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Abstract

Data Driven Appointment Scheduling

by

Tugce Gurek

Doctor of Philosophy in Engineering - Industrial Engineering and Operations Research

University of California, Berkeley

Professor Philip Kaminsky, Chair

Advances in electronic medical records and healthcare databases enable researchers to easily
acquire and analyze large amounts of data, and to build data-driven models to improve
the system performance. Surgical departments, in particular, utilize a variety of expensive
resources, so efficient appointment scheduling and sequencing decisions that minimize patient-
surgeon waiting time and the surgeon-operating room idle time substantially reduce costs.
We aim to improve the way that schedules are generated by incorporating both dynamically
updated data sets, and the opinions of surgeons.

Our research focuses on appointment scheduling of stochastic tasks on a single server
where the task durations are challenging to estimate. The task types are known prior to the
appointment date but the task duration data is initially limited so that the estimates need
to be continuously updated. Appointment scheduling involves both sequencing the tasks
and setting the start time of those tasks. Our goal is to develop a data driven appointment
scheduling algorithm for sequencing and scheduling tasks. Our research is motivated by a
project we have completed with University of California, San Francisco (UCSF) on surgical
scheduling where the tasks are the surgical procedures and the server is the operating room.

In Chapter 1 we introduce the appointment scheduling problem with a motivating example
of surgical appointment scheduling. We run some simulations to show patient-surgeon waiting
time (tardiness) and the surgeon-operating room idle time (earliness) can be reduced by
changing the sequence of the procedures and the start times of the procedures. We go over the
appointment scheduling literature with various objective functions. We analyze the objective
of minimizing expected earliness and tardiness and bound the performance of the commonly
used sequencing heuristic based on the standard deviation of procedure duration.

In Chapter 2 we focus on data-driven appointment scheduling. Without making any dis-
tributional assumptions we use the empirical distributions of the procedures while computing
the objective function which is the expectation of weighted earliness and tardiness. We
study the continuity and the convexity of the objective function and the conditions under
which there is an integral optimal solution. We briefly go over the methods to optimize the
objective function and also constrain the search space containing the minimizer. We develop
sequencing heuristics tailored for this problem. Lastly, we consider data selection algorithms
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when there are categorical features such as name of the surgeon or surgeon estimates about
how long the next procedure might take.
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Chapter 1

Appointment Scheduling

1.1 Introduction

This research focuses on appointment scheduling of stochastic tasks on a single server where
the task processing durations are challenging to estimate. Appointment scheduling involves
both sequencing tasks, and setting estimated start times of those tasks. Tasks types are known
prior to the appointment date, but task duration data is initially limited so duration estimates
are continuously updated. Our goal is to develop a data-driven approach to sequencing and
scheduling these tasks that also integrates expert knowledge into the scheduling decision.

Our work is motivated by a project we completed with UCSF on surgical scheduling,
where the tasks are surgeries and the server is the operating room. Advances in electronic
medical records and healthcare databases enable researchers to easily acquire and analyze
large amounts of data, and to build data-driven models to improve the system performance.
Surgical departments, in particular, utilize a variety of expensive resources, so efficient
appointment scheduling and sequencing decisions that minimize patient-surgeon waiting time
and the surgeon-operating room idle time substantially reduce costs. Our eventual goal is to
improve the way schedules are generated by incorporating both dynamically updated data
sets, and the opinions of surgeons.

In Chapter 1 we introduce the appointment scheduling problem with a motivating example
of surgical appointment scheduling. We run some simulations to show patient-surgeon waiting
time (tardiness) and the surgeon-operating room idle time (earliness) can be reduced by
changing the sequence of the procedures and the start times of the procedures. We go over the
appointment scheduling literature with various objective functions. We analyze the objective
of minimizing expected earliness and tardiness and bound the performance of the commonly
used sequencing heuristic based on the standard deviation of procedure duration.

In Chapter 2 we focus on data-driven appointment scheduling. Without making any dis-
tributional assumptions we use the empirical distributions of the procedures while computing
the objective function which is the expectation of weighted earliness and tardiness. We study
the continuity and the convexity of the objective function and the conditions under which
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there is an integral optimal solution. We briefly go over the methods to optimize the objective
function and also constrain the search space containing the minimizer. We develop sequencing
heuristics tailored for this problem. Lastly we talk about data selection algorithms if there
are categorical features such as name of the surgeon or surgeon estimates about how long the
next procedure might take.

1.1.1 Motivation

Caring WiselyTM is a program run by University of California, San Francisco (UCSF) Center
for Healthcare Value. This program is designed to fund interventions that can reduce costs,
improve value and enable innovation. We collaborated with Lindsay Hampson, MD, Max
Meng, MD and their team on Operating Wisely: Operating Room Teamwork in Improving
and Measuring Efficiency (ORTIME), a Caring WiselyTM project.

The ORTIME project focused on increasing operating room (OR) efficiency without
increasing the preoperative, intraoperative, and postoperative complication rates. OR
efficiency is defined in terms of the percentage of on-time cases, patient-surgeon waiting
time, surgeon-operating room idle time and non-operative OR time. Improving OR efficiency
requires improving prediction of procedure times (schedules) while:

1. Increasing the percentage of on-time cases,

2. Reducing patient-surgeon waiting time, surgeon-operating room idle time, and

3. Minimizing non-operative OR time (e.g. turnover time).

Operating rooms account for a substantial amount of revenue and hospital expenses. Non-
operative OR time does not generate revenue, so the goal is to minimize or eliminate it
if possible. Turning over a room is a non-operative OR time which requires surgeons,
anesthesiologists, nurses and other staff to work together. OR turnover time is the time
between when a patient leaves an OR after a procedure and the time the next patient arrives
in the OR for the next procedure. Decreasing turnover time increases OR efficiency.

Data about current operations has been collected for several years. We analyzed this data
to determine the current scheduling efficiency, and used this data combined with a simulation
to assess the impact of alternative sequencing rules and appointment scheduling approaches.

1.1.2 Analysis of Existing Data

The baseline data we obtained from UCSF Medical Center at Mt. Zion shows that 8.6%
of cases are completed before the scheduled end time and only 13.5% are completed within
15 minutes of the scheduled end time. This data consists of the information about 14593
different cases (note that confidential data was encoded to hide confidential information).
The data includes:
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• Timeline of the procedures (Surgery date, Time patient enters and exits OR, Time
procedure starts and ends, Scheduled start time and end time)

• Procedure type and code

Actual duration of the procedure (time spent in the room), which is the difference between
the time patient enters the OR and exits, can be directly obtained using the baseline
data. Unfortunately the data doesn’t have the actual turnover time after procedure. So we
approximated the turnover time as (upper bound on the actual turnover time):

Proc Duration[i] = Time Exit OR[i]− Time Enter OR[i]

Turnover[i] =


Time Enter OR[i+ 1]− Time Exit OR[i]

if Sched Start T ime[i+ 1] = Sched End T ime[i]
NA

otherwise

If a procedure ends later than the scheduled start time of the next procedure, this results
in patient-surgeon waiting time for the next procedure, whereas if the procedure ends before
the start time of the next procedure, the surgeon and the OR stay idle. We define tardiness
as patient-surgeon waiting time and earliness as surgeon-OR idle time.For each procedure
we calculate the earliness and tardiness. Unfortunately average total earliness and tardiness
is more than an hour.(See ’baseline’ column of Figure 1.1) Also, the average approximate
turnover time is around 45 minutes, so the current scheduling approach seems to be quite
inefficient. It is worth mentioning that the all things being equal, the hospital administration
prefers procedures to end early rather than be tardy, but almost 42% of the procedures are
early whereas 58% are tardy.

How are the schedules generated so far? Each procedure time is estimated by taking
the average of the last three procedures of the same kind done by the same surgeon, if there
is enough data. By default the scheduler adds 30 minutes to the predicted procedure time to
reflect the turnover time. The sequence of the procedures is randomly generated.

We conducted a simulation analysis to test if OR efficiency could be increased by changing
the sequence of procedures or by changing the time scheduled for turnovers.

1.1.3 Simulation Study of Alternative Sequencing Rules

We ran simulations to observe the effect of changing the sequence and increasing the time
scheduled for turnover. In literature the most commonly used heuristic is sequencing the
procedures in increasing standard deviation of durations. It is reasonable to schedule a
procedure with higher variability later to minimize its potential impact on the upcoming
procedures. The simulations we run are:
Step 1: For each type of procedure we calculated the sample standard deviation.
Step 2: Without changing the room or day for each procedure we sequenced the surgeries in
order of increasing standard deviation.
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Baseline Simulation 1 Simulation 2
Percentage of the operations 41.77% 41.57% 49.41%
finished early
Mean earliness 22.25 minutes 20.48 minutes 26.81 minutes
Standard deviation of earliness 45.66 42.21 47.68
Expected earliness 53.25 minutes 49.25 minutes 54.26 minutes
given an operation is early

Percentage of the operations 57.47% 57.61% 49.77%
finished late
Mean tardiness 41.78 minutes 40.04 minutes 32.32 minutes
Standard deviation of earliness 63.69 62.59 57.49
Expected tardiness 72.7 minutes 69.49 minutes 64.93 minutes
given an operation is tardy

Figure 1.1: Results of the simulation runs

Earliness Tardiness

26.81Simulation 2
20.48Simulation 1
22.25Baseline

0 5 10 15 20 25 30 35 40 45

32.32Simulation 2
40.04Simulation 1
41.78Baseline

0 5 10 15 20 25 30 35 40 45

Figure 1.2: Average earliness and tardiness

Step 3: We generated random turnover times from an empirical distribution of the estimated
turnover time data.
Step 4: We keep the scheduled OR and turnover times for each procedure in the baseline
data. In other words we use the previous estimates of time allowances of each procedure and
turnover calculated by the hospital’s system.

Our new approach leads to a statistically significant smaller total tardiness and earliness
compared to the actual. However, our estimate of the average turnover time is 45.23 minutes,
but turnover was scheduled for 30 minutes, so we next tested an alternative step 4:
Step 4: The scheduled turnover time is increased to 45 minutes. The scheduled OR each
procedure also is not changed.

This approach performed even better. Figures 1.1 and 1.2 show the results of our simulation
runs compared to baseline data. As mentioned before, the decrease in tardiness is considered
more valuable than the decrease in earliness. In other words hospital administration is content
as long as the increase in earliness is less than the decrease in tardiness.



CHAPTER 1. APPOINTMENT SCHEDULING 5

These simulation results both suggest that there is room for improvement, and motivate
us to design more efficient approaches for appointment scheduling so that patient-surgeon
waiting time and surgeon-operating room idle time and turnover times (non-operative OR
times) can be be minimized. In other words our overall goal in this research is to develop
more effective and efficient appointment scheduling procedures. In Section 2, we introduce
our notation, and review the relevant literature. In Section 3, we formulate the problem,
and present our preliminary results. We introduce an initial heuristic for the data-driven
appointment scheduling problem, and bound the performance of that heuristic. In Section 4,
we review our research agenda.

1.2 Literature Review

Most appointment scheduling literature focuses on minimizing expected earliness and tardiness
but there are also alternative objectives studied. In this section we review appointment
scheduling literature with different objectives. Our plan to explore dynamically updating
estimates of task times is closely related to approaches used for the so-called data-driven
newsvendor model, so we also review that literature.

1.2.1 Appointment Scheduling: Minimizing Expected Earliness
and Tardiness

Extensive surveys on research in appointment scheduling are provided by Cayirli and Veral
(2003), Gupta (2007) and Gupta and Denton (2008). Cayirli and Veral (2003) primarily focuses
on outpatient scheduling and presents various problem formulations, different performance
measures used while designing appointment scheduling, possible appointment scheduling
designs and the analysis methodologies. Gupta and Denton (2008) gives a detailed description
of three health care appointment scheduling environments: primary care specialty clinic, and
elective surgeries. The appointment system in each environment is classified by the mapped
arrival process (time when the appointment decision is made: as soon as the patient arrives
or later), service time (random or deterministic), existence of patient provider preference
and the objective (cost minimization or revenue maximization). Gupta (2007) describes
three common surgical suites’ operations management problems, models and some solution
approaches. The first common problem is elective surgery capacity allocation: how much
surgeon, service block time is needed to maximize the hospital’s total contribution. The
second problem, elective surgery booking control, arises from the post anesthesia care unit
(PACU), intensive care unit (ICU) and bed capacity constraints and aims to allocate the
patients (demand) to bend while satisfying the bed-demand. Elective surgery sequencing
problem is the most relevant to our research, and involves searching for the sequence of
surgeries with the minimum expected cost after finding the time allowance of each surgery in
a particular sequence (i.e. scheduling the surgery start times for any sequence).
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Gupta and Denton (2008) consider three types of service process design scenarios: constant,
diagnosis dependent and random service times. A variety of papers considers random service
times which can be diagnosis independent (identical distributed) or diagnosis dependent:
Weiss (1990), Bailey (1952), Welch and Bailey (1952), Denton and Gupta (2003), Denton
et al. (2007), Kaandorp and Koole (2007), Erdogan et al. (2011), Begen and Queyranne
(2011), Begen et al. (2012) , Ge et al. (2013), Kong et al. (2013) and Mak et al. (2014).

Weiss (1990), Denton et al. (2007) show that the problem of scheduling only two procedures
is similar to the famous ‘Newsvendor Problem’. The cost of waiting time (tardy) is analogous
to underage cost whereas cost of being early is analogous to the overage cost.

Denton and Gupta (2003) consider a single server system at which the sequence of the
customer arrival is fixed and minimize the expected cost associated with the server idle time
(earliness of each procedure), customer waiting time (tardiness of each procedure) and the
session length (tardiness, overtime) over the probability distribution of job duration. They
formulate a two-stage stochastic linear program (2-SLP) resulting in a convex minimization
problem and adapt the standard L-shaped algorithm (Van Slyke and Wets (1969)) for
stochastic programming to determine the upper and lower bounds on the optimal solution.
Using the recursive definition of waiting time and idle time, the problem can be written as a
2-SLP. If the support of the procedures with finite first moments is not finite (the distribution
of the actual duration is continuous), the support can be partitioned (for simplicity rectangular
partition) so that k sets of procedure realizations are created as scenarios with associated
probabilities pk. Denton and Gupta (2003) propose a sequential bounding algorithm which
refines the partition at each step with a stopping condition based on absolute difference
between upper and lower bound on objective. The partition at each step depends on the step
number. The L-shaped algorithm (Van Slyke and Wets (1969)) follows:
Step 1: Set the index v=0
Step 2: v = v + 1. Solve the discrete problem above defined by partition v using

standard L-shaped method.
Step 3: If fUB − fv ≤ ε, then Stop. Otherwise refine the current partition and go to

step 2.
The upper bound on the convex function can be obtained by applying aggregation bounds to
this problem.

Denton et al. (2007) study the effects of appointment sequencing on the patient waiting
time, OR idle time and session overtime assuming a discrete finite set of scenarios. Scenarios
were generated by sampling with replacement from the historical data. The model is similar
to Denton and Gupta (2003) but the assumption of the sequence being predetermined is
relaxed. This updated two-stage stochastic mixed-integer program gives the optimal sequence
and the optimal schedule and is combinatorial in nature, presumably NP-hard. They propose
three heuristic rules for approximating the optimal solution: sequence surgeries in order of
increasing mean, variance and coefficient of variation of service duration. After sequencing the
surgeries, the schedule is determined by solving the deterministic equivalent of the two-stage
recourse problem. Numerical experiments show that the sequencing rule based on variation
of service duration dominates the other two sequencing rules.
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Mak et al. (2014) evaluate the performance of the heuristic ordering by increasing variance
(OV) by simulating 1000 procedures from 3 different distributions (normal, gamma, lognormal).
They compared the objective value found using the model proposed in Denton et al. (2007)
without relaxing the sequence assumption with the the objective value calculated using
the same model with relaxing the assumption and instead using the heuristic increasing
standard deviation (OV). OV sequences may or may not be optimal if the time allowances
are calculated with respect to the true probability distribution but the numerical studies
done by Mak et al. (2014) show OV has close-to-optimal performance.

Denton et al. (2007) also propose an interchange heuristic which is a local search starting
with an initial feasible sequence. At each iteration the interchange heuristic searches randomly
generated pairwise interchanges which improves the current solution:
Step 1: Find a feasible sequence, define fUB, counter=1
Step 2: Use the L-shaped algorithm to obtain the solution fv.
Step 3: If fv > fUB then increase the counter and generate a new sequence and go to

Step 2.
Step 4: If fv = fv−1 then fUB = fv. If counter has reached the maximum number of

interchanges, stop. Otherwise generate new feasible sequence and return to
Step 2.

According to the Bailey-Welch rule (Welch and Bailey (1952)), two appointments are
scheduled to start at the beginning of the session and the remaining appointments are given
at an interval equal to the mean service time. Kaandorp and Koole (2007) allow no-shows and
use a local search method and the results from queuing theory to attempt to minimize the
patient waiting time, physician idle time and overtime. They assume that service times are
exponentially distributed with a common parameter and the operational time in a day is split
into intervals of equal length, so that appointments can be spaced by discrete intervals. The
operational time during a day is split into T intervals with the same length. n patients should
be scheduled within these T intervals. The decision variable is a vector x = (x1, . . . , xT ), the
number of patients scheduled at the start of an interval. There are

(
n+T−1

n

)
possible schedules.

Instead of trying all possible schedules to find the lowest objective value, Kaandorp and
Koole (2007) propose a local search algorithm starting with a feasible solution and try to
improve it. They define T vectors (U = (u1, . . . , uT )) to moves an appointment of a patient
either to the former or the next interval (e.g. x+ u1 moves the patient scheduled in the first
interval to the last). 

u1

u2
...
uT

 =


(−1, 0, . . . , 0, 1)
(1,−1, 0, . . . , 0)

...
(0, . . . , 0, 1,−1)


The local search algorithm is:
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Step 1: Start with a schedule x
Step 2: For all V ⊆ U s.t. y = x+

∑
u∈V u ≥ 0

compute the objective function’s value, if it is less than the former value,
then x := y and go back to Step 2

Step 3: x is the local optimal (minimal) solution

The optimality of the algorithm can be proven by showing the objective is multimodular.
Numerical results show that the interarrival times should be scheduled shorter at the beginning
and towards the end of the day (dome-shaped). In other words interarrival times first increase
then decrease. Under some conditions the optimal rule is close to the Bailey-Welch rule.

Begen and Queyranne (2011) assume processing times are given by a joint discrete
distribution. For a given sequence they prove the existence of an optimal integer appointment
vector minimizing the expected cost. Under the assumption of cost vectors being α−monotone,
the total cost function is L-convex so that the expected cost can be minimized in polynomial
time. The same conclusion can be reached if the objective function is penalized for any
deviation from due date. In Begen et al. (2012), the authors go one step further and develop
a sampling-based approach to determine the number of independent samples to get a near-
optimal solution with high probability. The underlying joint discrete distribution for job
durations is unknown however the historical data of surgery durations is available. The sample
size bound is a polynomial in the number of jobs and does not depend on the underlying
distribution. Begen et al. (2012) show that the number of samples required to achieve (1 + ε)
multiplicative error bound with probability (1− γ) is O(n6(1/ε4 ln(n/γ))). Ge et al. (2013)
extend those results to the case with piecewise linear cost functions: cost function is L-convex,
under some conditions the problem can be solved in polynomial time and the bound on the
number of samples required to have near-optimal solution is proven.

Although the existing literature primarily assumes that the underlying service distribution
is known, fitting distributions requires a large amount of data. Hence in some research
in appointment scheduling, distributional information is considered to be limited. Kong
et al. (2013) assume that the mean, the covariance estimates and nonnegative support of the
service durations are known. Their objective is to minimize the maximum expectation of the
weighted sum of patient waiting times and the overtime (minimax approach). The idle time is
also another performance measure which has to be minimized but it can be ignored, because
adding the expected idle time to the objective only increases the objective by a constant
and increases the weight corresponding to the overtime by 1. The objective is to determine
the time allowances while minimizing the worst case expected value of the cost of the total
weighted waiting time and the over-time among all distributions of the procedure durations
with moments µ and covariance matrix Σ. The objective function can be represented as
follows using the notation ct andco being the cost of waiting time and overtime respectively,
Tj being the waiting time of procedure j, x being the vector of random procedure durations
and d being the length of the time slot for jth procedure:

min
d

max
x∼(µ,Σ)

E

[∑
j

ctTj + coTn

]
= min

d
max
x∼(µ,Σ)

E [f(d, x)]
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f(d, x) can be represented as a network flow problem on a directed acyclic graph with costs
given above the edges in Figure 1.3. They formulate the appointment scheduling problem

Figure 1.3: Network representation of the appointment scheduling problem given the sequence

1 n+1

S

2 3 n

0 0 0 0 0

x1 − d1 x2 − d2 xn − dn. . .

1 1 1 1 1

n+ 1

as copositive programming which is not necessarily polynomial time solvable. An efficient
semidefinite relaxation technique is developed to obtain near-optimal solutions.

Mak et al. (2014) assume only moments information of service duration is known, formulate
the minimax appointment scheduling problem as a tractable conic programs. The first model
they address is a mean-variance model which is formulated as second order cone program.
Later they show sequencing jobs by increasing order of variance is optimal for their minimax
model. Given the job sequence, the minimax appointment scheduling problem can be modeled
as linear program. Exploiting this theorem, closed form expression for the optimal objective
value of the mean-support model is provided. Sequencing jobs by increasing width of support
is optimal under some assumptions.

Most literature assumes the underlying parametric distribution of procedure times are
know. This assumption might introduce inaccuracy thus erroneous conclusions. There are
few recent papers (such as Begen et al. (2012)) bounding the number of independent samples
of the historical data to have a near optimal solution for a given sequence. We aim to develop
a data-driven appointment scheduling algorithm determining the sequence then, estimating
the start times and study the performance bounds of the most commonly used heuristics for
sequencing the procedures.
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1.2.2 Alternative Objective Functions of Appointment
Scheduling

We also intend to consider alternative objectives in our research. Although the bulk of
appointment scheduling literature considers minimizing the expected cost associated with
earliness, tardiness and overtime, this risk neutral objective ignores the variability of the
process, which in many cases seems to be a significant concern. Unfortunately risk averse
appointment scheduling models have not been well studied.

Minimizing Value-at-Risk

We first intend to consider Value-at-Risk (VaR) which is defined as the threshold such that
the probability that the objective exceeds the threshold is at most (1− α), given a random
variable X and confidence level α:

V aRX(α) = inf{x : FX(x) ≥ α} for α ∈ (0, 1)

VaR is a non-convex and discontinuous function of the confidence level α for discrete
distributions. VaR doesn’t satisfy the axiom of subadditivity. (Artzner et al., 1999) Rockafellar
and Uryasev (2000) introduce Conditional-Value-at-Risk (CVar) as an alternative to VaR.

Minimizing Conditional-Value-at-Risk

Given a random variable X and confidence level α, CVaR is defined as:

CV aRX(α) = E[X|X ≥ V aRX(α)] =
1

1− α

∫ ∞
V aRX(α)

xdFX(x) for α ∈ (0, 1)

CVaR controls the observations exceeding VaR whereas VaR does not. For any random
variable X with finite expected value and CVaR,the CVaR of the random variable is always
greater than or equal to its expected value. This means that minimizing the CVaR tends to
decrease its expectation.

Rockafellar and Uryasev (2000) prove that CVaR is a coherent risk measure having the
following properties: transition-equivariant, subadditivity, positively homogeneous, convex,
monotonic with respect to stochastic dominance of order 1, and monotonic with respect to
monotonic dominance of order 2. Rockafellar and Uryasev (2000) show how to incorporate
CVaR into an optimization framework as follow

CV aRX(α) = min
η∈R

{
η +

1

1− α
E[(X − η)+]

}
(1.1)

where (a)+ = max{a, 0}.
In our appointment scheduling setting, we want to minimize the CVaR of total cost of

earliness and tardiness. Rockafellar and Uryasev (2002) proposes the function (1.1) in convex
if the objective function is convex.
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Sarin et al. (2014) choose only total weighted tardiness as their performance measure
and use CVaR as a criterion for stochastic scheduling. They formulate a scenario-based-
mixed-integer program (MIP) to minimize CVaR for the total weighted tardiness assuming
the procedure times to be the only random elements in this problem. Job precedence and
completion time of jobs are decision variables. They present a specialized integer L-shaped
algorithm and provide an alternative dynamic programming based heuristic procedure for
large sized problems. They extend their model to the setting with identical parallel machines.

Jiang et al. (2015) consider a distributionally robust (DR) single server appointment
scheduling problem given a fixed sequence of appointments with random no-shows and service
durations. To understand the DR approach, first consider a classical stochastic program as an
example: minD Ex[c(D, x)] where D represents a decision vector and x represents a random
vector. The probability distribution of x is assumed unknown but a confidence set containing
the actual distribution is known. A DR variant of the stochastic program minimizes the
worst-case expected cost.

min
D

max
fx∈•F

Ex[c(D, x)]

Jiang et al. (2015) assume only the support and first moments are given and build two DR
models incorporating the worst-case expected cost and the worst-case CVaR of earliness,
tardiness and overtime as the objective or constraints.

We plan to design an algorithm focusing on different objectives of appointment scheduling.

1.2.3 Data-Driven Newsvendor Problems

As we will discuss in detail in subsequent sections, appointment scheduling (that is, estimating
start times of jobs) is closely related to the Newsvendor model. Because our intention is
to use dynamically updated data to improve appointment scheduling, we are inspired by
approaches in the literature that use data to directly estimate newsvendor order quantities.

Liyanage and Shanthikumar (2005) introduce operational statistics, where the demand
distribution function belongs to parametric distribution family and study the Newsvendor
problem. They illustrate operational statistics for exponentially distributed demand. Instead
of estimating the parameter, the optimal order quantity is estimated using the historical
data directly such that the a priori expected profit is maximized. The goal is to find an
operational statistic of the data and set it equal to the order quantity so that the objective is
maximized. Chu et al. (2008) use Bayesian analysis to find the optimal operational statistic.

Bertsimas and Thiele (2005) combine historical data and an optimization framework to
study the Newsvendor problem. They aim to provide robust solutions that perform well under
most demand scenarios. They define a trimming factor (α) which defines the percentage of
the data points to be removed so that the objective is optimized over the remaining ones.
In the Newsvendor setting the objective is optimized over Nαb(1 − α)N + αc worst cases,
where N is the number of total data points. The optimum order quantity corresponds to
d cu
cu+co

Nαe’th smallest data point, where cu and co are the underage cost and overage cost
respectively. If costs are equal to each other and the trimming factor is 0, then the ordering
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quantity would be equal to the median. They also consider different cost structures (holding
cost, recourse and fixed ordering cost) and formulate LP’s or MIP’s to maximize the objective
while selecting the worst-case data points.

Wang et al. (2016) introduce a distributionally robust optimization model called ’likelihood
robust optimization’ (LRO) for the cases where the distribution of the input is unknown
but there is enough historical data. They aim to achieve an empirical likelihood of at least
exp(γ) among the distributions where the observed data is the support. They formulate the
problem of optimizing the expected value of the objective over the worst case distribution of
the data points which is chosen among the empirical distributions achieving a certain level of
likelihood. Wang et al. (2016) study the Newsvendor problem and formulate a single convex
optimization problem minimizing the maximum expected cost among the distributions which
achieve a predetermined likelihood.

Our ultimate goal is to combine ideas from classical appointment scheduling with ap-
proaches introduced for the data-driven Newsvendor problem.

1.3 Model and Preliminary Results

Appointment scheduling of outpatient surgical services with stochastic procedure times
minimizing the expected cost of waiting time and the idle time (deviation from the schedule),
given the set of procedures need to be scheduled, involves:

1. Appointment Sequencing: Determining the sequence in which procedures are performed

2. Scheduling Start Time: Estimating the start time of each procedure

In our subsequent discussion we typically use tardiness to describe patient-surgeon waiting
time and earliness instead of surgeon-OR idle time.

1.3.1 Notation

Our models assume that the set of tasks or procedures to be scheduled is known. The actual
start time of a task depends on the prior tasks scheduled on the server (or in the same room,
in the OR setting). If a task ends later than the scheduled start time of the next task, this
results in waiting time for the next task (that is, for the patient and the surgeon), whereas
if the task ends before the start time of the next task, the server (the OR) stays idle. We
determine the estimates of the starting time of tasks while minimizing the penalty (cost)
associated with the earliness and the tardiness. In the future, we will consider overtime cost
in the objective because overtime is costly to the hospital.

There are multiple types of tasks which might have different distributions. The order in
which they are processed depends on the scheduler. For instance if there are two types of
tasks A and B and the processing sequence is A-B, the random task duration of A and B are
denoted by x1 and x2 respectively. To ease exposition, WLOG the subscript depends on the
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order rather than depending on the task type. Although we assume that the distribution of
the task times are unkonwn, sometimes for analysis we use their distribution functions. The
relevant variables and parameters are defined as follows:

Sj Scheduled start (appointment) time of jth task
Dj Scheduled end time (due date) of jth task
xj Random duration of jth task with density fj and cdf Fj
Nj Number of observations of jth task

xj = {x1
j , . . . , x

Nj
j } Previous observations of duration of jth task

Cj Actual end (completion) time of jth task with density fCj
and cdf FCj

ce Penalty per unit time of earliness (c0 or α)
ct Penalty per unit time of tardiness (cuor β)
co Penalty per unit time of overtime ( γ)
Ej Earliness of jth task
Tj Tardiness of jth task
n Number of tasks to be scheduled per day per room

Index j refers to the order of the task. Earliness and tardiness are defined as follows:

Ej = max (0, Dj − Cj) (1.2)

Tj = max (0, Cj −Dj) (1.3)

Ultimately, we explore data-driven models in this setting using empirical distributions. In
preparation, we explore models with known distributions with the objective of minimizing
the expected earliness and tardiness.

1.3.2 Minimizing Expected Earliness and Tardiness with Known
Distributions

We first consider the case where there are only two procedures to be scheduled. Later, we
extend these results to the case where there are more than two procedures.

Two Procedures Model

Weiss (1990) initially considers the case with two procedures (n = 2): For a given sequence
of procedures the scheduler estimates the start times in order to minimize the expected cost
of the earliness and the tardiness. Note that much of the scheduling literature focuses on end
times rather than start times. Since without loss of generality, the first procedure can be
assumed to start at time 0, and since the scheduled start time of second procedure is equal
to the scheduled end time of the first procedure, we can equivalently focus on the end time of
the first procedure, and effectively ignore the second procedure. The total expected cost is:

E[cost] = E

[∑
j

ceEj +
∑
j

ctTj

]
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= ce

∫ D1

0

(D1 − x1)f1(x1)dx1 + ct

∫ ∞
D1

(x1 −D1)f1(x1)dx1

= (ce + ct)

∫ D1

0

D1f1(x1)dx1 − (ce + ct)

∫ D1

0

x1f1(x1)dx1 + ctE[x1]− ctD1

The expression above is similar to the expected cost in “Newsvendor” problem. The expected
cost is convex with respect to end time, D1 which can be minimized by finding the value of
D1 such that:

ct
ce + ct

= F1(D1) =

∫ D1

0

f1(x1)dx1 (1.4)

Equation (1.4) above is used to determine the scheduled end times of the first procedure. In
order to find out if the given sequence is optimal, Weiss (1990) examines the expected cost
function after plugging the equation (1.4) in. The resulting expected cost is given by:

E[cost] =ce

∫ D1

0

(D1 − x1)f1(x1)dx1 + ct

∫ ∞
D1

(x1 −D1)f1(x1)dx1

=ce

∫ D1

0

D1f1(x1)dx1 − ct
∫ ∞
D1

D1f1(x1)dx1 − ce
∫ D1

0

x1f1(x1)dx1

+ ct

∫ ∞
D1

x1f1(x1)dx1

=ceD1F (D1)− ctD1 (1− F (D1))− ce
∫ D1

0

x1f1(x1)dx1 + ct

∫ ∞
D1

x1f1(x1)dx1

=ceD1
ct

ce + ct
− ctD1

ce
ce + ct

− ce
∫ D1

0

x1f1(x1)dx1 + ct

∫ ∞
0

x1f1(x1)dx1

− ct
∫ D1

0

x1f1(x1)dx1

=− (ce + ct)

∫ D1

0

x1f1(x1)dx1 + ctE[x1]

=− (ce + ct)E[x1|x1 < D1]
ct

ce + ct
+ ctE[x1]

=ct(E[x1]− E[x1|x1 < D1]) (1.5)

=ct(E[C1]− E[C1|C1 < D1])

Scheduling the procedure with the smaller value of (1.5) first, minimizes the expected
cost. Weiss (1990) shows that ordering by (1.5) is the same as ordering by variance for both
uniform and exponential distributions.

Denton et al. (2007) extend Weiss’s original sequencing argument and proposes it is
optimal to sequence procedures according to the convex ordering if it exists. If x1 ≤cx x2
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which means E[φ(x1)] ≤ E[φ(x1)] for all convex φ, then the sequence {1, 2} is optimal.

E[cost{1,2}] = E [ceE1 + ctT1]

= ceE[max (0, D1 − C1)] + ctE[max (0, C1 −D1)]

≤ ceE[max (0, D2 − C2)] + ctE[max (0, C2 −D2)]

= E[cost{1,2}]

It is important to note that convex ordering requires the expected procedure times to be the
same. (E[x1] = E[x2])

n Procedures Model

Now consider the case with more than two procedures (n > 2) to be scheduled: Given
the sequence the scheduler follows a similar procedure to calculate the start times for all n
procedures. Again without loss of generality, the first procedure can be assumed to start
at time 0. And the start time of other procedures is equal to the end time of its previous
procedure. The following analysis gives the end time of procedures. Since it is not necessary,
calculating the end time of the last procedure is ignored. The objective is :

E[cost] = E

[∑
j

ceEj +
∑
j

ctTj

]
=

∑
j

E [ce max(0, Dj − Cj) + ct max(0, Cj −Dj)]

We need to note that the objective is similar the sum of expected costs of n “Newsvendor”
problems. The objective is still convex because the sum of convex functions is convex. Note
that the estimate of jth end time depends on the distribution of the jth completion time which
is the convolution of distributions of procedure times for the previous procedures scheduled
and the current procedure.

• Early start is allowed: If the jth procedure can start as soon as the previous one, (j−1)th,
is finished, the completion time Cj is given by the distribution of Cj = Cj−1 + xj =∑j

i=1 xi. The corresponding scheduled end time can be computed as follows:

ct
ce + ct

= FCj(Dj) =

∫ Dj

0

fCj(Cj)dCj (1.6)

• Early start is not allowed: The scheduler first needs to determine the distribution of
the completion times, conditional on the scheduled end time of the previous procedures.
The convolution of Cj = max(Cj−1, Dj−1) + xj is used to calculate Dj in the following
way:

ct
ce + ct

= FCj(Dj) =

∫ Dj

0

fCj(Cj|D1, . . . , Dj−1)dCj (1.7)
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Ordering procedures by (1.5) is not always optimal for the more than 2 procedure case. Weiss
(1990) considers an example with two discrete distributions and shows that the optimal order
of the first two procedures might change, if there is a third procedure to be scheduled. The
objective of the case where there are more than 2 procedures:

E[cost] = E

[∑
j

ceEj +
∑
j

ctTj

]
=

∑
j

E [ce max(0, Dj − Cj) + ct max(0, Cj −Dj)]

=
∑
j

ct(E[Cj]− E[Cj|Cj < Dj]) (1.8)

Ordering procedures by (1.5) ignores the fact that completion time is the convolution of the
distributions of previous procedure times. The sequence minimizing each term in the sum
(1.8) doesn’t necessarily correspond the ordering procedures by (1.5).

For the case of n > 2, there is no such result to sequence the procedures as showed for the
case of n = 2. Motivated by the insight from the case of n = 2, Denton et al. (2007) propose
some easy-to-implement heuristics for sequencing procedures:

1. Sequence procedures in order of increasing mean of the duration

2. Sequence procedures in order of increasing standard deviation of duration

3. Sequence procedures in order of increasing coefficient of variation of duration

While minimizing expected earliness and tardiness cost, Denton and Gupta (2003), Denton
et al. (2007), Kaandorp and Koole (2007) try to minimize another OR performance measure:
expected overtime of the day. The expected overtime of the day is equal to the expected
tardiness of the last procedure scheduled on that day. So the cost associated with the expected
tardiness of the last procedure is expected to be higher relative to the cost associated with
the expected tardiness of the previous procedures. The new objective becomes:

E[cost] = E

[∑
j

ceEj +
∑
j

ctTj + coTn

]

Since appointment sequencing problem is combinatorial optimization problem, as a result
many studies propose heuristics or consider simulation. Sequencing the procedures in order
of increasing standard deviation of duration is the most commonly used heuristic.

1.3.3 Minimizing Expected Earliness and Tardiness using the
Empirical Distribution

Previous work has assumed distributions are known, but there is often not enough data to
accurately estimate underlying distributions. In this section, without assuming any parametric
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distribution, the empirical distribution function associated with the each procedure is directly
used. We apply the n-procedures formulation defined above in the empirical setting where
xj = {x1

j , . . . , x
Nj
j } represents the previous observations of duration of the procedure in the

jth order in the sequence determined by the heuristic. These observations in the data are

ranked in increasing order, so that x
(1)
j ≤ · · · ≤ x

(Nj)
j . Cj = {C1

j , . . . , C
N1···Nj
j } represents

(support) possible values of the completion time of the procedure in jth order, which is
calculated using the data. xj and Cj are multisets that do not necessarily have unique entries
so that they allow multiple instances of elements unlike sets. It is explicit that x1 = C1.

Given these assumptions, we apply the most common heuristic from the literature for
sequencing, increasing order of standard deviations. Note that for the trivial case of two
procedures after estimating start times using the equation (1.4), the sequence given by the
heuristic is optimal for some distributions. (e.g. normal, uniform and exponential distributions
comply.)

For instance take the case where ct = ce and there are only two independent procedures
which are exponentially distributed with parameter λ1 and λ2. The mean and the median
of the random variable distributed exponentially with the parameter of λ are 1

λ
and ln(2)

λ

respectively. It is shown in the previous section that setting D1 equal the median of the
first procedure’s duration (D1 = F−1

C1
( ct
ce+ct

) = F−1
C1

(0.5)) minimizes the the objective. The
resulting objective is:

E[|C1 −D1|] =

∫ D1

0

(D1 − x1)f1(x1)dx1 +

∫ ∞
D1

(x1 −D1)f1(x1)dx1

=

∫ ln(2)/λ

0

(ln(2)/λ− x1)λe−λx1dx1 +

∫ ∞
ln(2)/λ

(x1 − ln(2)/λ)λe−λx1dx1

=
(λx− ln(2) + 1)e−λx

λ

]ln(2)/λ

0

− (λx− ln(2) + 1)e−λx

λ

]∞
ln(2)/λ

=
ln(2)

λ

Since the resulting objective is a positive multiple of the standard deviation, sequencing
procedures in increasing order of standard deviation gives the optimal order if the underlying
distribution is exponential. This sequencing heuristic is not necessarily optimal in general.

Our SD-MAD algorithm using the empirical distributions follows:
Step 1: Sequence the procedures using the heuristic : ’Sequence procedures in order of

increasing standard deviation of duration’
Step 2: Estimate start times

Step 2 of the SD-MAD Algorithm to estimate the start times:

• If there are only two procedures to be scheduled, assume WLOG that the first procedure
is scheduled to start at time 0:
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1. Arrange the observed durations of the first procedure in the sequence proposed by
the heuristic in increasing order.

x
(1)
1 ≤ x

(2)
1 ≤ · · · ≤ x

(dN1·ct/(ce+ct)e)
1 ≤ · · · ≤ x

(N1)
1

2. Set the scheduled end time of the first procedure which is also the scheduled start
time of the second procedure equal to ct

(ct+ce)
-quantile of first procedure’s duration

(also the completion time).

D1 = x
(dN1·ct/(ce+ct)e)
1

• If there are more than two procedures to be scheduled, schedule the first two as it
explained above. To schedule the jth procedure (j ∈ 2, . . . , n− 1):

1. – If early start is allowed: Calculate all possible completion times, Cj, recursively

by summing all the elements of xj = {x1
j , . . . , x

Nj
j } with all the elements of

Cj−1 = {C1
j−1, . . . , C

N1···Nj−1

j−1 }, starting with the condition x1 = C1.

Cj = {xkj + C`
j−1 : k ∈ {1, . . . , Nj}, ` ∈ {1, . . . ,Mj−1}},

where Mj =
∏j

i=1 Ni

– Else if early start is not allowed: Calculate all possible completion times, Cj,

recursively by summing all the elements of xj = {x1
j , . . . , x

Nj
j } with all the

elements of Cj−1 = {max{Dj−1, C
1
j−1}, . . . ,max{Dj−1, C

N1···Nj−1

j−1 }} starting
with the condition x1 = C1.

Cj = {xkj + max{Dj−1, C
`
j−1} : k ∈ {1, . . . , Nj}, ` ∈ {1, . . . ,Mj−1}},

where Mj =
∏j

i=1 Ni

There will be N1 · · ·Nj possibilities and arrange those numbers in increasing order.

C
(1)
j ≤ C

(2)
j ≤ · · · ≤ C

(N1···Nj)
j

2. Set the scheduled end time of the task which is also equal to the scheduled start
time of the next task equal to ct

(ct+ce)
-quantile of jth procedure’s completion time.

D1 = C
(dN1···Nj ·ct/(ce+ct)e)
j = C

(dMj ċt/(ce+ct)e)
j
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1.3.4 Performance Bound of the Sequencing Heuristic Based on
the Standard Deviation of Procedure Duration

In this section, we explore the worst case performance of the SD-MAD heuristic described
above. Specifically, if z∗ is the optimal objective function value for an instance of the problem,
and zh is the objective function value resulting from applying the algorithm in the previous
section.

We show the worst-case bound on zh/z∗. First we find the bound for the case where there
are only two procedures and same earliness and tardiness penalties. Later we extend the
results to general case.

Two Procedures with ce = ct = 1

We assume that there are only two procedures to be scheduled, and the penalties for earliness
and tardiness are same. The objective is:

z∗ = min
D1

E[|C1 −D1|]

We use SD-MAD to determine the sequence and the start times of procedures. Since the
empirical distribution function puts mass 1

N
at each data point, xi1, the resulting objective

function value is:

E[|C1 −D1|] = E[|x1 −D1|]

=
1

N1

N1∑
i=1

|xi1 −D1|

Lemma 1. For a given sequence, Step 2 of the SD-MAD algorithm determines the optimal
start times of the procedures: If there are only two procedures and the penalties of earliness
and tardiness are same, the scheduled start time of the first procedure is 0 and the scheduled
start time of the second procedure is the median of the first procedure’s duration.

Proof. Let x
(1)
1 ≤ x

(2)
1 ≤ · · · ≤ x

(N1)
1 and for any D1 ≤ x

(1)
1 , as D1 increases each term in

the objective’s summation decreases. For any D1 greater than x
(1)
1 and less than x

(2)
1 as D1

increases, only the first term of the summation increases while each of the rest N1 − 1 terms
decreases at the same amount. This means the total decrease in the objective is greater
than the increase. D1 can be increased up to x

(dN1/2e)
1 so that the number of terms having a

decrease is still greater than the number of terms having an increase. Increasing D1 above
the median only increases the objective.

This lemma also can be interpreted as the mean absolute deviation MAD(D) = E[|x1−D|]
is minimized by the median of the random variable x1.

Now we focus on Step 1 of SD-MAD to measure how zh can be different from z∗ if
we sequence the procedure with lower standard deviation first. Since there are only two
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procedures, there are only 2! possible orderings. zp represents the objective function value of
the sequence where the procedure of type p scheduled first.

Lemma 2. The lower bound on the objective function of a given sequence where the procedure
type p is scheduled first:

zp ≥
σp√
Np

where Np is the number of observations of procedure type p and σp is the sample standard
deviation of procedure duration of type p.

Proof. We have the set, xp = {x1
p, . . . , x

Np
p }, of observed durations of the procedure type p

(from the data) and its median and its mean are defined as mp and µp respectively.

(zp)
2 =

(
1

Np

Np∑
i=1

|xip −mp|

)2

≥ 1

N2
p

Np∑
i=1

|xip −mp|2 (1.9)

≥ 1

N2
p

Np∑
i=1

|xip − µp|2 (1.10)

=
1

N2
p

Np∑
i=1

(xip − µp)2

=
1

Np

σ2
p

(1.9) follows from the multinomial theorem, powers of the sums with positive entries (i.e.
ai > 0): (∑

i

ai

)2

=
∑
i

∑
j

aiaj =
∑
i

a2
i +

∑
i

∑
j 6=i

aiaj ≥
∑
i

a2
i

(1.10) follows from the fact that the sum of squared deviations is minimized when the
deviations are calculated around the sample mean.

Lemma 3. The upper bound on the objective function of a given sequence where the procedure
type p is scheduled first is:

zp ≤ σp

where σp is the sample standard deviation of procedure duration of type p.
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Proof. Using the same notation in the previous lemma:

zp =
1

Np

Np∑
i=1

|xip −mp|

≤ 1

Np

Np∑
i=1

|xip − µp| (1.11)

=
1

Np

√√√√( Np∑
i=1

|xip − µp|

)2

=
1

Np

√√√√( Np∑
i=1

1 · |xip − µp|

)2

≤ 1

Np

√√√√Np

Np∑
i=1

(xip − µp)2 (1.12)

= σp

(1.11) follows from the lemma 1, the mean absolute deviations is minimized by the median of
the sample, and (1.12) follows from the Cauchy-Schwarz inequality.

The optimal objective function z∗ is less than or equal to the objective values of any given
sequence so that the upper bounds for both sequences found via Lemma 3 are also an upper
bounds on z∗. Also, z∗ should be greater than the smallest lower bound calculated for both
orderings using the Lemma 2. Thus:

min
p

{
σp√
Np

}
≤ z∗ ≤ min

p
σp

The SD-MAD algorithm schedules the procedure with smallest standard deviation first,
so,

minp σp√
Np

≤ zh ≤ min
p
σp

We can conclude that zh

z∗
≤ minp σp

minp

{
σp√
Np

} . In other words the ratio grows as the square root

of number of observations of the procedure with relatively larger sample set grows. If the
standard deviation of both procedures are equal to each other the bound will be

√
maxp{Np},

which is also the maximum value the ratio can have.
We would like to prove that this is the tightest bound achievable. In the next section we

formulate a mathematical programming model to find a class of instances maximizing the
expected total tardiness and earliness and another class of instances minimizing the expected
total tardiness and earliness.
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Performance Bound of the Heuristic

We consider a setting in which we have procedures with equal standard deviation. Among all
such sets of procedures we would like to find a class of examples maximizing and another
class of examples minimizing the objective. We formulate a mathematical programming
model where the decision variables, z = {z1, . . . , zN}, are the sample data points, m denotes
their median and µ is their mean.

Pmin min
1

N

N∑
i=1

|zi −m|

s.t.

∑N
i=1 z

2
i

N
−

(∑N
i=1 zi
N

)2

= C2

zi ≥ 0 ∀i

Pmax max
1

N

N∑
i=1

|zi −m|

s.t.

∑N
i=1 z

2
i

N
−

(∑N
i=1 zi
N

)2

= C2

zi ≥ 0 ∀i
(1.13)

In order to visualize the model we set the number of data points (N) equal to 5 (z =
{z1, . . . , z5}) and rewrite the model with an assumption of 0 ≤ z1 ≤ · · · ≤ z5 which means z3

is the median (m). The resulting mathematical models are:

min
1

5
(z4 + z5 − z1 − z2)

s.t.

∑5
i=1 z

2
i

5
−

(∑5
i=1 zi
5

)2

= C2

z1 ≥ 0

z2 − z1 ≥ 0

z3 − z2 ≥ 0

z4 − z3 ≥ 0

z5 − z4 ≥ 0

AND

max
1

5
(z4 + z5 − z1 − z2)

s.t.

∑5
i=1 z

2
i

5
−

(∑5
i=1 zi
5

)2

= C2

z1 ≥ 0

z2 − z1 ≥ 0

z3 − z2 ≥ 0

z4 − z3 ≥ 0

z5 − z4 ≥ 0

Theorem 1. Given a ∈ R≥0 there exist b ∈ R≥0 such that the optimal procedure times
maximizing the objective is in the following form: (z1 = a, . . . , zk = a, zk+1 = b, . . . , zN = b)
if N is even, (z1 = a, . . . , zk = a, zk+1 = a+b

2
, zk+2 = b, . . . , zN = b) if N is odd, where

k = bN/2c and the variance constraint (first constraint in (1.13)) is met.

Theorem 2. Given c ∈ R≥0 there exist d ∈ R≥0 such that the optimal procedure times
minimizing the objective is in form of: (z1 = c, . . . , zN−1 = c, zN = d) and the variance
constraint (first constraint in (1.13)) is met.

To prove both theorems above, we simplify and redefine the model. It is important to
point out that among those N data points we only need to know which one is the median:
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Half of the points would be greater than or equal to that point whereas the rest are less
than or equal to that. For simplicity, WLOG we assume the median is equal to 0, half of the
data points (w) would be non-negative and the rest (y) would be non-positive. (We shift
all the points so that the median will be 0, but this process does not change the variance.)
The objective can be rewritten as the following, where k = bN/2c, N is the number of data
points:

`(w, y) =
k∑
i=1

wi −
k∑
i=1

yi

The variance of the data points can be calculated as:

G2(w, y) =

∑k
i=1w

2
i +

∑k
i=1 y

2
i

N
−

(∑k
i=1wi +

∑k
i=1 yi

N

)2

Since the variance is equal to a constant, (C2 (first constraint in (1.13))), without loss of
generality that constant is set equal to 1. The mathematical model becomes:

P1min min `(w, y)

s.t. G2(w, y) = 1

wi ≥ 0 ∀i ∈ [1, . . . , k]

yi ≤ 0 ∀i ∈ [1, . . . , k]

AND

P1max max `(w, y)

s.t. G2(w, y) = 1

wi ≥ 0 ∀i ∈ [1, . . . , k]

yi ≤ 0 ∀i ∈ [1, . . . , k]

The procedure times are of course non-negative, but the optimal solution to P1 consists
of both positive and negative numbers. With a proper scaling the optimal solution to the
model above can be made non-negative. The optimal solution of P is equal to the optimal
solution of P1 multiplied by C (standard deviation of the data points).

P1 is not convex, but if we swap the objective and the variance constraint, the resulting
model will be convex. P1min corresponds to P2max whereas P1max corresponds to P2min.

P2max max G2(w, y)

s.t. `(w, y) = 1

wi ≥ 0 ∀i ∈ [1, . . . , k]

yi ≤ 0 ∀i ∈ [1, . . . , k]

AND

P2min min G2(w, y)

s.t. `(w, y) = 1

wi ≥ 0 ∀i ∈ [1, . . . , k]

yi ≤ 0 ∀i ∈ [1, . . . , k]

Lemma 4. After scaling the variables in the optimal solution of P2, the optimal solution of
P1 will be obtained.

Proof. Lets (wP1, yP1) and (wP2, yP2) be the minimizers of P1 and maximizers of P2 respec-
tively, and define two strictly positive variables `1 and G2:

`1 = `(wP1, yP1) G2
2 = G2(wP2, yP2)
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`1 is not necessarily equal to 1, so (wP1, yP1) may not be a feasible solution of P2. After
dividing each variable (wP1, yP1) by `1, the resulting set is a feasible solution to P2

`(wP1/`1, yP1/`1) =
k∑
i=1

wiP1

`1

−
k∑
i=1

yiP1

`1

=
`(wP1, yP1)

`1

= 1

Since (wP2, yP2) are the maximizers of P2

G2
2 = G2(wP2, yP2) ≥ G2(wP1/`1, yP1/`1) =

G2(wP1, yP1)

`2
1

=
1

`2
1

G2
2 is not necessarily equal to 1, so (wP2, yP2) may not be a feasible solution of P1. After

dividing each variable (wP2, yP2) by G2, the resulting set is a feasible solution to P1

G2(wP2/G2, yP2/G2)

=

∑k
i=1(wiP2

/G2)2 +
∑k

i=1(yiP2
/G2)2

N
−

(∑k
i=1 w

i
P2
/G2 +

∑k
i=1 y

i
P2
/G2

N

)2

=
G2(wP2, yP2)

G2
2

= 1

Since (wP1, yP1) are the minimizers of P1

`1 = `(wP1, yP1) ≤ `(wP2/G2, yP2/G2) =
`(wP2, yP2)

G2

=
1

G2

G2 is the standard deviation and there are at least two distinct numbers in the data set so
it is strictly positive, `1 is by definition strictly positive. Since G2

2 ≥ 1
`21

and `1 ≤ 1
G2

hold,

`1 = 1
G2

. By scaling the optimal solutions of one model we may obtain the optimal solution
of the other.
We follow the same steps to prove that after scaling the minimiziers of P2, the maximizers
of P1 can be computed.

Lemma 5.
(√

N
N−1

, . . . ,
√

N
N−1

, 0,−
√

N
N−1

, . . . ,−
√

N
N−1

)
is the maximizer of P1, if N is

odd. If N is even, (1, . . . , 1,−1, . . . ,−1) is the maximizer of P1.

Proof. Solving P2 is easier relative to solving P1, since the objective function of P2 is convex
and the constraints are linear. Since P2 is convex, any local minimum is a global minimum.
If the proposed point satisfies the KKT conditions, then it is the global minimum.

KKT Conditions of P2min:

1.

k∑
i=1

wi −
k∑
i=1

yi = 1
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− wi ≤ 0 ∀i ∈ {1, . . . , k}
yi ≤ 0 ∀i ∈ {1, . . . , k}

2. 

2w1 − 2
(∑k

i=1 wi+
∑k
i=1 yi

N

)
...

2wk − 2
(∑k

i=1 wi+
∑k
i=1 yi

N

)
2y1 − 2

(∑k
i=1 wi+

∑k
i=1 yi

N

)
...

2yk − 2
(∑k

i=1 wi+
∑k
i=1 yi

N

)


+ µ



1
...
1
−1
...
−1


+



−λ1
...
−λk
γ1
...
γk


= 0

3.

λi ≥ 0 ∀i ∈ {1, . . . , k}
γi ≥ 0 ∀i ∈ {1, . . . , k}

4.

λiwi = 0 ∀i ∈ {1, . . . , k}
γiyi = 0 ∀i ∈ {1, . . . , k}

If N is even, (w1 = 1/N, . . . , wk = 1/N, y1 = −1/N, . . . , yk = −1/N) satisfies the KKT
conditions, if N is odd, (w1 = 1/(N − 1), . . . , wk = 1/(N − 1), wk+1 = 0, y1 = −1/(N −
1), . . . , yk = −1/(N − 1)) satisfies the KKT conditions.

If N is even, (w1 = 1/N, . . . , wk = 1/N, y1 = −1/N, . . . , yk = −1/N) is the minimizer of
P2. After the proper scaling, (1, . . . , 1,−1, . . . ,−1) is the maximizer of P1.
If N is odd, (w1 = 1/(N − 1), . . . , wk = 1/(N − 1), wk+1 = 0, y1 = −1/(N − 1), . . . , yk =

−1/(N − 1)) is the minimizer of P2.
(√

N
N−1

, . . . ,
√

N
N−1

, 0,−
√

N
N−1

, . . . ,−
√

N
N−1

)
is the

maximizer of P1 after the proper scaling.

Lemma 6.
(

N√
N−1

, 0, . . . , 0
)

is the minimizer of P1.
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Proof. Thanks to the convexity of the model, the global maximum is at the extreme points
(basic feasible solution) of the feasible set. The extreme points of P2 are in the form of
(0,. . . ,0,1,0,. . . ,0).

(w1 = 1, w2 = 0, . . . , yk = 0) is one of the maximizers of P2. This set is scaled to satisfy

the equality constraint in P1. The scaled set,
(

N√
N−1

, 0, . . . , 0
)

, is the minimizer of P1.

It is important to point out:

• The minimum objective value of P1 for a fixed number of data points N is equal to
N√
N−1

.

• The maximum objective value of P1 is
√
N(N − 1) if N is odd, N if N is even.

Theorem 1 and Theorem 2 follow from Lemma 6 and 5 respectively. Because the optimal
solution of P1 could be scaled so that their variance would be equal to C in P, and a constant
can be added to each point so that all data points will be positive. This linear transformation
allows us to find the optimal solution of P.

Theorem 3. The growth rate of the ratio of maximum objective function value to minimum
objective function value using scheduling rule SD-MAD grows is O(

√
N).

Proof. The optimal objective values of P and P1 only differs by a scalar (Cp depending on
the standard deviation of procedure type p). Hence we bound the ratio of P instead. There
are only two possible orderings. The optimal objective function z∗ is less than or equal to the
upper bounds of objective values of any given sequence and also greater than the smallest
lower bound calculated.

min
p

{
Np√
Np − 1

}
≤ z∗P1 ≤ min

p
Np

If the variances of both procedures are same, SD-MAD would be indifferent between possible
orderings. So

min
p

{
Np√
Np − 1

}
≤ zhP1 ≤ min

p
Np

This means the ratio of the maximum value to the minimum value of P grows at rate
O(
√
N).

2 Procedures with any Penalties

If the penalties of being tardy and early are different, the objective is:

z∗ = min
D1

ceE[max (0, D1 − C1)] + ctE[max (0, C1 −D1)]



CHAPTER 1. APPOINTMENT SCHEDULING 27

After applying the SD-MAD algorithm, the resulting objective function value where
k = b ct

ct+ce
Nc is:

1

N

k∑
i=1

ce
(
D1 − xi1

)
+

1

N

N∑
i=k

ct
(
xi1 −D1

)

Lemma 7. For a given sequence, Step 2 of the SD-MAD algorithm determines the optimal
start times of procedures: If there are only two procedures, the scheduled start time of the first
procedure is 0 and the scheduled start time of the second procedure is ct-th (ct + ce)-quantile
of first procedure’s duration.

Proof. Let x
(1)
1 ≤ x

(2)
1 ≤ · · · ≤ x

(N1)
1 and for any D1 ≤ x

(1)
1 , as D1 increases each term in

the objective’s summation decreases. For any D1 greater than x
(1)
1 and less than x

(2)
1 as D1

increases only the first term of the summation increases by an amount proportional to ce
while each of the rest N1 − 1 terms decreases by an amount proportional to ct. This means
the total decrease in the objective is greater than the increase. D1 can be increased up to
x

(dN1·ct/(ce+ct)e)
1 so that the amount of decrease in objective function value is still greater than

the amount of increase increase. Increasing D1 above x
(dN1·ct/(ce+ct)e)
1 only increases the value

of the objective.

Again we consider a setting which we have procedures with equal standard deviation.
Among all such set of procedures we would like to find two classes of examples maximizing
and minimizing the objective. We formulate a mathematical programming model where the
decision variables, z = {z1, . . . , zN}, are the sample data points, m denotes their median and
µ is their mean.

Pmin min
1

N

k∑
i=1

ce (D1 − zi) +
1

N

N∑
i=k

ct (zi −D1)

s.t.

∑N
i=1 z

2
i

N
−

(∑N
i=1 zi
N

)2

= C2

zi ≥ 0 ∀i

Pmax max
1

N

k∑
i=1

ce (D1 − zi) +
1

N

N∑
i=k

ct (zi −D1)

s.t.

∑N
i=1 z

2
i

N
−

(∑N
i=1 zi
N

)2

= C2
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zi ≥ 0 ∀i

Theorem 4. Given a ∈ R≥0 there exist b ∈ R≥0 such that the optimal procedure times
maximizing the objective is in the following form: (z1 = a, . . . , zN−k = a, zN−k+1 = b, . . . , zN =
b) where k = b ct

ct+ce
Nc, and the variance constraint (first constraint in (1.13)) is met.

Theorem 5. Given c ∈ R≥0 there exist d ∈ R≥0 such that the optimal procedure times
minimizing the objective is in form of: (z1 = c, . . . , zN−1 = c, zN = d), and the variance
constraint (first constraint in (1.13)) is met.

To prove this theorem we follow the same steps in previous section. We use the same
approach: transform the problem such that k = b ct

ct+ce
Nc of the data points (yi) will be

non-positive and the rest (wi) non-negative so that the inverse of the empirical distribution
computed at the critical fractile (ct/(ce + ct)) is 0. The objective:

`(w, y) =
N−k∑
i=1

ctwi −
k∑
i=1

ceyi

The variance of the data points can be calculated same as before:

G2(w, y) =

∑N−k
i=1 w2

i +
∑k

i=1 y
2
i

N
−

(∑N−k
i=1 wi +

∑k
i=1 yi

N

)2

The model becomes similar to the model in the previous section:

P1min min `(w, y)

s.t. G2(w, y) = 1

wi ≥ 0 ∀i ∈ [1, . . . , N − k]

yi ≤ 0 ∀i ∈ [1, . . . , k]

P1max max `(w, y)

s.t. G2(w, y) = 1

wi ≥ 0 ∀i ∈ [1, . . . , N − k]

yi ≤ 0 ∀i ∈ [1, . . . , k]

Since P1 is not convex, we solve P2 which is:

P2max max G2(w, y)

s.t. `(w, y) = 1

wi ≥ 0 ∀i ∈ [1, . . . , N − k]

yi ≤ 0 ∀i ∈ [1, . . . , k]

P2min min G2(w, y)

s.t. `(w, y) = 1

wi ≥ 0 ∀i ∈ [1, . . . , N − k]

yi ≤ 0 ∀i ∈ [1, . . . , k]

Although there is a minor change in the objective function, Lemma 4 can be proven
following the same steps. So instead of solving P1, an easier model, P2 can be solved to get
the optimal solution of P1.

Lemma 8. P1 is maximized by wi’s being equal to each other, yi’s being equal to each other
and their values being determined by the first constraint of P1.
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Proof. The global minimum of P2 should satisfy the KKT conditions below:
KKT Conditions of P2 (minimization):

1.

N−k∑
i=1

ctwi −
k∑
i=1

ceyi = 1

− wi ≤ 0 ∀i ∈ {1, . . . , N − k}
yi ≤ 0 ∀i ∈ {1, . . . , k}

2. 

2w1 − 2
(∑N−k

i=1 wi+
∑k
i=1 yi

N

)
...

2wN−k − 2
(∑N−k

i=1 wi+
∑k
i=1 yi

N

)
2y1 − 2

(∑N−k
i=1 wi+

∑k
i=1 yi

N

)
...

2yk − 2
(∑N−k

i=1 wi+
∑k
i=1 yi

N

)


+ µ



ct
...
ct
ce
...
ce


+



−λ1
...
−λk
γ1
...
γk


= 0

3.

λi ≥ 0 ∀i ∈ {1, . . . , k}
γi ≥ 0 ∀i ∈ {1, . . . , k}

4.

λiwi = 0 ∀i ∈ {1, . . . , k}
γiyi = 0 ∀i ∈ {1, . . . , k}

If N is an integer multiple of (ct+ce) , (w1 = ct+ce
2ctceN

, . . . , wN−k = ct+ce
2ctceN

, y1 = − ct+ce
2ctceN

, . . . , yk =

− ct+ce
2ctceN

) satisfies the KKT conditions. Otherwise wi’s are equal to each other, yi’s are equal
to each other and their values are determined by the first constraint of P2.

After scaling the minimizer of P2, the maximizer of P1 can be found. In the optimal
solution of P1 wi’s being equal to each other, yi’s being equal to each other and their values
being determined by the first constraint of P1.



CHAPTER 1. APPOINTMENT SCHEDULING 30

Lemma 9.
(

N√
N−1

, 0, . . . , 0
)

is the minimizer of P1.

Proof. The objective function of P2 is convex and the constraints are linear. Global maximum
is at the extreme points of the new P2 which are in the form of (1/ce, 0, . . . , 0) or (0, . . . , 0, 1/ct).

After scaling (1/ce, 0, . . . , 0) to satisfy the first constraint of P1,
(

N√
N−1

, 0, . . . , 0
)

is found

to be the minimizer of P1.

It is important to point out:

• The minimum objective value of P1 for a fixed number of data points N is equal to
K1

max{ct,ce}N√
N−1

.

• The maximum objective value of P1 is K2 max{ct, ce}N .

where K’s are constants to make sure the variance of the data points is equal to the desired
value. The ratio of the maximum value to the minimum value grows at a rate O(

√
N).

Theorem 4 and Theorem 5 follow from Lemma 8 and Lemma 9 respectively as explained
in the previous section.

Theorem 6. The growth rate of the ratio of maximum objective function value to minimum
objective function value using scheduling rule SD-MAD grows is O(

√
N).

1.3.5 Worst Case Given the Variance

Theorem 7. Given the variance, C2, and the number of data points, N , taken from a sample,
the maximum value empirical distribution’s range can take is equal to

√
2NC2.

This setting can be formulated as a mathematical program model where the decision
variables, z = {z1, . . . , zN}, are the sample data points, m denotes their median and µ is
their mean.

Pmax max max(zi)−min(zi)

s.t.

∑N
i=1 z

2
i

N
−

(∑N
i=1 zi
N

)2

= C2

zi ≥ 0 ∀i

For simplicity, WLOG we assume the median is equal to 0, half of the data points (w) would
be non-negative and the rest (y) would be non-positive as before. After adding constraints
which enfoce the model to make w1 being the largest and y1 being the smallest data points,
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the objective can be rewritten as the following, where k = bN/2c, N is the number of data
points:

`(w, y) = w1 − y1

The variance of the data points can be calculated as:

G2(w, y) =

∑k
i=1w

2
i +

∑k
i=1 y

2
i

N
−

(∑k
i=1wi +

∑k
i=1 yi

N

)2

Since the variance is equal to a constant, (C2 (first constraint in (1.13))), without loss of
generality that constant is set equal to 1.

P3max max `(w, y)

s.t. G2(w, y) = 1

w1 ≥ wi ∀i ∈ [2, . . . , k]

y1 ≤ yi ∀i ∈ [2, . . . , k]

wi ≥ 0 ∀i ∈ [1, . . . , k]

yi ≤ 0 ∀i ∈ [1, . . . , k]

P4min min G2(x, y)

s.t. `(x, y) = 1

w1 ≥ wi ∀i ∈ [2, . . . , k]

y1 ≤ yi ∀i ∈ [2, . . . , k]

xi ≥ 0 ∀i ∈ [1, . . . , k]

yi ≤ 0 ∀i ∈ [1, . . . , k]

Lemma 10. After scaling the variables in the optimal solution of P4, the optimal solution
of P3 will be obtained.

Proof. This proof is identical to the proof of the Lemma 4.

Lemma 11.
(√

N
2
, 0, . . . , 0,−

√
N
2

)
is the maximizer of P3.

Proof. Solving P4 is easier relative to solving P3, since the objective function of P4 is convex
and the constraints are linear. Since P4 is convex, any local minimum is a global minimum.
If the proposed point satisfies the KKT conditions, then it is the global minimum.

KKT Conditions of P4min:

1.

w1 − y1 = 1
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wi − w1 ≤ 0 ∀i ∈ [2, . . . , k]

y1 − yi ≤ 0 ∀i ∈ [2, . . . , k]

− wi ≤ 0 ∀i ∈ {1, . . . , k}
yi ≤ 0 ∀i ∈ {1, . . . , k}

2. 

2w1 − 2
(∑k

i=1 wi+
∑k
i=1 yi

N

)
...

2wk − 2
(∑k

i=1 wi+
∑k
i=1 yi

N

)
2y1 − 2

(∑k
i=1 wi+

∑k
i=1 yi

N

)
...

2yk − 2
(∑k

i=1 wi+
∑k
i=1 yi

N

)


+ µ



1
...
1
−1
...
−1


+



−λ1
...
−λk
γ1
...
γk


+



−β2 − β3 − · · · − βk
β2
...
βk
0
...
0


+



0
...
0

η2 + η3 + · · ·+ ηk
−η2

...
−ηk


= 0

3.

βi ≥ 0 ∀i ∈ {2, . . . , k}
ηi ≥ 0 ∀i ∈ {2, . . . , k}
λi ≥ 0 ∀i ∈ {1, . . . , k}
γi ≥ 0 ∀i ∈ {1, . . . , k}

4.

βi(wi − w1) = 0 ∀i ∈ [2, . . . , k]

ηi(y1 − yi) = 0 ∀i ∈ [2, . . . , k]

λiwi = 0 ∀i ∈ {1, . . . , k}
γiyi = 0 ∀i ∈ {1, . . . , k}
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(w1 = 0.5, w2 = 0, . . . , wk = 0, y1 = −0.5, y2 = 0, . . . , yk = 0) satisfies the KKT conditions.
(w1 = 0.5, w2 = 0, . . . , wk = 0, y1 = −0.5, y2 = 0, . . . , yk = 0) is the minimizer of P4. After

the proper scaling,
(√

N
2
, 0, . . . , 0,−

√
N
2

)
is the maximizer of P3.

Theorem 7 follows from Lemma 11. Because the optimal solution of P3 could be scaled
so that their variance would be equal to C2 as in Pmax. The range is equal to the maximum
value minus the minimum value which is equal to

√
2NC2.
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Chapter 2

Data-Driven Appointment Scheduling

Notation

Dj Scheduled end time (due date) of jth task
∆j Scheduled time allowance of jth task
xj Random duration of jth task with density fj and cdf Fj
Nj Number of observations of jth task

xj = {x1
j , . . . , x

Nj
j } Previous observations of duration of jth task

Cj Actual end (completion) time of jth task with density fCj
and cdf FCj

Sj Actual start (appointment) time of jth task
ce Penalty per unit time of earliness (c0 or α)
ct Penalty per unit time of tardiness (cuor β)
Ej Earliness of jth task
Tj Tardiness of jth task
n Number of tasks to be scheduled per day per room

In this chapter, we first analyze the Appointment Scheduling Problem’s objective function
– the expected weighted earliness and tardiness computed over the empirical joint distribution
of procedures. We study the continuity and convexity of the objective function and conditions
under which there is an integral optimal schedule. Secondly, we briefly review methods for
computing the optimizer given the sequence of the procedures. We also present approaches
for constraining the search space containing the minimizer to facilitate online decision-making
about the problem as new data points arrive. Lastly, we develop sequencing heuristics for
the problem.

2.1 Properties of the Objective Function

xj = {x1
j , . . . , x

Nj
j } represents the previous observations of duration of the procedure in

the j’th position in the given sequence, where each element is a positive real number.
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Cj = {C1
j , . . . , C

Mj

j }, where Mj =
∏j

i=1 Ni, represents (the support of) possible values of the
completion time of the procedure in j’th order, which is calculated using the duration of the
previous procedures (x1, . . . ,xj) and their scheduled end times (D1, . . . , Dj). xj and Cj are
multisets that do not necessarily have unique entries so that they allow multiple instances of
elements unlike sets. Note that x1 = C1. The objective function is

∑
j

E[max{ce(Dj − Cj), ct(Cj −Dj)}] =
n∑
j=1

1

Mj

Mj∑
i=1

max{ce(Dj − Ci
j), ct(C

i
j −Dj)} (2.1)

where C1 = x1, Cj = {xkjj + max{Dj−1, C
`
j−1} : kj ∈ {1, . . . , Nj}, ` ∈ {1, . . . ,Mj−1}},

Mj =
∏j

`=1 N` and Dj is the scheduled end time of the j’th procedure and also the scheduled
start time of j + 1’st procedure. In other words there is no idle time scheduled between any
two procedures.

Theorem 8. The objective function (2.1) is a convex, continuous piecewise linear function.

Proof. We prove the continuity first. We need two properties to prove the continuity of each
term in the summation of the objective function.

• Let f and g be continuous functions and h(x) = max{f(x), g(x)}. Suppose there is
x0 such that f(x0) = g(x0). Given ε > 0, we need to show that |h(x)− h(x0)| < ε for
|x − x0| < δ, according to the definition of the continuous function. Since f and g
are continuous, given any ε the following needs to hold: |f(x)− f(x0)| < ε provided
|x−x0| < δf and |g(x)−g(x0)| < ε provided |x−x0| < δg. Since h(x0) = f(x0) = g(x0),
for ε there exists some number δ such that |x− x0| < δ satisfying |h(x)− h(x0)| < ε.
So h(x) = max{f(x), g(x)} is a continuous function.

• Suppose f and g are functions such that g is continuous at x0, and f is continuous at
g(x0), f(g(x)) is continuous at x0.

Each term in the summation is continuous function. The sum of a finite number of
continuous functions is a continuous function.

Next we prove that the objective function is a piecewise linear function. Denton and
Gupta (2003) reformulate the problem and revise the notation to prove the convexity.
We use our notation: dj denotes the time allowance for the procedure j. We formulate
Mn =

∏n
`=1 N` different scenarios such that each scenario i has one observation from each

procedure (xi1, . . . , x
i
n). Ei

j and T ij denote the earliness and the tardiness of the procedure j
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under the scenario i respectively.

minimize
n∑
j=1

1

Mn

(
Mn∑
i=1

ctT
i
j +

Mn∑
i=1

1

Mi

ceE
i
j

)
subject to d1 − Ei

1 + T i1 = xi1, i = 1, . . . ,Mn

d2 − Ei
2 − T i1 + T i2 = xi2, i = 1, . . . ,Mn

...
...

dn − Ei
n − T in−1 + T in = xin, i = 1, . . . ,Mn

dj ≥ 0 j = 1, . . . , n
T ij ≥ 0, Ei

j ≥ 0 j = 1, . . . , n, i = 1, . . . ,Mn

(2.2)

Since the objective (2.1) can be translated into the linear programming model (2.2), this
problem is convex.

Theorem 9. The objective function (2.1) is Lipschitz continuous.

Proof. Eriksson et al. (2013) proved that the linear combination c1f1 + · · ·+ cnfn of Lipschitz
continuous functions, f1, . . . , fn on I with Lipschitz constants L1, . . . , Ln respectively, is
Lipschitz continuous on I with Lipschitz constant |c1|L1 + · · ·+ |cn|Ln. Following from this
theorem, it is trivial to derive the Lipschitz constant of the objective function after computing
the Lipschitz constant of each term in the summation.

f i(D1, . . . , Dn) =
1

Mj

n∑
j=1

max{ce(Dj − Ci
j), ct(C

i
j −Dj)}

f i(.) is piecewise linear function and any continuous piecewise linear function is globally
Lipschitz continuous. If the function is evaluated at any point (D1, . . . , Dn), it will be in the
form of f i(D1, . . . , Dn) = c1D1 + · · ·+ cnDn +K where c1, . . . , cn and K are constants. By
the definition of the function −max{ce, ct} ·n ≤ c1 ≤ max{ce, ct} ·n, −max{ce, ct} · (n−1) ≤
c2 ≤ max{ce, ct} · (n− 1),. . . ,−max{ce, ct} ≤ cn ≤ max{ce, ct}. If we choose any two points
D1 = (D1

1, . . . , D
1
n), D2 = (D2

1, . . . , D
2
n) in the domain of the objective function, if there exists

a positive real constant κ such that:

|f i(D1)− f i(D2)| ≤ κ|D1 −D2|.

the smallest value of κ is equal to max{ce, ct} · n which is equal to the Lipschitz constant of

f i(.). The Lipschitz constant of f(.) =
∑Mn

i=1
fi(.)
Mn

is also equal to max{ce, ct} · n.
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Theorem 10. There exist one integral optimal solution to the appointment scheduling problem
with the objective (2.1).

We need to show that the equivalent LP model has an integral optimal solution. We define
three matrices such that d has the coefficients of (d1, . . . , dn), E contains the coefficients
of Ej

i for all j ∈ {1, . . . , n} and i ∈ {1, . . . ,Mn} and T has the coefficients of T ji for all
j ∈ {1, . . . , n} and i ∈ {1, . . . ,Mn}.

d =

d1 d2 d3 · · · dn



1 0 0 · · · 0 i = 1
0 1 0 · · · 0 i = 1
...

...
...

. . .
...

...
1 0 0 · · · 0 i = 2
0 1 0 · · · 0 i = 2
...

...
...

. . .
...

...
0 0 0 · · · 1 i = Mn

E =

E1
1 E1

2 E1
3 · · · E2

1 E2
2 E2

3 · · · EMn
n



−1 0 0 · · · 0 0 0 · · · 0 i = 1
0 −1 0 · · · 0 0 0 · · · 0 i = 1
...

...
...

. . .
...

...
...

. . .
...

...
0 0 0 · · · −1 0 0 · · · 0 i = 2
0 0 0 · · · 0 −1 0 · · · 0 i = 2
...

...
...

. . .
...

...
...

. . .
...

...
0 0 0 · · · 0 0 0 · · · −1 i = Mn

T =

T 1
1 T 1

2 T 1
3 T 1

4 · · · T 2
1 T 2

2 T 2
3 T 2

4 · · · TMn
n



1 0 0 0 · · · 0 0 0 0 · · · 0 i = 1
−1 1 0 0 · · · 0 0 0 0 · · · 0 i = 1
0 −1 1 0 · · · 0 0 0 0 · · · 0 i = 1
...

...
...

...
. . .

...
...

...
...

. . .
...

...
0 0 0 0 · · · 1 0 0 0 · · · 0 i = 2
0 0 0 0 · · · −1 1 0 0 · · · 0 i = 2
0 0 0 0 · · · 0 −1 1 0 · · · 0 i = 2
...

...
...

...
. . .

...
...

...
...

. . .
...

...
0 0 0 0 · · · 0 0 0 0 · · · 1 i = Mn

After concatenating d, E and T horizontally, the resulting matrix is the constraint matrix
A.

A = [d|E|T]
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Theorem 11. (Ghouila-Houri, 1962) An m× n integral matrix A with entries aij is totally
unimodular if and only if for each subset of the rows R ⊆ {1, . . . ,m} there is a partition
R = R1 ∪R2 such that∑

i∈R1

aij −
∑
i∈R2

aij ∈ {−1, 0, 1} ∀j ∈ {1, . . . , n}.

Remark. Since the the transpose of a totally unimodular matrix is also totally unimodular
one can exchange the roles of the rows and the columns in Theorem 11.∑

j∈R1

aij −
∑
j∈R2

aij ∈ {−1, 0, 1} ∀i ∈ {1, . . . ,m}.

Theorem 10 follows from Theorem 11. First we assign the coefficients of the variables
dj ∈ R alternatively to R1 and R2 in lexicographic order. Without loss of generality assume
dk is the first one assigned to R1, if Tk ∈ R, assign Tk to R2. Ek is assigned to the opposite
subset with respect to Tk−1. If Tk is not in R, then the only thing to consider is that Tk−1

and Ek should be in opposite subsets. Assume dk+t is the second in the lexicographic order,
which is in R2. Tk + 1, . . . , Tk + t− 1 ∈ R are assigned to R2 and Tk+t ∈ R to R1. The main
idea is to separate dj from Tj and Tj−1 from Ej. Similar choices need be done for remaining
variable coefficients.

After these assignments we find a partition of the LP-model (2.2) which satisfies the
Theorem 11. Thus, we conclude that the constraint matrix of the LP-model (2.2) is totally
unimodular.

Complexity of the Objective Function Evaluation

The objective function is:

∑
j

E[max{ce(Dj − Cj), ct(Cj −Dj)}] =
n∑
j=1

1

Mj

Mj∑
i=1

max{ce(Dj − Ci
j), ct(C

i
j −Dj)} (2.3)

where C1 = x1, Cj = {xkjj + max{Dj−1, C
`
j−1} : kj ∈ {1, . . . , Nj}, ` ∈ {1, . . . ,Mj−1}}, Mj =∏j

`=1 N`. The complexity to compute the set Cj is O(Mj), and the complexity of computing

the expected weighted earliness and tardiness ( 1
Mj

∑Mj

i=1 max{ce(Dj − Ci
j), ct(C

i
j −Dj)}) is

O(Mj) too. The complexity to evaluate sum of the expected weighted earliness and tardiness
of all procedures is O(Mn).

As the number of observations of a procedure increases, the complexity to compute the
objective function given the schedule, D, grows exponentially. Assuming the procedure
duration data has only integer entries and xmax is the maximum possible value of processing
durations. Begen (2010) computes the objective function value of an integer schedule, D,
in O(n2x2

max) using recursive equations for the probability distributions of the start time,
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completion time, tardiness and earliness of each procedure. He creates arrays of size j · xmax
for all procedures j ∈ {1, . . . , n} which hold all possible integer values of completion time Cj
and start time Sj+1 and their associated probabilities. The objective function is computed
by taking the expectation over the probability distribution of Cj’s.

Set C1 = x1 O(1)
Compute the start time Sj = max(Dj, Cj−1) and P (Sj = k) O(nxmax)
for each k ∈ {0, 1, . . . , nxmax}
Compute the the distribution of Cj by using the formula O(nx2

max)
P (Cj = k) = Prob(Sj = k − xj)
Compute the distributions for all n procedure O(n2x2

max)

Table 2.1: Complexity of evaluating the objective function value at an integer schedule
assuming the procedure duration data has only integer entries (Begen, 2010).

We can use a similar setting to compute the objective function value of any schedule
without restricting D = (D1, . . . , Dn) to have only integer entries assuming the procedure
duration data has only integer entries. It is useful in some cases, for instance, if we are
minimizing the objective function using an iterative descent algorithm. Scheduled end time
of procedure j, Dj may have a fractional part different than 0.0. The fractional parts of Dj

for all j ∈ {1, . . . , n} may be different. We create arrays of size j2 · xmax for all procedures
j ∈ {1, . . . , n} which holds values of completion time Cj and start time Sj+1 (all possible
integer values and all integer values plus fractional parts of the previous procedures’ scheduled
end times) and their associated probabilities.

Set C1 = x1 O(1)
Compute the start time Sj = max(Dj, Cj−1) and P (Sj = k) O(n2xmax)
for each k ∈ {0, 1, . . . , nxmax, f1, 1 + f1, . . . , nxmax + f1, . . . }
where fj = Dj − bDjc
Compute the the distribution of Cj by using the formula O(n2x2

max)
P (Cj = k) = Prob(Sj = k − xj)
Compute the distributions for all n procedure O(n3x2

max)

Table 2.2: Complexity of evaluating the objective function value at any schedule with
fractional parts assuming the procedure duration data has only integer entries.

Depending on the number of observation of each procedure and the maximum procedure
duration, we may choose the method to compute the objective function with minimum
complexity (min{O(n3x2

max),O(Mn)}).
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2.2 Computation of the Optimizer

The objective function (2.1) is a convex, continuous piecewise linear function. After refor-
mulating the problem and revising the notation we formulate a linear programming model
(2.2). Denton and Gupta (2003) modeled appointment scheduling as a two-stage stochastic
linear program (2-SLP) and show that if the random procedure duration distributions have
a finite support, decomposition algorithms (such as the L-shaped algorithm) are efficient
solving large problem instances. But if the random procedure durations are assumed to be
independent, the support of the joint distribution grows exponentially as new data points are
observed. If the support grows exponentially, decomposition algorithms fail to solve large
problem instances (Denton and Gupta, 2003). There are some approximation algorithms
proposed to find a near optimal solution assuming the procedures are independent.

There are various methods to optimize convex, continuous piecewise linear functions,
including the subgradient method. Let f : Rn → R be a convex function with domain Rn.
At each iteration, the subgradient method take a step:

x(k+1) = x(k) − αkg(k)

where g(k) is a subgradient of f at x(k) and αk is the step size at the kth iteration. Since the
Subgradient Method is not following a descent direction at all times, we need to keep track
of the minimum solution so far.

f
(k)
best = min{f (k−1)

best , f (x(k))}

There are various possible step size rules: constant step size, constant step length, square
summable but not summable, nonsummable diminishing. For constant step size and constant
step length, the subgradient algorithm is guaranteed to converge to the minimum (Boyd et al.
(2003)).

lim
k→∞

f
(k)
best − f

∗ < ε

Subgradient methods are slower than gradient descent but if the function is convex the
convergence rate is O(1/ε2).

The objective function (2.1) is not differentiable everywhere in its domain but it is convex
function with finite optimal value and a minimizer and Lipschitz continuous with a constant
κ. The subgradient algorithm is guaranteed to converge to the optimal for the diminishing
step size and step length rules (Boyd et al., 2003).

There is another alternative to optimize convex, continuous piecewise linear functions which
is smoothing the function and then apply a descent algorithm to find the minimum. Smoothing
the objective function and applying the gradient descent method may not accelerate the
convergence. But instead we may benefit from decent algorithms with momentum (Qian,
1999). In other words we can use gradient descent with momentum method to minimize
the smoothed function. At each iteration instead of following the negative gradient of the
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smoothed function, we can follow the momentum vector which is the discounted sum of the
previous gradients, thus leading to faster convergence.

v(k+1) = ρv(k) +∇f(x(k))

x(k+1) = x(k) − αkv(k+1)

This method is known as Heavy Ball Method, which is is usually attributed to Polyak (1964).
The update equations can be rewritten as:

x(k+1) = x(k) − αk∇f(x(k))− ρ(x(k−1) − x(k))

There is a similar algorithm known as Nesterov’s accelerated method (Nesterov, 1983)
converges more rapidly than the Heavy Ball method for convex functions. Ruder (2016) says
Nesterov’s accelerated method calculates the gradient not with respect to the to current x(k)

but with respect to the approximate future position x(k) − ρv(k):

v(k+1) = ρv(k) +∇f(x(k) − ρv(k))

x(k+1) = x(k) − αkv(k+1)

2.2.1 Smoothing the Objective Funtion

We may try to smooth the function and try to run a descent algorithm with momentum
converging faster than descent algorithm without momentum. LogSumExp is called smooth
maximum, which is a smooth approximation to the maximum function. It is commonly used
in Machine Learning Algorithms.

LSE(x) = log
(∑

i expxi
)
.

LSE is an approximation to the maximum function. The proof of LSE approximating the
maximum function, follows from the First Order Taylor Expansion of LSE.

log
(∑

i expxi
)
≈ log(expxj) +

(∑
i 6=j expxi

)
/ expxj ≈ xj = maxi xi.

For the sake of simplicity we focus on the deterministic case. In other words we assume
there is only one observation for each procedure. Given there is only one set of data for all
procedures, after smooting the objective function (2.1), the new objective function becomes
(2.4):
Known Parameters/ Data Points:

1. x = (x1, . . . , xn) are positive real numbers (most of the time they are integers.)

Variables:

1. D = (D1, . . . , Dn)
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ce and ct are the fixed penalties for being early or late, and C = (C1, . . . , Cn) is also defined
below.

g(D1, . . . , Dn) =
n∑
j=1

log
(
ece(Dj−Cj) + ect(Cj−Dj)

)
(2.4)

where C1 = x1, Cj = xj + log{eDj−1 + eCj−1}

Example

Assume n = 3 and ce = ct. After substituting the definition of C1, C2, C3 into the objective
function (2.4), the objective becomes:

g(D1, D2, D3) = log
(
e(D1−x1) + e(x1−D1)

)
+

log
(
e(D2−x2)(ex1 + eD1)−1 + e(x2−D2)(ex1 + eD1)

)
+

log
(
e(D3−x3)(ex1+x2 + eD1+x2 + eD2)−1 + e(x3−D3)(ex1+x2 + eD1+x2 + eD2)

)
First we would like to find the schedules (D1, . . . , Dn) satisfying the First Order Condition

∇g(D1, . . . , Dn) = 0

.

∂g

∂D1

=
e(D1−x1) − e(x1−D1)

e(D1−x1) + e(x1−D1)
+
−e(D2−x2)(ex1 + eD1)−2eD1 + e(x2−D2)eD1

e(D2−x2)(ex1 + eD1)−1 + e(x2−D2)(ex1 + eD1)
+

−e(D3−x3)(ex1+x2 + eD1+x2 + eD2)−2e(x2+D1) + e(x3−D3)e(x2+D1)

e(D3−x3)(ex1+x2 + eD1+x2 + eD2)−1 + e(x3−D3)(ex1+x2 + eD1+x2 + eD2)

∂g

∂D2

=
e(D2−x2)(ex1 + eD1)−1 − e(x2−D2)(eD1 + ex1)

e(D2−x2)(ex1 + eD1)−1 + e(x2−D2)(ex1 + eD1)
+

−e(D3−x3)(ex1+x2 + eD1+x2 + eD2)−2eD2 + e(x3−D3)eD2

e(D3−x3)(ex1+x2 + eD1+x2 + eD2)−1 + e(x3−D3)(ex1+x2 + eD1+x2 + eD2)

∂g

∂D3

=
e(D3−x3)(ex1+x2 + eD1+x2 + eD2)−1 − e(x3−D3)(ex1+x2 + eD1+x2 + eD2)

e(D3−x3)(ex1+x2 + eD1+x2 + eD2)−1 + e(x3−D3)(ex1+x2 + eD1+x2 + eD2)

After setting ∇g equal to 0 and solving the three equations above, we find only one
solution which is (D1, D2, D3) = (x1, x1 + x2 + log(2), x1 + x2 + x3 + log(4)). We need to
show that this critical point is the global minimum.
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The New Objective Function’s Convexity

The next step is to generalize the solution for any number of procedures n where ce = ct.

Lemma 12. The function h(y) = log(ey + e−y) is a convex function with minimum value
log(2).

Proof. h(y) is twice-differentiable function of a single variable, y. The first derivative is

h′(y) = 1− 2e−y

ey + e−y

with the root y = 0. The second derivative is

h′′(y) =
4

(xy + e−y)2

which is greater than 0. Since its second derivative is always non-negative on its entire
domain, then the function is convex. The minimum value of the function is h(0) = log(2).

Lemma 13. The objective function is

g(D1, . . . , Dn) =
n∑
j=1

gj(D1, . . . , Dn) =
n∑
j=1

log
(
e(Dj−Cj) + e(Cj−Dj)

)
where ce = ct, C1 = x1, Cj = xj +log{eDj−1 +eCj−1}. The minimum of the function is n log(2)
and attained on (D1, D2, . . . , Dn) = (x1, x1 + x2 + log(2), . . . ,

∑n
j=1 xj + (n− 1) log(2)).

Proof. For any j ∈ {1, . . . , n}, gj(D1, . . . , Dn) = log
(
e(Dj−Cj) + e(Cj−Dj)

)
. Define yj =

Dj−Cj and redefine gj(yj) to be equal to log (eyj + e−yj). Lemma 12 states that gj(yj) ≥ log(2)
and its minimum can be attained at yj = 0. So if we can find a feasible point satisfying
yj = Dj −Cj = 0 for each j, it will be the global minimum of gj(D1, . . . , Dn). We would like
to have Dj = Cj for any j. We set D1 equal to x1. By its definition C1 is also equal to x1.
D1 = C1 = x1 holds. The definition of C2 is x2 + log{eD1 + eC1}. So

C2 = x2 + log{ex1 + ex1} = x1 + x2 + log(2)

We choose D2 equal to C2 which is x1 + x2 + log(2). Recursively we can compute Cj’s and
set corresponding Dj’s equal to Cj. So that:

Cn = Dn = xn + log{e
∑n−1
j=1 xj+(n−2) log(2) + e

∑n−1
j=1 xj+(n−2) log(2)} =

n∑
j=1

xj + (n− 1) log(2)
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Lemma 14. The objective function is

g(D1, . . . , Dn) =
n∑
j=1

gj(D1, . . . , Dn) =
n∑
j=1

log
(
e(Dj−Cj) + e(Cj−Dj)

)
where ce = ct , C1 = x1, Cj = xj + log{eDj−1 + eCj−1}. g(D1, . . . , Dn) is convex.

Proof. The sum differentiable functions is differentiable. So

g(D1, . . . , Dn) =
n∑
j=1

gj(D1, . . . , Dn) =
n∑
j=1

log
(
e(Dj−Cj) + e(Cj−Dj)

)
is differentiable. We prove first that gj(D1, . . . , Dn) is convex. We compute ∇gj:

∂gj(D1, . . . , Dn)

∂Dj

=
e(Dj−Cj) − e(Cj−Dj)

e(Dj−Cj) + e(Cj−Dj)

∂gj(D1, . . . , Dn)

∂Cj
=
−e(Dj−Cj) + e(Cj−Dj)

e(Dj−Cj) + e(Cj−Dj)

∂gj(D1, . . . , Dn)

∂Dk

=
∂gj(D1, . . . , Dn)

∂Cj

∂Cj
∂Dk

∀k ∈ {1, . . . , j − 1}

After setting ∇gj equal to 0 and solving the all equations, we find only one solution which
is Dj = Cj. Lemma 13 states that it is the minimum, so gj is convex. The sum of convex
functions is convex, so is g(D1, . . . , Dn).

More general proof for any penalty costs (ce, ct) can be done followinf similar steps.
We would like to bound the smoothed function (2.4) to estimate how much worse we

perform if we replace the original objective function (2.1) with (2.4).

max{y1, . . . , ym} = log(exp(y1, . . . , ym))

< LSE(y1, . . . , ym)

< log(m ˙exp(max{y1, · · · , ym}))
= max{y1, . . . , ym}+ log(m)

By using the upperbound stated above, we can bound g(D1, . . . , Dn). In order to compute
the gj(D1, . . . , Dn) we need to compute Cj first. Cj can be computed recursively with j − 1
maximum functions starting from C1 = x1. We also compare Cj with Dj, which increases
the number of maximum function used to compute gj(D1, . . . , Dn) by one.

g(D1, . . . , Dn) =
n∑
j=1

log
(
e(Dj−Cj) + e(Cj−Dj)

)
≤

n∑
j=1

max{ce(Dj − Cj), ct(Cj −Dj)}+ j · log(2)
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2.3 Online Algorithm

As new observations arrive, new terms will be added to the objective function (2.1). We
would like to characterize changes in the optimal sequence and optimal start times as new
observations of procedure durations arrive. Our goal is to develop an online algorithm that
sequences and schedules the procedures as new data points occur.

Recall that the minimizer of the sum of convex functions is not necessarily in the convex
hull of their minimizers.1 Therefore, the optimal schedule after the addition of the new
observations is not necessarily in the convex hull of the previous optimal schedule and the
optimal schedule computed using only the new observations. For instance assume the optimal
time allowance for the first procedure is 2 hours and the new observation of that procedure
is 1 hour. In the updated optimal schedule, the optimal allowance for that procedure in
the new schedule is not necessarily between 1 hour and 2 hours, which is counter-intuitive.
However we can bound the region containing the optimal solution, and update this bound as
new observations arrive.

We consider two alternative approaches for obtaining the empirical distribution of proce-
dures times:

1. We can directly obtain the empirical joint distribution of procedure durations from the
data or scenario analysis. Then, we assume the procedure durations are independent
of the order in which they are processed. In other words we have a data matrix
with n columns for each procedure and Mn rows for different observations of the joint
distribution.

2. We can assume all procedures are independent of each other and also the order they are
processed in. In this case, the empirical joint distribution of the procedure durations
can be constructed from the Cartesian Product of n sets of the observations, one
from each of the n procedures to be scheduled. Procedure xj for any j ∈ {1, . . . , n}
has Nj different observations. Thus, there are Mn =

∏n
i=1Ni possible values of the

joint distribution. This alternative is a subset of the first alternative,because the joint
empirical distribution can also be assumed as a set of scenarios. We also focus on this
one.

2.3.1 New Notation

First we analyze the first alternative above which is more general. Given the data matrix
of size Mn × n, where Mn is the number of scenarios and n is the number of procedures to
be scheduled, we obtain the empirical joint distribution. It is convenient to use ∆j, time
allowances, instead of Dj, the start times. The objective function below is equivalent to the

1Kuwaranancharoen and Sundaram (2018) provides an example: f1(x, y) = x2 − xy + 1
2y

2 and f2(x, y) =
x2 + xy + 1

2y
2 − 4x− 2y have minimizers (0,0) and (2, 0) respectively, whose sum has minimizer (1, 1).
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objective function (2.1) after the substitution to get:

f(∆1, . . . ,∆n) =
1

Mn

Mn∑
i=1

n∑
j=1

max

{
ce

(
j∑

k=1

∆k − Ci
j

)
, ct

(
Ci
j −

j∑
k=1

∆k

)}

where C1 = x1, Cj = {xij + max{
∑j−1

k=1 ∆k, C
i
j−1} : i ∈ {1, . . . ,Mn}}, Mn =

∏n
`=1N`. We

also substitute the definition of Cj into the function:

f(∆1, . . . ,∆n) =
1

Mn

Mn∑
i=1

n∑
j=1

max
{
ce
(
∆j − xij − T ij−1

)
, ct
(
xij + T ij−1 −∆j

)}
(2.5)

where T0 = 0, Tj = {max{xij −∆j + T ij−1, 0} : i ∈ {1, . . . ,Mn}}, Mn =
∏n

`=1N`.
As new data points are observed, the support of the joint empirical distribution of the

procedure durations may get bigger. The expectation of the earliness and tardiness (2.5)
might need to be recalculated given the updated support. More terms may be added to the
summation in the objective function. Assuming there are M+ more scenarios, the objective
(2.5) is updated as:

f(∆1, . . . ,∆n) =
1

Mn +M+

Mn∑
i=1

n∑
j=1

max
{
ce
(
∆j − xij − T ij−1

)
, ct
(
xij + T ij−1 −∆j

)}
+

1

Mn +M+

M+∑
i=1

n∑
j=1

max
{
ce
(
∆j − xij − T ij−1

)
, ct
(
xij + T ij−1 −∆j

)}
2.3.2 Search Space

We would like to answer certain questions without additional computation, such as:

• Is there a clear sign that the optimal schedule has been changed after the arrival of
new data points?

• If there is a deterministic procedure needs to be scheduled at jth position for any
j ∈ {1, . . . , n} order, is its optimal time allowance in the optimal schedule equal to
its deterministic duration? Or should can the optimal time allowance be larger to
compensate for the tardiness of the previous scheduled procedures?

If we constrain the search space after the arrival of the data points, we may answer those
questions. We also use the search space in the later sections on sequencing to draw some
conclusions.

In this section first we constrain the search space containing the minimizer of the appoint-
ment scheduling problem. Secondly we adapt the results to the online setting. As new data
points are observed, the optimal schedule might change. After observing new data points we
must update the search region containing the minimizer.
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Remark. T1 = max{x1−∆1, 0} is a non-increasing function of ∆1. T2 = max{x2−∆2+T1, 0}
stays the same or decreases as ∆2 or ∆1 increases. Thus T ij = max{xij −∆j + T ij−1, 0} is a
non-increasing function of (∆1, . . . ,∆j).

Lemma 15. The time allowances for all procedures (∆js for all j ∈ {1, . . . , n}) are non-
negative real numbers. In the optimal solution, the value of a procedure’s time allowance
cannot be less than its minimum observation. (∆j ≥ min({xij}Mn

i=1) ∀j ∈ {1, . . . , n}).

Proof. Assume by contradiction that the minimizer of the objective function is ∆′ =
(∆′1, . . . ,∆

′
t, . . . , d

′
n) where ∆′t ≤ min({xij}Mn

i=1) for any t ∈ {1, . . . , n}. Increase ∆t by a
sufficiently small positive number ε , decrease ∆t+1 by the same ε and call this point
∆ = (∆′1, . . . ,∆

′
t + ε,∆′t+1 − ε, . . . ,∆′n). The tardiness of procedure t at the new point, ∆, is:

T it (∆
′
1, . . . ,∆

′
t + ε) = max{xtj −∆t − ε+ T ij−1, 0}

= max{xtj −∆t + T ij−1, 0} − ε
=T it (∆

′)− ε ∀i, t

The function evaluated at ∆ = (∆′1, . . . ,∆
′
t + ε,∆′t+1 − ε, . . . ,∆′n):

Mn · f(∆)

=
∑
i

t−1∑
j=1

max
{
ce
(
∆′j − xij − T ij−1(∆′)

)
, ct
(
xij + T ij−1(d′)−∆′j

)}
+∑

i

max
{
ce
(
(∆′t + ε)− xit − T it−1(∆′)

)
, ct
(
xit + T it−1(∆′)− (∆′t + ε)

)}
+∑

i

max
{
ce
(
(∆′t+1 − ε)− xit+1 − (T it (∆

′)− ε)
)
, ct
(
xit+1 + (T it (∆

′)− ε)− (∆′t+1 − ε)
)}

+

∑
i

n∑
j=t+2

max
{
ce
(
∆′j − xij − T ij−1(∆′)

)
, ct
(
xij + T ij−1(∆′)− (∆′j

)}
=
∑
i

t−1∑
j=1

max
{
ce
(
∆′j − xij − T ij−1(∆′)

)
, ct
(
xij + T ij−1(∆′)−∆′j

)}
+∑

i

ct
(
xit + (T it−1(∆′))− (∆′t + ε)

)
+

∑
i

n∑
j=t+1

max
{
ce
(
∆′j − xij − T ij−1(∆′)

)
, ct
(
xij + T ij−1(∆′)− (∆′j

)}
=Mn · (f(∆′)− ctε)
≤Mn · f(∆′)

Thus, the objective function value at ∆ is lower than the objective function value at ∆′

which is assumed to be the minimizer. That is what contradicting our initial assumption.
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Lemma 16. The time allowances of all procedures (∆js for all j ∈ {1, . . . , n}) are non-
negative real numbers. In the optimal solution, the value of a procedure’s time allowance
cannot be greater than its maximum observation. (∆j ≤ max({xij}Mn

i=1) ∀j ∈ {1, . . . , n}).

Proof. If there is only one procedure, the minimizing time allowance is the ct
(ct+ce)

-quantile of
the procedure duration, so the minimizer is less than or equal to the maximum procedure
duration. Thus, trivially this lemma holds for the case where n = 1.

For n ≥ 2, assume by contradiction that the minimizer of the objective function is
∆′ = (∆′1, . . . ,∆

′
t, . . . ,∆

′
n) where ∆′t ≥ max({xij}Mn

i=1) for any t ∈ {1, . . . , n}. We evaluate the
objective function at the point ∆ = (∆1, . . . ,∆t−1 + ε,∆t− ε, . . . ,∆n), where ε is a sufficiently
small positive real number. We separate the objective function into two components. The
first component is the expected total earliness and tardiness over all the scenarios for which
xit−1 + T it−2 > ∆′t−1. Denote this set by A. Then fA(∆′1, . . . ,∆

′
t−1 + ε,∆′t− ε, . . . ,∆′n) is equal

to:

fA(.) =
∑
i∈A

t−2∑
j=1

max
{
ce
(
∆′j − xij − T ij−1(∆′)

)
, ct
(
xij + T ij−1(∆′)−∆′j

)}
+∑

i∈A

max
{
ce
(
(∆′t−1 + ε)− xit−1 − T it−2(∆′)

)
, ct
(
xit−1 + T it−2(∆′)− (∆′t−1 + ε)

)}
+∑

i∈A

max
{
ce
(
(∆′t − ε)− xit − (T it−1(∆′)− ε)

)
, ct
(
xit + (T it−1(∆′)− ε)− (∆′t − ε)

)}
+

∑
i∈A

n∑
j=t+1

max
{
ce
(
∆′j − xij − T ij−1(∆′)

)
, ct
(
xij + T ij−1(∆′)− (∆′j

)}
=
∑
i∈A

t−2∑
j=1

max
{
ce
(
∆′j − xij − T ij−1(∆′)

)
, ct
(
xij + T ij−1(∆′)−∆′j

)}
+∑

i∈A

ct
(
xit−1 + T it−2(∆′)−∆′t−1 − ε

)
+∑

i∈A

max
{
ce
(
∆′t − xit − T it−1(∆′)

)
, ct
(
xit + T it−1(∆′)−∆′t

)}
+

∑
i∈A

n∑
j=t+1

max
{
ce
(
∆′j − xij − T ij−1(∆′)

)
, ct
(
xij + T ij−1(∆′)−∆′j

)}
≤
∑
i∈A

t−2∑
j=1

max
{
ce
(
∆′j − xij − T ij−1(∆′)

)
, ct
(
xij + T ij−1(∆′)−∆′j

)}
+∑

i∈A

ct
(
xit−1 + T it−2(∆′)−∆′t−1

)
+

∑
i∈A

n∑
j=t

max
{
ce
(
∆′j − xij − T ij−1(∆′)

)
, ct
(
xij + T ij−1(∆′)− (∆′j

)}



CHAPTER 2. DATA-DRIVEN APPOINTMENT SCHEDULING 49

=fA(∆′)

The second component of the objective function consists of the expected total earliness
and tardiness over all the remaining scenarios where xit−1 + T it−2 ≤ d′t−1 and ε ≥ 0. Denote
this set by B. fB(∆′1, . . . ,∆

′
t−1 + ε,∆′t − ε, . . . ,∆′n) is equal to:

fB(.) =
∑
i∈B

t−2∑
j=1

max
{
ce
(
∆′j − xij − T ij−1(∆′)

)
, ct
(
xij + T ij−1(∆′)−∆′j

)}
+∑

i∈B

max
{
ce
(
(∆′t−1 + ε)− xit−1 − T it−2(∆′)

)
, ct
(
xit−1 + T it−2(∆′)− (∆′t−1 + ε)

)}
+∑

i∈B

max
{
ce
(
(∆′t − ε)− xit − (T it−1(∆′)− ε)

)
, ct
(
xit + (T it−1(∆′)− ε)− (∆′t − ε)

)}
+

∑
i∈A

n∑
j=t+1

max
{
ce
(
∆′j − xij − T ij−1(∆′)

)
, ct
(
xij + T ij−1(∆′)− (∆′j

)}
=
∑
i∈B

t−2∑
j=1

max
{
ce
(
∆′j − xij − T ij−1(∆′)

)
, ct
(
xij + T ij−1(∆′)−∆′j

)}
+∑

i∈B

ce
(
∆′t−1 + ε− xit−1 − T it−2(∆′)

)
+∑

i∈B

ce
(
∆′t − ε− xit − 0

)
+

∑
i∈B

n∑
j=t+1

max
{
ce
(
∆′j − xij − T ij−1(∆′)

)
, ct
(
xij + T ij−1(∆′)− (∆′j

)}
=fB(∆′)

Mn · f(∆′1, . . . ,∆
′
t−1 + ε,∆′t − ε, . . . ,∆′n)

= fA(∆′1, . . . ,∆
′
t−1 + ε,∆′t − ε, . . . ,∆′n) + fB(∆′1, . . . ,∆

′
t−1 + ε,∆′t − ε, . . . ,∆′n)

≤Mn · f(∆′1, . . . ,∆
′
t−1,∆

′
t, . . . ,∆

′
n)

Since f(∆1, . . . ,∆t−1,∆t, . . . ,∆n) ≥ f(∆1, . . . ,∆t−1 +ε,∆t−ε, . . . ,∆n), this contradicts with
our initial assumption.

Theorem 12. If there is a deterministic procedure that needs to be scheduled, the optimal
time allowance for that procedure is equal to its constant duration.

Proof. The proof follows directly from the Lemma 15 and Lemma 16.
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2.3.3 Search Space When All Procedures are Independent

Our goal is to further reduce the search space based on our second alternative to obtain the
joint empirical distribution which assumes all procedures are independent of each other. The
empirical joint distribution of the procedure durations is constructed such that the support
of the empirical distribution is the Cartesian Product of n sets of the observations, one from
each of the n procedures to be scheduled. The objective function becomes:

f(∆1, . . . ,∆n) =
n∑
j=1

1

Mj

Nj∑
i=1

Mj−1∑
k=1

max
{
ce
(
∆j − xij − T kj−1

)
, ct
(
xij + T kj−1 −∆j

)}
(2.6)

where Tj−1 = {max{xkj−1

j−1 −∆j−1+T `j−2, 0} : kj−1 ∈ {1, . . . , Nj−1}, ` ∈ {1, . . . ,Mj−2}},T0 = 0

and Mj =
∏j

`=1 N`. For notational convenience we define the expected earliness and tardiness
cost of procedure j to be fj(∆1, . . . ,∆n). The objective function can be rewritten as the
following:

f(∆1, . . . ,∆n) =
n∑
j=1

fj(∆1, . . . ,∆n).

Assuming all procedures are independent of each other, the time allowance for each
procedure in the optimal solution should be greater than or equal to ct

(ct+ce)
-quantile of its

procedure duration data. In order to prove our claim we use the following Lemmas.

Lemma 17. Given (∆1, . . . ,∆p−1,∆p+1, . . . ,∆n) the minimizer of

fp(∆p) =
1

Mp

Np∑
i=1

Mp−1∑
k=1

max
{
ce
(
∆p − xip − T kp−1

)
, ct
(
xip + T kp−1 −∆p

)}
is the ct

(ct+ce)
-quantile of xp + Tp−1 which is greater than or equal to the ct

(ct+ce)
-quantile of xp.

Proof. The ct
(ct+ce)

-quantile of xp + Tp−1 is greater than or equal to ct
(ct+ce)

-quantile of xp

because Tp−1 has non-negative entries.

Define yp = xp + Tp−1. Let y
(1)
p ≤ y

(2)
p ≤ · · · ≤ y

(Mp)
p and for any ∆p ≤ y

(1)
p , as ∆p

increases each term in the fp(∆p)’s summation decreases. For any ∆p greater than y
(1)
p

and less than y
(2)
p , as ∆p increases, only the first term of the summation increases by an

amount proportional to ce while each of the remaining Mp − 1 terms decrease by an amount
proportional to ct. Thus, the total decrease in the fp(∆p) is greater than the increase. ∆p can

be increased up to y
(dMp·ct/(ce+ct)e)
p and the amount of decrease in fp(∆p) value will still be

greater than the amount of increase increase. Increasing ∆p above y
(dMp·ct/(ce+ct)e)
p increases

the value of fp(∆p).
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Define a function gp(∆1, . . . ,∆n) to be the expected earliness and tardiness cost of all
procedures excluding the cost of procedure p.

gp(∆1, . . . ,∆n)

=
∑

j∈{1,...,n}\{p}

1

Mj

Nj∑
i=1

Mj−1∑
k=1

max
{
ce
(
∆j − xij − T kj−1

)
, ct
(
xij + T kj−1 −∆j

)}
=f(∆1, . . . ,∆n)− 1

Mp

Np∑
i=1

Mp−1∑
k=1

max
{
ce
(
∆p − xip − T kp−1

)
, ct
(
xip + T kp−1 −∆p

)}
=

∑
j∈{1,...,n}\{p}

fj(∆1, . . . ,∆n)

Lemma 18. g1(∆1, . . . ,∆n) is a convex function with minimizers (∆∗1, . . . ,∆
∗
n). The value

of ∆∗1 is greater than or equal to max({xi1}
N1
i=1).

Proof. Assume that the first procedure is deterministic, x1 = {K1}. The optimal time
allowances are (K1,∆

∗
2, . . . ,∆

∗
n) by Theorem (12). f1(K1,∆

∗
2, . . . ,∆

∗
n) is equal to zero.

f(K1,∆
∗
2, . . . ,∆

∗
n) =

∑
j∈{2,...,n}

fj(K1,∆
∗
2, . . . ,∆

∗
n) = g1(K1,∆

∗
2, . . . ,∆

∗
n)

Since the equation above holds, (K1,∆
∗
2, . . . ,∆

∗
n) is the minimizer of g1(.) too. If we postpone

the start of the second procedure by ε, the optimal time allowances of the remaining procedures
minimizing g1(.) does not change, stays at (K1 + ε,∆∗2, . . . ,∆

∗
n), because T1 = {0} for both

cases.

g1(K1,∆2, . . . ,∆n|{K1},x2, . . . ,xn) = g1(K1 + ε,∆2, . . . ,∆n|{K1},x2, . . . ,xn) ∀ε ≥ 0

= g1(ε,∆2, . . . ,∆n|0,x2, . . . ,xn) ∀ε ≥ 0

= g1(0,∆2, . . . ,∆n|0,x2, . . . ,xn)

This can be interpreted in the following way. Scheduling a deterministic procedure at the
start of the horizon is equivalent to setting the start time of the remaining procedures to a
later time instead of at time zero.

If there is a second observation of the first procedure, x1 = {K1,K2}, g1(.) becomes:

g1(∆1, . . . ,∆n|x1,x2, . . . ,xn)

=
1

2

(
g1(∆1, . . . ,∆n|{K1},x2, . . . ,xn) + g1(∆1, . . . ,∆n|{K2},x2, . . . ,xn)

)
Without loss of generality, assume K2 = K1 + ε and ε > 0. Then (K2,∆

∗
2, . . . ,∆

∗
n) is one

of the minimizers of g1(∆1, . . . ,∆n|{K2},x2, . . . ,xn) and also (K2,∆
∗
2, . . . ,∆

∗
n) is one of the

minimizers of (g1(∆1, . . . ,∆n|{K1},x2, . . . ,xn).
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The minimum possible value of g1(∆1, . . . ,∆n|x1,x2, . . . ,xn) stays same as the number
of observations increases, and the minimizer is (max({xi1}

N1
i=1),∆∗2, . . . ,∆

∗
n).

Lemma 19. gp(∆1, . . . ,∆n) is a convex function with minimizers (∆∗1, . . . ,∆
∗
n). The value

of
∑p

j=1 ∆∗j = D∗p is greater than or equal to
∑p

j=1 max({xij}
Nj
i=1).

Proof. gp(∆1, . . . ,∆n) is a convex function because it can be formulated as a linear program-
ming model similar to the LP in the proof of Theorem 8.

Compute the optimal time allowances minimizing the expected earliness and tardiness
of the first p − 1 procedures and denote the solution by (∆∗1, . . . ,∆

∗
p−1). Compute the

optimal time allowances minimizing the expected earliness and tardiness of the procedures
{p+ 1, . . . , n} and denote the solution by (∆∗p+1, . . . ,∆

∗
n). Following from the Lemma (18), if

only procedures {p, . . . , n} are scheduled, the optimal time allowances minimizing the expected

earliness and tardiness of the procedures {p+ 1, . . . , n} are (max({xip}
Np
i=1) + ε,∆∗p+1, . . . ,∆

∗
n),

ε ≥ 0.

gp(∆1, . . . ,∆n) =
∑

j∈{1,...,n}\{p}

fj(∆1, . . . ,∆n)

≥
p−1∑
j=1

fj(∆
∗
1, . . . ,∆

∗
p−1) +

n∑
j=p+1

fj(∆
∗
p+1, . . . ,∆

∗
n) (2.7)

The equation (2.7) holds at equality if both sequences of procedures were independent
of each other. Both sequences are independent when there is idle time in between, i.e.
∆p ≥

∑p
j=1 max({xij}

Nj
i=1)−

∑p−1
j=1 ∆∗j .

Corollary 1. The minimum value of gp(∆1, . . . ,∆n) given dp = K is non-increasing as
K → K + ε for any ε greater than 0.

This corollary follows from the Lemma (19). If K ≥
∑p

j=1 max({xij}
Nj
i=1)−

∑p−1
j=1 ∆∗j , the

minimum value of gp(∆1, . . . ,∆n) is equal to the global minimum. Because of the convexity of

the function, when K <
∑p

j=1 max({xij}
Nj
i=1)−

∑p−1
j=1 ∆∗j , the minimum value of gp(∆1, . . . ,∆n)

given ∆p = K decreases as K increases.

Theorem 13. The time allowances for all procedures (∆js for all j ∈ {1, . . . , n}) are non-
negative real numbers. In the optimal solution, ∆j cannot be less than the ct

(ct+ce)
-quantile of

xj. (∆j ≥ x
(dNj ·ct/(ce+ct)e)
j ∀j ∈ {1, . . . , n}).

Proof. This Theorem follows from Lemma (17) and the Corollary (1).
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2.3.4 Motivating Questions and Answers

In this section we ask some intuitive questions and find counterexamples to answer those
questions. There are multiple questions about the optimal schedule and the sequences.

Is the minimizer of the weighted sum of two expected earliness and tardiness
over different data sets in the convex hull of the individual minimizers?

1. Example

First data set:

x1 : x1
1 = [27, 29, 26, 34, 27, 31, 28, 27, 26, 25, 60]
x1

2 = [26, 18, 25, 25, 20, 27, 23, 26, 23, 27, 24, 27, 20, 25, 28]
x1

3 = [4, 8, 6, 5, 3, 4, 3, 6, 7, 3, 8, 7, 6]

The minimizer of f(.|x1) is where [D1, D2, D3] = [29, 56, 62] or [∆1,∆2,∆3] = [29, 27, 6].

Second data set:

x2 : x1
1 = [61, 27, 59, 39, 13, 25, 28, 18, 23, 32, 13]
x1

2 = [5, 44, 21, 39, 29, 11, 16, 21, 30, 12, 33, 39, 42]
x1

3 = [30, 35, 15, 43, 35, 32, 28, 35, 43]

The minimizer of f(.|x2) is where [D1, D2, D3] = [30, 69, 104], [∆1,∆2,∆3] = [30, 39, 35].

The weighted sum is of the form:

M1
3 f(.|x1) +M2

3 f(.|x2)

where M .
3 = ||x.1||0||x.2||0||x.3||0 = N .

1N
.
2N

.
3. The minimizer is [D1, D2, D3] = [28, 58, 85]

or [∆1,∆2,∆3] = [28, 30, 27], which is not in the convex hull of the two minimizers
above.

Instead we concatenate two data sets to obtain the data set below, and compute the
minimizer of the objective which is the expectation over the data set below.

x : x1 =[27, 29, 26, 34, 27, 31, 28, 27, 26, 25, 60, 61, 27, 59, 39, 13, 25, 28, 18, 23, 32, 13]

x2 =[26, 18, 25, 25, 20, 27, 23, 26, 23, 27, 24, 27, 20, 25, 28, 5, 44, 21, 39, 29, 11, 16,

21, 30, 12, 33, 39, 42]

x3 =[4, 8, 6, 5, 3, 4, 3, 6, 7, 3, 8, 7, 6, 30, 35, 15, 43, 35, 32, 28, 35, 43]

The minimizer is [D1, D2, D3] = [29, 57, 75] or [∆1,∆2,∆3] = [29, 28, 18].

2. Example

Even if there is only one observation in the second data set, we still can find a counter
example:
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First data set:
x1 : x1

1 = [27, 29, 26, 34, 27]
x1

2 = [26, 18, 25, 25, 20, 27, 23]
x1

3 = [4, 8, 6]

The minimizer of f(.|x1) is where [D1, D2, D3] = [29, 54, 61] or [∆1,∆2,∆3] = [29, 25, 7].

Second data set:
x2 : x1

1 = [28]
x1

2 = [26]
x1

3 = [10]

The minimizer of f(.|x2) is where [D1, D2, D3] = [28, 54, 64] or [∆1,∆2,∆3] = [28, 26, 10].

The minimizer of the weighted sum is [D1, D2, D3] = [28, 54, 60] or [∆1,∆2,∆3] =
[28, 26, 6], which is not in the convex hull of the two minimizers above.

If the new observation drastically changes the variance of the duration data of
that procedure, will the optimal sequence change?

The initial data set is:

xA = [31, 27, 24, 28, 31, 29, 27, 30, 31, 30, 33, 30, 23, 22] V ar(xA) = 10.989
xB = [21, 20, 23, 23, 28, 23, 28, 24, 22, 26, 21, 27, 25, 29, 30] V ar(xB) = 10.095
xC = [28, 25, 19, 27, 32, 34, 23, 32, 25, 30, 27, 26, 30, 30, 31, 25] V ar(xC) = 15.133

The optimal sequence is A−B−C with the start times (30, 55, 85) and the optimal objective
value is 8.71786. A new observation of xA has arrived which is equal to 1. The variance of
xA has been increased from 10.989 to 59.838 which is greater than the variances of the other
procedure durations. The optimal order and the start times stay same, but the objective
value is increased to 10.475.

Only a procedure has a new data point. Is it possible that the order of the
remaining procedures change after the addition of the new data point?

The initial data set is:

xA = [86, 62, 113, 100, 75, 88, 51, 82, 72, 110, 73, 69, 98, 114, 58, 81, 101]
V ar(xA) = 375.596
xB = [253, 235, 242, 233, 253, 258, 260, 239, 263, 235, 257, 257, 242]
V ar(xB) = 116.359
xC = [39, 55, 43, 53, 51, 36, 47]
V ar(xC) = 52.238
xD = [180, 162, 175, 185, 174, 183, 170, 185, 170, 184, 194, 184, 190, 186, 173]
V ar(xD) = 75.381

The optimal sequence is D − C − B − A with the time allowances (183.0, 51.0, 253.0, 86.0)
and objective value of 39.1326869209222. A new observation of xA has arrived which is
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equal to 101. The new optimal sequence is B − C − D − A with the time allowances
(253.0, 51.0, 184.0, 86.0) and objective value of 39.217908017908016. The order of procedures
B,C,D has changed.

If we schedule only B,C,D, the optimal sequence will be C −D −B with optimal time
allowances (47.0, 184.0, 253.0).

The optimal sequence and the associated optimal start times are known. After
an addition of a data point to the set of one procedure’s duration, given the
previous optimal sequence the optimal start times stays same. Is this sequence
still optimal since there is no change ?

The initial data set is:

xA = [86, 62, 113, 100, 75, 88, 51, 82, 72, 110, 73, 69, 98, 114, 58, 81, 101]
V ar(xA) = 375.596
xB = [253, 235, 242, 233, 253, 258, 260, 239, 263, 235, 257, 257, 242]
V ar(xB) = 116.359
xC = [39, 55, 43, 53, 51, 36, 47]
V ar(xC) = 52.238
xD = [180, 162, 175, 185, 174, 183, 170, 185, 170, 184, 194, 184, 190, 186, 173]
V ar(xD) = 75.381

The optimal sequence is D−C−B−A with the time allowances (183.0, 51.0, 253.0, 86.0) and
objective value of 39.1326869209222. A new observation of xD has arrived which is equal to 120.
Given the sequence of D−C−B−A the optimal time allowances are (183.0, 51.0, 253.0, 86.0)
which is same as before. The objective function value is 42.62487879767292. But the optimal
sequence is C − D − B − A and the optimal time allowances are (47.0, 184.0, 253.0, 86.0).
The objective function value is 42.491637039431154.

If there is a new observation of any procedure, the minimum values of the
objective function of all possible orderings increase or decrease altogether?

This is not necessarily true. A counterexample:
The initial data set is:

xA = [57, 42, 41, 52, 39, 53, 45]
V ar(xA) = 48.333
xB = [249, 228, 252, 251, 253, 254, 248, 250, 253, 235, 240, 238, 247]
V ar(xB) = 102.527
xC = [116, 101, 107, 98, 112, 109, 92, 97, 93, 108, 102, 93, 107, 117, 116, 116, 104]
V ar(xC) = 74.029
xD = [177, 187, 172, 184, 193, 181, 190, 195, 176, 169, 189, 178, 185, 184, 194]
V ar(xD) = 64.114
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If the new observation of xD is equal to one of {177, 178, 191, 192} not all the minimum
values of all orderings behave same. Some might increase while some decrease.

Does the addition of a duration which is equal to the critical quantile of a
procedure’s duration change the optimal order?

A counterexample can be created by adding multiple data points equal to median of the
existing ones to the last procedure. The procedure’s variability decreases so this procedure
will be scheduled first after some number of additions of the same number to its data set.

2.3.5 Sequencing

The scheduler needs to make a decision about the sequence of the procedures also. Mancilla
and Storer (2012) show that Sample Average Approximation (of expected earliness and
tardiness) Appointment Sequencing and Scheduling Problem with only two scenarios is
NP-complete. Denton et al. (2007) presumes the appointment sequencing and scheduling
problem minimizing the earliness and tardiness over a sample is NP-Hard. Choi et al. (2019)
show that the problem of single machine scheduling minimizing the sum of the earliness
and tardiness of each job is NP-Hard, which is the same problem. Instead of optimizing all
possible n! orderings, the appointment scheduling literature frequently turns to heuristics such
as sequencing procedures in increasing standard deviation order. As some counterexamples
in Section 2.3.4 indicate, ordering in increasing standard deviation is not necessarily optimal.
In this section, we present heuristics tailored for our problem.

Theorem 13 states that the value of procedure j’s time allowance cannot be less than
the ct

(ct+ce)
-quantile of xj in the optimal solution. We bound the the objective function value

at the schedule calculated by using the ct
(ct+ce)

-quantile of the procedures for each possible
ordering of the procedures. Although the ordering with the minimum bound is not necessarily
the best ordering, that ordering may be a good approximation to the optimal. We propose
several heuristics with different complexities and performances. The first heuristic we propose
computes an upper-bound on the objective function value calculated at the ct

(ct+ce)
-quantile of

the procedures for any ordering and chooses the ordering with the lowest upper-bound at the
schedule.

Heuristic 1

First we bound the objective function (2.6) using a triangle-like inequality.

f(∆1, . . . ,∆n)

=
n∑
j=1

1

Mj

Nj∑
i=1

Mj−1∑
k=1

max
{
ce
(
∆j − xij − T kj−1

)
, ct
(
xij + T kj−1 −∆j

)}
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≤
n∑
j=1

1

Mj

Nj∑
i=1

Mj−1∑
k=1

[
max

{
ce
(
∆j − xij

)
, ct
(
xij −∆j

)}
+ max

{
ce
(
T kj−1

)
, ct
(
T kj−1

)}]
=

n∑
j=1

1

Mj

Nj∑
i=1

Mj−1∑
k=1

[
max

{
ce
(
∆j − xij

)
, ct
(
xij −∆j

)}
+ max {ce, ct}T kj−1

]

Define τj = {max{0, xkjj −∆j} : kj ∈ {1, . . . , Nj}}. We assume the first schedule starts
without any delay, which means T0 = 0. The tardiness of the first procedure is T1 =
{max{xk11 −∆1, 0} : k1 ∈ {1, . . . , N1}}, which is the same set as τj. Each element in the sets
of T2, . . . ,Tn can be bounded by elements in τ1, . . . , τn recursively such that:

Tj ={max{xkjj −∆j + T `j−1, 0} ≤ max{xkjj −∆j, 0}+ T `j−1 : kj ∈ {1, . . . , Nj},
` ∈ {1, . . . ,Mj−1}}

={max{xkjj −∆j + T `j−1, 0} ≤ τ
kj
j + T `j−1 : kj ∈ {1, . . . , Nj}, ` ∈ {1, . . . ,Mj−1}}

The elements in the set of Tj is bounded by the Cartesian sum of the elements in the sets of
τ1, . . . , τj.

τj ≤ Tj ≤ τ1 + · · ·+ τj (2.8)

By the definition of Tj each element in the set of Tj is bounded by the Cartesian sum of the
elements in the sets of τj and Tj−1.

Tj ≤ +τj + Tj−1 (2.9)

Since each element in the set of Tj is bounded by the sum of one element in each set, the
sum of elements can be bounded as following:

Mj∑
k=1

T kj ≤
j∑
i=1

Mj

Ni

Ni∑
k=1

τ ki =

j∑
i=1

Mj · τi Mj =

j∏
`=1

N` (2.10)

where τi = 1
Ni

∑Ni
m=1 τ

m
i which is the average of the set τi for any i ∈ {1, . . . , n}.

The objective function can be bounded by:

f(∆1, . . . ,∆n)

≤
n∑
j=1

1

Mj

Nj∑
i=1

Mj−1∑
k=1

[
max

{
ce
(
∆j − xij

)
, ct
(
xij −∆j

)}
+ max {ce, ct}T kj−1

]
=

n∑
j=1

1

Mj

Nj∑
i=1

Mj−1∑
k=1

max
{
ce
(
∆j − xij

)
, ct
(
xij −∆j

)}
+ max {ce, ct}

n∑
j=2

Nj

Mj

Mj−1∑
k=1

T kj−1
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≤
n∑
j=1

1

Mj

Nj∑
i=1

Mj−1∑
k=1

max
{
ce
(
∆j − xij

)
, ct
(
xij −∆j

)}
+ max {ce, ct}

n∑
j=2

1

Mj−1

j−1∑
i=1

Mj−1τi

=
n∑
j=1

1

Mj

Nj∑
i=1

Mj−1∑
k=1

max
{
ce
(
∆j − xij

)
, ct
(
xij −∆j

)}
+ max {ce, ct}

n∑
j=2

j−1∑
i=1

τi

=
n∑
j=1

1

Mj

Nj∑
i=1

Mj−1∑
k=1

max
{
ce
(
∆j − xij

)
, ct
(
xij −∆j

)}
+ max {ce, ct}

n∑
j=1

(n− j)τj

Given the schedule ∆j = x
(dNj ·ct/(ce+ct)e)
j ∀j ∈ {1, . . . , n}, we may compute τj and the

average value of the set τj for every j ∈ {1, · · · , n}. For Heuristic 1, we then order procedures
in increasing average value of the set τj, τj.

Algorithm 1: Sequencing Heuristic 1

1 Compute the schedule ∆j = x
(dNj ·ct/(ce+ct)e)
j ∀j ∈ {1, . . . , n}.

2 Compute τj = {max{0, xkjj −∆j} : kj ∈ {1, . . . , Nj}} and τj = 1
Nj

∑Nj
kj=1 τ

kj
j

∀j ∈ {1, . . . , n}.
3 Order procedures in increasing τj.

Bounding the Performance of Heuristic 1

We find an upper bound on the objective function (2.6) using a triangle-like inequality in
Heuristic 1:

f(∆1, . . . ,∆n) =
n∑
j=1

1

Mj

Nj∑
i=1

Mj−1∑
k=1

max
{
ce
(
∆j − xij − T kj−1

)
, ct
(
xij + T kj−1 −∆j

)}
≤

n∑
j=1

1

Mj

Nj∑
i=1

Mj−1∑
k=1

[
max

{
ce
(
∆j − xij

)
, ct
(
xij −∆j

)}
+ max {ce, ct}T kj−1

]
(2.11)

We compute the difference, δ, between the upper bound and the objective function, assuming
T0 = 0:

δ =
n∑
j=2

1

Mj

Nj∑
i=1

Mj−1∑
k=1

[
max

{
ce
(
∆j − xij

)
, ct
(
xij −∆j

)}
+ max {ce, ct}T kj−1

]
−

n∑
j=2

1

Mj

Nj∑
i=1

Mj−1∑
k=1

max
{
ce
(
∆j − xij − T kj−1

)
, ct
(
xij + T kj−1 −∆j

)}



CHAPTER 2. DATA-DRIVEN APPOINTMENT SCHEDULING 59

=
n∑
j=2

1

Mj

∑
i∈Aj

Mj−1∑
k=1

[
ce
(
∆j − xij

)
+ max {ce, ct}T kj−1

]
−

n∑
j=2

1

Mj

∑
i∈Aj

Mj−1∑
k=1

max
{
ce
(
∆j − xij − T kj−1

)
, ct
(
xij + T kj−1 −∆j

)}
+

n∑
j=2

1

Mj

∑
i∈Bj

Mj−1∑
k=1

[
ct
(
xij −∆j

)
+ max {ce, ct}T kj−1

]
−

n∑
j=2

1

Mj

∑
i∈Bj

Mj−1∑
k=1

ct
(
xij + T kj−1 −∆j

)
To compute δ we define two sets for each procedure, Aj and Bj for all j ∈ {1, . . . , n}. Aj
consists of all of the observations of procedure j duration less than ∆j whereas Bj has all the
observations of procedure j greater than or equal to ∆j. The number of elements in sets Aj
and Bj are denoted by NA

j and NB
j respectively (Nj = NA

j +NB
j ∀j).

δ =

n∑
j=2

1

Mj

∑
i∈Aj

Mj−1∑
k=1

min{(max{ce, ct}+ ce)T
k
j−1, (max{ce, ct} − ce)T kj−1 + (ce + ct)(∆j − xij)}

+
n∑
j=2

1

Mj

∑
i∈Bj

Mj−1∑
k=1

(max{ce, ct} − ce)T kj−1

To simplify the difference, δ, we assume the penalty for tardiness is equal to the penalty
for earliness. δ becomes:

δ =
n∑
j=2

1

Mj

∑
i∈Aj

Mj−1∑
k=1

min{2T kj−1, 2(∆j − xij)} = 2
n∑
j=2

1

Mj

∑
i∈Aj

Mj−1∑
k=1

min{T kj−1,∆j − xij}

We have a set of n procedures P = (p1, . . . , pn). Any ordering of procedures P = (p1, . . . , pn)
has different a objective function (2.6) value and a value of the upper bound (2.11). The
difference between two values is δ . For instance δ computed given the optimal order may be
equal the largest possible value of δ, whereas there can be an ordering which has smaller δ
so that this ordering has smaller value of (2.11). Assume we find the order (o′) having the
minimum value of (2.11) given the time allowances of all procedures. The maximum error of
choosing the suggested order (o′) instead of the optimal order (o∗) given the time allowances
of all procedures, is the difference between the maximum value of δ over all possible orderings
and the minimum value of δ over all possible orderings.
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The maximum value of δ among all possible orderings (ce = ct):

δ = 2
n∑
j=2

1

Mj

∑
i∈Aj

Mj−1∑
k=1

min{T kj−1,∆j − xij}

≤ 2
n∑
j=2

1

Mj

∑
i∈Aj

Mj−1(∆j − xij)

= 2
n∑
j=2

1

Nj

∑
i∈Aj

∆j − xij

which does not depend the the ordering. In other words this upper bound is same for all
possible orderings.

In order to find the minimum value of δ, we use the inequality (2.8):

δ = 2
n∑
j=2

1

Mj

∑
i∈Aj

Mj−1∑
k=1

min{T kj−1,∆j − xij}

≥ 2
n∑
j=2

1

Mj

∑
i∈Aj

Mj−1

Nj−1

Nj−1∑
k=1

min{τ kj−1,∆j − xij}

= 2
n∑
j=2

1

NjNj−1

∑
i∈Aj

Nj−1∑
k=1

min{τ kj−1,∆j − xij}

This lower bound depends on the order of the procedures. Given the data x = (x1, . . . ,xn)

and ∆ = (∆1, . . . ,∆n) we can compute 1
NjNj−1

∑
i∈Aj

∑Mj−1

k=1 min{τ kj−1,∆j − xij} for any two

procedures. We can store the values in a matrix where rows represent the predecessors
and columns represent their successors and set the diagonal elements equal to infinity. For
any ordering we can compute the lower bound by summing the n− 1 entries of the matrix
corresponding to the n − 1 predecessor-successor duos in that ordering. We would like to
find the ordering which has the minimum value. This problem is same as the Asymmetric
Traveling Salesman Problem (Dantzig et al., 1954).

Lemma 20. The maximum error of the heuristic is the difference between the maximum
value of δ over all possible orderings and the minimum value of δ over all possible orderings,
which is equal to:

2
n∑
j=2

1

Nj

∑
i∈Aj

(∆j − xij)− 2
n∑
j=2

1

NjNj−1

∑
i∈Aj

Nj−1∑
k=1

min{τ kj−1,∆j − xij}

.
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Remark. If ∆j’s are less than the minimum observation of xj ∀j ∈ {1, . . . , n} (∆j ≤
min({xij}Mn

i=1) ∀j ∈ {1, . . . , n}), this error would be equal to zero. In other words if the time
allowances of all procedures are less than the smallest observation of any procedure duration,
the sequence minimizing the objective function is ordering procedures in increasing average
value of the set τj, τj.

Heuristic 2

The upperbound in Heuristic 1 is strict for the observations of procedures which are larger
then the time allowance of that procedure. However, the contribution of the observations
which are smaller than the time allowance of that procedure to the upper bound is greater
than or equal to their contribution to the objective function. Our goal is to find a stricter
upper bound at the expense of computational complexity.

We would like to find a better upper bound on the optimal solution than the upper
bound computed in Heuristic 1. We define two sets for each procedure, Aj and Bj for all
j ∈ {1, . . . , n}. Aj consists of all of the observations of procedure j duration less than ∆j

whereas Bj has all the observations of procedure j greater than or equal to ∆j. The number
of elements in sets Aj and Bj are denoted by NA

j and NB
j respectively (Nj = NA

j +NB
j ∀j).

f(d1, . . . , dn)

=
n∑
j=1

1

Mj

Nj∑
i=1

Mj−1∑
k=1

max
{
ce
(
∆− xij − T kj−1

)
, ct
(
xij + T kj−1 −∆j

)}
=

n∑
j=1

1

Mj

∑
i∈Aj

Mj−1∑
k=1

max
{
ce
(
∆j − xij − T kj−1

)
, ct
(
xij + T kj−1 −∆j

)}
+

n∑
j=1

1

Mj

∑
i∈Bj

Mj−1∑
k=1

max
{
ce
(
∆j − xij − T kj−1

)
, ct
(
xij + T kj−1 −∆j

)}
=

n∑
j=1

1

Mj

∑
i∈Aj

Mj−1∑
k=1

[
ce
(
∆j − xij

)
+ max

{
ce
(
−T kj−1

)
, ct
(
T kj−1

)
+ (ce + ct)

(
xij −∆j

)}]
+

n∑
j=1

1

Mj

∑
i∈Bj

Mj−1∑
k=1

ct
(
xij + T kj−1 −∆j

)
=

n∑
j=1

1

Mj

Nj∑
i=1

Mj−1∑
k=1

max
{
ce
(
∆j − xij

)
, ct
(
xij −∆j

)}
+ (2.12)

n∑
j=1

1

Mj

∑
i∈Aj

Mj−1∑
k=1

max
{
ce
(
−T kj−1

)
, ct
(
T kj−1

)
+ (ce + ct)

(
xij −∆j

)}
+ (2.13)
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n∑
j=1

1

Mj

∑
i∈Bj

Mj−1∑
k=1

ct
(
T kj−1

)
(2.14)

The objective function has three parts: (2.12), (2.13), (2.14). The first part (2.12) is same
for all possible orderings. Our goal is to find an upper bound on parts (2.13) and (2.14) using
the inequalities (2.9) and (2.10). We also assume Tj = 0 for any j ≤ 0.

(2.13) ≤
n∑
j=2

1

Mj

∑
i∈Aj

Mj−1

Nj−1

Nj−1∑
k=1

max
{
ce
(
−τ kj−1

)
, ct
(
τ kj−1

)
+ (ce + ct)

(
xij −∆j

)}
+

max{ce, ct}NA
j

Mj−1

Mj−2

Mj−2∑
m=1

Tmj−2



(2.14) ≤ ct

n∑
j=2

NB
j

Mj

Mj−1

Nj−1

Nj−1∑
k=1

τ kj +
Mj−1

Mj−2

Mj−2∑
k=1

T kj−2

 = ct

n∑
j=2

(
NB
j

Nj

τj−1 +
NB
j

Nj

Tj−2

)

(2.13)+(2.14)

≤
n∑
j=2

1

Mj

∑
i∈Aj

Mj−1

Nj−1

Nj−1∑
k=1

max
{
ce
(
−τ kj−1

)
, ct
(
τ kj−1

)
+ (ce + ct)

(
xij −∆j

)}+

max{ce, ct}
n∑
j=2

NA
j

Nj

Tj−2 + ct

n∑
j=2

NB
j

Nj

τj−1 + max{ce, ct}
n∑
j=2

NB
j

Nj

Tj−2

=
n∑
j=2

1

Mj

∑
i∈Aj

Mj−1

Nj−1

Nj−1∑
k=1

max
{
ce
(
−τ kj−1

)
, ct
(
τ kj−1

)
+ (ce + ct)

(
xij −∆j

)}+

max{ce, ct}
n∑
j=2

Tj−2 + ct

n∑
j=2

NB
j

Nj

τj−1

=
n∑
j=2

1

NjNj−1

∑
i∈Aj

Nj−1∑
k=1

max
{
ce
(
−τ kj−1

)
, ct
(
τ kj−1

)
+ (ce + ct)

(
xij −∆j

)}+ (2.15)

max{ce, ct}
n∑
j=2

Tj−2 + ct

n∑
j=2

NB
j

Nj

τj−1

where τj = 1
Nj

∑Nj
m=1 τ

m
j which is the average of the set τj for any j ∈ {1, . . . , n} and Tj is

the average of the set Tj or any j ∈ {1, . . . , n} and Tj. We can only compute Tj only if we
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know the order of the procedures. We use the inequality (2.10) to bound the average of Tj

which gives an upperbound independent of the processing order.

(2.13)+(2.14)

≤
n∑
j=2

1

NjNj−1

∑
i∈Aj

Nj−1∑
k=1

max
{
ce
(
−τ kj−1

)
, ct
(
τ kj−1

)
+ (ce + ct)

(
xij −∆j

)}+

max{ce, ct}
n−1∑
j=1

(n− j − 1)τj + ct

n∑
j=2

NB
j

Nj

τj−1

This upper bound can be rearranged as follows:

n∑
j=2

 1

NjNj−1

∑
i∈Aj

Nj−1∑
k=1

max
{
ce
(
−τ kj−1

)
, ct
(
τ kj−1

)
+ (ce + ct)

(
xij −∆j

)}+ ct
NB
j

Nj

τj−1

+

max{ce, ct}
n−1∑
j=1

(n− j − 1)τj (2.16)

Ignore the second component of the upper bound (2.16) for now and observe that the
first component is the summation of n − 1 terms containing variables with subscript j or
j − 1. The ordering of n procedures can be defined as n− 1 predecessor-immediate successor
relationships. For instance we have 3 procedures, P = (p1, p2, p3) and the order they are
processed in is p2 − p1 − p3. Instead we can define couples of a procedure and its immediate
successor such as p2 − p1 and p1 − p3. Given the predecessor and its immediate successor
relationships the sum of the terms for all possible (j − 1, j) can be computed. We can build
a matrix holding the individual terms in the first component of (2.16). The rows correspond
to the predecessors and columns represent their successors. Given the order of procedures
the first component of the upper bound (2.16) is sum of the n − 1 entries of the matrix
corresponding to n− 1 predecessor-successor duos. The optimal order minimizing the sum of
those terms is finding a path which minimizes the total cost which is a Asymmetric Traveling
Salesman Path Problem. The graph is a fully connected graph where the nodes are the
procedures and distances are individual terms in the first component of (2.16) stored in a
matrix. The second component can be computed without knowing the order of the procedures.
In order to evaluate the upper bound (2.16) at d we need to compute an n×n matrix holding
the values of the sum of the first component of (2.16) and also the average τj for all procedure
j’s.

We formulate this problem as a dynamic program. We have a set of n procedures
P = (p1, . . . , pn). The (i, j) entry, wi,j = wpi,pj of the distance matrix W contains the value of
the terms in the first component of (2.16) computed assuming that the procedure pj follows
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the procedure pi.

wpi,pj =
1

NpjNpi

∑
i∈Apj

Npi∑
k=1

max
{
ce
(
−τ kpi

)
, ct
(
τ kpi
)

+ (ce + ct)
(
xipj −∆pj

)}+ ct
NpBj
Npj

τpi

The diagonal entries are empty or can be set equal to infinity for the sake of computation.
Our goal is to compute the minimum of the cost function Cost(start, end, S) over all possible
start and end combinations

Cost(pi, pj, S) = min
pk
{wpi,pk + Cost(pk, pj, S \ {pk})}+ |S|τi

where Cost(pi, pj, ∅) = wpi,pj and S is any subset of the procedures excluding the start and
the end.

Algorithm 2: Dynamic Programming for Heuristic 2

1 for Each Procedure pj ∈ P = (p1, . . . , pn) do
2 Schedule that procedure pj last
3 for Each Procedure pi ∈ P \ {pj} do
4 Cost(pi, pj, ∅) = wpi,pj
5 end
6 for For any subset S ⊂ P \ {pi, pj} do
7 Cost(pi, pj, S) = minpk{wpi,pk + Cost(pk, pj, S \ {pk})}+ |S|τi
8 end
9 Choose the ordering with minimum cost

10 end

The worst case complexity of this approach O(n22n), which is exponential rather than
factorial O(n!) because it goes through all the subsets of the procedures.

We may find a sequence with lower objective function value than the objective function
value computed using the ordering suggested by the heuristic 1. However the complexity of
heuristic 2 is not polynomial.

Heuristic 3

Function (2.16) overestimates function (2.15). Especially as the number of procedures ,n,
increases, the second term in the upper bound inflates above its actual value and dominates
the remaining terms. Our goal is to approximate the function (2.15) which can be computed
if the order is given, because Tj for all j ∈ {1, . . . , n− 2} can be computed only if the order is

known. The first step is to define tardiness of procedure j given the observations (xk11 , . . . , x
kj
j )

as a function of (τ k11 , . . . , τ
kj
j ) where I∆j

(T ) = max{0, T −max{0,∆j − xj}}.

T k11 = τ k11 k1 ∈ {1, . . . , N1}
T

(k1,k2)
2 = τ k22 + I∆2(τ

k1
1 ) k1 ∈ {1, . . . , N1}, k2 ∈ {1, . . . , N2}
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T
(k1,k2,k3)
3 = τ k33 + I∆3(τ

k2
2 + I∆2(τ

k1
1 )) k1 ∈ {1, . . . , N1}, k2 ∈ {1, . . . , N2}, k3 ∈ {1, . . . , N3}

...

For notational brevity we use Tj−1 as the argument of the function I∆j
(·). The index of

Tj−1 is mj−1 ∈ {1, . . . ,Mj−1} where Mj−1 =
∏j−1

`=1 N` to define observations (xk11 , . . . , x
kj−1

j−1 ).
((k1, . . . , kj−1)→ mj−1)

T k11 = τ k11 k1 ∈ {1, . . . , N1}
T

(m1,k2)
2 = τ k22 + I∆2(T

m1
1 ) m1 ∈ {1, . . . ,M1}, k2 ∈ {1, . . . , N2}

T
(m2,k3)
3 = τ k33 + I∆3(T

m2
2 ) m2 ∈ {1, . . . ,M2}, k3 ∈ {1, . . . , N3}

...

T
(mj−1,kj)
j = τ

kj
j + I∆j

(T
mj−1

j−1 ) mj−1 ∈ {1, . . . ,Mj−1}, kj ∈ {1, . . . , Nj}

The objective function becomes:

f =
n∑
j=1

1

Mj

Nj∑
i=1

Mj−1∑
k=1

max
{
ce
(
∆j − xij − T kj−1

)
, ct
(
xij + T kj−1 −∆j

)}
=

n∑
j=1

1

Mj

Nj∑
i=1

Nj−1∑
k=1

Mj−2∑
m=1

max
{
ce
(
∆j − xij − τ kj−1 − I∆j−1

(Tmj−1)
)
,

ct
(
xij + τ kj−1 + I∆j−1

(Tmj−1)−∆j

)}
=

n∑
j=1

1

Mj

∑
i∈Aj

Nj−1∑
k=1

Mj−2∑
m=1

max
{
ce
(
∆j − xij − τ kj−1 − I∆j−1

(Tmj−1)
)
,

ct
(
xij + τ kj−1 + I∆j−1

(Tmj−1)−∆j

)}
+

n∑
j=1

1

Mj

∑
i∈Bj

Nj−1∑
k=1

Mj−2∑
m=1

ct
(
xij + τ kj−1 + I∆j−1

(Tmj−1)−∆j

)
=

n∑
j=1

1

Mj

∑
i∈Aj

Nj−1∑
k=1

Mj−2∑
m=1

max
{
ce
(
∆j − xij − τ kj−1 − I∆j−1

(Tmj−1)
)
,

ct
(
xij + τ kj−1 + I∆j−1

(Tmj−1)−∆j

)}
+

n∑
j=1

1

Mj

∑
i∈Bj

Nj−1∑
k=1

Mj−2∑
m=1

ct
(
τ ij + τ kj−1 + I∆j−1

(Tmj−1)
)
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Remark.
∑

i∈Bj τ
i
j =

∑Nj
i=1 τ

i
j because of the definition of τj = {max{0, xij − ∆j} : i ∈

{1, . . . , Nj}} and Bj has all the observations of procedure j greater than or equal to ∆j.

We would like to approximate the upper bound (2.15). In order to do that we need to
approximate Tj for all j ∈ {1, . . . , n− 2}. We find a function of (τ1, . . . , τj) approximating
the average tardiness terms Tj. We know the exact function of Tj, for instance the average
tardiness of the third procedure in order is:

1

M3

N1∑
k1=1

N2∑
k2=1

N3∑
k3=1

T
(k1,k2,k3)
3 =

1

M3

(
N1∑
k1=1

N2∑
k2=1

N3∑
k3=1

τ k33 + I∆3(τ
k2
2 + I∆2(τ

k1
1 ))

)

Observe that the function I∆j
(T ) = max{0, T −max{0,∆j − xj}} returns a non-negative

real number in[0, T ]. We can approximate the output of this function with a discount factor
ranging from 0 to 1. Since computing I∆j

(T ) for all realizations of a procedure and then
calculating the average tardiness are expensive, we try to approximate the average tardiness
of a procedure by using discount factors as follows:

T1 = τ1

T2 ≤ τ1 + τ2 → T2 = γ1τ1 + τ2 where 0 ≤ γ1 ≤ 1

T3 ≤ τ1 + τ2 + τ3 → T3 = γ2(γ1τ1 + τ2) + τ3 where 0 ≤ γ2 ≤ 1

We may find a set of Γ = (γ1, . . . , γn−3) to exactly compute (T1, . . . , Tn−2) given the order.
The exact value of γj depends on the the number of observations of the procedure j+ 1 which
are less than ∆j+1 (NA

j+1) and also its distribution. Choosing different γj’s for each j + 1st
procedure implies we find different functions for each possible ordering, which we would like
to avoid. That is why we treat γ as a discount factor which is used to diminish the effect of
previous procedure’s tardinesses on the current procedure’s tardiness.

(2.13)+(2.14)

≈
n∑
j=2

1

NjNj−1

∑
i∈Aj

Nj−1∑
k=1

max
{
ce
(
−τ kj−1

)
, ct
(
τ kj−1

)
+ (ce + ct)

(
xij −∆j

)}+ (2.17)

max{ce, ct}
n−1∑
j=1

(
1− γn−j

1− γ
− 1

)
τj + ct

n∑
j=2

NB
j

Nj

τj−1
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Algorithm 3: Heuristic 3

1 Compute the schedule ∆pj = x
(dNpj ·ct/(ce+ct)e)
pj ∀pj ∈ {p1, . . . , pn}.

2 Compute τpj
= {max{0, xkjpj −∆pj} : kj ∈ {1, . . . , Npj}} and τpj = 1

Npj

∑Npj
kj=1 τ

kj
pj

∀pj ∈ {p1, . . . , pn}.
3 Compute the matrix W where (i, j)’t entry of W (wi,j) is equal to
4 wpi,pj =

1
NpjNpi

∑
i∈Apj

[∑Npi
k=1 max

{
ce
(
−τ kpi

)
, ct
(
τ kpi
)

+ (ce + ct)
(
xipj −∆pj

)}]
+ ct

NpBj
Npj

τpi .

5 for Each Discount Rate γ ∈ Γ = (γ1, . . . , γm) do
6 for Each Procedure pj ∈ P = (p1, . . . , pn) do
7 Schedule that procedure pj last
8 for Each Procedure pi ∈ P \ {pj} do
9 Cost(pi, pj, ∅) = wpi,pj

10 end
11 for For any subset S ⊂ P \ {pi, pj} do
12 if γ == 1 then

13 Cost(pi, pj, S) = minpk{wpi,pk+Cost(pk, pj, S\{pk})}+
(

1−γ|S|+1

1−γ − 1
)
τi

14 end
15 else
16 Cost(pi, pj, S) = minpk{wpi,pk + Cost(pk, pj, S \ {pk})}+ |S|τi
17 end

18 end
19 Choose the ordering with minimum cost and add to a list.

20 end
21 For each ordering in the list evaluate the objective function at

∆pj = x
(dNpj ·ct/(ce+ct)e)
pj ∀pj ∈ {p1, . . . , pn}. Choose the ordering with minimum

objective function value.
22 end

Given one discount rate, the complexity of finding the sequence suggested by heuristic 3 is
same as the complexity of heuristic 2. Heuristic 3’s solution can be improved by choosing
multiple discount factors.

Computational Comparison of the Sequencing Heuristics

We optimize the objective function of all possible orderings (n!) and return their minimum
solution. We call this the brute force approach. Heuristics 1 requires the computation of
the minimum solution of one ordering. Heuristic 2 solves an asymmetric traveling salesman
problem and then optimizes the objective function corresponding the ordering given by the
asymmetric traveling salesman problem. Heuristic 3 repeats the steps of the heuristic 2
multiple times. We compare the performance of the brute force approach with the performance
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of the heuristics in terms of the percentage of finding the optimal, average gap percentage
and the average run length.

We create data points sampled from discrete distributions. Example runs:

1. 5 procedures sampled from the distributions:

• Uniform(50,118)
• Binomial(400,0.6)+Uniform(235,265)
• Binomial(500,0.1)
• Uniform(120,168)
• Binomial(440,0.4)

Heuristic 1 Heuristic 2 Heuristic 3 Brute Force
Percentage of Finding
Optimal 35% 55% 70 % 100%
Average Gap Percentage 0.00504 0.001556 0.00119 0
Average Run Length (sec) 3.78 4.56 17.74 450.02

Figure 2.1: Computational Comparison of the Sequencing Heuristics

2. 5 procedures sampled from the distributions:

• Uniform(170,218)
• Binomial(336,0.5)+Uniform(145,175)
• Binomial(440,0.48)
• Uniform(220,268)
• Binomial(540,0.3)

Heuristic 1 Heuristic 2 Heuristic 3 Brute Force
Percentage of Finding
Optimal 15% 10% 35% 100%
Average Gap Percentage 0.00518 0.004403 0.00207 0
Average Run Length (sec) 4.45 5.16 19.69 514.96

Figure 2.2: Computational Comparison of the Sequencing Heuristics

In the examples above, the relative heuristic performance is as expected. Heuristic 3 finds
the best quality solutions (in terms of both finding optimal solutions, and average gap) while
heuristic 1 has the shortest average run length.
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2.4 Data Selection

When a surgery has been scheduled, the hospital can record a variety of data: the condition of
the patient, type of the procedure, surgeon, anesthesia attendant, the operating room where
the procedure is going to take place etc. The historical data of a procedure consists of those
recorded features, the scheduled duration of that procedure and its actual duration. The
type of a procedure may not be the only feature defining the distribution of the procedure’s
duration. For instance the distribution of the procedure duration may differ with respect
to the age of the patient. Using only the historical data of a procedure’s duration while
minimizing the expected total earliness and tardiness may introduce bias to the model. If
there is a black box returning the distribution of the procedure given the features:

1. Bias introduced to the model because of ignoring the true procedure duration distribution
may decrease.

2. In the section ”Complexity of the Objective Function Evaluation” the complexity to
evaluate the objective function is shown to be min{O(n3x2

max),O(Mn)}, where xmax is
the maximum value of all procedure durations and Mn =

∏n
`=1N`. If this black box can

eliminate some observed procedure durations which are not probable, the complexity
of computation of the objective function given a schedule may decrease so does the
complexity of minimization of the objective function.

In Chapter 1, we showed that the case with two procedures (n = 1) is equivalent to
the Data-Driven Newsvendor Problem (Section 1.2.3). ce and ct correspond to overage and
underage costs respectively, D1 corresponds to the order quantity and x1 corresponds to the
demand. The objective is of the Data-Driven Newsvendor Problem is:

min
D1

1

N1

N1∑
i=1

max{ce(D1 − xi1), ct(x
i
1 −D1)} (2.18)

Ban and Rudin (2018) study the Data-Driven Newsvendor Problem with historical data
consisting of p features and their associated demand. They call the model (2.18) optimizing
the newsvendor problem over an empirical distribution the ’Sample Average Approximation
(SSA) approach’. They develop what they call an Empirical Risk Minimization (ERM)
Algorithm to solve the newsvendor problem with feature data. The ERM approach is
equivalent to high-dimensional quantile regression and can be solved by convex optimization
methods. Under some assumptions about the demand models, they proved the consistency
and the asymptotic optimality of the regression coefficients of ERM model as the number of
observations goes to infinity, and showed the inconsistency of the SSA approach.

We adapt the The ERM approach (Ban and Rudin, 2018) to the appointment scheduling
problem with only two procedures. The empirical risk function is β1(·) among a fixed class
of functions B and the feature matrix is the first procedure A1 ∈ RN1×p. The appointment
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scheduling with two procedures becomes:

min
β1∈B,{β:Rp→R}

1

N1

N1∑
i=1

max{ce(β1(Ai1)− xi1), ct(x
i
1 − β1(Ai1))}

where Ai1 is the ith row of the matrix A1 corresponding to the feature vector of the observation
i ∈ {1, · · · , N1}.

If there are more procedures i.e. n ≥ 2, the ERM model has n risk functions βj(·) ∀j ∈
{1, · · · , n} for each completion time Cj ∀j ∈ {1, · · · , n}. The completion time of the second
procedure depends on the distribution of first and second procedures durations (x1,x2). The
feature matrix of the second procedure’s completion time should contain first and second
procedure’s features and the interaction terms (e.g. Ai1 � Ai2). The feature matrix of the nth

procedure’s completion time should contain all procedures’ features and the all the interaction
terms. The number of arguments of each risk function grows exponentially. For instance
assume B is the set of all linear functions and ignore all the interaction terms of the feature
matrices, the number of parameters we need to estimate isp + 2p + · · · + np = n(n+1)

2
p. If

we include the interaction terms then the number of parameters needed to estimate grows
exponentially. Let’s define feature matrix Aj for completion time of procedure Cj. Aj has
every row combination of A1, · · · , Aj and also the interactions of those matrices if needed.
The model becomes:

min
β1,···βn

n∑
j=1

1

Mj

Mj∑
i=1

max{ce(βj(Aij)− Ci
j), ct(C

i
j − βj(Aij))}

This problem can be written as a linear program, so it is still convex. But as the feature
space grows it becomes harder to solve the instances.

Instead of including the features into the model, we would like to preprocess the data
and then optimize the original objective taking the expectation over the subset of the
observations with the decision variables Dj (or ∆j). Our goal is to eliminate the data points
which are not likely to occur, then compute expected weighted earliness and tardiness over
the empirical distribution function of the remaining data points. We use non-parametric
inferential statistical methods as a heuristic to choose the subset of the observations.

2.4.1 Expert (Surgeon) Opinions

Sometimes, experts (such as the surgeon completing the procedure) may provide feedback
about how long they think a procedure may take. Their estimates about the procedure
duration can be recorded. We would like to use the information hidden in their estimates.
For instance an expert may be conservative in the sense that expert’s estimates always
overestimate the actual duration but those estimates are correlated with the realizations.
Based on the distribution of the estimates we can eliminate some data points which are not
likely to repeat. Those estimates can be:
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1. Categorical: Categorical estimates have multiple categories with natural ordering
such as long, medium and short.

2. Numerical: Numerical estimates are most of the time integers, e.g., 2 hours 10 minutes.

Some experts are more effective at estimating the procedure time than others. Sometimes
those estimates may not be correlated with the actual procedure duration. Our goal is to
understand if there is any information in the expert estimates so that the data points which
are unlikely to occur can be disregarded.

Categorical Estimates

Experts provide their categorical estimates about how long the next procedure will take.
They pick one of the K groups which seems to be the most likely. For instance if there are 3
groups such as short, medium and long, the expert will pick one of those three.

We can find a point estimate for all groups with a linear regression after dummy coding
the expert categorical estimates. In other words we can create K − 1 binary dichotomous
features representing the groups except for one not to cause multi-collinearity. A is the
matrix holding the binary features and the intercept, where the first column is all 1’s and
the remaining columns represents a group (g2, . . . , gK). The total number of observations
is N and the numbers of observations (procedure durations) in corresponding groups are
(Ng2 , . . . , NgK ). The linear regression model predicting the procedure duration x is:

x = Aβ + ε

The closed form solution of the least square estimate of β (Wasserman, 2013):

β̂ = (ATA)−1ATx

where ATA is:

ATA =


N Ng2 Ng3 . . . NgK

Ng2 Ng2 0 . . . 0
Ng3 0 Ng3 . . . 0

...
...

...
. . .

...
NgK 0 0 . . . NgK


The number of observations falling onto the group g1 is equal to N1 = N−N2−N3−· · ·−NK .
The group g1 is omitted not to cause multicollinearity. It can be shown that the inverse of
(ATA) to be equal to:

(ATA)−1 =



1
Ng1

−1
Ng1

−1
Ng1

. . . −1
Ng1−1

Ng1

1
Ng2

+ 1
Ng1

1
Ng1

. . . 1
Ng1−1

Ng1

1
Ng1

1
Ng3

+ 1
Ng1

. . . 1
Ng1

...
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...
−1
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1
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The coefficients of the linear regression is:

β̂ =

(
1

Ng1

∑
i∈g1

xi,
1

Ng2

∑
i∈g2

xi −
1

Ng1

∑
i∈g1

xi, · · · ,
1

NgK

∑
i∈cK

xi −
1

Ng1

∑
i∈g1

xi

)

We need to test the significance of the coefficients β which requires making assumptions
about the distribution of the procedure durations in each group.

Assuming K groups are independent and normally distributed with same variance there is
another method to test the means of the categories are same. Analysis of Variance (ANOVA)
is a linear model to test differences among group means in a sample by only computing the
mean of each group. ANOVA and linear regression explained above are equivalent (Eisenhauer,
2006). Both use the observations of a group to test the significance of that group.

Assuming all the coefficients in the linear regression are statistically significant, given the
next procedure is in group gk k ∈ {1, . . . , K}, the point estimate of the next procedure’s
duration is the average of all observations falling into the group gk. In other words any
observation is equally likely to occur. Instead of a single point estimate we can use all the
data points falling into the group gk to build the empirical distribution, and minimize the
expected weighted earliness and tardiness (2.1) over this empirical distribution.

We would like to avoid making any assumption about the distribution of the procedure
durations in each group. We need to test whether the sample from the category gk k ∈
{1, . . . , K} is different than all other samples. The permutation test is a non-parametric
method for testing whether two distributions are the same (Wasserman, 2013).

Algorithm 4: Permutation Test (Wasserman, 2013)

1 Compute the test statistic tobs = T (x) using the observations.
2 Randomly permute the data and compute the statistic again using the permuted data.
3 Repeat the previous step B times (Monte Carlo approximation) and let T1, . . . , TB

denote the resulting values. (Or repeat the previous step for every possible
permutation (exact test).)

4 The approximate p-value is

p̂0 =
1

B

B∑
j=1

I(Tj > tobs)

.

Computation of p0 by doing the exact test might not be computationally feasible. The

standard deviation of p̂0 is
√

p0(1−p0)
B

(Efron and Tibshirani, 1994) which follows from:

V ar(p̂0) = V ar

(
1

B

B∑
j=1

I(Tj > tobs)

)
=
Bp0(1− p0)

B2
=
p0(1− p0)

B



CHAPTER 2. DATA-DRIVEN APPOINTMENT SCHEDULING 73

We would like to minimize the standard deviation to achieve desired precision (Golland et al.,
2005):

min
B

max
p0

√
p0(1− p0)

B
= min

B

√
1

4B

Marozzi (2004) investigates how the choice of B affects the estimation procedure, suggests
approaches about choosing B.

If there is enough evidence that the distribution of a procedure’s observations in different
groups are not the same while computing the contribution of that procedure to the objective
function (2.1) given the group of the next procedure’s expert estimate, we can use only
the observations from that group. We would like to determine if the distribution of the
observations falling into different groups are the same. If there is not enough evidence to
reject the hypothesis that the observations in two different groups are coming from the same
distribution, we merge those two groups and create a new one. First we order the groups of
the categorical expert estimates in decreasing mean of the observations. We test whether two
neighboring groups are coming from the same distribution. If there is not enough evidence to
reject the null hypothesis of them being coming from the same distribution, then we form a
new group which contains observations coming from both groups. Otherwise those groups
shouldn’t be merged. We are making multiple hypothesis tests so we need multiple testing
correction, such as the Bonferroni Method or the Benjamini-Hochberg Method (Benjamini
and Hochberg, 1995).

The data selection algorithm if there is a single categorical feature is the Algorithm 5.

2.4.2 Feature Selection

In this section we assume there are multiple (m) categorical features. Similar to what we
have done in the previous section, we can find a point estimate of the next procedure duration
by building a linear regression model, after dummy coding all m features:

x =
M∑
m=1

Amβm + ε

The closed form solution of the estimates of the coefficients β1, . . . , βM is

[β̂1, . . . , β̂M ] = ([A1A2 · · ·AM ]T [A1A2 · · ·AM ])−1[A1A2 · · ·AM ]Tx.

But we cannot further simplify the coefficients as in the previous chapter. This is because
after dummy coding, each data point has features equal to 0 or 1. Since there is more than
one feature, each data point (row of the feature matrix [A1A2 · · ·AM ]) may contain more
than one 1.

We redefine a linear regression model with new features which are the indicators of the
Cartesian product of the M features. For instance the data has two features which are
surgeon and anesthesiologist. If there are Ks surgeons and Ka anesthesiologists we can create
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Algorithm 5: Data Selection If There is a Single Categorical Feature

1 Name the groups of the categorical expert estimates such that g1 is the group which
has the largest mean, g2 has the second largest mean...

1

Ng1

∑
i∈g1

xi ≥
1

Ng2

∑
i∈g2

xi ≥ · · · ≥
1

NgK

∑
i∈gK

xi

µg1 ≥ µg2 ≥ · · · ≥ µgK

2 Set i = 1, j = 2 and define new group Gi such that Gi = g1.
3 while j ≤ K do
4 Perform a permutation test to test whether distributions of Gi and gj are the

same with the test statistic:

T (x) =
1

NGi

∑
i∈Gi

xi −
1

Ngj

∑
i∈gj

xi

if The difference is significantly large then
5 i = i+ 1
6 Gi = gj
7 j = j + 1

8 end
9 else

10 Gi = Gi ∪ gj
11 j = j + 1

12 end

13 end
14 Return new groups, Gi’s.

Ks ·Ka features representing each surgeon, anesthesiologist pairs. After such modification
and dummy coding each row of the new feature matrix contains at most one 1. Thus we can
simplify the coefficients of the model and the estimate of a procedure duration given the
surgeon and the anesthesiologist would be equal to the mean of the procedure durations done
by the same surgeon and the anesthesiologist. This model is a nonlinear model of the the
original features which can be represented with a decision tree.

Frank and Witten (1998) proposes an algorithm to choose the features while building a
classification decision tree. At each node of the decision tree a feature is chosen to split on. If
a feature does not show any significant association to the class at a prespecified significance
level, that feature is rejected. In other words if the classes are independent of a feature then
that feature is not considered while building the tree. To judge the significance of a feature
Frank and Witten (1998) apply a permutation test.
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We adapt the idea of building a classification tree using a permutation test to building a
regression tree with categorical features:

1. Use the top-down greedy approach: at each node consider all the features which have
not been considered in the parent nodes and create new groups as in the Algorithm 5.
If the number of groups created is equal to 1 for all features, stop.

2. Choose the feature such that the resulting tree has the lowest residual sum of squares
(RSS).

Examples

We create dummy data sets where there are only three columns: procedure duration, expert
opinion, and gender.

1. Data set 1 after dummy coding:
Duration: 111,120,122,125,126,126,127,128,130,132,133,135,135,136,137,139,140,

142,143,145,145,146,147,150,151,151,155,163,165,166,166,170,178,180,
185,190,198,199,202,209

Medium: 0,1,0,0,1,0,0,1,0,1,0,1,1,0,1,1,0,0,1,1,1,0,1,0,1,1,0,1,0,0,0,1,0,1,0,0,0,0,0,0
Long: 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,1,1,1,0,0,0,1,1,1,1,1,1
Female: 1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0

Procedure Duration

Short and Medium
111, 120, 122, 125, 126, 127,
130, 133, 136, 142, 146, 178,
126, 128, 132, 135, 135, 137,

139, 140, 143, 145, 145,
147, 151, 151, 163, 170, 180

Long
150, 155, 165, 166, 166, 185,

190, 198, 199, 202, 209

Figure 2.3: Decision tree built using the feature selection algorithm using the data set 1.

2. Data set 2 after dummy coding:
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Duration: 111,120,122,125,126,126,127,128,130,132,133,135,135,136,137,139,140,
142,143,145,145,146,147,150,151,151,155,163,165,166,166,170,178,180,
185,190,198,199,202,209

Medium: 0,1,0,0,1,0,0,1,0,1,0,1,1,0,1,1,0,0,1,1,1,0,1,0,1,1,0,1,0,0,0,1,0,1,0,0,0,0,0,0
Long: 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,1,1,1,0,0,0,1,1,1,1,1,1
Female: 0,0,0,1,1,0,1,1,0,0,0,1,0,1,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,1,1,1,1,1,1,1

Procedure Duration

Short and Medium
111, 120, 122, 125, 126, 127,
130, 133, 136, 142, 146, 178,
126, 128, 132, 135, 135, 137,

139, 140, 143, 145, 145,
147, 151, 151, 163, 170, 180

Long

Male
150, 155, 165, 166, 166

Female
185,190, 198, 199, 202, 209

Figure 2.4: Decision tree built using the feature selection algorithm using the data set 2.

In the first example above, the procedure duration distribution does not depend on the
gender of the patient. Thus, gender is not considered while branching. In the second example,
at the first step we split the feature of expert opinion into two regions given by the permutation
test, because this split gives lower RSS.
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Chapter 3

Conclusion

This dissertation focuses on appointment scheduling of stochastic tasks, which in turns
involves both sequencing the tasks and setting the start time of those tasks. A task waits
to start if the previous task ends after its scheduled start time. If a task ends before the
start time of the next task, the server stays idle. We define tardiness as waiting time and
earliness as idle time. The objective of the appointment scheduling problem is to minimize the
expected weighted tardiness and earliness. We avoid making any distributional assumptions
about the task duration distributions, and use the historical data of task lengths to compute
the expected weighted tardiness and earliness. Our work is motivated by an initial project
(with UCSF) that focused on surgical scheduling where the tasks are the surgical procedures.
Thus we use task and procedure interchangeably.

We study the most commonly used heuristic to sequence the procedures in the appointment
scheduling literature, sequencing the procedures in increasing standard deviation of their
durations, and its performance for the case where there are only two procedures. We develop
sequencing heuristics tailored to appointment scheduling. The sequencing heuristics have
different complexities and performances. The first heuristic we develop is polynomial, and
we also bound the worst case performance of this sequencing heuristic. Also, we propose
heuristics with better performance but increased complexity.

The objective function is a continuous, convex, piece-wise linear function. If the sequence
of the tasks is known, the complexity of evaluating the objective function given the historical
data and the schedule either depends on the number of observations or the maximum range
of the procedure durations, depending on the method used. We propose an algorithm to
select data points if there are categorical features correlated with procedure durations, so that
the complexity of the problem might decrease. For instance, categorical surgeon estimate
regarding the length of the next procedure could be the only categorical feature. We use our
data selection algorithm to choose data points for all procedures, then use our sequencing
heuristic to determine procedure sequences. Finally we optimize the objective function given
the sequence and the data.

Assuming the same set of procedures are scheduled every day, we prove that the scheduled
time allowance of a procedure cannot be smaller than the critical quantile of its duration’s
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distribution. For instance, after the arrival of new data point, if the scheduled end time
of that procedure is less than the critical quantile of the updated distribution, we need to
update the scheduled time allowance also.

In the future, we plan to develop an online algorithm that updates the schedule and
the sequence of the procedures as new data points arrive, assuming that the same set of
procedures are scheduled every day. We also plan to study the bias and and consistency of
our data selection algorithm.
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