and Chironominae (paired
232	t-test, $t_{25} = 2.06$, $p = 0.50$, Table S5). Almost all Tanypodinae present in our sites were
233	<i>Procladius</i> spp., and stable isotope values suggest a non-predatory diet, as $\delta 15N$ of Tanypodinae
234	$(7.68 \pm 1.62, \text{ range -} 0.52 \text{ to } 10.50)$ were not significantly different from those of Chironominae
235	$(8.37 \pm 0.53, \text{ range } -0.18 \text{ to } 13.56) \text{ or oligochaetes } (7.25 \pm 0.65, \text{ range } 4.16 \text{ to } 18.43).$
236	Drivers of greenhouse gas flux and the importance of invertebrates
237	Regression models with the best predictive power (lowest RMSE) explained 84%, 64%,
238	and 62% of the variability in benthic flux of CO_2 , CH_4 , and N_2O , respectively (Table 1). Top-
239	ranked multiple regression models ($\Delta i < 2$) for all three GHGs included oligochaete and
240	chironomid density (Table 1, Fig. 4-6), but chironomid density never appeared as the sole
241	invertebrate parameter; it appeared in models either together with oligochaete density or via the
242	combined parameter "all invertebrates".
243	The predictive abilities of CO ₂ and CH ₄ models were substantially improved with the
244	inclusion of invertebrates (Table 1, Figs. 4,5). Each doubling in density of large benthic
245	invertebrates or oligochaetes corresponded to a ~15% and ~42% average increase in CO_2 and
246	CH ₄ flux, respectively. The RMSE of the best model excluding invertebrates was 17% higher

247 (poorer predictive power) than that of the top-performing CO_2 flux model, which included

248 temperature, density of all large oligochaetes and chironomids, and sediment C_{org} content (Table

1, Fig. 4). The improvement of CH_4 flux prediction with the inclusion of benthic invertebrate

249

250 density in models was even greater, with the RMSE of the best model excluding invertebrates 251 being 29% higher (poorer predictive ability) than that of the top-performing CH₄ flux model, 252 which included temperature, density of large oligochaetes, and sediment C_{org} content (Table 1, 253 Fig. 5). In the case of N₂O flux, inclusion of invertebrate density did not substantially improve 254 255 the predictive ability of models. All of the highest-ranked models ($\Delta i < 2$) models included temperature, nitrate + nitrite (NO_X), oxygen % saturation (DO) and an interaction term 256 257 (NO_X×DO), but the RMSE of models excluding or including invertebrates were similar (within 258 4.5%) in predictive ability (Table 1, Fig. 6). 259 Discussion 260 Animals may play critical roles in the function of urban ecosystems, and there is mounting evidence that sediment-dwelling invertebrates influence GHG flux in aquatic 261 ecosystems (Stief et al. 2010, Bonaglia et al. 2014, Nogaro and Burgin 2014, Poulsen et al. 2014, 262 Welsh et al. 2015). The invertebrates dominating faunal communities in the current study 263 264 frequently reach high densities in degraded wetlands and lakes, due to their abilities to withstand hypoxia, eutrophication, and heavy metal contamination (Wiederholm 1980, Datry et al. 2003, 265 Nogaro and Mermillod-Blondin 2009, Pigneret et al. 2016). Using a unique dataset, our analysis 266 shows that CO₂ and CH₄ flux in urban wetlands is positively correlated to the densities of these 267 268 ubiquitous, pollution-tolerant invertebrates, suggesting faunal enhancement of GHG flux. Each 269 doubling in density of large benthic invertebrates (Tubificid oligochaetes + midge larvae) or oligochaetes alone corresponded to a ~15% and ~42% average increase in CO₂ and CH₄ flux, 270

271 respectively. Thus, urbanization, by causing shifts in benthic fauna communities, may alter GHG

272 budgets of cities. As conditions in urban aquatic ecosystems often favor the development of 273 faunal communities dominated by Tubificid oligochaetes (Palmer 1968, Paul and Meyer 2001), 274 stimulatory effects on both CO₂ and CH₄ emissions may occur as a result. This suggests a 275 functional link between faunal community structure and GHG flux enhancement that may be 276 globally widespread among urban aquatic ecosystems. 277 The substantial stimulation of CO₂ and CH₄ flux with increasing invertebrate density in 278 the present study (Figs. 4,5) is likely due to several factors, including: (1) enhanced upward gas 279 transport and diffusion through invertebrate burrows, (2) rapid cycling of organic matter between 280 oxic and anoxic layers of sediment, due to conveyor-belt feeding by oligochaetes (Fig. 1) and (3) 281 simultaneous enhancement of oxygenation and aerobic microbial respiration in upper sediment layers due to increased porosity, and enhanced anoxia (and therefore methane production) in 282 283 lower layers of sediment due to microbial and oligochaete respiration. While it has been 284 suggested that invertebrates grazing on methanotrophic bacteria have the potential to enhance CH₄ fluxes in aquatic ecosystems (Kankaala et al. 2007), this seems unlikely in the current study. 285 δ^{13} C values as low as -38.4 ‰ suggest the possibility that midge larvae may have consumed 286 methanotrophic bacteria at a few of our study sites (Appendix S1: Fig. S1) (Jones et al. 2008), 287 but this was rare and not observed for oligochaetes, which were the only taxa with densities 288 significantly correlated to CH₄ flux. 289

Oligochaete bioturbation enhances sediment porosity and diffusion (Wang and Matisoff 1997, Mermillod-Blondin et al. 2003), which could facilitate upward transport of CO_2 and CH_4 through sediments. Oligochaete and chironomid burrows also allow for increased penetration of oxygen from overlying water into sediments, which enhances aerobic respiration and flux of CO_2 (Nogaro and Burgin 2014). However, while increased sediment porosity may enhance CH_4

295 transport, increased movement of sediments via conveyor-belt feeding (Matisoff et al. 1999) 296 may be the most plausible mechanism by which oligochaetes contribute to enhanced CH_4 297 production. Through feeding head-down in sediments, and defecating above the sediment 298 surface, oligochaetes rapidly transport reduced organic matter from deeper sediments upward to 299 the oxic sediment-water interface. As fecal pellets accumulate in successive layers at the sediment surface while organic particles are consumed in deeper sediments by oligochaete 300 301 feeding, this causes an enhanced movement of sediments from surface to deeper anoxic sediment layers. This downward transport of particles can be rapid (Fisher et al. 1980), with sediment 302 velocities as high as 3.66 cm d^{-1} 100,000 individuals m⁻² measured for larger oligochaetes 303 (Matisoff et al. 1999). The rate of sediment turnover caused by oligochaetes often exceeds 304 sedimentation rates in their absence by more than an order of magnitude (Fisher et al. 1980, 305 306 Robbins et al. 1989). Presumably, during this process labile organic particles (such as sinking 307 phytoplankton, oligochaete fecal pellets, or guano) spend a great amount of time in deeper anoxic layers of sediment, allowing for enhanced CH₄ production, while in the absence of 308 bioturbation, a greater proportion of labile organic particles are respired at the oxic sediment-309 310 water interface, resulting in C being respired primarily as CO₂. Oligochaete density was not correlated to the quantity of C in sediments, but may have varied among sites in response to 311 312 differences in sediment C *quality*. The disentangling of the relative importance of these drivers 313 has the potential to vastly improve our understanding of the drivers of CH₄ flux in wetlands, as 314 well as our ability to forecast changes in wetland GHG flux in response to urbanization and shifts 315 in faunal community structure.

316 Why was stronger invertebrate enhancement of N_2O emission not detected in the current 317 study, even though oligochaete and midge larval densities were high? This is likely due to the

318 combined effects of NO₃⁻ availability, temperature, and sediment organic matter content. Benthic 319 invertebrates can enhance the flux of N₂O by creating alternating oxic and anoxic conditions within sediments during burrow ventilation, thereby enhancing coupled nitrification-320 321 denitrification (Stief et al. 2009, Hölker et al. 2015). Furthermore, the ingestion of denitrifying 322 bacteria briefly exposes them to anoxic conditions within invertebrate guts, which enhances production of N₂O via incomplete denitrification (Stief et al. 2009). However, the activity of 323 denitrifying microbes (and invertebrate enhancement of their activity) is enhanced by 324 temperature and the availability of NO₃⁻ (Stief and Schramm 2010). Compared with previous 325 326 laboratory studies, wetlands in the current study had low concentrations of NO₃ in water overlying sediments (median = $1.96 \mu mol NO_3 N L^{-1}$, range: below detection to 77.96 $\mu mol N$ 327 L⁻¹). Several studies have found enhanced N₂O emission by invertebrates to be dependent upon 328 temperature and NO₃⁻ thresholds (Stief et al. 2010, Stief and Schramm 2010). For example, Stief 329 330 et al. (2010) showed that N₂O emissions from midge larvae were positively stimulated by temperature at NO₃⁻ concentrations of 250 and 500 µmol N L⁻¹, but not at concentrations of 10 331 and 50 μ mol N L⁻¹. Likewise, larval N₂O emissions were stimulated by NO₃⁻ availability, but 332 only above a temperature threshold somewhere around 4–10°C. In the current study, water 333 column temperature and NO₃⁻ availability were negatively correlated ($R^2 = 0.32$, $t_{1.24} = -3.37$, $p < 10^{-10}$ 334 0.005). During the winter, when NO_3^- concentrations were elevated (median = 36.27, range = 335 $0.57-77.96 \mu$ mol N L⁻¹), temperatures were approaching the threshold below which the 336 stimulatory effects of NO_3^- on larval N_2O emission might be reduced (median = 11.9, range = 337 338 8.6-14.8 °C). During the summer, when temperatures were high (median = 23.5, range = 18.8-339 27.3°C), NO₃⁻ concentrations were low (median = 0.21, range = below detection-61.97 μ mol N L^{-1}). 340

341	While benthic invertebrates can enhance N_2O production within the walls of their
342	burrows or emit N_2O directly from their guts (Stief et al. 2009, Heisterkamp et al. 2010, Bonaglia
343	et al. 2014), the N_2O flux that ultimately escapes to the water column depends upon redox
344	conditions within the surrounding sediments. Sediment N ₂ O emissions are highest at
345	intermediate redox (de Bie et al. 2002, Seo and DeLaune 2010), and high organic matter content
346	in sediments will lead to more strongly reducing conditions, which consume N_2O and result in
347	higher fluxes of N ₂ . Other studies have observed invertebrate enhancement of N ₂ O flux at low
348	temperatures and low concentrations of NH_4^+ and NO_3^- , but these were either conducted in sites
349	with substantially lower (<0.3%) sediment organic C content (Bonaglia et al. 2014, Welsh et al.
350	2015) than those in the current study (2.1-12.6 %C, median = 5.5 %C), or measured emission of
351	N ₂ O from invertebrates incubated without surrounding sediments (Heisterkamp et al. 2010).
352	Organic matter in surrounding sediments may enhance N ₂ emissions relative to N ₂ O, as was
353	likely the case in studies by Stief and Schramm (2010) and Welsh et al. (2015), where N_2O
354	fluxes from animals incubated without sediments were substantially higher than fluxes measured
355	from invertebrates in situ (within sediments). Likewise, Nogaro and Burgin (2014) measured
356	significant stimulation of N ₂ flux at higher densities of oligochaetes, but differences in N ₂ O flux
357	among worm density treatments were only moderately significant ($p = 0.064$). Although their
358	incubations were run with NO ₃ ⁻ concentrations ranging from 100-470 μ M N (~51-240× higher
359	than the median value in the current study, 1.96 μ M N), the sediment utilized in their core
360	incubations contained substantially more C (~15% organic C) than in the current study (median
361	5.5% C), which likely resulted in the conversion of NO_3^- to N_2 rather than N_2O prior to escaping
362	the sediment. These results underscore the need to consider seasonality (i.e. variability in NO_3^-

363 availability and temperature) and the context-dependent nature (e.g. incubation conditions,

364 sediment C content) of invertebrate effects on GHG fluxes.

365 The apparent multiplicative enhancement effects of temperature, sediment C content, and 366 benthic invertebrate abundance on CO_2 and CH_4 flux in the current study (Figs. 4, 5) suggest a 367 deleterious positive feedback with continuing climate change and urbanization. Shifts toward oligochaete-dominated invertebrate communities are a common consequence of eutrophication, 368 369 pesticide, and heavy metal pollution in aquatic ecosystems (Palmer 1968, Wiederholm 1980, Winner et al. 1980, Paul and Meyer 2001, Devine and Vanni 2002, Verdonschot 2006). As 370 371 regions of the world become increasingly urbanized, if the impacts of increased metal mobility, 372 hypoxia, and nutrient loading on wetlands are not kept in check, shifts in aquatic invertebrate communities toward oligochaete dominance may become more widespread. As wetland CO₂ and 373 374 CH₄ fluxes increase due to higher temperatures and oligochaete densities, additional atmospheric 375 warming may result, causing greater enhancement of wetland GHG flux. This is one of the first 376 field studies of the influence of invertebrate communities on urban wetland GHG emissions. Further research is needed in order to confirm whether the mechanisms suggested by our results 377 378 are broadly applicable, but our findings open a new line of inquiry in the investigation of community structure effects on urban ecosystem function and global wetland GHG budgets. 379

380 Acknowledgements

We thank Keryn L. Roberts and Brandon K. Winfrey, who assisted with field sampling in Melbourne, Australia. Vera Eate, Keralee Brown, and Tines Hines provided assistance with laboratory analyses at Monash University, Benedikt Fest and Steve Livesley assisted with greenhouse gas analysis at the University of Melbourne, and Jennifer Gonzalez and Guillermo Mendoza assisted with sorting and identification of preserved invertebrates at Scripps Institution

386	of Oceanography. Meredith K. Meyers assisted with the creation of Figure 1. We also thank
387	Teresa Mackintosh, and William Steele from Melbourne Water, who fostered discussion and
388	facilitated access to constructed wetland sites in Australia; and Dave Mason, Michael Freeman,
389	Robert Sim, Chris Allen, and Stuart Cooper who generously provided access and resources to
390	facilitate sampling ponds at their golf clubs and courses. Finally, we thank two anonymous
391	reviewers who provided helpful critiques of the ms. Support was provided by an NSF PIRE
392	program sub award to LAL from UC Irvine OISE-1204866.
393	Literature cited
394	Allinson, G., P. Zhang, A. Bui, M. Allinson, G. Rose, S. Marshall, and V. Pettigrove. 2015.
395	Pesticide and trace metal occurrence and aquatic benchmark exceedances in surface
396	waters and sediments of urban wetlands and retention ponds in Melbourne, Australia.
397	Environmental Science and Pollution Research 22:10214-10226.
398	APHA. 2012. Standard methods for the examination of water and wastewater. 22 edition.
399	American Public Health Association Publication, APHA, AWWA, WEF.
400	Bonaglia, S., F. J. A. Nascimento, M. Bartoli, I. Klawonn, and V. Brüchert. 2014. Meiofauna
401	increases bacterial denitrification in marine sediments. Nature Communications 5:5133.
402	Burgin, A. J., J. G. Lazar, P. M. Groffman, A. J. Gold, and D. Q. Kellogg. 2013. Balancing
403	nitrogen retention ecosystem services and greenhouse gas disservices at the landscape
404	scale. Ecological Engineering 56:26-35.
405	Burnham, K. P., and D. R. Anderson. 2002. Model Selection and Multimodel Inference: A
406	Practical Information-Theoretic Approach. Springer, New York.
407	Butman, D., S. Stackpoole, E. Stets, C. P. McDonald, D. W. Clow, and R. G. Striegl. 2016.
408	Aquatic carbon cycling in the conterminous United States and implications for terrestrial

409	carbon accounting. Proceedings of the National Academy of Sciences of the United
410	States of America 113:58-63.
411	Cao, M., S. Marshall, and K. Gregson. 1996. Global carbon exchange and methane emissions
412	from natural wetlands: Application of a process-based model. Journal of Geophysical
413	Research 101:14399-14414
414	Carpenter, S. R., N. F. Caraco, D. L. Correll, R. W. Howarth, A. N. Sharpley, and V. H. Smith.
415	1998. Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecological
416	Applications 8:559-568.
417	Covich, A. P., M. A. Palmer, and T. A. Crowl. 1999. The Role of Benthic Invertebrate Species in
418	Freshwater Ecosystems: Zoobenthic species influence energy flows and nutrient cycling.
419	BioScience 49 :119-127.
420	Datry, T., F. Hervant, F. Malard, L. Vitry, and J. Gibert. 2003. Dynamics and adaptive responses
421	of invertebrates to suboxia in contaminated sediments of a stormwater infiltration basin.
422	Archiv für Hydrobiologie 156:339-359.
423	Davidson, N. C. 2014. How much wetland has the world lost? Long-term and recent trends in
424	global wetland area. Marine and Freshwater Research 65:934–941.
425	de Bie, M. J. M., J. J. Middelburg, M. Starink, and H. J. Laanbroek. 2002. Factors controlling
426	nitrous oxide at the microbial community and estuarine scale. Marine Ecology Progress
427	Series 240 :1-9.
428	Deemer, B. R., J. A. Harrison, S. Li, J. J. Beaulieu, T. DelSontro, N. Barros, J. F. Bezerra-Neto,
429	S. M. Powers, M. A. dos Santos, and J. A. Vonk. 2016. Greenhouse gas emissions from
430	reservoir water surfaces: A new global synthesis. BioScience.

431	Devine, J. A., and M. J. Vanni. 2002. Spatial and seasonal variation in nutrient excretion by
432	benthic invertebrates in a eutrophic reservoir. Freshwater Biology 47:1107-1121.
433	Fisher, J. B., W. J. Lick, P. L. McCall, and J. A. Robbins. 1980. Vertical mixing of lake
434	sediments by tubificid oligochaetes. Journal of Geophysical Research 85:3997-4006
435	Hamer, A. J., and K. M. Parris. 2013. Predation modifies larval amphibian communities in urban
436	wetlands. Wetlands 33 :641-652.
437	Hassall, C. 2014. The ecology and biodiversity of urban ponds. WIREs Water 1:187-206.
438	Heisterkamp, I. M., A. Schramm, D. d. Beer, and P. Stief. 2010. Nitrous oxide production
439	associated with coastal marine invertebrates. Marine Ecology Progress Series 415:1-9.
440	Hill, M. J., J. Biggs, I. Thornhill, R. A. Briers, D. G. Gledhill, J. C. White, P. J. Wood, and C.
441	Hassall. 2016. Urban ponds as an aquatic biodiversity resource in modified landscapes.
442	Global Change Biology.
443	Hölker, F., M. J. Vanni, J. J. Kuiper, C. Meile, HP. Grossart, P. Stief, R. Adrian, A. Lorke, O.
444	Dellwig, A. Brand, M. Hupfer, W. M. Mooij, G. Nützmann, and J. Lewandowski. 2015.
445	Tube-dwelling invertebrates: tiny ecosystem engineers have large effects in lake
446	ecosystems. Ecological Monographs 85:333–351.
447	James, G., D. Witten, T. Hastie, and R. Tibshirani. 2013. An Introduction to Statistical Learning:
448	with Applications in R. Springer Science+Business Media, NewYork.
449	Jenny, JP., P. Francus, A. Normandeau, F. Lapointe, ME. Perga, A. Ojala, A. Schimmelmann,
450	and B. Zolitschka. 2016. Global spread of hypoxia in freshwater ecosystems during the
451	last three centuries is caused by rising local human pressure. Global Change Biology
452	22 :1481-1489.

453	Jones, R. I., C. E. Carter, A. Kelly, S. Ward, D. J. Kelly, and J. Grey. 2008. Widespread
454	contribution of methane-cycle bacteria to the diets of lake profundal chironomid larvae.
455	Ecology 89 :857-864.
456	Kankaala, P., G. Eller, and R. I. Jones. 2007. Could bacterivorous zooplankton affect lake
457	pelagic methanotrophic activity? Fundamental and Applied Limnology 169:203-209.
458	Kaushal, S. S., P. M. Groffman, L. E. Band, C. A. Shields, R. P. Morgan, M. A. Palmer, K. T.
459	Belt, C. M. Swan, S. E. G. Findlay, and G. T. Fisher. 2008. Interaction between
460	urbanization and climate variability amplifies watershed nitrate export in Maryland.
461	Environmental Science & Technology 42 :5872-5878.
462	Kaye, J. P., P. M. Groffman, N. B. Grimm, L. A. Baker, and R. V. Pouyat. 2006. A distinct urban
463	biogeochemistry? TRENDS in Ecology and Evolution 21:192-199.
464	Lagauzère, S., P. Boyer, G. Stora, and JM. Bonzom. 2009. Effects of uranium-contaminated
465	sediments on the bioturbation activity of Chironomus riparius larvae (Insecta, Diptera)
466	and Tubifex tubifex worms (Annelida, Tubificidae). Chemosphere 76:324-334.
467	Lorenzen, C. J. 1967. Determination of chlorophyll and pheo-pigments: Spectrophotometric
468	equations. Limnology and Oceanography 12:343-346
469	Mander, Ü., G. Dotro, Y. Ebie, S. Towprayoon, C. Chiemchaisri, S. F. Nogueira, B. Jamsranjav,
470	K. Kasak, J. Truu, J. Tournebize, and W. J. Mitsch. 2014. Greenhouse gas emission in
471	constructed wetlands for wastewater treatment: A review. Ecological Engineering 66:19-
472	35.
473	Matisoff, G., X. Wang, and P. L. McCall. 1999. Biological redistribution of lake sediments by
474	tubificid oligochaetes: Branchiura sowerbyi and Limnodrilus hoffmeisteri/Tubifex tubifex.
475	Journal of Great Lakes Research 25:205-219.

McPhearson, T., S. T. A. Pickett, N. B. Grimm, J. Niemelä, M. Alberti, T. Elmqvist, C. Weber,

476

477	D. Haase, J. Breuste, and S. Qureshi. 2016. Advancing urban ecology toward a science of
478	cities. BioScience 66:198-212.
479	Mermillod-Blondin, F., JP. Gaudet, M. Gérino, G. Desrosiers, and M. Creuzé des Châtelliers.
480	2003. Influence of macroinvertebrates on physico-chemical and microbial processes in
481	hyporheic sediments. Hydrological Processes 17:779-794
482	Mitsch, W. J., B. Bernal, A. M. Nahlik, Ü. Mander, L. Zhang, C. J. Anderson, S. E. Jørgensen,
483	and H. Brix. 2013. Wetlands, carbon, and climate change. Landscape Ecology 28:583-
484	597.
485	Nisbet, E. G., E. J. Dlugokencky, and P. Bousquet. 2014. Methane on the Rise-Again. Science
486	343 :493-495.
487	Nogaro, G., and A. J. Burgin. 2014. Influence of bioturbation on denitrification and dissimilatory
488	nitrate reduction to ammonium (DNRA) in freshwater sediments. Biogeochemistry
489	120 :279-294.
490	Nogaro, G., and F. Mermillod-Blondin. 2009. Stormwater sediment and bioturbation influences
491	on hydraulic functioning, biogeochemical processes, and pollutant dynamics in
492	laboratory infiltration systems. Environmental Science and Technology 43:3632–3638.
493	Palmer, M. F. 1968. Aspects of the respiratory physiology of <i>Tubifex tubifex</i> in relation to its
494	ecology. Journal of Zoology 154:463-473
495	Paul, M. J., and J. L. Meyer. 2001. Streams in the Urban Landscape. Annual Review of Ecology
496	and Systematics 32 :333-365.
497	Pigneret, M., F. Mermillod-Blondin, L. Volatier, C. Romestaing, E.Maire, J. Adrien, L. Guillard,
498	D. Roussel, and F. Hervant. 2016. Urban pollution of sediments: Impact on the

499	physiology and burrowing activity of tubificid worms and consequences on
500	biogeochemical processes. Science of The Total Environment 568:196-207.
501	Poulsen, M., M. V. W. Kofoed, L. H. Larsen, A. Schramm, and P. Stief. 2014. Chironomus
502	plumosus larvae increase fluxes of denitrification products and diversity of nitrate-
503	reducing bacteria in freshwater sediment. Systematic and Applied Microbiology 37:51-
504	59.
505	R Development Core Team. 2008. A Language and Environment for Statistical Computing R
506	Foundation for Statistical Computing, Vienna, Austria.
507	Robbins, J. A., T. Keilty, D. S. White, and D. N. Edgington. 1989. Relationships among
508	Tubificid abundances, sediment composition, and accumulation rates in Lake Erie.
509	Canadian Journal of Fisheries and Aquatic Sciences 46:223-231.
510	Roberts, K. L., V. M. Eate, B. D. Eyre, D. P. Holland, and P. L. M. Cook. 2012. Hypoxic events
511	stimulate nitrogen recycling in a shallow salt-wedge estuary: The Yarra River estuary,
512	Australia. Limnology and Oceanography 57:1427-1442
513	Seo, D. C., and R. D. DeLaune. 2010. Fungal and bacterial mediated denitrification in wetlands:
514	Influence of sediment redox condition. Water Research 44:2441-2450.
515	Stief, P., L. Polerecky, M. Poulsen, and A. Schramm. 2010. Control of nitrous oxide emission
516	from Chironomus plumosus larvae by nitrate and temperature. Limnology and
517	Oceanography 55 :872–884.
518	Stief, P., M. Poulsen, L. P. Nielsen, H. Brix, and A. Schramm. 2009. Nitrous oxide emission by
519	aquatic macrofauna. Proceedings of the National Academy of Sciences of the United
520	States of America 106 :4296-4300.

- 521 Stief, P., and A. Schramm. 2010. Regulation of nitrous oxide emission associated with benthic
 522 invertebrates. Freshwater Biology 55:1647–1657.
- 523 Syakila, A., and C. Kroeze. 2011. The global nitrous oxide budget revisited. Greenhouse Gas
 524 Measurement and Management 1:17-26.
- van Asselen, S., P. H. Verburg, J. E. Vermaat, and J. H. Janse. 2013. Drivers of wetland
 conversion: a blobal meta-analysis. PLoS ONE 8:e81292.
- 527 Verdonschot, P. F. M. 2006. Beyond masses and blooms: the indicative value of oligochaetes.
 528 Hydrobiologia 564:127-142.
- 529 Verhoeven, J. T. A., B. Arheimer, C. Yin, and M. M. Hefting. 2006. Regional and global
- concerns over wetlands and water quality. TRENDS in Ecology and Evolution 21:96103.
- 532 Walsh, C. J., A. H. Roy, J. W. Feminella, P. D. Cottingham, P. M. Groffman, and R. P. Morgan
- 533 II. 2005. The urban stream syndrome: current knowledge and the search for a cure.

Journal of the North American Benthological Society **24**:706–723.

- 535 Wang, X., and G. Matisoff. 1997. Solute transport in sediments by a large freshwater
- 536 oligochaete, *Branchiura sowerbyi*. Environmental Science and Technology **31**:1926-
- 537 1933.
- 538 Welsh, D. T., D. Nizzoli, E. A. Fano, and P. Viaroli. 2015. Direct contribution of clams
- 539 (*Ruditapes philippinarum*) to benthic fluxes, nitrification, denitrification and nitrous
- 540 oxide emission in a farmed sediment. Estuarine, Coastal and Shelf Science **154**:84-93.
- 541 Wiederholm, T. 1980. Use of benthos in lake monitoring. Journal (Water Pollution Control
- 542 Federation) **52**:537-547.

- Winner, R. W., M. W. Boesel, and M. P. Farrell. 1980. Insect community structure as an index of 543
- 544 heavy-metal pollution in lotic ecosystems. Canadian Journal of Fisheries and Aquatic
- 545 Sciences 37:647-655. Apress-donot-distributie
- 546

lications
App
al
ogic
Ecol

4
m
đ
9
2
ē
ō
g
-

547	Table 1. Comparison of candidate multi	indidate multiple r	ple regression models explaining variation in benthic CO2, CH4, and N2O flux. For each	explaining	variatio	n in ber	thic CC	D2, CH4	, and N ₂ O	flux. For each
548	greenhouse gas (GHG), the top model as selected by Akaike's information criterion, the model with the best predictive power (lowest	top model as selecte	ed by Akaike's info	ormation cri	terion, th	ie mode	l with th	ie best p	redictive p	ower (lowest
549	RMSE, in bold) and the top model excluding invertebrates are provided. C_p is Mallows' C_p (a measurement of model error), AICc is	model excluding in	vertebrates are pro	ovided. C _p is	Mallow	s' C _p (a	measure	ement o	f model erre	or), AICc is
550	Akaike's Information Criterion corrected for small sample size, Δ_i is the difference between the candidate and best model's AICc, and	ion corrected for sm	all sample size, Δ	$_i$ is the differ	rence bet	ween th	e candic	late and	best mode	l's AICc, and
551	RMSE is the root-mean-square error (model predictive ability)	lare error (model pre	cdictive ability).							
	GHG (response) Environn	Environmental parameters	Invertebrate parameters	ameters	C°	R ²	AICc	Δ_i	RMSE	
	CO ₂ temp, %C temp, %C		Invert (large)		3.66 5.78	0.84 0.73	27.7 38.6	10.9	0.3981 0.4653	
	CH4 temp, %C temp, %C	r) r)	Oligo (all)	×C	30.61 48.12	0.64 0.39	83.0 93.7	10.7	1.0357 1.3354	
	N ₂ O temp, NO temp, NO	temp, NO _X , DO, NO _X *DO temp, NO _X , DO, NO _X *DO	Oligo (small)	2	$\begin{array}{c} 1.70\\ 1.92 \end{array}$	0.62 0.53	10.9 12.4	1.5	0.2877 0.2994	
 552 553 555 555 556 561 563 563 563 	temp = temperature. %C = sediment C content (upper 3 cm), Invert = Oligochaeta + Chironomidae density. Oligo = Oligochaeta density, all = >0.3mm. large = >1mm. small = $0.3-1mm$. NO _x = total initial NO ₃ ⁻¹ + NO ₃ ⁻¹ (mg) present in overlying water of sediment core, DO = field measurement of percent saturation of dissolved O ₂ in water column, NO _x *DO% = interaction between NO _x and DO%.	tent <i>C</i> content (upper 3 $c = total initial NO_3 + N$) $\Delta_X^* DO\% = interaction b$	cm), Invert = Oligoch $O_2^{(mg)}$ present in ow between NO_X and $DO_9^{(mg)}$	aeta + Chiron erlying water (%.	omidae de of sedimen	nsity, Oli t core, D	go = Olig D = field i	gochaeta measuren	density, all = nent of percer	>0.3mm, large it saturation of
		4,								

564 Figure Legends

565 Figure 1. Wetland sediment inhabited by a midge larva (Diptera: Chironomidae) in its U-shaped 566 burrow, and oligochaete worms (Oligochaeta: Tubificinae) feeding head-down in sediments. 567 Oligochaete consumption of organic particles from deeper sediment layers and subsequent 568 translocation and accumulation of particles at the sediment-water interface causes a downward 569 movement of sediment, the rate of which is determined by oligochaete size and density. Particles 570 move downward until they reach the zone of oligochaete feeding, where they are ingested and transported rapidly above the sediment-water interface. This process, which may be repeated 571 572 several times until particles pass below the zone of oligochaete feeding, results in enhanced 573 transport and "conveyor belt" cycling of organic particles between oxic and anoxic layers of sediments. Meanwhile, midge larvae ventilate their U-shaped burrows in shallower layers of 574 575 sediment, alternately drawing nitrate and oxygen as well as organic particles into burrows, 576 thereby enhancing oxygenation of sediments, nitrification and denitrification, and the production of N₂ and N₂O in shallow sediments. 577 Figure 2. Benthic fluxes of CO_2 , CH_4 , and N_2O in golf course ponds (n = 40) and constructed 578 579 treatment wetlands (n = 63) sampled January-March (summer) and August-September

(winter/spring) in Melbourne, Australia. For treatment wetlands, filled diamonds overlaying box
plots indicate average flux measurements in wetland inlets, while hollow diamonds indicate
average flux measurements in wetland outlets. Each diamond is the average of four GHG flux
measurements per site. Note differences in y axis scales among panels.

584 **Figure 3.** Average density of oligochaete worms (Oligochaeta), chironomid midge larvae

585 (Chironomidae), and all other invertebrates (Other) in sediment cores collected from golf course

586 ponds (n = 40) and stormwater treatment wetlands (n = 63) in summer and winter. Error bars 587 indicate 95% confidence intervals.

588 **Figure 4.** Estimated effects of large benthic invertebrates (> 1 mm) on benthic CO₂ flux at

589 varying temperatures and sediment carbon (C) concentrations in urban wetlands. Low and high

values for temperature and C are set at the 1st and 3rd quartile of field-collected data: 13 and

591 25°C, and 4 and 8% C in sediments.

Pres

592 **Figure 5.** Estimated effects of oligochaetes on benthic CH₄ flux at varying temperatures and

593 sediment carbon (C) concentrations in urban wetlands. Low and high values for temperature and

594 C are set at the 1st and 3rd quartiles of field-collected data: 13 and 25°C, and 4 and 8% C in

sediments.

596 Figure 6. Estimated effects of small oligochaetes (0.3-1 mm) on benthic N₂O flux at (a) low and

(b) high dissolved oxygen % saturation, with varying temperature and water column nitrate +

598 nitrite (NO_x) concentrations in urban wetlands. Low and high values for temperature and NO_x

are set at the 1st and 3rd quartiles of field-collected data: 13°C and 25°C, and 0.7 and 40.0 μ M

 MO_x -N. Dissolved oxygen is set at 10^{th} and 90^{th} percentiles (48 and 151% saturation).

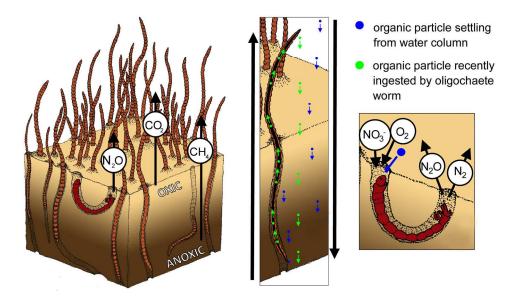


Figure 1. Wetland sediment inhabited by a midge larva (Diptera: Chironomidae) in its U-shaped burrow, and oligochaete worms (Oligochaeta: Tubificinae) feeding head-down in sediments. Oligochaete consumption of organic particles from deeper sediment layers and subsequent translocation and accumulation of particles at the sediment-water interface causes a downward movement of sediment, the rate of which is determined by oligochaete size and density. Particles move downward until they reach the zone of oligochaete feeding, where they are ingested and transported rapidly above the sediment-water interface. This process, which may be repeated several times until particles pass below the zone of oligochaete feeding, results in enhanced transport and "conveyor belt" cycling of organic particles between oxic and anoxic layers of sediments. Meanwhile, midge larvae ventilate their U-shaped burrows in shallower layers of sediment, alternately drawing nitrate and oxygen as well as organic particles into burrows, thereby enhancing oxygenation of sediments, nitrification and denitrification, and the production of N₂ and N₂O in shallow sediments.

85x48mm (600 x 600 DPI)

Pres

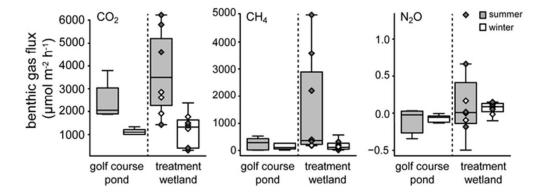


Figure 2. Benthic fluxes of CO_2 , CH_4 , and N_2O in golf course ponds (n = 40) and constructed treatment wetlands (n = 63) sampled January-March (summer) and August-September (winter/spring) in Melbourne, Australia. For treatment wetlands, filled diamonds overlaying box plots indicate average flux measurements in wetland inlets, while hollow diamonds indicate average flux measurements in wetland outlets. Each diamond is the average of four GHG flux measurements per site. Note differences in y axis scales among panels.

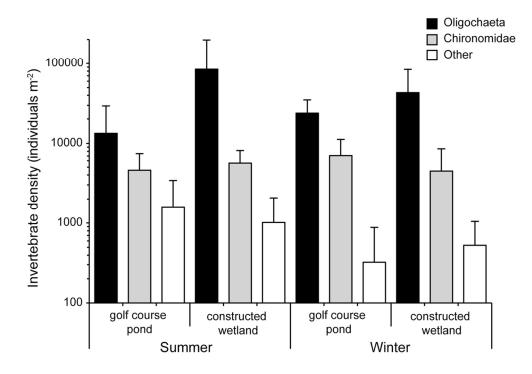


Figure 3. Average density of oligochaete worms (Oligochaeta), chironomid midge larvae (Chironomidae), and all other invertebrates (Other) in sediment cores collected from golf course ponds (n = 40) and stormwater treatment wetlands (n = 63) in summer and winter. Error bars indicate 95% confidence intervals.

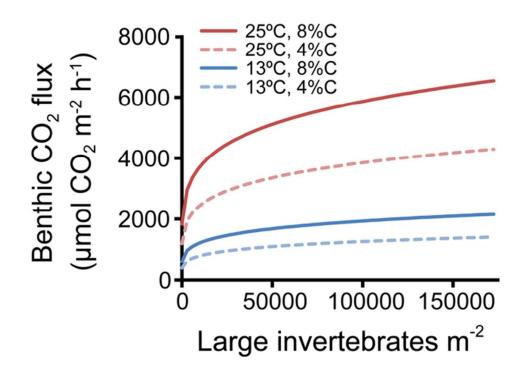


Figure 4. Estimated effects of large benthic invertebrates (> 1 mm) on benthic CO_2 flux at varying temperatures and sediment carbon (C) concentrations in urban wetlands. Low and high values for temperature and C are set at the 1st and 3rd quartile of field-collected data: 13 and 25°C, and 4 and 8% C in sediments.

56x41mm (300 x 300 DPI)

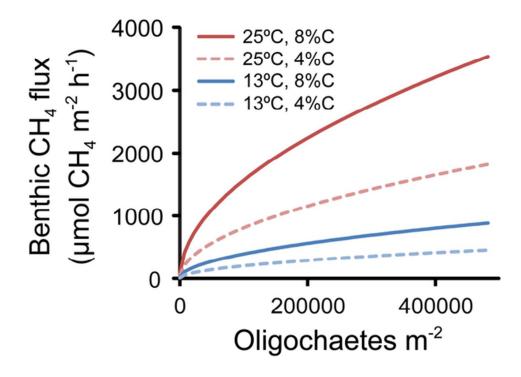


Figure 5. Estimated effects of oligochaetes on benthic CH₄ flux at varying temperatures and sediment carbon (C) concentrations in urban wetlands. Low and high values for temperature and C are set at the 1st and 3rd quartiles of field-collected data: 13 and 25°C, and 4 and 8% C in sediments.

53x37mm (300 x 300 DPI)

Press

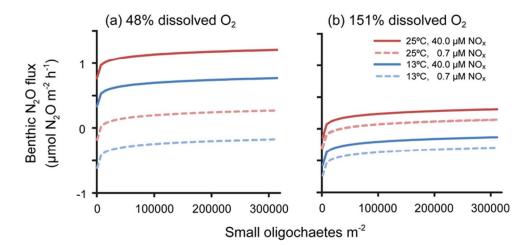


Figure 6. Estimated effects of small oligochaetes (0.3-1 mm) on benthic N₂O flux at (a) low and (b) high dissolved oxygen % saturation, with varying temperature and water column nitrate + nitrite (NO_x) concentrations in urban wetlands. Low and high values for temperature and NO_x are set at the 1st and 3rd quartiles of field-collected data: 13°C and 25°C, and 0.7 and 40.0 μ M NO_x-N. Dissolved oxygen is set at 10th and 90th percentiles (48 and 151% saturation).

69x31mm (300 x 300 DPI) Riess