
UC Riverside
UC Riverside Previously Published Works

Title
Strain energy density as a Gaussian process and its utilization in stochastic finite element 
analysis: application to planar soft tissues.

Permalink
https://escholarship.org/uc/item/8bt9c13m

Authors
Aggarwal, Ankush
Jensen, Bjørn
Pant, Sanjay
et al.

Publication Date
2023-02-01

DOI
10.1016/j.cma.2022.115812
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8bt9c13m
https://escholarship.org/uc/item/8bt9c13m#author
https://escholarship.org
http://www.cdlib.org/


Strain energy density as a Gaussian process and its utilization 
in stochastic finite element analysis: application to planar soft 
tissues

Ankush Aggarwala,*, Bjørn Sand Jensenb,c, Sanjay Pantd, Chung-Hao Leee

aGlasgow Computational Engineering Centre, James Watt School of Engineering, University of 
Glasgow, Glasgow, G12 8LT, Scotland, United Kingdom

bSchool of Computing Science, University of Glasgow, Glasgow, G12 8LT, Scotland, United 
Kingdom

cDepartment of Applied Mathematics and Computer Science, Technical University of Denmark, 
Kgs. Lyngby, 2800, Denmark

dZienkiewicz Centre for Computational Engineering, Swansea University, Swansea, SA18EP, 
Wales, United Kingdom

eSchool of Aerospace and Mechanical Engineering, The University of Oklahoma, Norman, 73019, 
OK, United States of America

Abstract

Data-based approaches are promising alternatives to the traditional analytical constitutive models 

for solid mechanics. Herein, we propose a Gaussian process (GP) based constitutive modeling 

framework, specifically focusing on planar, hyperelastic and incompressible soft tissues. The 

strain energy density of soft tissues is modeled as a GP, which can be regressed to experimental 

stress-strain data obtained from biaxial experiments. Moreover, the GP model can be weakly 

constrained to be convex. A key advantage of a GP-based model is that, in addition to the mean 

value, it provides a probability density (i.e. associated uncertainty) for the strain energy density. 

To simulate the effect of this uncertainty, a non-intrusive stochastic finite element analysis (SFEA) 

framework is proposed. The proposed framework is verified against an artificial dataset based 

on the Gasser–Ogden–Holzapfel model and applied to a real experimental dataset of a porcine 

aortic valve leaflet tissue. Results show that the proposed framework can be trained with limited 

experimental data and fits the data better than several existing models. The SFEA framework 

provides a straightforward way of using the experimental data and quantifying the resulting 

uncertainty in simulation-based predictions.
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1. Introduction

Even with advanced numerical techniques, predictive mechanical modeling of complex 

materials, such as soft tissues, remains an unresolved challenge. Although the governing 

equations for solid mechanics (based on equilibrium) are deterministic and have been 

well established, uncertainty can arise through unknown variabilities in the domain shape, 

boundary conditions, and/or material properties. These three primary sources of uncertainty 

have been investigated in the literature. The present work focuses on the material properties 

that, in the context of solid mechanics, enter through the constitutive model defining the 

relationship between stresses and strains. Soft tissues are chosen as an application due to 

their nonlinear behavior and commonly observed variability in their response, which makes 

predictive modeling particularly challenging.

Soft tissues are usually modeled as hyperelastic, wherein a strain energy density function 

(SEDF) is defined to represent their stress-strain behavior. Traditionally, analytical forms 

of SEDF have been proposed based on experimental observations – both macro- and micro-

scopic, and dozens of models can be found in literature [1]. Recently, we proposed a 

Bayesian framework to compare the models at describing the experimental data and found 

that the existing models do not fully capture the observed behavior. Hence, there is still a 

room for further improvements in constitutive models of soft tissues.

A recent, novel direction in constitutive modeling is using data-driven and machine learning 

approaches, which forgo analytical forms in favor of numerical or statistical representations.

Conti et al. [2] proposed a purely data-driven approach and solved one-dimensional linear 

elasticity problems. This approach can be thought of as a nearest-neighbor model, and it 

has been further developed for various problems. Kirchdoerfer and Ortiz [3] extended it 

to one- and two-dimensional linear elasticity problems, and further works have extended 

the approach to inelasticity [4], dynamics [5], fracture [6], and large strain elasticity [7]. 

Recently, an enhancement in this approach was proposed to deal with outliers [8]. One 

of the issues in this approach is that it is heavily influenced by the outliers. A solution 

to this issue has been proposed by He et al. [9]. However, the authors of that study 

concluded with “reinstates the importance of having sufficiently rich data coverage”. Such 

data-driven approaches are being further extended to reduce sensitivity to noise and find 

lower-dimensional representations [10, 11].

Another promising approach is the use of a neural network (NN) to model the constitutive 

behavior [12–16]. Since one key feature of NNs is their flexible architecture that can be 

adapted to a wide range of problems, several studies have explored varying versions of NNs 

[12]. For example, Zhang et al. [14] used strain components as the inputs to the neural 

network, Klein et al. [16] used the deformation gradient, its cofactor and determinant as 
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inputs, and Tac et al. [13] used strain invariants as inputs. Another difference between 

different formulations are whether (and how) they enforce convexity of the constitutive 

model. However, none of these models naturally account for the variability in the responses, 

commonly observed in soft tissues.

An alternative to neural networks in the machine learning literature is the Gaussian 

processes (GPs), which have been used to model stochastic systems. One of the attractive 

features of GPs is that they are naturally Bayesian. GPs also offer flexible regression and 

have a rigorous mathematical foundation that provides a control over their smoothness. In 

the field of mechanics, GPs have been primarily used as surrogate models, for example, 

for reduced-order modeling [17], for metamodeling [18], for uncertainty propagation [19–

21], and for inverse problems [22]. However, their use to model constitutive relationships 

remains uncommon. To the authors’ best knowledge, only Frankel et al. [23] proposed using 

GPs for constitutive modeling of hyperelastic materials. However, their work was limited to 

isotropic materials and did not enforce any convexity constraints.

Herein, we propose to treat the constitutive model as a stochastic process, more specifically 

a Gaussian process that allows us to directly incorporate the experimental data, capture the 

observed experimental variations in the stress-strain responses, and quantify the uncertainty 

through a natural Bayesian framework. Moreover, we propose a straightforward way to 

propagate the uncertainty through a nonlinear elasticity problem via stochastic finite element 

method. The remainder of this paper is organized as follows. In Section 2, we delineate 

the development of a GP-based constitutive model and how convexity can be enforced in 

this framework. In Section 3, we verify the formulation based on an artificial dataset. In 

Section 4, we apply the proposed framework to a real experimental dataset of planar soft 

tissue. In Section 5, we present the stochastic finite element analysis framework and the 

results obtained using the framework for analysing valve leaflet closure under static follower 

pressure load. Lastly, in Section 6, we discuss the advantages of this proposed framework 

and compare it to other approaches in the literature, followed by some concluding remarks.

2. Methods

2.1. Nonlinear elasticity

Given a domain Ω ⊂ ℝd, a (static) nonlinear elasticity problem involves finding the 

deformation mapping, i.e., a map from undeformed (also called reference) to deformed 

positions φ:X x over the domain Ω, such that it satisfies the mechanical equilibrium [24]

∇X ⋅ P + B = 0, (1)

where P is the 1st Piola-Kirchhoff (PK) stress tensor, ∇X ⋅ P denotes the divergence of P
with respect to the undeformed configuration X, and B is the applied body force per unit 

undeformed volume.

The equilibrium equation (1) is completed with boundary conditions on domain boundary 

∂Ω. Assume xid denotes the id − th component of x, where id ∈ 1, …, d . To denote the 

boundary conditions in the id-th component, the boundary ∂Ω is categorized into two 
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types: Dirichlet boundary ΩD
id and Neumann boundary ΩN

id, such that ∂ΩD
id ∪ ∂ΩN

id = ∂Ω and 

∂ΩD
id ∩ ∂ΩN

id = ∅ ∀id. Thus, the boundary conditions can be expressed as

xid = xid on X ∈ ∂ΩD
id and (2a)

P idjdNjd = t id on X ∈ ∂ΩN
id, (2b)

where xid is the prescribed position on the Dirichlet boundary ∂ΩD
id, t id is the prescribed 

traction on the Neumann boundary ∂ΩN
id with surface normal N in the undeformed 

configuration, and summation is implied on repeated indices.

Following the standard definitions [24–26], the deformation gradient is F = ∇Xφ = ∂x/ ∂X
and the right Cauchy-Green deformation tensor is C = F⊤F with three isotropic invariants

I1 ≔ tr C , (3a)

I2 ≔ 1
2 tr2 C − tr C2  and (3b)

J ≔ det C . (3c)

Additional pseudo-invariants have been defined for anisotropic materials. A commonly used 

invariant for modeling single-fiber anisotropy is [27]

I4 ≔ M ⋅ CM, (4)

which is also equal to the square of the stretch along the preferred fiber direction M.

2.2. Constitutive models, frame invariance, and poly-convexity

In order to close the governing system of equations, a relationship between stress and 

deformation (strain) needs to be defined through a constitutive model. In hyperelasticity, 

the constitutive model is described using a strain energy density function (SEDF) Ψ F
from which stresses are derived through differentiation [24]. Specifically, for a compressible 

material, the first PK stress is P = ∂Ψ / ∂F and the Cauchy stress is σ = J−1PF⊤. For an 

incompressible material, a constraint J = 1 is imposed by adding a Lagrange multiplier term. 

Thus, for an incompressible material, P = ∂Ψ / ∂F − pF− ⊤  and σ = PF⊤ − pI, where p is the 

hydrostatic pressure acting as the Lagrange multiplier and I is an identity tensor.

A constitutive model must satisfy certain properties in order to ensure a unique solution of 

the elasticity problem. Specifically, a model must be invariant with respect to rigid body 

rotation, which means that the SEDF is a function of the right Cauchy-Green deformation 

tensor C. Moreover, a model must be invariant with respect to material symmetry. This 

implies that, for isotropic materials, Ψ must be a function of the three isotropic invariants of 

C: I1, I2, and J defined in Eq. (3). For anisotropic materials, the list needs to be expanded 
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to include the pseudo-invariants that account for the material directions, such as I4 defined 

in Eq. (4). Herein, we focus on planar soft tissues, which are nearly incompressible (i.e., 

J is constrained to be equal to 1) and have a single preferred fiber direction M. Thus, we 

restrict our focus to solids where the SEDF Ψ is a function of I1 and I4. While some authors 

have demonstrated the need to include other pseudo-invariants while modeling biological 

tissues [28], most of the existing hyperelastic models for planar biological tissues are only 

formulated based on I1 and I4 [1]. Consequently, the 1st PK stress can be written as

P = ∂Ψ
∂F − pF− ⊤ = 2Ψ, 1F + 2Ψ, 4FM ⊗ M − pF− ⊤ , (5)

where a short-hand notation ( ⋅ ), i ≔ ∂ ⋅ / ∂Ii is used for partial derivatives with respect 

to the invariants. Similar notation is adopted for higher order derivatives, such as 

( ⋅ ), ij ≔ ∂2 ⋅ / ∂Ii ∂Ij etc.

Another important property that the SEDF Ψ must satisfy is convexity [29–31], which 

ensures ellipticity of the governing equations that in turn guarantees the existence and 

uniqueness of a solution to the problem of nonlinear elasticity. In our case, this means that 

the second derivatives of Ψ with respect to I1 and I4 are always positive, i.e.

Ψ, 11 ≥ 0 and (6a)

Ψ, 44 ≥ 0, (6b)

as well as the determinant of the Hessian is positive, i.e.,

Ψ, 11Ψ, 44 − Ψ, 14
2 ≥ 0. (6c)

Remark 1. Several definitions of convexity have been proposed in literature, with full 

convexity (6) being the strongest condition and a rank-one convexity being the fundamental 

requirement [32]. For constitutive models dependent only on I1 and I4, some of the 

convexity definitions become equivalent. Thus, for simplicity, we seek to enforce convexity 

weakly through Eqs. (6a) and (6b) only. That is, the positivity of determinant is not 

enforced. However, if desired, it is possible to enforce the full convexity using the proposed 

framework.

We note that for the incompressible case, I1 ≥ 3 always, while I4 > 0. Lastly, when the 

material is undeformed, i.e., F = I, I1 = 3 and I4 = 1. As a short-hand notation, a point in the 

I1 − I4 space is denoted as ϑ ≔ I1, I4 , and therefore, we write the SEDF as a function of ϑ, 

i.e., Ψ ϑ . To denote a set/vector of points in the I1 − I4 space, ϑ is used.

2.3. Probability notation

A random scalar variable is denoted as uℛ and its realization is denoted as u ∈ ℝ. To denote 

a higher dimensional random variable, uℛ is used, and its realization is denoted as u ∈ ℝn. 

The probability density function (PDF) of random variable uℛ is denoted as ℙuℛ u ; the 
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PDF indicates that the probability of uℛ realizing a value in the neighborhood of u is given 

by ℙuℛ u dU, where dU is the volume of the infinitesimal neighborhood around u in ℝn. 

Moreover, the probability given some information (or data) ℐ is written as ℙuℛ u ∣ ℐ . Two 

commonly used measures of a random variable are its mean (or expected) valued vector of 

length n

E uℛ ≔ ∫
ℝn

uℙuℛ u dU, (7)

and a positive semi-definite covariance matrix of dimension n × n

V uℛ ≔ ∫
ℝn

u − E uℛ ⊗ u − E uℛ ℙuℛ u dU . (8)

A Gaussian, also called normal, probability distribution is fully described in terms of the 

mean vector and covariance matrix. Specifically, for a normally distributed random variable 

uℛ with mean μ = E uℛ  and co-variance matrix Σ = V uℛ , its probability density function 

is given by

ℙuℛ u ∣ μ, Σ = 1
(2π)ndet Σ

exp − 1
2 u − μ ⋅ Σ−1 u − μ . (9)

The following short-hand is used to denote a normally distributed random variable:

uℛ N μ, Σ . (10)

A slightly abusive short-hand to denote the PDF (9) evaluated at a general point u is also 

adopted, i.e.,

ℙuℛ u ∣ μ, Σ = N u ∣ μ, Σ . (11)

A normally distributed scalar variable with a zero mean and unit variance follows a PDF 

known as the standard normal distribution function, and it is denoted as

ϕ u ≔ exp −u2/2
2π . (12)

Lastly, the cumulative distribution function (CDF) of the standard normal distribution 

function (12) is denoted as

Φ u ≔ ∫
−∞

u

ϕ t dt . (13)

We note that the above function (13) maps real numbers to a finite set, Φ: −∞, ∞ 0, 1 . 

To simplify the notation of probability, it is common to skip the subscript when writing the 
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PDF, i.e., ℙ u  is used instead of ℙuℛ u . Thus, from here on, we will follow this slightly 

abusive but simpler notation.

2.4. Bayes’ theorem

For two continuous random (scalar) variables uℛ and vℛ, let the joint prior probability 

density function be denoted by ℙ u, v . Further, the prior marginal probability densities of uℛ

and vℛ are denoted as ℙ u  and ℙ v , respectively. The posterior probability density of uℛ

given vℛ = v (known as the conditional probability) is given by the Bayes’ theorem:

ℙ(u ∣ v)
Posterior 

= ℙ(v ∣ u)
Likelihood 

ℙ(u)
Prior 

ℙ(v)
Normalization term 

,

where ℙ v ∣ u  is the likelihood term. The denominator on the right-hand side is also the 

normalization term, i.e.,:

ℙ v = ∫   ℙ u, v du = ∫   ℙ v ∣ u ℙ u du .

In the present work, we model SEDF Ψ as a random process. In order to find the PDF 

of Ψ, we use Bayes’ theorem to incorporate three types of data/information, and write the 

posterior probability density of Ψ as:

ℙ(Ψ ∣ y, ϑ) =
ℙ y∘ ∣ ϑ∘, Ψ ℙ yd ∣ ϑd, Ψ ℙ c ∣ ϑc, Ψ

Three likelihood terms 

ℙ(Ψ)
ℙ y∘, yd, c ∣ ϑ∘, ϑd, ϑc , (14)

where y∘ are observations related to the original function Ψ at ϑ∘, yd are observations related 

to the derivatives of Ψ at ϑd, c are constraints related to second derivatives of Ψ at ϑc, 

y = y∘ ∪ yd ∪ c, and ϑ = ϑ∘ ∪ ϑd ∪ ϑc. The three types of data/information are summarized in 

Table 1 and depicted in Fig. 1. Next we describe the three terms one by one, starting with the 

observations related to the derivatives that come from experiments.

2.5. Experimental observations

Constitutive models are empirical relationships that are based on experimental observations. 

For planar soft tissues, a common experiment is biaxial stretching, where a rectangular 

sample of the tissue is stretched in two orthogonal directions, with the fiber direction 

commonly aligned with one of the two directions (Fig. 2). If Cartesian coordinates 

are aligned with the sample edges, the applied forces fx and fy in x- and y-directions 

are converted into averaged components of 1st PK stresses P xx = fx/Lyt and P yy = fy/Lxt, 
where Lx and Ly are the dimensions of the rectangular sample and t is its thickness in 

the undeformed configuration. Here, the notation · is used to denote quantities that are 

experimentally observed and therefore may contain observation noise.

Aggarwal et al. Page 7

Comput Methods Appl Mech Eng. Author manuscript; available in PMC 2024 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In biaxial stretching experiments, the deformation is tracked via fiducial markers on the 

sample and the applied deformation gradient F is derived using bilinear finite element shape 

functions [33]. Generally, the shear components are difficult to control with the BioRake 

tissue mounting and therefore neglected. Thus, based on incompressibility, we have

F = diag λx, λy, 1
λxλy

, (15)

where λx and λy are the ratios of sample dimensions in deformed and undeformed 

configurations (i.e., stretches) along the x- and y-directions, respectively. Generally, a 

straight line in the deformation or stress space is followed along which multiple points 

are recorded, which gives us the stress-stretch curves. One loading path (denoted using 

the symbol r = Fxx/Fyy or r = Pxx/Pyy) is known as one protocol, and multiple protocols are 

combined to create a set of the experimental observations λx
id, λy

id, P xx
id , P yy

id

id = 1

Nd
, where Nd is 

the total number of observations.

In the experiments, it is a common practice to align the fiber direction with the x–axis, i.e., 

M = 1, 0, 0 . Thus, the observed stretches can be transformed into deformation invariants as

I1
id = λx

id 2 + λy
id 2 + 1

λx
idλy

id

2
(16a)

I4
id = λx

id 2 . (16b)

Furthermore, since the out-of-plane stress is zero, i.e. Pzz = 0, it is used to determine 

the hydrostatic pressure p = 2Ψ, 1/ λx
idλy

id 2
 [34, 35]. Subsequently the model stresses can be 

written in terms of the derivatives of Ψ as:

Pxx
id = 2Ψ, 1 I1

id, I4
id λx

id − 1
λx

id 3 λy
id 2 + 2Ψ, 4 I1

id, I4
id λx

i
(17a)

Pyy
id = 2Ψ, 1 I1

id, I4
id λy

id − 1
λx

id 2 λy
id 3 . (17b)

These model stresses differ from the observed stresses by observation errors,

P xx
id = Pxx

id + ϵx (18a)

P yy
id = Pyy

id + ϵy, (18b)
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where ϵx and ϵy are experimental noises in the two measurements, and are assumed 

to be independent, uniform (i.e., same for all id), and zero-mean Gaussian. That is, 

ϵx N 0, ex
2  and ϵy N 0, ey

2 , with ex
2 and ey

2 being two hyperparameters to be determined. 

Thus, the observation points and observations are denoted as ϑd = I1
id, I4

id

id = 1

Nd
 and 

yd = yx
d ∪ yy

d = P xx
id

id = 1

Nd
∪ P yy

id

id = 1

Nd
, respectively, where superscript d denotes the observations 

related to derivatives. In other words, for a given model Ψ ϑ , the likelihood of the observed 

stresses is given by:

ℙ yd ∣ ϑd, Ψ = ∏
id = 1

Nd

N P xx
id − Pxx

id ∣ 0, ex
2 N P yy

id − Pyy
id ∣ 0, ey

2 , (19)

where Pxx
id  and Pyy

id are derived from Ψ using Eq. (17).

2.6. Reference point

There are no direct observations on Ψ, thus making it arbitrary to an additive constant. 

However, customarily, Ψ is set to be null at the reference configuration. That is, at 

ϑ∘ = 3, 1 , y∘ = 0 , where the superscript o indicates observations related to the original 

function. Note that there is no error associated with this observation. In other words, the 

likelihood function is a Dirac delta function, which, in practice, is implemented by using a 

normal distribution with a fixed small variance e0
2 = 10−5:

ℙ y∘ ∣ ϑ∘, Ψ = N Ψ ϑ∘ ∣ 0, e0
2 . (20)

2.7. Convexity constraints

Using only the experimental observations, the resulting SEDF can have negative second 

derivatives, thus violating the convexity requirement (6). To resolve this issue, we propose 

a technique based on the monotonic GPs developed by Riihimäki and Vehtari [36]. In 

their work, Riihimäki and Vehtari enforced monotonicity at a finite number of locations by 

constraining the first derivatives to be positive through a likelihood function based on the 

CDF (13)

Equivalently, herein we enforce the convexity constraints at a finite number of locations in 

the ϑ-space, denoted as ϑ ic , ic = 1, …, Nc. Thus, the constraints cd
ic are denoted as:

cd
ic:Ψ, dd ϑic ≥ 0,  d = 1, 4 . (21)

From a probabilistic perspective, the above constraints can be viewed as follows. The 

likelihood of negative second derivatives is zero, while the likelihood of positive second 

derivatives is non-zero but uniform (i.e., all positive second-derivatives are equally likely). 

To approximate such a likelihood function, following [36], the CDF (13) is adopted, i.e.,
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ℙ cd
ic ∣ ϑic, Ψ ∝ Φ νΨ, dd ϑic , ic = 1, …, Nc, d = 1, 4 . (22)

Although the above likelihood function tolerates small violations of the constraints for 

finite values of ν, it approaches the desired step function (Eq. 21) when ν ∞ (Fig. 3). 

The location of constraints, ϑic, are chosen to be equally spaced in a rectangular subspace 

I1, I4 ∈ 3, I1
max ⊗ I4

min, I4
max , where I1

max, I4
min and I4

max are chosen based on the target range of 

predictive deformation. Thus, the likelihood of all constraints combined c is written as

ℙ c ∣ ϑc, Ψ = 1
Z ∏

ic = 1

Nc

Φ νΨ, 11 ϑic Φ νΨ, 44 ϑic , (23)

where Z is a normalisation factor.

2.8. Gaussian processes

Now that the three likelihood terms in (14) have been defined, a prior probability distribution 

of SEDF, ℙ Ψ , is required. In this study, we propose to model the SEDF prior as a Gaussian 

process (GP), which can be viewed as a generalization of a multivariate normal probability 

distribution to functions. More specifically, the strain energy density is a GP dependent on ϑ
and its prior distribution is denoted as [37]

Ψℛ ϑ GP m ϑ , k ϑ, ϑ′ , (24)

where the prior mean m ϑ  and covariance k ϑ, ϑ′  functions are defined as

m ϑ = E Ψℛ ϑ  and  (25a)

k ϑ, ϑ′ = Cov Ψℛ ϑ , Ψℛ ϑ′ = E Ψℛ ϑ − m ϑ Ψℛ ϑ′ − m ϑ′ . (25b)

While a zero-mean prior is common in the literature, a linear function (i.e., a linear 

hyperelastic model) is used here:

m ϑ = α I1 − 3 + β I4 − 1 . (26)

On the other hand, various options have been proposed for the covariance function [37]; the 

most commonly used squared exponential covariance function (also called the radial basis 

kernel) is adopted here

k ϑ, ϑ′ = σf
2exp − 1

2r2 ϑ − ϑ′ 2 . (27)

The above kernel choice gives a stationary and infinitely differentiable GP [37]. α, β, σf and r
used in the definitions above are the hyperparameters of the GP prior.
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Since differentiation is a linear operator, the derivatives of a GP are also GPs as long as 

the kernel is differentiable [37]. More specifically, the mean of the derivative is equal to the 

derivative of the mean. Therefore, the mean of the combined vector of Ψℛ and its derivatives 

is a vector function given by

ℳ ϑ : = E

Ψℛ

Ψ, 1ℛ

Ψ, 4ℛ

Ψ, 11ℛ

Ψ, 44ℛ

=

α I1 − 3 + β I4 − 1
α
β
0
0

, (28)

and its full covariance matrix can be written as:

K ϑ, ϑ′ : = Cov

Ψℛ, Ψ ′ℛ

Ψ, 1ℛ, Ψ ′ℛ

Ψ, 4ℛ, Ψ ′ℛ

Ψ, 11ℛ, Ψ ′ℛ

Ψ, 44ℛ, Ψ ′ℛ

Ψℛ, Ψ, 4
′ ℛ

Ψ, 1ℛ, Ψ, 1
′ ℛ

Ψ, 4ℛ, Ψ, 1
′ ℛ

Ψ, 11ℛ, Ψ, 1
′ ℛ

Ψ, 44ℛ, Ψ, 1
′ ℛ

Ψℛ, Ψ, 4
′ ℛ

Ψ, 1ℛ, Ψ, 4
′ ℛ

Ψ, 4ℛ, Ψ, 4
′ ℛ

Ψ, 11ℛ, Ψ, 4
′ ℛ

Ψ, 44ℛ, Ψ, 4
′ ℛ

Ψℛ, Ψ, 11
′ ℛ

Ψ, 1ℛ, Ψ, 11
′ ℛ

Ψ, 4ℛ, Ψ, 11
′ ℛ

Ψ, 11ℛ, Ψ, 11
′ ℛ

Ψ, 44ℛ, Ψ, 44
′ ℛ

Ψℛ, Ψ, 44
′ ℛ

Ψ, 1ℛ, Ψ, 44
′ ℛ

Ψ, 4ℛ, Ψ, 44
′ ℛ

Ψ, 11ℛ, Ψ, 44
′ ℛ

Ψ, 14ℛ, Ψ, 44
′ ℛ

(29)

Here, Ψ′ is the SEDF evaluated at ϑ′. Similar to the mean, the covariance between the 

function and its derivatives can be derived by differentiating the covariance function (Eq. 

25b). Using the symmetry property of the squared exponential kernel function (Eq. 27) 

about its two arguments, it is easy to see that

K ϑ, ϑ′ =

k k, 1 k, 4 k, 11 k, 44

k, 11 k, 14 k, 111 k, 144

k, 44 k, 411 k, 444

k, 1111 k, 1144

 Sym.  k, 4444

, (30)

where the short-hand notation for partial derivatives has been extended to the kernel function 

and all terms are evaluated at ϑ, ϑ′ . The combined state of Ψ and its derivatives is denoted 

as ℱ, and described as the following joint GP:

ℱℛ ≔ Ψℛ, Ψ, 1ℛ, Ψ, 4ℛ, Ψ, 11ℛ, Ψ, 44ℛ GP ℳ ϑ , K ϑ, ϑ′ . (31)

Based on this prior, the distribution of Ψℛ and its derivatives at all observation points ϑ, is 

denoted as fℛ:

fℛ N ℳ ϑ , K ϑ, ϑ . (32)

The distribution of Ψℛ and its derivatives at desired prediction point (or a set of points, in 

general) ϑ* is denoted as f*
ℛ, and follows the following joint prior distribution with fℛ:

Aggarwal et al. Page 11

Comput Methods Appl Mech Eng. Author manuscript; available in PMC 2024 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



fℛ

f*
ℛ N ℳ ϑ

ℳ ϑ*
, K ϑ, ϑ K ϑ, ϑ*

K ϑ*, ϑ K ϑ*, ϑ*
. (33)

Since the set ϑ has Nc + Nd + 1  points, the length of fℛ, which includes the SEDF, its 

two first derivatives and two second derivatives, is 5 × Nc + Nd + 1 . However, not all the 

terms in fℛ are used in the three likelihood terms of Eq. (14). For example, only the first 

derivatives are needed at ϑd. Therefore, we extract the relevant parts of the mean vector and 

covariant matrix and denote them by ⋅ ∘ for original function at ϑ∘ only, ⋅ d for derivatives 

at ϑd only, ⋅ c for second derivatives at ϑc  only, and ⋅  for all the above three. Thus,

fℛ N ℳ ϑ , K ϑ, ϑ  and  (34)

fℛ

f*
ℛ

N ℳ ϑ
ℳ ϑ*

, K ϑ, ϑ K ϑ, ϑ*

K ϑ*, ϑ K ϑ*, ϑ*
. (35)

From, Eq. (35), we get an expression for ℙ f* ∣ f

f*
ℛ ∣ f N f*, Cov f* , (36a)

where

f* ≔ K ϑ*, ϑ [ K ϑ, ϑ ]−1 f  and

Cov f* : = K ϑ*, ϑ* − K ϑ*, ϑ [K ϑ, ϑ ]−1 K ϑ, ϑ* . (36b)

Using Eq. (34) we write the Bayes’ theorem (14) more explicitly as

ℙ f ∣ y, ϑ =
ℙ y∘ ∣ ϑ∘, f ∘ ℙ yd ∣ ϑd, f d ℙ c ∣ ϑc, f c ℙ f

ℙ y∘, yd, c ∣ ϑ∘, ϑd, ϑc , (37)

and, finally, we arrive at the probability distribution of predictions based on all the 

observations

ℙ f* ∣ y, ϑ, ϑ* = ∫
f

ℙ f* ∣ f
Eq.  36

ℙ f ∣ y, ϑ
Eq.  37

d f . (38)

Out of the three likelihood terms, two are Gaussian, while the likelihood for constraints is 

non-Gaussian. In the absence of constraints, a closed-form solution is available for Eq. (37) 

(called the exact GP, see Appendix A). However, the presence of non-Gaussian constraints 

requires an alternative approach that we describe next.
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2.9. Approximate GP

When using non-Gaussian likelihood, such as the likelihood in Eq. (22), a closed-form 

solution for the predicted mean and covariance is no longer possible. Markov Chain 

Monte Carlo (MCMC) is a commonly used approach to sample the posterior probability 

distribution in such cases. However, the latent variables of a Gaussian process are highly 

correlated, making convergence of MCMC extremely challenging to achieve using standard 

MCMC methods (see e.g. [38]). An alternative and by now popular approach based on 

variational inference is adopted, which poses the problem in terms of an optimization 

problem to find an approximation to the posterior probability distribution [39, 40].

To simplify the notation, we first rewrite Eq. (37) using short-hand notation

ℙ f ∣ y, ϑ = Lℙ f
D , (39)

where L ≔ ℙ y∘ ∣ ϑ∘, f ∘ ℙ yd ∣ ϑd, f d ℙ c ∣ ϑc, f c  is the combination of all likelihood 

terms and D  ≔ ℙ y∘, yd, c ∣ ϑ∘, ϑd, ϑc  is denominator, also called the evidence. The 

approach of variational inference aims to find an approximation for the posterior, 

Q f ≈ ℙ f ∣ y, ϑ . The difference between the two probability distributions is quantified 

in terms of the Kullback–Leibler (KL) Divergence, denoted as

KL Q f ∥ ℙ f y, ϑ ≔ ∫
f

Q f log Q f
ℙ f y, ϑ d f . (40)

Our aim is to find Q that minimizes its KL divergence from the true posterior. When 

expanded using Eq. (39), we get

KL Q f ∥ ℙ f ∣ y, ϑ = log D − ℒ . (41)

where

ℒ ≜ ∫
f

Q f log Lℙ f
Q f d f (42)

is defined as the loss function. Since D does not depend on f  (i.e., a constant) and the 

KL divergence is non-negative, Eq. (41) implies that log D ≥ ℒ. Thus, the loss function 

(42) is called the evidence lower bound (ELBO), and if one maximizes the ELBO, the KL 

divergence is minimized.

Next, the approximate distribution Q needs to be parameterized such that the optimization of 

the ELBO is computationally tractable. To achieve that, the statistical model is augmented 

with a set of M inducing points fℐ, ϑℐ , where the vector ϑℐ contains the locations of the 

inducing points in the original input space and fℐ is governed by the GP prior, i.e.,

ℙ fℐ ∣ ϑℐ = N fℐ ∣ ℳ ϑℐ , K ϑℐ, ϑℐ . (43)
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The approximate distribution is assumed to have a form

Q ≔ ℙ f ∣ y, fℐ, ϑℐ ℚ fℐ ∣ ϑℐ . (44)

The specific augmentation decouples the variables and leads to a general expression for the 

ELBO in the sparse variational GP case

ℒ = EQ log L − KL ℚ fℐ ∣ ϑℐ ∥ ℙ fℐ ∣ ϑℐ . (45)

The inference problem is now reduced to determine the set of parameters determining Q
through numerical optimization.

To support the setting where the likelihood L is not Gaussian, we follow [40] and 

parameterize ℚ fℐ ∣ ϑℐ  as a Gaussian distribution with free mean and covariance parameters 

(m, S), in which case the expectation over conditionally independent data points can be 

estimated by Monte Carlo sampling. Therefore, the final loss function, to be maximized, is 

given by

ℒ = ∑
i = 1

M
Eq fi; m, S log Li − KL ℚ fℐ ∣ ϑℐ; m, S ∥ ℙ fℐ ∣ ϑℐ ,

q fi; m, S N βim, K ϑi, ϑi − βi K ϑℐ, ϑℐ − S βi
T ,

βi = K ϑi, ϑℐ K ϑℐ, ϑℐ
−1 .

This loss function can be optimized using standard mini-batch stochastic gradient methods 

similar to [40] as long as we can evaluate the three likelihood functions present in Eq. (37). 

The set of optimized parameters, m, S, ϑℐ and kernel hyper-parameters, ensures that the 

predictive distribution ℙ f* ∣ y, ϑ, ϑ*  can be computed.

2.10. Optimization algorithm and parameters

Based on the GP prior, the posterior distribution depends on the following hyperparameters: 

α and β define the mean function, σf and r define the covariance function, ex
2 and ey

2 are the 

errors in the derivatives-based likelihood, and e0
2 is the error in the reference point likelihood. 

The constraint likelihood depends on the hyperparameter ν. In addition, GP also depends on 

the location of the inducing points. Two of the hyperparameters, e0
2 = 10−5 and ν = 104 are 

kept fixed, while the rest of the hyperparameters need to be determined. Regression of the 

GP (also called training) is an iterative process of finding values of hyperparameters that 

optimize the loss function.

The optimization is performed as follows. Negative of the loss function is minimized 

iteratively via a stochastic gradient method [40], where the step size is scaled by a parameter 

called the “learning rate”. First, 1000 iterations are performed without the constraints and 

with a learning rate of 0.05. Then, the convexity constraint log-likelihood terms multiplied 

by a scaling parameter γ, which is gradually increased in steps. It is initially set at a value of 

10−11, increasing to a final value of 10−6. At each value of γ, 500 iterations are performed 

with a learning rate of 0.01 (Fig. 4).
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3. Verification test

In this section, the proposed framework is verified by training a GP based on artificial 

biaxial stretching data for a known hyperelastic model (referred to as the ground truth) and 

comparing the results. Next, the methodology for data creation is described, followed by the 

details of GP training procedure and the results.

3.1. Artificial data creation

A widely used model for soft tissues, the Gasser–Ogden–Holzapfel (GOH) model [41]

Ψ true = μ
2 I1 − 3 + k1

2k2
exp k2 κI1 + 1 − 3κ I4 − 1 2 − 1 (46)

with parameters μ = 5 kPa, k1 = 4 kPa, k2 = 10, κ = 0.1 and M = 1, 0, 0  is used to create 

artificial biaxial stretch observations. ℓ straight lines in the deformation space (Fig. 5a), 

equi-spaced between 0 and π/2, are used as inputs. These represent biaxial stretch protocols. 

In addition to the ℓ protocols, two pure shear protocols

F = diag λ, 1/λ, 1  and

F = diag 1/λ, λ, 1 ,

with λ > 1, are also used. It is typical for soft tissues to experience up to 20% stretches 

under physiological conditions. Thus, for all of the protocols, a maximum tensile stretch 

of 1.2 is used, and the corresponding I1 and I4 ranges are used for training and testing. 

To emulate the experimental error, a normally-distributed random noise with mean 0 and 

variance 0.02 is added to the resulting stresses P xx and P yy. Thus, data from a total of ℓ + 2
protocols is used to fit a constitutive model. The effect of the number of protocols on the 

predictive capability of the proposed framework is studied by using ℓ = 3 and ℓ = 8, as well 

as by removing the pure shear protocols. The effect of noise is studied by increasing the 

variance of added error to 0.2. The locations of the experimental observations, the straight 

lines in the deformation space (Fig. 5a), map to nonlinear paths in the ϑ space (Fig. 5b). 

The extent of these observations is approximately I1 ∈ 3, 3.36  and I4 ∈ 0.7, 1.44 . To enforce 

convexity, this region is padded with a 0.1 on each side and uniformly spaced points are 

used. Specifically, 20 × 20 uniformly spaced points in I1 ∈ 2.9, 3.46  and I4 ∈ 0.6, 1.54  are 

used to enforce convexity.

In order to verify the proposed GP model Ψℛ against the ground truth Ψtrue , the mean of the 

posterior SEDF Ψ and its first derivatives Ψ, 1 and Ψ, 4 are plotted at 50 × 50 points in the ϑ
space. To quantify the difference between the ground truth and the fitted GP, the following 

error is is defined:
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ErrorΨ ϑ =
Ψ ϑ − Ψ true  ϑ
max

ϑ ∈ ϑ*

Ψ true ϑ
× 100. (47)

Similar error definitions are used for the first derivatives. In addition to the mean, the 

GP framework also provides us with covariance of Ψ and its derivatives, from which the 

standard deviation at each point in ϑ-space is calculated and plotted. Lastly, to check the the 

convexity, the mean second derivatives are plotted at these points.

In order to test the predictive capability of the proposed GP model outside the training 

range (i.e., extrapolation), two protocols different from the training protocols are used (Fig. 

5c). First prediction protocol follows the same path as one of the training protocols (i.e., 

I4 fixed), but extends to a larger stretch of 1.31. The second prediction protocol follows 

a straight path in the ϑ-space from (3, 1) to (3.3, 0.8) which requires a shear strain (i.e., 

an off-diagonal term in F). As a result, the second prediction protocol also generates shear 

stress, a situation which is not used for training the GP. Lastly, one of the key advantages 

of GP models is that they provide a distribution rather than point estimates. To use the 

distribution information, the mean and standard deviation of predicted stresses using the GP 

model are computed and compared with the ground truth GOH model (46).

3.2. Results

The results using ℓ = 3 and ℓ = 8, with and without convexity constraints are shown in 

Fig. 6. The error in Ψ for all cases is reasonably small (<12%), especially near the training 

points (denoted as dots). The accuracy of the derivatives of Ψ is more important, since 

the derivatives are directly related to the stresses. Again, the errors in derivatives near the 

training points are small. However, the error farther from the training points reduces when 

using convexity. Moreover, when using higher ℓ, the errors also decrease slightly. Overall, 

the difference between the accuracy using ℓ = 3 and ℓ = 8 is not significant. Thus, the 

proposed GP framework works well with a small number of protocols ℓ ≳ 3 . In practice, it 

is common to use between 3 and 10 protocols, thus a limited amount of experimental data is 

needed to train the proposed GP model. To fully understand the effect of training points and 

noise on the results, two additional settings are compared in Appendix B.

To quantify the resulting uncertainty in SEDF, the standard deviations of the fitted model 

are plotted in Fig. 7. Interestingly, the standard deviation is reduced substantially when 

using convexity and when using a higher number of protocols. Thus, the confidence in 

the GP results is increased when we enforce convexity and as we increase the amount of 

experimental information.

Lastly, as mentioned previously, convexity is an important requirement for Ψ to satisfy. To 

verify convexity, the second derivatives are plotted in Fig. 8. Clearly, when the convexity 

constraints are not enforced, the second derivatives attain large negative values, especially 

away from the training points. However, including the convexity constraints resolves the 

issue, and the resulting second derivatives of Ψ are positive in the chosen range of I1 and I4.
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The results of the prediction protocol are shown in Fig. 9. The mean response of the 

GP model (lines) matches very well with the ground truth (points). The only significant 

deviation is in the ℓ = 3 case without enforcing convexity. This is a remarkable result 

considering that in these prediction protocols we are also testing the extrapolation capability 

of the GP. The shaded areas denote two standard deviations of the GP model, which are get 

smaller as we increase the number of training protocols and include convexity. Thus, the 

proposed GP framework also provides high confidence in the results.

4. Application to an experimental biaxial testing dataset

4.1. Experimental methods

The experimental data used in this study is the same as that reported in a previous study 

[42], and its experimental procedure is summarized next. A porcine heart was obtained 

from a USDA-approved abattoir (Chickasha Meat Company, Chickasha, OK). The heart 

was dissected, and the aortic valve (AV) tissue was extracted from the aorta. The excised 

tissue was then briefly stored at −20°C prior to mechanics testing within 6–12 hours. Prior 

to biaxial testing, the excised AV specimen was thawed in an in-house phosphate-buffered 

saline (PBS) solution at room temperature. Once thawed, a square region of the tissue was 

dissected and thickness measurements were made using a non-contact laser displacement 

sensor (Keyence IL-030, Itaska, IL) at three different locations to determine the average 

tissue thickness.

For biaxial testing, the tissue specimen was mounted to a commercial biaxial testing 

system (BioTester, CellScale, Canada, 1.5 N load cells) via BioRake tines, resulting in 

an effective testing region of 6.5 × 6.5 mm. During mounting, the tissue’s circumferential 

and radial directions were aligned with the x- and y-directions of the biaxial testing system, 

respectively. Because the tissue’s fiber orientation was aligned with the biaxial testing 

direction in the experimental setting, the off-diagonal terms in the deformation tensor F were 

small, and therefore any shear deformation was neglected.

For testing, four glass beads (with a diameter of 300 – 500 μm) were placed on the center 

region of the specimen to serve as fiducial markers for quantifying the in-plane strains. 

The specimen was submerged in a 32° C PBS bath during the testing. The force readings 

from the load cells and CCD camera images capturing the bead positions were recorded at 

15 Hz throughout the test. A preconditioning protocol, consisting of six loading/unloading 

cycles at a target first PK peak stress of P = 240 kPa, was first applied to restore the tissue to 

its in-vivo functional configuration. The preconditioning protocols were followed by seven 

testing protocols.

For using the above data in our GP framework, the measured deformations are converted 

into invariants I1 and I4 (Eq. 16), and the measured stresses from the seven protocols are 

used to train the GP. To enforce convexity, similar to the verification case in the last section, 

the range of I1 and I4 is padded with 0.1 in all directions, and convexity is enforced on 

uniformly spaced 20 × 20 points. In this case there is no ground truth to compare with. 

Therefore, just the fit to the input experimental data is quantified by the L2 norm of the 

difference between the modeled mean and experimental stresses, i.e.,
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L2 = ∑
id = 1

Nd

P xx
id − Pxx

id 2
+ P yy

id − Pyy
id 2

. (48)

Also, the goodness of fit is quantified in terms of the coefficient of determination

R2 = 1 −
∑id = 1

Nd
P xx

id − Pxx
id 2

+ P yy
id − Pyy

id 2

∑id = 1
Nd

P xx
id − P

2
+ P yy

id − P
2

, (49)

where P = 1
2Nd ∑id = 1

Nd
P xx

id + P yy
id  is the mean observed stress. To compare against some 

of the existing models in the literature, the following seven invariant-based models were 

chosen: (i) the Lee–Sacks (LS) model for the mitral valve leaflet tissue [43]; (ii) the May–

Newman (MN) model with another form proposed for the mitral valve tissue [44]; (iii and 

iv) two variants of a model proposed by Holzapfel, Gasser, and Ogden for arterial tissue with 

an additive split of isotropic and anisotropic components [27] (HGO with linear isotropic 

term and HGO2 with an exponential isotropic term); (v) Holzapfel model proposed for 

coronary arteries [45]; (vi) another model proposed by Gasser, Ogden and Holzapfel (GOH) 

for coronary arteries [46], and (vii) Humphrey–Yin (HY) model developed for myocardium 

[47]. These models and their corresponding SEDF are summarized in Table 2.

4.2. Results

The trained GP fits extremely well to the experimental data (Fig. 10a). Compared with 

existing invariant-based models in the literature, the GP model has the least fitting L2 norm 

(Fig. 10b) and highest (and almost perfect 1) coefficient of determination (Fig. 10c).

5. Stochastic finite element analysis

One of the advantages of a Gaussian process over the traditional models, and even other 

data-driven models, is that it is naturally Bayesian and provides a distribution of the SEDF 

Ψℛ. Thus, in addition to the mean values, one also obtains the variation in the SEDF 

and resulting stress-strain behavior. In this section, a framework is proposed to use this 

distribution to carry out a stochastic finite element analysis (SFEA) in a non-intrusive 

manner. That is, the aim is to use existing finite element solvers with the new GP-based 

constitutive model to find the distribution of the finite element analysis (FEA) results, such 

as displacements and stresses.

In nonlinear FEA, even if the distributions of inputs are Gaussian, the distributions of the 

outputs are, in general, not necessarily Gaussian. Thus, finding the exact distribution of each 

FEA result becomes an extremely high-dimensional problem, where each scalar variable in 

the original FEA (such as displacement along one of the axes at one node at one load/time) 

becomes a function in the probability space. In its full generality, the problem of finding 
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these distributions is prohibitively expensive. Thus, to simplify the SFEA, we focus on 

quantifying the expected value (i.e., the mean) and standard deviation of the FEA results.

5.1. Proposed methodology

A practical challenges for SFEA is how to use a GP as a constitutive model in a traditional 

finite element solver. The most straightforward approach to quantify the effect of uncertainty 

in Ψℛ on FEA results is by generating samples of the function Ψ I1, I4  and performing 

the FEA using each of the samples. This approach is also called propagating the samples 

through FEA or a Monte Carlo simulation. However, there is no functional form of the 

posterior distribution of GP. In general, a GP can only be sampled at a finite number of 

locations in the I1 − I4 space. One could directly use the mean of a GP for an FEA since 

every time a GP mean is evaluated at the same point, it will be the same value (and same 

for the derivatives of the GP). However, for a random (not mean) sample from the GP 

distribution, because of its randomness, every time it is evaluated, the value (and derivatives) 

will be different, which cannot be used in FEA. To resolve this issue, we propose to use 

tensor product splines as intermediary functions, as detailed below.

Once the posterior of the GPℙ f* ∣ y, ϑ  has been obtained, it is sampled at ϑ* — a fine grid 

of N points in the ϑ-space. We denote the vector of SEDF Ψ evaluated at ϑ* as W ℛ, and thus 

obtain its distribution:

W ℛ N W , Σ , (50)

where W  is the mean SEDF at N points (i.e., a vector of length N) and Σ is the covariance 

of SEDF at those N points (i.e., a matrix of size N × N). Next, we perform an eigenvalue 

decomposition of the covariance matrix Σ and sort its eigenvalues in the decreasing order. 

Thus, the covariance matrix can be written as:

Σ = ∑
i = 1

N
λiEi ⊗ Ei, (51)

where Ei is the i-th eigenvector of Σ with λi the corresponding eigenvalue. Because of the 

high correlation present in a GP, the spectrum (i.e., the number of non-zero eigenvalues) 

of Σ is expected to be much smaller than N (Fig. 11). Therefore, we approximate the 

eigenvalue decomposition as

Σ ≈ ∑
i = 1

m ≪ N
λiEi ⊗ Ei, (52)

where the approximation keeps only the m largest eigenvalues and it is desired to have 

m ≪ N. The decision on how many eigenvalues to keep is based on how much variation we 

would like to capture. A common way is to keep m dominant modes such that
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1 −
∑i = 1

m λi
2

∑j = 1
N λj

2
< TOL, (53)

where TOL is a tolerance defining the error in the approximation. For most practical 

purposes, a tolerance of 0.05 is reasonable so that 95% of the variation is captured. Based on 

this approximation, the distribution of sampled SEDF can now be written as

W ℛ ≈ W + ∑
i = 1

m
ςi

ℛEi, (54)

where ςiℛ N 0, λi  is the normally distributed coefficients along i-th eigenvector.

Once this approximation has been made, a two-dimensional (i.e., the dimension of the 

ϑ-space) tensor product spline is interpolated through the mean W  and each eigenvector 

Ei. The interpolated splines are represented as S ϑ  and Si ϑ , respectively. Interpolation 

property implies that S ϑj = W j and Si ϑj = Eij ∀ϑj ∈ ϑ* (see Appendix C for more details 

on splines). Thus, a spline-based functional approximation of the SEDF ΨS can now be 

written as

Ψℛ ϑ ≈ ΨS
ℛ ϑ = S ϑ + ∑

i = 1

m
ςiℛSi ϑ . (55)

The advantage of this approach is that it provides a straightforward reduced dimensional 

representation of the stochastic Ψℛ in terms of m independent normally distributed scalar 

variables ςiℛ , with a realization ς ∈ ℝm.

Next, this lower-dimensional representation allows us to use any of the existing stochastic 

methods to propagate the distributions of ςi through a finite element model. Here, we employ 

a sigma-point technique, which constructs 2m + 1 points in the ς-space [48]. Each of these 

points are used in the finite element simulation, and the results are weighted to obtain 

the mean and covariance of finite element results. That is, if the finite element result of 

each simulation is Rk, for k = 1, …, 2m + 1, its variation can be represented as a normal 

distribution:

Rℛ N R, Cov R , (56)

where mean is R = ∑k wkRk and covariance is Cov R = ∑k vk Rk − R) ⊗ Rk − R . There are a 

variety of methods for determining the ς point locations and the corresponding weights wk

and vk. Due to the independence of ςi, the following simple choice is adopted here [49]:

νk = 0 ∪ ± mλj j = 1
m

(57a)

Aggarwal et al. Page 20

Comput Methods Appl Mech Eng. Author manuscript; available in PMC 2024 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



wk =
0  if k = 1
1

2m  otherwise  (57b)

vk =
2  if k = 1
1

2m  otherwise  . (57c)

5.2. Test case

A semilunar shaped single tissue representing a bioprosthetic valve leaflet with an area of 

2.3 cm2 is simulated using Reissner–Mindlin thin shell elements in FEBio [50]. The sample 

geometry is meshed using 2789 quadrilateral elements with a constant thickness of 0.38 mm 

[51]. Displacement is interpolated using bilinear shape functions and stresses are integrated 

through the thickness using three-point Gauss quadrature rule to obtain bending moments. 

The fibers are aligned approximately in the circumferential direction. Contact of the sample 

with other leaflets is modeled using two idealized rigid planes placed at ±60° with respect to 

the sample’s plane of symmetry (Fig. 12).

A uniform normal follower pressure load is applied on the tissue with a maximum value 

of P0 = 80 Pa. The contact is solved using augmented Lagrange method as the pressure is 

linearly increased. A spline-based constitutive model is implemented as a plugin in FEBio, 

which allows us to use the interpolated spline ΨS as an input to the simulations. The 

incompressibility condition is relaxed by adding a volumetric term to the SEDF and using 

isochoric version of invariants. That is, I1 is replaced with I1 = J−2/3I1 and I4 is replaced 

with I4 = J−1/3I4 . At each load step, static equilibrium equations (1) are solved using the 

BFGS solver to obtain the deformed shape of the tissue sample [52].

Two SFEA simulations are performed, and the mean and standard deviation of the 

displacement and von-Mises stresses are calculated for each case at four pressure values: 

P = 0, P = P0/3, P = 2P0/3, and P = P0. The first simulation is performed using the GP 

trained on the artificial dataset from the GOH model (from Section 3, ℓ = 8 with convexity). 

The ground truth Ψtrue allows us to compare our SFEA results with the standard FEA using 

the GOH model. The second simulation is performed using the GP trained on the real 

experimental dataset of AV leaflet tissue (from Section 4).

5.3. Results

The resulting displacement magnitudes and von-Mises stresses are shown in Fig. 13. The 

mean values from GP match well with the ground truth GOH model. Also the standard 

deviations are small almost everywhere, except at the commissures. The commissures are 

known to have high stress concentrations, which is also what we observe in our results. 

In addition to high stresses, the results also show high standard deviation in those areas, 

indicating that, based on the input data, our confidence on those stress concentration 

values is low. Importantly, the spline-based model does not incur any significant additional 
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computational cost. The solution time of the GP-based approach is found to be only 10% 

higher, which is due to the need of slightly smaller load steps for convergence.

The resulting displacement and von-Mises stress – both mean and standard deviation (SD) 

– using GP trained on the experimental data for AV leaflet tissue are shown in Fig. 14. The 

AV tissue is highly nonlinear, with very small stiffness at the reference configuration (called 

the toe region) that increases rapidly at high stretches. This results in more interesting 

displacement and stress patterns. The displacement magnitude is higher, and the variation 

in displacement is largely in the belly region of the leaflet. The variation in stresses is also 

much higher compared to the GOH model, which is expected when using real experimental 

data. Von-mises stress is highest at the commisures, where we also find large variations. 

Moreover, the variation in stresses is also high at the fixed edge.

6. Discussion

In spite of the decades of important developments, constitutive modeling of materials 

remains an active area of research. Traditionally, these models have been developed based 

on continuum mechanics/thermodynamic requirements and understanding of a material’s 

microstructure. With the advances in data science and technology, there is a drive to use 

experimental data to inform constitutive model development. One approach is to choose 

models based on the data; since there is a large number of analytical constitutive models 

available in literature, it becomes a challenge to select an appropriate model. We have 

addressed such a problem of model selection using a Bayesian framework [53]. Another 

approach to discover (new) analytical forms of the constitutive models from data, so that the 

traditional computational setup (such as finite element analysis) can be preserved [54–58].

An alternative and attractive approach is to forgo analytical constitutive models in favor of 

data-based ones. There have been several recent efforts in this direction, both using purely 

data-based approach (which can also be thought of as a nearest-neighbor model) [2–11] and 

using neural network models [12–16]. The aim of this work is to propose a constitutive 

model based on Gaussian processes, which are naturally Bayesian. Given the strengths of the 

Bayesian framework, interested readers may benefit from the tutorials on their application in 

mechanics [59].

6.1. Advantages and features of the proposed GP model

A key feature of the Bayesian approach is in addition to the mean response, it also provides 

a distribution that can be used to quantify the uncertainty and establish confidence in the 

results. The proposed GP framework makes three main improvements upon the work by 

Frankel et al. [23]: 1) enforcement of convexity constraints, 2) extension to anisotropic 

material, and 3) application to real experimental data of soft biological tissues. The new 

features have been implemented in a github fork of GPytorch and are openly available.

The primary role of convexity constraint is to ensure that the resulting model can be readily 

used in solving boundary value problems. This is because, without convexity constraints, the 

second derivatives could take large negative values, especially in the region of extrapolation 

(Fig. 8), which will result in a non-elliptic problem and, possibly, a non-unique solution. 
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Any effect of convexity constraint on the accuracy is expected to be restricted to the areas of 

extrapolation where there is no experimental data to guide the GP model.

The focus here was on planar soft tissues, which are hyperelastic, incompressible, and show 

single-fiber anisotropy. As a result, their strain energy density is a function of only two 

strain invariants, I1 and I4. Comparison of the proposed framework with an establish GOH 

model shows good agreement (Fig. 6), even when extrapolated outside the training range 

(Fig. 9). The GP-based model is straightforward to use for real experimental data combining 

multiple protocols, and shows better fit to biaxial data from an aortic valve leaflet compared 

to several of the establish soft tissue hyperelastic models (also based on I1 and I4, Fig. 10).

The presented framework work adds to the several other advances being made in the 

field of data-based constitutive modeling. Some of the other data-driven approaches [2–11] 

rely on having a much larger number of measurements such that the entire deformation 

space is filled. However, this may require an inordinately large number of experiments to 

be performed. This limitation was also highlighted by He et al. [9]. In comparison, the 

proposed framework works with the number of protocols typically used in practice, and also 

allows us to quantify the confidence in the results.

To fully utilize the distribution of the strain energy density provided by the GP framework, 

a non-intrusive stochastic finite element framework has been proposed. An intermediate 

spline-based interpolation has been used to take the GP predictions and use them in a finite 

element solver. The spline-based constitutive model has been implemented as a plug-in 

for FEBio [50]. The results of the traditional FE model using the GOH model have been 

found to be well comparable with those using SFEM with the fitted GP (Fig. 13). Also, the 

formulation allowed us to simulate the leaflet closure directly using real experimental data, 

without assuming any functional form of the strain energy density, while quantifying the 

uncertainty in addition to the mean results (Fig. 14).

Based on the results, we believe that the GP-based framework is a strong contender for 

data-based constitutive modeling. Its strength lies in its naturally Bayesian setup and a 

rigorous mathematical foundation it is built upon. The proposed framework can be thought 

of as the first step towards exploring the full potential of GP-based constitutive modeling. 

Such future developments are briefly discussed next.

6.2. Future work

A natural extension will be made to hyperelastic solids where the strain energy depends on 

other strain invariants, such as I2, I5 and J. If a GP cannot fit a given experimental dataset, 

that might indicate that the considered list of invariants is insufficient and therefore needs 

to be expanded or modified. Given that the proposed framework does not incur additional 

computational cost during FEA, one could use GP-based framework as a surrogate for 

hierarchical meso-scale and multi-scale modeling. More generally, the GP-based framework 

could be used with reduced-order models, especially since GP allows one to quantify the 

uncertainty associated with model reduction.
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The choice of kernel should be comprehensively explored. For example, in the squared 

exponential kernel function, one could use an anisotropic length scale, that might provide 

more flexibility. There are also other kernel functions proposed in the literature, such as 

periodic kernel could be used to model solids exhibiting hysteresis, fatigue, and other 

similar inelastic effects. Newer, more sophisticated approaches for monotonic GP with better 

theoretical properties have been proposed [60, 61], and these could be explored for enforcing 

convexity constraints instead.

In addition, the proposed framework could be implemented within FEniCS, which has been 

used in recent open-source codes for performing uncertainty quantification [54], design of 

experiments [62] and parameter estimation [63]. However, implementing a spline-based 

material model in the unified field language (used in FEniCS) was found to be not 

straightforward, specifically the required conditional statements.

An important uncertainty in soft tissues is their reference configuration. While we 

considered the input stretches (and therefore the strain invariants) as fixed in this work, 

one could allow them to vary during the model fitting, thereby naturally determining pre-

stretches as part of the GP training. We also considered a uniform experimental error in 

the observed stresses. However, depending on the exact experimental setup, the error could 

be non-uniform (such as proportional to the applied force magnitude). Alternatively, one 

could constrain the range of error hyperparameters (ex and ey) based on knowledge of the 

experimental setup, such as the least count of load cells in biaxial testing setup.

Lastly, Bayesian optimization [64] and design of experiments [65] could also be leveraged 

as the next step. For example, if the resulting model shows large variations for certain 

deformations, one could go back and design experiments to specifically measure stresses 

at those deformations and feed them back into the GP training, thereby reducing the 

uncertainty. The ability to make these choices provides a large flexibility in configuring 

the GP-based framework to one’s needs. The proposed framework addresses the uncertainty 

in material behavior. Combining it with other uncertainties, such as geometry and loading, 

remains a challenge that requires advanced computational approaches to deal with multiple 

uncertainties [66] and techniques to achieve feasible computation times [55, 58, 67].

In conclusion, the proposed GP-based constitutive model development is a promising 

research direction. Their use in the context of soft tissues is particularly appealing given 

the ongoing research in constitutive model developments for different soft tissues. Moreover, 

the option of using GPs to carry out stochastic finite element analysis provides an important 

computational tool that could be used to improve our understanding and predictive capability 

of soft tissue mechanics.
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Appendix A.: Exact GP

Dropping the convexity constraints (i.e., if ϑc = ∅), the Bayes’ theorem (37) reduces to:
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ℙ f ∣ y, ϑ =
ℙ y∘ ∣ ϑ∘, f ∘ ℙ yd ∣ ϑd, f d ℙ f

ℙ y∘, yd ∣ ϑ∘, ϑd , (A.1)

Using Eqs. (18), (20) and (35), it is easy to see that the joint distribution of y and f* is also 

Gaussian. Specifically,

yℛ

f*
ℛ N ℳ ϑ

ℳ ϑ*
, K ϑ, ϑ + Λ K ϑ, ϑ*

K ϑ*, ϑ K ϑ*, ϑ*
, (A.2)

where Λ is a diagonal matrix with appropriate entries for the noise variance, i.e., e0
2, ex

2, or 

ey
2. From the above, the following closed-form solution of the posterior distribution can be 

derived [37]:

f*
ℛ ∣ ϑ, y, ϑ* N f*, Cov f* , (A.3)

where

f* ≔ K ϑ*, ϑ [ K ϑ, ϑ + Λ]−1y and

Cov f* : = K ϑ*, ϑ* − K ϑ*, ϑ [K ϑ, ϑ + Λ]−1 K ϑ, ϑ* . (A.4)

Appendix B.: Effect of training points and noise on accuracy

To further understand the effect of training protocols, results without using the pure shear 

are presented (Fig. B.15), which shows higher error in the I4 < 1 region. Thus, it is more 

important that the training data covers the deformation space, rather than simply having 

higher number of protocols/data points. Moreover, to understand the effect of noise in the 

data, results with higher noise (with a variance of 0.2) are also presented (Fig. B.16). These 

results demonstrate the robustness of the framework with respect to noise and how number 

of protocols and convexity conditions affect the accuracy.
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Figure B.15: 
Results when pure shear protocols are not used in training show higher errors in the I4 < 1
area

Appendix C.: Spline interpolation

Given n data points xi, yi , for i = 1, …, n, a one-dimensional spline is interpolated as follows. 

A spline function is defined in terms of three quantities: order q, a knot vector of non-

decreasing values ui, and control points cj. Based on these quantities, the spline function is 

defined in terms of shape functions Nj
q and (unknown) control points cj as:

Sq x ≔ ∑
j = 1

m
Nj

q x cj . (C.1)

Nj
q are calculated recursively, starting with zero-th order

Nj
0 x = 1  if uj ≤ x < uj + 1

0  otherwise  (C.2)

and calculating higher-order functions with the following recursive relation:

Nj
q x = x − uj

uj + q − uj
Nj

p − 1 x + uj + q + 1 − x
uj + q + 1 − uj + 1

Nj + 1
p − 1 x . (C.3)

To interpolate to the data xi, yi , the control points cj are obtained by solving the following n
equations:

∑
j = 1

m
Nj

q xi cj = yi . (C.4)
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In two dimensions, a tensor product spline is defined using m × n control points

Sq x, y = ∑
j = 1

m
∑

k = 1

n
Nj

q x Nk
q y cjk, (C.5)

and the interpolation is done equivalently to find the control points. More details on the 

spline construction and their properties, such as their derivatives, can be found in [68].

Figure B.16: 
Results when training data includes higher noise (variance of 0.2) show an improvement in 

accuracy when using convexity conditions
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Highlights

• Strain energy density is modeled using a Gaussian process that is weakly 

poly-convex

• The proposed Gaussian process model is verified against a ground truth of the 

Gasser-Ogden-Holzapfel model

• The Gaussian process is regressed to ex-vivo biaxial mechanical testing data 

of a planar soft tissue sample, which shows the best fit compared to seven 

commonly used invariant-based models in the literature

• The regressed Gaussian process is used to carry out a stochastic finite element 

analysis of bioprosthetic valve leaflet closure
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Figure 1: 
Three types of inputs are used to train the GP model: stress-strain measurements (related to 

derivatives of SEDF) at ϑd, reference value of SEDF at ϑ∘, and convexity constraints (related 

to second derivatives of SEDF) at ϑc.
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Figure 2: 
Biaxial stretching is a commonly used ex-vivo experiment for thin planar soft tissues: a) 

a biaxial stretcher using BioRakes to mount the tissue specimen; b) a schematic of the 

tissue sample under biaxial stresses along two axes aligned with x– and y–axes and fiducial 

markers to measure strain; c) one protocol is defined as a loading path in the stress or 

deformation space; d) the resulting stress-deformation curves along the two directions.
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Figure 3: 
Likelihood function based on the CDF (13) used to enforce convexity constraints (21).
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Figure 4: 
Iteration plots for two GPs trained using the proposed framework: a) GOH with ℓ = 8 and 

convexity constraints and b) real experimental data for AV leaflet tissue.
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Figure 5: 
Training and prediction protocols used for verification of the proposed GP model.
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Figure 6: 
Verification of the proposed GP-based model was performed against a ground truth of GOH 

model. The resulting mean SEDF and its derivatives for different numbers of protocols ℓ , 

both with and without convexity constraints are plotted. Also the corresponding errors with 

respect to the ground truth are plotted.
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Figure 7: 
Standard deviation in SEDF and its derivatives for different numbers of protocols ℓ , both 

with and without convexity constraints are plotted.
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Figure 8: 
Mean second derivatives of the resulting SEDF for different numbers of protocols ℓ , both 

with and without convexity constraints are plotted.
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Figure 9: 
Results for the two testing protocols with four settings, where the points denote the ground 

truth, lines are GP predictions, and the shaded areas indicate two standard deviations of the 

GP. Test protocol 1 represents a biaxial stretch (i.e., no shear), while the test protocol 2 

includes a shear deformation and stress.

Aggarwal et al. Page 41

Comput Methods Appl Mech Eng. Author manuscript; available in PMC 2024 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 10: 
Results of GP fitted to experimental dataset of AV leaflet tissue: a) comparison of the trained 

GP (lines) versus the original data (points); b) the L2 norm of the GP fit compared with that 

of seven models from the literature; c) the R2 coefficient of the GP fit compared with that of 

seven models from the literature.
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Figure 11: 
The eigenvalues of the covariance matrix of two GPs trained on a) GOH model (with ℓ = 8
and convexity) and b) real experimental data of AV leaflet show a spectrum much smaller 

than the size of the matrix
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Figure 12: 
Simulation setup of a bioprosthetic valve leaflet closure under static pressure head with the 

contact with other leaflets being modeled as a contact with two rigid planes symmetrically 

arranged. The fibers are oriented approximately circumferentially and are depicted with 

black lines.
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Figure 13: 
Stochastic FE simulation result using the proposed GP-based framework (bottom two rows 

in a and b) compared with the standard FE simulation using GOH model (top rows in a and 

b) shows good agreement with the mean. The standard deviation values are small almost 

everywhere, except at the commissures, especially for stresses.
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Figure 14: 
Stochastic FE simulation result using the proposed GP-based framework using the real 

experimental dataset for AV leaflet. Results show higher standard deviations than the GOH-

based model, thus capturing the effect of experimental uncertainty.
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Table 1:

A summary of the observations (or constraints) at locations in the ϑ-space and the associated likelihood 

functions required to predict the posterior PDF of Ψ

Type Locations (counter) Observations Likelihood, Hyperparameters

Experimental measurements ϑd id = 1, …, Nd yd
Eq. (19), 

ex
2

, 
ey

2

Reference point ϑ∘ i∘ = 1 y∘ Eq. (20), 
e0

2

Convexity constraints ϑc ic = 1, …, Nc c Eq. (23), 
υ
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Table 2:

List of seven chosen invariant–based hyperelastic models from literature.

Model Strain energy density function

GOH Ψ = μ
2 I1 − 3 + k1

2k2
exp k2 κI1 + (1 − 3κ)I4 − 1 2 − 1

HGO Ψ = μ
2 I1 − 3 + k1

2k2
exp k2 I4 − 1 2 − 1

HGO2 Ψ = k1
k2

exp k2 I1 − 3 − 1 + k3
2k4

exp k4 I4 − 1 2 − 1

Holzapfel Ψ = μ
2 I1 − 3 + k1

2k2
exp k2 κ I1 − 3 2 + (1 − κ) I4 − 1 2 − 1

HY Ψ = k1
k2

exp k2 I1 − 3 − 1 + k3
k4

exp k4 I4 − 1 2 − 1

LS Ψ = μ
2 I1 − 3 + k1

2 κ exp k2 I1 − 3 2 + (1 − κ) exp k3 I4 − 1 2 − 1

MN Ψ = μ
2 I1 − 3 + k1 exp k2 I1 − 3 2 + k3 I4 − 1 4 − 1
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