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ABSTRACT

Transcriptomic data is accumulating rapidly; thus,
scalable methods for extracting knowledge from this
data are critical. Here, we assembled a top-down
expression and regulation knowledge base for Es-
cherichia coli. The expression component is a 1035-
sample, high-quality RNA-seq compendium consist-
ing of data generated in our lab using a single ex-
perimental protocol. The compendium contains di-
verse growth conditions, including: 9 media; 39 sup-
plements, including antibiotics; 42 heterologous pro-
teins; and 76 gene knockouts. Using this resource,
we elucidated global expression patterns. We used
machine learning to extract 201 modules that ac-
count for 86% of known regulatory interactions, cre-
ating the regulatory component. With these mod-
ules, we identified two novel regulons and quanti-
fied systems-level regulatory responses. We also in-
tegrated 1675 curated, publicly-available transcrip-
tomes into the resource. We demonstrated workflows
for analyzing new data against this knowledge base
via deconstruction of regulation during aerobic tran-
sition. This resource illuminates the E. colitranscrip-
tome at scale and provides a blueprint for top-down
transcriptomic analysis of non-model organisms.
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INTRODUCTION

Over the past decade, RNA sequencing (RNA-seq) has
emerged as an efficient, high-throughput method to deter-
mine the expression state of a cell population. Large RNA-
seq datasets (1-5) have enabled the development and ap-
plication of machine learning methods to advance our un-
derstanding of transcription and regulation (1,6-10). As
datasets continue to grow, analytic methods must keep pace
to convert this data to biological knowledge. A unified,
large-scale resource integrating expression data, regulatory
information, and analysis would address this need.

Large RNA-seq datasets compiled from multiple sources
can be subject to batch effects that confound analysis. Mit-
igating these effects remains an important goal and an ac-
tive area of research (11,12). Single-protocol, high-quality,
curated RNA-seq datasets represent another strategy for
batch effect limitation. However, generating such datasets
is time- and cost-intensive.
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A transcriptional regulatory network (TRN) is a key tool
for analyzing regulation in an organism. A TRN is a di-
rected graph with edges connecting regulators to the sets
of genes they regulate (regulons). TRNs are also laborious
to construct, as they depend on exhaustive bottom-up char-
acterization of regulators binding to the promoter regions
of their target genes and affecting transcription of those
genes. Thus, top-down inference of regulatory signals di-
rectly from an RNA-seq dataset—without prior knowledge
of the TRN—may provide a useful addition as the regula-
tory information component of a transcriptional resource.

Independent component analysis (ICA) (13) is a sig-
nal processing algorithm that outperforms other meth-
ods for the extraction of biologically meaningful regula-
tory modules from gene expression data (14). Applica-
tion of this method to publicly-available prokaryotic ex-
pression data has consistently recovered TRN modules
across organisms (1,15-19). ICA’s effectiveness results from
its ability to identify independent groups of genes that
vary consistently across samples, regardless of group size
or overlapping membership. Thus, a dataset with suffi-
cient scale and diversity in conditions to activate a broad
range of regulatory signals is a key prerequisite for this
method.

Here, we present an expression and regulation resource
for the key model organism Escherichia coli K-12 MG1655.
The expression component is PRECISE-1K, a 1035-
sample, single-protocol RNA-seq dataset. This Precision
RNA-seq Expression Compendium for /ndependent Signal
Extraction contains 38% of all publicly-available high-
quality RNA-seq data for E. coli K-12 and includes a broad
range of growth conditions. These data were generated be-
tween 2013 and 2021 in our lab (Figure 1B). To create the
resource’s regulatory component, we use ICA to extract
201 independently modulated groups of genes (iModulons)
that recover 86% of known regulatory interactions. Then,
we demonstrate the use of this resource by: (i) describing
genome-wide expression patterns; (ii) elucidating systems-
level transcriptome properties and responses; (iil) proposing
novel regulons for two putative transcription factors; (iv)
identifying a promoter sequence basis for two regulatory
modules; (v) adding 1675 high-quality publicly available K-
12 samples and extracting similar regulatory modules and
(vi) providing a workflow for systems-level transcriptome
analysis of external data using our knowledge base. This
example workflow, along with all analyses presented here,
are available for use at our GitHub repositories, https:
/Igithub.com/SBRG/precisel k-analyze and https://github.
com/SBRG/preciselk. The PRECISE-1K and Public K-12
iModulons, along with those for the other organisms men-
tioned above, can also be explored at iModulonDB.org (20).

PRECISE-1K provides the expression component and
iModulons provide the regulation component of a multi-
scale transcriptomic knowledge base. This resource in turn
empowers analyses that illuminate the transcriptomic re-
sponses of this critical model organism for cellular biology,
pathogenicity, and systems biology. This resource may be
used to inform novel experimental designs. Beyond its use
in E. coli, this resource also provides a blueprint for regu-
latory information extraction in other organisms, especially
those lacking exhaustive prior annotation.
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MATERIALS AND METHODS
RNA sequencing

3ml of cell broth (ODgy ~ 0.5, unless otherwise specified
in sample metadata file) was immediately added to two vol-
umes Qiagen RNA-protect Bacteria Reagent (6 mL), vor-
texed for 5, incubated at room temperature for 5 min, and
immediately centrifuged for 10 min at 11 000 x g. The su-
pernatant was decanted, and the cell pellet was stored in
the —80°C. Cell pellets were thawed and incubated with
Readylyse Lysozyme, Superaseln, Protease K and 20% SDS
for 20 min at 37°C. Total RNA was isolated and purified
using the Qiagen RNeasy Mini Kit (Cat#74104) columns
and following vendor procedures. An on-column DNase-
treatment was performed for 30 min at room temperature.
RNA was quantified using a Nanodrop and quality as-
sessed by running an RNA-nano chip on a bioanalyzer. The
rRNA was removed using [llumina Ribo-Zero rRNA re-
moval kit (Cat#20037135) for Gram-negative bacteria. A
KAPA stranded RNA-Seq Kit (Kapa Biosystems KK8401)
was used following the manufacturer’s protocol to create se-
quencing libraries with an average insert length of around
~300 bp. Libraries were run on a HiSeq4000 or NextSeq
(Illumina).

RNA-seq processing and quality control

Starting from 1055 candidate samples, data was processed
using a Nextflow (21) pipeline designed for processing mi-
crobial RNA-seq datasets (22), and run on Amazon Web
Services (AWS) Batch.

First, raw read trimming was performed using Trim Ga-
lore (https://www.bioinformatics.babraham.ac.uk/projects/
trim_galore/) with the default options, followed by FastQC
(https://www.bioinformatics.babraham.ac.uk/projects/
fastqc/) on the trimmed reads. Next, reads were aligned
to the E. coli K-12 MG1655 reference genome (RefSeq
accession number NC_000913.3) using Bowtie (23) with
the following non-default options: —X 1000, —3 3, —n 2.
The read direction was inferred using RSEQC (24) before
generating read counts using featureCounts (25) with the
following non-default options: -p -B -C -P -fracOverlap
0.5. Finally, all quality control metrics were compiled
using MultiQC (26) and the final expression dataset was
reported in units of log,-transformed Transcripts Per
Million (log,[TPM]).

Samples were considered ‘high-quality’ if they met all of
the following criteria:

- ‘Pass’ on the all of the following FastQC checks:
per_base_sequence_quality, per_sequence_quality_scores,
per_base_n_content, adapter_content

- At least 500 000 reads mapped to coding sequences
(CDS) from the reference genome (NC_000913.3)

- Not an outlier in hierarchical clustering based on pair-
wise Pearson correlation between all samples (outlier de-
fined as cluster with number of samples < 1% of the total
number of samples)

- Minimum Pearson correlation with biological replicates
(if any) 0.95 (if more than two biological replicates,
keep samples with high correlation in ‘greedy’ manner,


https://github.com/SBRG/precise1k-analyze
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dropping samples that have at least one sub-threshold
correlation with all other replicates)

Short non-coding transcripts (<100 nucleotides) and ex-
tremely low-expression transcripts (FPKM < 10) were also
removed to reduce noise.

Following this processing and QC workflow, 1035 high-
quality RNA-seq samples (each with 4257 gene expression
measurements) remained. These samples and their meta-
data define PRECISE-1K. logy[TPM], raw read count, QC
data files, and sample metadata for all 1055 original samples
may be found in the data directory of this project’s GitHub

repository.

Differentially expressed gene (DEG) computation

Differentially expressed genes (DEGs) were identified us-
ing the DESeq2 package (27) on the PRECISE-1K RNA-
seq dataset. Genes with a log, fold change greater than 1.5
and a false discovery rate (FDR) value less than 0.05 were
considered to be differentially expressed genes. Genes with
p-values assigned ‘NA’ based on extreme count outlier de-
tection were not considered as potential DEGs. The num-
ber of DEGs was computed for each unique pair of con-
ditions within each project in PRECISE-1K, for a total of
6104 pairwise computations.

iModulon computation

Log,[TPM] data (4257 gene rows by 1035 sample
columns) was centered to the control condition (log-
phase growth in M9 minimal media with glucose; sample
IDs ‘plk_00001" and ‘p1k_00002’); the mean log,[TPM]
of these two samples was computed, and the resultant
4257-gene logy[TPM] vector was subtracted from all 1035
samples (columns) of the log,[TPM] data table (including
the control samples themselves, such that the mean of these
samples was equal to 0).

No batch effect correction method (such as ComBat-
Seq) was used—use of such methods significantly re-
duced regulatory signal discovery in testing. Many com-
mon types of batch variation—e.g. temperature, pH, growth
phase—mediate expression changes through the TRN any-
how. Thus these minute perturbations - along with much
larger variation across samples and projects - initiate the
variant signals needed for ICA to identify regulatory
activity.

The Scikit-learn (28) implementation of FastICA (29)
was used to run ICA on the centered log,[TPM] data
table. FastICA numerically solves the matrix decomposi-
tion equation X = MA; X is the input matrix; M is the
‘iModulon’ matrix, and A is the ‘Activity’ matrix; these
terms will be used from here on in lieu of the traditional ter-
minology X = SA (‘signal’ and ‘mixing’ matrices) to avoid
confusion with the stoichiometric matrix S from metabolic
modeling. In this context, M has dimensions of number of
genes by number of components, and A has dimensions of
number of components by number of samples. Thus, the
M matrix contains weightings that specify how much each
gene (row) belongs to each independent component (IC;
column). The A matrix contains weightings that indicate
how active each IC (row) is in each sample (column).

Unlike PCA, this method requires pre-specification of
the number of components (parameter name n_components;
also known as dimensionality) to use (the number of
columns in M and number of rows in A). In order to choose
an optimal dimensionality, the previously described Op-
tICA method (30) was used.

For PRECISE-1K, the sclected optimal dimensionality
by this method was 290. The robust M and A matrices
from this dimensionality run were selected, yielding 201 ICs.
Thus, the final M matrix has dimensions of 4257 genes by
201 independent components, and the final activity matrix
A has dimensions of 201 iModulons by 1035 samples.

The M matrix contains gene weightings, indicating how
much each gene (row) ‘belongs’ to each component (col-
umn), with larger absolute values indicating more associa-
tion of a particular gene with a particular IC. For a given IC,
gene weightings are mostly normally distributed around 0,
with a few outlier gene weightings deviating from 0. To de-
fine an iModulon, a cutoff must be defined that allows seg-
mentation of the genes in an IC based on their gene weight-
ings. These cutoffs were determined with a previously de-
scribed method (1) using D’Agostino’s K> test for normal-
ity. In this way, the final 201 iModulons were computed
from the 201 independent components. A binary matrix
Myinary Was then constructed with the same dimensions as
M; for a given gene (row)/iModulon (column) entry, a 1 in-
dicates membership of the gene in the iModulon, and a 0
indicates that the gene is not a member of the iModulon.

The final matrices M, Myjinary and A (along with iModu-
lon membership thresholds as defined above, regulatory an-
notation as described below, and all other iModulon meta-
data) are available in the supplementary data files and in this
project’s GitHub repository.

iModulon annotation and curation

Using the gold-standard TRN reference annotation down-
loaded from RegulonDB v10.5 (31), enrichment of the set
of genes in each iModulon against known RegulonDB reg-
ulons was computed using Fisher’s Exact Test, with false
discovery rate controlled at 10> using the Benjamini—
Hochberg correction. By default, iModulons were com-
pared to all possible single regulons and all possible com-
binations of two regulons (intersection only). The regulons
used by default consisted of only strong and confirmed ev-
idence regulatory interactions, per RegulonDB. When mul-
tiple significant enrichments were available, the enrichment
with the lowest adjusted P value was used for annota-
tion. In the event of near equal P values (within an or-
der of magnitude) across multiple enrichments, the prior-
ity was given to intersection regulons, followed by single
regulons, followed by union regulons. If no significant en-
richments were available, the following adjustments were
used, in this order: relax evidence requirement to include
weak evidence regulatory interactions; search only for sin-
gle regulon enrichments; allow up to three regulons to be
combined for enrichment; allow regulon unions as well as
intersections (with priority given to intersections). If the
iModulon consisted of genes with annotated co-regulation
by four or more genes, a specific enrichment calculation was
made to determine the enrichment statistics. If none of these



adjustments yiclded a significant enrichment, the iModu-
lon was annotated as non-regulatory. All parameters and
statistics related to calculation of TRN enrichments for reg-
ulatory iModulons are recorded in the iModulon metadata
table, available in the GitHub repository. If any significant
regulatory enrichments were found after applying this pro-
cedure, the iModulon was annotated as Regulatory and
named according to the ruleset defined below in Case 1.
Otherwise, the iModulon was assigned one of 4 additional
categories (Genomic, Biological, Single-Gene Dominant,
Uncharacterized), detailed in Cases 2-5 below, respectively.

iModulons were named and annotated according to the
following ruleset:

General

- Rule #1: iModulon names must be fewer than ~15 char-
acters.

- Rule #2: iModulon names must be unique. If iModulons
would otherwise have the same name, append ‘—1”, ‘—2",
etc., as needed to disambiguate. By default, order the
suffixes by decreasing explained variance, unless another
numbering is specifically preferred (e.g. aligning Crp-1
and Crp-2 with Crp binding site classes).

Case 1: Regulatory
The iModulon has a significant regulon enrichment cho-
sen as described above:

- Rule #1: Name the iModulon after the primary function
of the enriched regulon(s) (e.g. the iModulon enriched for
the CdaR regulon is named ‘Sugar Diacid’).

- Rule #2: If no clear primary function is available for the
iModulon, name the iModulon directly after the enriched
regulon (e.g. the iModulon enriched for the CpxR regu-
lon is named ‘CpxR’, as CpxR controls a diverse set of
functions).

- Exception #1: if the enriched regulon corresponds to a
well-known global regulator (i.e. Fur, CRP, RpoS), name
the iModulon after that regulator.

- Exception #2: if the name per Rule #1 would violate Gen-
eral Rule #1, name the iModulon directly after the en-
riched regulon (e.g. the iModulon enriched for the union
of the FucR and ExuR regulons is named ‘FucR/ExuR’
instead of ‘Fucose/Galacturonate/Glucuronate’).

- Exception #3: if applying Rule #2, and the regulon en-
richment involves an intersection between a global reg-
ulator and a local regulator (i.e. cooperative regulation),
the global regulator may be dropped from the name (e.g.
‘NtrC-1” instead of ‘RpoN + NtrC-1”, as RpoN is a
larger-regulon sigma factor which co-regulates with the
more-specific NtrC).

Case 2: Genomic

The iModulon activity profile has a clear correlation with
a sample involving a specific genetic or genomic interven-
tion:

- Rule #1: if the iModulon captures intentional knockout
of a gene (e.g. geneA is knocked out in sampleA, and the
iModulon has a large positive gene weight for geneA and
a large negative activity level for sampleA, accounting
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for the lack of geneA expression in sampleA), name the
iModulon ‘[gene name] KO’ (e.g. baeR KO).

- Rule #2: Similarly, if the iModulon captures intentional
overexpression of a particular gene, name the iModulon
‘[gene name] OFE’ (e.g. ‘malE OF’).

- Rule #3: if the iModulon captures expression changes
in relation to evolved samples (ALE), as determined by
comparing the iModulon activities to known ALE sam-
ples, name the iModulon ‘[name of ALE project] Del’ (for
deletions), ‘[name of ALE project] Amp’ (for amplifica-
tions), or ‘name of ALE project] Mut’ (for mixed effect
mutations) (e.g. ROS TALE Del-1).

- Rule #4: if the iModulon also has a significant regu-
lon enrichment as described above, prioritize the specific
genetic/genomic change.

Case 3: Biological

The iModulon does not have a significant regulon en-
richment, does not relate to a specific genetic or genomic
change, but the member genes share a clear biological func-
tion:

- Rule #1: Name the iModulon after the shared biological
function (e.g. the ‘LPS’ iModulon consists of many genes
related to lipopolysaccharide biosynthesis and export,
though no significant regulon enrichment was found for
this iModulon’s genes).

Case 4: Single-gene dominant

The iModulon contains one specific gene with a gene
weight at least twice as large as the next closest gene, does
not fall into Case 2—Genomic, and contains only the one
highly-weighted genes, or at most 5 other genes with gene
weights very close to the iModulon’s threshold

- Rule #1: Name the iModulon after the dominant gene
(e.g. the ‘ymdG’ iModulon consists solely of the ymdG
gene).

Case 5: Uncharacterized
The iModulon does not meet any of the previous criteria
for naming

- Rule #1: Name the iModulon ‘UC-#’ (short for ‘Unchar-
acterized’), with the number incrementing for each un-
characterized iModulon.

Differential iModulon activity computation

Differentially iModulon activities (DiMAs) were computed
with a similar process as previously detailed (1). For each
iModulon, the average activity of the iModulon between bi-
ological replicates, if available, was computed. Then, the ab-
solute value of the difference in iModulon activities between
the two conditions was compared to the fitted log-normal
distribution of all differences in activity for the iModulon.
iModulons that had an absolute value of activity >5, and an
FDR <0.05 were considered to be significant. The number
of DIMAs was computed for each unique pair of conditions
within each project in the PRECISE-1K compendium, mir-
roring DEG computation.
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Compiling the public K-12 dataset

Data was compiled from NCBI SRA as described previ-
ously (22). Initially, all data annotated as RNA-seq for E.
coli was inspected. RNA-seq samples were discarded if the
strain was not from a K-12 strain, if the strain was miss-
ing, or if the type of experiment was not actually RNA-seq.
After initial curation, 3125 samples remained. Next, these
data were processed and quality controlled as described pre-
viously. 74% of samples (2312) passed the RNA-seq quality
control checks (FastQC, minimum reads mapped to cod-
ing sequences, non-outlier clustering). 58% of the original
samples (1816) had sufficient metadata annotation to ver-
ify biological replicates. Only conditions with at least two
biological replicates were kept at this step. Finally, the 0.95
minimum replicate correlation threshold was applied, yield-
ing the final set of 1675 high-quality publicly-available sam-
ples (54% of the original set). Next, these 1675 samples
were combined with the 1035 samples of PRECISE-1K to
yield the ‘Public K-12* dataset, comprising 2710 curated,
high quality expression profiles for E. coli strain K-12. The
log>[TPM], raw read count, QC data files and sample meta-
data for the high-quality public samples may be found in
the data directory of this project’s GitHub repository. After
centering the Public K-12 dataset to the PRECISE-1K con-
trol condition, iModulons were computed and annotated in
the same manner as described above.

RESULTS

PRECISE-1K is a 1035-sample, single-protocol, high-
precision RNA-seq compendium

We constructed PRECISE-1K to enable a multi-scale anal-
ysis of transcription and regulation in E. coli K-12 MG1655
(Figure 1A; Supplemental Figure S1). PRECISE-1K is a
large, high-fidelity expression compendium consisting of
1035 RNA-seq samples generated by a single research group
using a standardized experimental and data processing pro-
tocol (see Methods). The samples come from 45 distinct
projects. PRECISE-1K comprises a wide range of growth
conditions, including: 5 strains, 4 temperatures, 5 pHs, 9
base media, 18 carbon sources, 38 supplements, 76 unique
gene knockouts, 421 evolved samples and 87 fed-batch
cultures (Supplemental Figure S2). PRECISE-1K features
projects involving: adaptation to new growth conditions
(32-36), expression of heterologous (37) and orthologous
(38) genes, and a genome-reduced strain (39). PRECISE-
1K constitutes a nearly 4-fold increase in size from the orig-
inal 278-sample PRECISE(1) (Figure 1B). Replicates are
tightly correlated, with a median Pearson’s r of 0.99 (Figure
1C). PRECISE-1K thus represents a broad range of condi-
tions under which changes in the composition of the E. coli
transcriptome may be studied.

Principal component analysis (PCA) of PRECISE-1K re-
veals some expected batch effects. Separation between sam-
ples in principal component space largely stems from dif-
ferences between project growth conditions (Supplemen-
tal Figure S3). In particular, projects that feature diverse
growth media (e.g. the two-component system knockout
(40) and antibiotic resistance project (41)) and projects that
significantly alter the genome (e.g. a genome-reduced E.

coli strain (39)) notably diverge from other projects. Clus-
tering by library preparer is largely explained by project-
based clustering, indicating - along with tight replicate cor-
relations - that this commonly observed batch effect (11) is
not prominent in PRECISE-1K.

PRECISE-IK segments genes by expression, variance and
regulatory effect

Leveraging PRECISE-1K’s condition diversity and scale,
we evaluated systems-level expression trends to com-
pare data-driven observations to prior expectations. First,
we compared genes’ median expression levels across
PRECISE-IK to their median absolute deviations (MAD).
This contrast enabled us to define expression-based cat-
egories for all genes (Figure 1D). For example, expres-
sion of gadABCE - four genes of the glutamate-dependent
acid resistance system 2 - is medium in aggregate; how-
ever, these genes exhibit particularly high variation across
conditions, likely due to the specificity of their response.
The gene with the highest median expression is lipoprotein-
encoding /pp, long known to be the most abundant pro-
tein in E. coli (42,43). Likely owing to its structural role in
peptidoglycan, its cross-condition variation is medium. The
plurality of genes have medium expression with medium
variation, while only 101 genes—such as copper/silver ex-
port system component cusF—are both highly expressed
and highly variable. Overall, most genes’ variation fell
within one standard deviation of the overall median vari-
ation across all genes: 82% of genes (3505/4257). Only
19 genes have low variation and low overall expression,
consisting mostly of insertion elements and prophage
genes.

Next, we compared genes’ median expression levels to
their minimum and maximum levels. In so doing, we identi-
fied the maximum extent to which regulation can influence
the expression level of each gene in both the upwards and
downwards directions (Figure 1E). Overall, 36.1% of genes
are expressed in a tight range, exhibiting relatively low ef-
fects of up- or down-regulation. However, 45.6% of genes
demonstrate medium or high upwards inducibility, and 36%
have medium or high downwards inducibility. Thus, regu-
latory effects can influence expression level by an order of
magnitude or more for a majority of genes. For example,
¢pxP - a protein responding to extracytoplasmic stresses
as part of the CpxAR two-component system (44) - has a
nearly unique tendency to be both highly up- and down-
regulated from its median level. This characteristic may re-
sult from CpxP’s role as both a direct effector of various
stress responses and a negative feedback regulator for the
response pathway as a whole (45).

PRECISE-1K also highlights relationships between gene
expression and other data types. Genes for which pro-
teomics data is available in two large datasets (46,47)
have significantly higher expression (P = 1.2E-150, Mann—
Whitney U, m = 2031, n = 2226), consistent with a known
bias towards higher-expressed genes amongst proteomics
samples (Figure 1F). However, no significant difference
in variability was found (P = 0.97). We also compared
the expression of poorly-annotated genes (referred to as
the ‘y-ome’ in E. coli (48)) to genes with more complete
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Figure 1. PRECISE-1K, a 1035-sample high-precision expression compendium, reveals expression trends in the E. coli transcriptome. (A) Overview of
construction of PRECISE-1K compendium. Values indicate the number of unique categories for each condition (except evo strains). abx = antibiotics. (B)
The growth in single-protocol transcriptomics samples contained in the PRECISE to PRECISE-1K databases. (C) Histogram of Pearson’s r for both all
replicate pairs and all non-replicate pairs (pairwise combinations of samples across projects that are not direct biological replicates). Samples included in
PRECISE-1K are required to have replicate correlations of at least 0.95. (D) 2-D histogram of median expression level against median absolute deviation
(MAD) of expression for all 4257 genes in PRECISE-1K. Table defines expression categories as per corresponding box color/location in histogram. For
each axis, category splits are defined at median £ 1 standard deviation. (E) 2-D histogram of median-to-min expression difference against median-to-
max expression difference for all 4257 genes in PRECISE-1K. Table defines regulatory categories as per corresponding box color/location in histogram.
For each axis, low-to-medium split defined at 3 logy[TPM] units (8-fold change from median expression); medium-to-high split defined at 6 logs[TPM]
units (32-fold change). (F) Median vs MAD expression 2D histogram, separated by availability of proteomics data in two large recent datasets (46,88).
Blue = proteomics data available; red = no proteomics data available. (G) Histogram of the number of differentially expressed genes (DEGs) computed
between condition pairs within the same project (n = 6103 pairs). GSH = glutathione, Met = methionine.

annotation. y-ome genes have significantly lower expression
(P =1.0E-75, Mann—Whitney U, m = 1473, n = 2784) than
non-y-genes, highlighting the lack of transcription in stan-
dard laboratory conditions as a potential reason for these
genes’ relative lack of annotation (Supplemental Figure S4).
As expected, genes in the ‘“Translation’ and ‘Cell Cycle’
functional categories are expressed most highly, while more
specialized categories such as ‘Carbohydrate Metabolism’
have much lower median expression levels (Supplemental
Figure S5).

We performed differential gene expression analysis
within each member project for all projects in the

PRECISE-1K compendium. A median of 471 differentially
expressed genes (DEGs) were found across all pairwise
within-project comparisons (Figure 1G). Many compar-
isons produced close to 0 DEGs—or example, comparison
of a gseF deletion to a wild-type control after 6 h of batch
culture yielded only six DEGs. Other in-project compar-
isons yielded far more DEGs. For example, the comparison
between wild-type growth in minimal media and deletion
of two-component system (TCS) response regulator baeR
with ethanol supplementation yielded 1868 DEGs. In gen-
eral, using DEGs alone to derive biological insight may re-
quire analysis of hundreds to thousands of genes.
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Taken together, these results highlight PRECISE-1K’s
capability to capture genome-wide expression patterns that
both confirm existing expectations and reveal new knowl-
edge. PRECISE-1K is thus an expression knowledge base,
as it stores both expression data and informs knowledge-
generating analyses. Quantifying the impact of regulation
on gene expression at the systems level constitutes the next
scale of knowledge extraction facilitated by this knowledge
base.

Top-down extraction of independently-modulated groups of
genes captures the transcriptome at the systems level

We used ICA to identify 201 iModulons from PRECISE-
1K. iModulons are independently modulated groups of
genes that vary in concert across the dataset. iModulons
also have activity levels that quantify their response in each
PRECISE-1K condition. iModulons account for 83% of
the total variance in the dataset. 117 of these iModulons are
classified as Regulatory, as they are significantly enriched in
genes belonging to a known regulon (Figure 2A; see Mate-
rials and Methods for regulatory enrichment details). These
regulatory iModulons explain 56% of the total variance in
PRECISE-1K. iModulons capturing smaller regulons tend
to align closely with the known regulon, while iModulons
capturing larger regulons tend to recover smaller subsets of
larger regulons’ genes, leading to lower precision and re-
call (Figure 2B). 36 genomic iModulons that capture known
genetic alterations (e.g. gene knockouts) and 17 biological
iModulons (composed of genes with shared function but
lacking significant regulon enrichment) account for another
19% of the variance. 22 technical iModulons explaining just
2% of the variance are dominated by a single short, unchar-
acterized gene, including 12 consisting of only the one gene.
These iModulons likely capture noise in the dataset. Nine
uncharacterized iModulons account for just 6% of the vari-
ance in the dataset. Altogether, 88% of the variance cap-
tured by iModulons can be explained by either regulatory,
genomic or biological phenomena.

Fifty-eight percent of genes (2485/4257) are members
of at least one iModulon. These genes have higher ex-
pression variation than genes not present in any iModu-
lons (P = 1.03E-217, Mann—Whitney U test, m = 2485,
n = 1772) (Figure 2C). Median expression itself does not
differ significantly (P = 0.33). Thus, iModulon member-
ship is not restricted to higher-expressed genes. Indeed,
56% (823/1473) of y-ome genes—demonstrated above to
be significantly less expressed—are members of at least one
iModulon, highlighting the potential for iModulons to un-
cover putative functions for these uncharacterized genes
(49). These observations highlight the need for genes to be
differentially expressed under some conditions in order to
be identified as a signal by ICA and incorporated into an
iModulon.

The median iModulon consists of 10 genes, though many
iModulons are much larger, such as global stress responses
RpoS (122 genes) and SoxS (117) (Supplemental Figure
S6A). Of the 189 multi-gene iModulons, 77% (145) con-
sist of genes that are significantly intercorrelated compared
to expectation (Supplemental Figure S7A). 88% of regu-
latory and 82% of biological iModulons have significantly

intercorrelated genes, compared to just 47% of genomic
and 13% of technical iModulons. Genomic iModulons cap-
ture genetic alterations present in small subsets of the total
PRECISE-1K sample space—thus it is reasonable to expect
that the genes perturbed in these limited samples need not
be globally correlated across the compendium. Indeed, this
observation indicates that iModulons can capture localized
expression patterns beyond the reach of global correlation.
Interestingly, eight out of nine uncharacterized iModulons
contain significantly intercorrelated genes, highlighting an
opportunity for further biologically-relevant discovery.

Thirty-five percent of genes in an iModulon (879/2485)
are members of two or more iModulons, with two genes
(ynfM and bhsA) appearing in seven each (Supplemen-
tal Figure S6B). Only 15% (131) of multi-iModulon genes
are members of significantly correlated iModulons (Sup-
plemental Figure SBLAH). However, within each of their
iModulons, multi-iModulon genes rank in the 44th per-
centile in terms of intercorrelation with other iModulon
genes (BLAH). These results suggest that multi-iModulon
genes are influenced by distinct, recoverable signals, high-
lighting iModulons’ ability to capture overlapping regu-
latory modules of varying scale. iModulon-gene relation-
ships are concentrated in a subset of large iModulons
and genes present in multiple iModulons (Supplemental
Figure S6C, D).

Eighty metabolism and 50 stress response iModulons
account for 32% and 30% of the variance in PRECISE-
1K, respectively (Supplemental Figure S8A). This break-
down emphasizes a ‘fear-greed’ tradeoff (50). Interestingly,
the numbers of iModulons for these two functions dif-
fer considerably; the cell thus has a tendency towards
more diversified regulation for metabolic capabilities and
more centralized control for stress responses. Indeed, just
two iModulons—RpoS and ppGpp, major stress response
regulators—account for 6% of the variance in the dataset
(Supplemental Figure S§B-C).

iModulons capturing the signals of global regulators
(regulators with more than 25 regulatory targets) account
for large proportions of the overall variance in the dataset.
Flagella-related regulators FIhDC and FliA in combination
explain over 5% of the expression variance, while anaero-
bic growth regulators FNR and ArcA combine to explain
over 3% of the variance (Supplemental Figure S8C). These
insights highlight the ability of global regulators to mo-
bilize large-scale transcriptomic responses. Indeed, these
regulators (along with iron regulator Fur) are responsi-
ble for variance between wild-type control samples run
across projects, despite overall tight correlation between
those samples (Supplemental Figure S9). Importantly, these
batch variations are captured explicitly by these iModulon
activities.

Regulatory modules represent the majority of the known tran-
scriptional regulatory network

iModulons extracted from PRECISE-1K reconstruct a sig-
nificant fraction of the total regulatory interactions avail-
able in RegulonDB (31), the premier database for curated
and validated regulatory network information for E. coli.
32% of all known regulatory molecules (and 48% with
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Figure 2. iModulons extracted from PRECISE-1K capture the transcriptional regulatory network. (A) A breakdown of PRECISE-1K iModulons by their
annotation category: ‘Regulatory’ denotes significant enrichment of one or more known regulators; “Technical’ includes a single gene or technical artifact
iModulon; ‘Genomic’ includes iModulons related to known genomic interventions (i.e. knockouts or segmental amplifications due to adaptive laboratory
evolution); and ‘Biological’ includes iModulons containing genes of related function without significant regulator enrichment, or pointing to potential new
regulons. Pie chart denotes iModulon annotation categories by percentage of variance explained. Gray wedge indicates variance unexplained by iModulons.
(B) Summary of precision and recall for 117 regulatory iModulons. RegulonDB (http://regulondb.ccg.unam.mx) (31) regulons used as reference. (C) 2D
histograms of median gene expression and median absolute deviation in gene expression by iModulon membership. (D) Comparison of regulators and
regulatory interactions recovered by PRECISE-1K iModulons and available in RegulonDB. All = all evidence levels; Strong = only strong evidence
interactions per RegulonDB; P1K+ = all interactions for which the corresponding regulator is captured by an iModulon. (E) Histogram of RegulonDB
regulon sizes, colored depending on whether each RegulonDB regulon is or is not captured by at least one PRECISE-1K iModulon. (F) Histogram of
the number of differential iModulon activities (DiMAs) computed between condition pairs within the same project (n = 6103; same as Figure 1G). (G)
Comparison of number of DEGs and DiMAs for the same condition pairs. Linear best fit curve is shown in red, and indicates a ~20-fold dimensionality
reduction from DEGs to DiMAs. n = 4483 comparisons with non-zero DiMAs.

strong evidence) are captured by regulatory iModulons
(Figure 2D). Moreover, 23% of all specific regulatory inter-
actions (33% of strong-evidence interactions) are reconsti-
tuted in iModulons. iModulons are known to capture reg-
ulatory signals by identifying the most strongly-regulated
genes in a regulon based on promoter sequence (51). This
sequence-based effect likely accounts for the relatively lower
precision and recall enrichment statistics observed for larger
iModulons that capture more global regulators. Thus, con-
sidering a regulatory iModulon as a biomarker for all
of its regulator’s interactions reveals that iModulons in
fact reconstitute 80% of all known regulatory interactions
(86% when considering only strong evidence). Importantly,
iModulons preferentially capture the signals of larger regu-
lons (Figure 2E), increasing their utility in describing tran-
scriptome state across growth conditions.

Subsampling PRECISE-1K and recomputing iModu-
lons demonstrates regulatory network coverages at different
compendium sizes. On average across five trials, 20%-scale
subsamples of PRECISE-1K (207 samples) yield 111 iMod-
ulons, of which 67% (75) are regulatory iModulons also
captured from PRECISE-1K (Supplemental Figure S10A).
As more samples are added, the total number of iModu-
lons extracted also increases; however, the relative fraction
of regulatory iModulons decreases. Nonetheless, regulatory
recovery increases with scale: 33% of strong-evidence regu-
lators are captured in iModulons from 20%-scale subsam-
ples, compared with 48% from PRECISE-1K’s iModulons
(Supplemental Figure S10B). Captured regulatory interac-
tions follow a similar pattern. Critically, the step from 80%-
scale subsamples (828 samples) to full PRECISE-1K elicits
an increase in regulatory discovery following a plateau be-
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tween the 60%- and 80%-scales, indicating that PRECISE-
1K’s scale provides an advantage for regulatory recovery.

In all, iModulons provide the regulatory component of
this transcriptome knowledge base. The subsequent sec-
tions demonstrate transcriptomic knowledge that can be de-
rived from these regulatory modules.

Systems-level analysis of transcriptome states using regula-
tory modules

Because iModulons include an explicit representation of
activity levels, they enable differential iModulon activity
(DiIMA) analysis. DIMA analysis allows for a systems-level
comparison of transcriptome states by reducing hundreds
or thousands of DEGs to a median of just 28 iModulons
(Figure 2F). On average, a comparison between any two
conditions in PRECISE-1K yields almost 20 times fewer
differentially-activated iModulons than DEGs (Figure 2G),
highlighting the particular usefulness of DiMA analysis
for systems-level transcriptional analysis. On median, Di-
MAs directly explain 37% of variance between conditions.
Because all iModulons explain a median of 80% of vari-
ance between conditions, DiMAs account for a median of
47% of variance explained by all iModulons (Supplemental
Figure S11).

iModulon activities reflect the overall activity state of
a transcriptional regulator across environmental condi-
tions in PRECISE-1K. A stimulon is a higher-level regula-
tory structure composed of multiple regulons that respond
to a particular stimulus (Supplemental Figure S1). While
iModulons, by definition, include independently modu-
lated groups of genes, in many instances these independent
groups of genes are regulated in response to similar environ-
mental stimuli, thus forming a stimulon. Two-component
systems (TCS)—composed of a membrane-bound sensor
and a cytoplasmic response regulator—enable the cell to
sense and respond to important extracellular signals. iMod-
ulons derived from PRECISE-1K capture the response sig-
nal for 15 of 27 known TCS response regulators, providing
insight into the cell’s regulatory response to critical stimuli
such as nitrogen, inorganic phosphate and alkali metals.

Additionally, iModulons can be clustered based on their
activities to reveal higher order structures in the E. coli tran-
scriptome. For example, one cluster captures the joint regu-
lation of flagella formation by transcription factor complex
FIhDC and sigma factor FliA (o2®) (Supplemental Figure
S12). Six iron-related iModulons, five anaerobiosis-related
iModulons and four amino acid-related iModulons also
group together in this activity-based fashion. Thus, iModu-
lons in combination can shed light on broad transcriptome
patterns, providing a new definition of a stimulon.

Regulon discovery for putative transcription factors YgeV
and YmfT

Functional annotation for putative transcription factors
(TFs) remains challenging (52-54). However, iModulons
are a powerful tool for the discovery and analysis of
new regulons. PRECISE elucidated the regulons for three
previously uncharacterized TFs (YieP, YiaJ/PlaR and
YdhB/AdnB), and expanded the regulons of three known

TFs (Met], CysB and KdgR) (1). Many of these regulatory
interactions were confirmed through DNA-binding profiles
(1,55,56). Furthermore, three novel regulons were predicted
from iModulons derived from a microarray dataset (57).
iModulons from PRECISE-1K recapitulate these previous
results and reveal two new potential regulons.

The putative YgeV regulon contains 13 genes, of
which 7 are putatively involved in nucleotide trans-
port and metabolism (Figure 3A). YgeV is predicted to
be a SigmaS54-dependent transcriptional regulator, and
Sigma54-dependent promoters were previously identified
upstream of the xdhABC and yge W XY operons, which are
in the YgeV iModulon (58). Although the iModulon does
not contain the gene ygeV, ygel is divergently transcribed
from ygeWXY. A prior study (59) found that expression of
ygfT was reduced in a YgeV mutant strain. Since ygfT is in
the YgeV iModulon, this indicates that YgeV may serve as
an activator for the genes in its iModulon. The activity of
the YgeV iModulon rarely deviates from the reference con-
dition; however, it is most active when knockouts of TCS
response regulators BaeR or CpxR are exposed to ethanol
(Figure 3B). Therefore, we hypothesize that the TF YgeV
responds (either directly or indirectly) to ethanol to activate
genes related to purine catabolism, and is repressed by TCS
BaeRS and CpxAR.

The putative YmfT regulon contains 15 genes, includ-
ing ymfT itself. It contains 12 of the 23 genes in the el4
prophage (60) (Figure 3C). The putative YmfT iModulon
is most active in strains lacking the ferric uptake regulator
Fur, or in strains challenged by oxidative stress through hy-
drogen peroxide (Figure 3D). Absence of Fur leads to over-
production of iron uptake proteins, oxidative damage, and,
subsequently, mutagenesis (61). Therefore, we hypothesize
that YmfT responds to oxidative stress to alter the expres-
sion of the e14 prophage.

These examples illustrate the potential for iModulons to
predict new regulons and identify optimal conditions to
study their activities.

Stratifying promoter-level mechanisms of crp regulation

iModulons discover independent sub-groups of genes
within global regulons that exhibit distinct regulatory dy-
namics. For example, the Fur-1 and Fur-2 iModulon activ-
ities (each capturing a subset of the Fur regulon) are non-
linearly correlated based on both iron availability and aero-
bicity (41). In this section, we demonstrate that iModulons
reflect biochemical mechanisms of TF binding by examin-
ing the relationship between two iModulons—Crp-1 and
Crp-2—that stratify the CRP regulon. CRP contains multi-
ple RNA polymerase-interacting domains (Ar1-3) (62) that
facilitate its binding to Class I and Class II promoters.
Class I promoters canonically involve binding centered 61.5
bp upstream of the transcription start site, and Class II are
centered 41.5 bp upstream (63,64) (Figure 4A).

The activities of the Crp-1 and Crp-2 iModulons across
all PRECISE-1K conditions form a distinct nonlinear re-
lationship (Figure 4B). As expected, low activities of both
iModulons correspond with deletion of CRP, which is
known to activate most of the genes in the two iModulons.
Deletion of the Ar2 binding domain - implicated in Class



A eygeW ygeX o Nucleotide transport
[} and metabolism
0.2 _ssnA\...//yg}flls(yey Amino acid transport
uacT ®  and metabolism
e o ygfM

Energy production and
conversion

Transcription

hyuas —D

0.1 4-cr-z
7

0.0 A1

YgeV iM Gene Weight
I - b\
%
' °

-0.1 1T T e

0.0 2.5 5.0 75 100 125 150

Median log,[TPM]

C
044 ymm ©® ymfT ® Transcription
Cell cycle control,
° cell division,
— N chromosome
.g, 0.3 4 ym y’ﬁf“’ partitioning
2 'mfR aati
mfL Replication,
g ‘y icdC ® recombination and
0.2 1 .yme ./xisE repair
8 beeE i No COG annotation
o e L4 intE Energy production and
S 014 pe s SR comerson T
=
€ 0.0 1 ®
> o :
-0 ]
fur—___ N

00 25 50 75 100 125 150

Median log>[TPM]

Nucleic Acids Research, 2023, Vol. 51, No. 19 10185

B
I LB I | B + 5% EtOH
> 1 )
:"s 40 1
G |
< I
S 1
S 20 A .
h] |
o
=2 b
3 l
S 01
> |
BaeR-KO CpxR-KO WT All Other
Control PRECISE-1K
Experiments
D

2

=

B

<

c

o

>

e}

e}

=

=

S

>

WT dfur WT WT All Other
+Fe +Fe H202 PRECISE-1K
Experiments

Figure 3. iModulons discover new regulons. (A) iModulon gene weights for the putative YgeV iModulon versus median log;[TPM]. (B) Activity of the
YgeV iModulon in different media conditions. Each colored bar is the mean of two biological replicates (shown as individual black points). (C) iModulon
gene weights for the putative YmfT iModulon vs. median logy[TPM]. (D) Activity of the YmfT iModulon in different media conditions. Each colored bar

is the mean of two biological replicates (shown as individual black points).

II regulation - results in some Crp-1 activity but no Crp-2
activity (orange dot in Figure 4B). CRP binding sites for
genes unique to Crp-1 are broadly distributed, while Crp-2-
specific genes have CRP binding sites more consistently at
the Class II location (Figure 4C). A steady-state biophysi-
cal model with 10-fold different binding affinities for Class I
and Class II binding sites yields a similar binding site occu-
pancy relationship as that between the Crp iModulon ac-
tivities (Figure 4D). From this evidence, we propose that
the Crp-1 and Crp-2 iModulons correspond to Crp regula-
tory activity at Class I and Class II promoter genes, respec-
tively. This analysis highlights the capability of PRECISE-
1K iModulons to capture multi-dimensional regulatory ef-
fects within a single regulon.

Incorporating 1675 high-quality publicly-available transcrip-
tomes into the knowledgebase highlights method’s scalability
and robustness

To further expand our dataset, we sourced all publicly-
available RNA-seq data for E. coli strain K-12 from
NCBI’s Sequence Read Archive (SRA) (65). From 3230
K-12 samples, our processing and quality control pipeline

yielded 1675 high-quality K-12 expression profiles. We com-
bined these samples with PRECISE-1K to yield the ‘K-12
Dataset’, a high-quality transcriptomics dataset consisting
of 2710 expression profiles (Figure 5A). These profiles come
from 134 different projects, including 15 K-12 substrains
and 9 distinct temperatures and pHs. ICA decomposition
of the K-12 Dataset yields 194 iModulons.

The distribution of iModulons by category — both in
number and by explained variance—is broadly similar to
that of PRECISE-1K. Regulatory iModulons account for
64% of the total number, and 57% of the total variance
in the dataset (Figure 5B). Coverage of known regulatory
network interactions increases only minutely as compared
with PRECISE-1K alone, despite the more than doubling
of the dataset’s size (Figure 5C). Indeed, 89% of K-12's ex-
plained variance comes from 155 iModulons highly corre-
lated with iModulons extracted from either PRECISE or
PRECISE-1K (Figure 5D). In contrast, 45% of explained
variance from PRECISE-1K comes from 134 iModu-
lons not present in PRECISE. Nonetheless, 67 iModulons
captured in the original PRECISE are retained in both
PRECISE-1K and K-12, accounting for sizable fractions
of explained variance in each of the latter datasets. The
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iModulon structure remains largely consistent as dataset
scale is increased; in general, higher-variance signals dis-
covered by smaller-scale datasets are supplemented with
new, more niche iModulons, rather than the entire iMod-
ulon structure shifting with scale. iModulons can also ex-
plain a slightly larger fraction of variance in PRECISE-
1K than in the K-12 Dataset. iModulons extracted from
just the 1675 publicly-available K-12 samples are similar to
those extracted from the 2710-sample compendium, albeit
with lower regulatory recovery (Supplemental Figure S13).
Taken together, these results suggest that PRECISE-1K has
sufficient scale and condition variety to represent the E. coli
TRN, and additions of data beyond this scale may provide
diminishing returns.

However, specific conditions in the K-12 dataset en-
able regulatory discovery. For example, 18 samples from a
project exploring the post-transcriptional carbon storage
regulator CsrA regulon (66) enabled recovery of a CsrA
iModulon that is unique to the K-12 dataset. The CsrA
iModulon is much larger than the known CsrA regulon:
it contains 65 genes, of which 10 overlap with the 21-gene
CsrA regulon (Figure SE). Nonetheless, the enrichment of
CsrA regulon genes in the iModulon is significant (adjusted
P =6.7E-9), and the genes in both the iModulon and regu-
lon are particularly highly weighted in the iModulon. More-
over, the iModulon is much more highly active in a CsrA
deletion strain after arrest of transcription initiation than
the wild-type strain or other K-12 samples (Figure 5F), in-

dicating relief of CsrA repression. Thus, the genes unique
to the iModulon are candidates for expansion of the CsrA
regulon.

Applying the knowledge base to new data: the anaerobic to
aerobic transition

This knowledge base can be used to analyze new E. coli
RNA-seq datasets. We demonstrate this capability for one
project from the public K-12 Dataset. This project - called
AAT for anaerobic-aerobic transition - captured six time-
points in triplicate from 0 to 10 min after aeration of a pre-
viously anaerobic chemostat culture of E. coli K-12 W3110
(67). PRECISE-1K iModulon activities for the AAT project
can be inferred, without necessitating full re-processing
through the entire workflow. These inferred activities in turn
enable analysis of AAT’s samples both within the project
and within the context of all PRECISE-1K’s samples. The
code used for this case study is available at https://github.
com/SBRG/preciselk-analyze and can be used for analysis
of any new data.

We hypothesized that certain iModulons would respond
to the onset of aerobic growth (Figure 6A). For exam-
ple, the regulators Fnr and ArcA are each influenced by
oxygen availability. Fnr is activated by acquiring an iron-
sulfur (4Fe—4S) cluster and dimerizing (68); oxygen directly
inactivates Fnr by oxidizing the iron-sulfur cluster (69-71).
While active, Fnr activates anaerobic metabolism genes and
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represses aerobic metabolism genes (72). ArcA is the TF
component of a quinone-sensing two-component system.
Under aerobic growth, quinols are oxidized to quinones
as part of the electron transport chain; quinones in turn
prevent sensor kinase ArcB from phosphorylating and
activating ArcA (73,74). ArcA largely represses aerobic
metabolism genes, while also activating a few fermenta-
tive genes (75-77). Many aerobic metabolism genes - espe-
cially oxidoreductases and electron transport chain com-
ponents - require iron-sulfur clusters to function. Thus,
the global iron regulator Fur - which represses iron ac-
quisition genes when bound to iron (78) - is also impli-
cated in this transition (79). Finally, oxidative phospho-
rylation under aerobic conditions generates reactive oxy-

gen species (ROS), triggering the SoxS (80) and OxyR (81)
responses.

We identified the iModulons with divergent activities in
AAT compared to the rest of PRECISE-1K (Figure 6B).
iModulons related to energy metabolism featured promi-
nently; for example, the formate hydrogen lyase (FHL)
iModulon had a maximum absolute activity in AAT six
standard deviations off the PRECISE-1K median. FHL is
known to be active under anaerobiosis during glucose fer-
mentation (82). An activity histogram further contextual-
izes these observations: while ArcA iModulon activity is
over three standard deviations away from the PRECISE-1K
median at maximum in AAT, other AAT samples are closer
to the PRECISE-1K median (Figure 6C).
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To further characterize iModulon activity changes within
AAT, DIMA analysis can identify iModulons that change
significantly between any two sets of samples. Comparing
aeration onset to 10 min post-aeration highlights the roles
of key energy metabolism global regulators in facilitating
this transition (Figure 6D). Fnr is more active at onset,
while ArcA and Fur are significantly increased in activ-
ity 10 min after aeration. Fnr’s activity decreases nonlin-
early following aeration of the culture, reaching its aerobic
growth reference level within 5 min (Figure 6E). In contrast,
SoxS iModulon activity increases as aeration proceeds. Ac-
tivity clustering highlights increased activity of the anaero-
bic stimulon at aeration onset, followed by increased activa-
tion of the iron stimulon 10 min post-aeration (Supplemen-
tal Figure S14).

Activity phase planes, which compare two iModulons’
activities across conditions, are another key tool for ana-
lyzing new data. The dynamic transcriptomic changes in
the AAT project are notable in the Fur-1/Fur-2 (Figure
6F) and Fnr/ArcA (Figure 6G) phase planes. As aerobic
metabolism takes over, iron-related genes repressed by Fur
during anaerobiosis increase in activity as iron demand in-
creases. Activity of anaerobic regulator Fnr decreases as
aerobic regulator ArcA’s activity increases, with both ar-
riving near the activity levels of PRECISE-1K’s acrobic
growth control condition 10 min after aeration.

Taken together, these observations highlight the essen-
tial systems-level changes in the transcriptome composi-
tion during the anaerobic-aerobic transition while exempli-
fying PRECISE-1K’s function as an analysis resource. Fur-
ther, they show the deep interpretation of TRN functions
achieved through the use of iModulon activity phase planes.

DISCUSSION

This study establishes a multi-scale gene expression and reg-
ulation knowledge base for E. coli. The expression com-
ponent is PRECISE-1K, a single protocol, high qual-
ity RNA-seq dataset containing 1035 samples covering a
wide range of growth conditions. PRECISE-1K enables
genome-wide categorization of genes based on expres-
sion level and expression variance across conditions. Us-
ing machine learning, we recover 117 regulatory modules
(iModulons) from PRECISE-1K that reconstitute 86% of
known regulatory interactions. iModulons—unlike princi-
pal components—explain variance in terms of knowledge
of the TRN, not statistical magnitude. PRECISE-1K and its
iModulons constitute the most complete top-down, com-
putational transcription and regulation knowledge base yet
generated for a microorganism. This resource enables reg-
ulon discovery and empowers novel experimental design.
Most importantly, this resource empowers deep systems-
level analysis of novel data.

We demonstrate that iModulons capture fundamental
regulatory modes, not dataset-specific artifacts. iModulons
from PRECISE-1K represent nearly all of the regulatory
iModulons extracted from its predecessor PRECISE. In-
creasing the dataset size nearly four-fold does not hinder
regulatory discovery; here we more than double the num-
ber of discovered regulatory iModulons. Conversely, de-
creasing the dataset’s scale via subsampling yielded poorer
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regulatory recovery. This potential highlights the central
role that top-down, data-driven methods must take in tran-
scriptional regulatory discovery across organisms. Indeed,
iModulons have already successfully generated top-down
regulatory information for other organisms (1,15-19,83).
Continued expansion of RNA-seq datasets for these and
new organisms will likely drive further regulatory discovery.

Beyond their ability to systematically characterize a
TRN, iModulons also provide a key tool: activity levels.
This quantitative aspect of iModulons enables analysis of
the functional transcriptome under specific environmental
or genetic conditions. We demonstrate this capability by
capturing two different functional regulatory modes of the
Crp regulon based on binding site location. DIMA anal-
ysis also greatly simplifies differential expression analysis;
with an average of nearly twenty times fewer significantly
differential variables to analyze, DiMA analysis empowers
systems-level analysis of transcriptomic changes, as demon-
strated in the AAT case study.

Critically, PRECISE-1K and iModulon activities enable
us to discover and partially characterize putative regulons
for predicted transcription factors. We demonstrate this ca-
pability by assigning a putative function in ethanol stress
tolerance related to nucleotide metabolism to the YgeV reg-
ulon, based on the YgeV iModulon activation pattern. In
particular, this activation coincides with knockouts of two-
component system response regulators BaeR and CpxR;
thus, YgeV’s role in nucleotide metabolism upon ethanol
stress response may arise as a compensatory mechanism fol-
lowing inactivation of these more prominent TCS regula-
tors. The specificity of this activating condition may play a
role in explaining why the functions of this regulator and the
genes in its regulon remain unknown. Indeed, iModulons
have already proven useful in studies to characterize reg-
ulators and their regulons (49,84,85). PRECISE-1K likely
contains other instances of untapped insights and should
continue to be mined for such discoveries.

However, we also highlight the need for judicious selec-
tion of growth conditions to maximize potential for regula-
tory elucidation. When we added all high-quality public K-
12 data to PRECISE-1K, the iModulon structure remained
quite similar, with the K-12 Dataset’s 124 regulatory iMod-
ulons accounting for 88% of known TRN interactions. This
result highlights two key points. Firstly, PRECISE-1K has
sufficient scale and diversity to enable broad TRN discov-
ery while avoiding noise introduced by combining data from
multiple sources. Secondly, adding large numbers of RNA-
seq samples beyond the scale of PRECISE-1K can yield
diminishing returns. That said, certain specific new condi-
tions from the K-12 Dataset were disproportionately use-
ful - for example, a project perturbing the CsrA regulator
enabled extraction of a corresponding regulatory iModu-
lon. These observations likely highlight a limitation in the
diversity of the available data, rather than of iModulons
themselves. Thus, capturing additional unrecovered regula-
tory signals will likely rely on selection of growth conditions
that activate niche transcriptional regulators with small reg-
ulons. Indeed, PRECISE-1K and the K-12 Dataset provide
a blueprint for which conditions to prioritize for future dis-
covery. Our knowledge base provides a centralized reference
for assessment of gene expression and regulatory activity
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across conditions, empowering prudent study design. This
capability is especially important for cost-, labor-, or time-
intensive experiments, such as proteomics.

Our example analysis of the AAT project from the K-
12 Dataset demonstrates perhaps the most exciting appli-
cation of PRECISE-1K: analysis and contextualization of
new RNA-seq datasets. PRECISE-1K’s iModulons clearly
capture and summarize the regulatory dynamics at play
during aerobic metabolism transition. We provide a vari-
ety of tools, both here and in our previously published
code package (22) that will easily facilitate similar analy-
ses for any other dataset. In this way, PRECISE-1K is not
just useful in and of itself but as a backdrop for deriv-
ing regulatory insight from new data. Our example work-
flow for analyzing new data with PRECISE-1K is avail-
able at at https://github.com/SBRG/preciselk-analyze; all
other analyses from this paper are available for use at https:
/lgithub.com/SBRG/preciselk. These analyses have already
enriched multi-omic studies of the aerobic respiration sys-
tem (86), the adaptation of different E. coli strains (87), and
the response of E. coli to antibiotics (41).

Overall, PRECISE-1K and iModulons represent a crit-
ical resource for studying expression and regulation in E.
coli. We believe this resource should be a standard tool
for systems-level analysis of E. coli RNA-seq data from
all sources. As the number of publicly available datasets
increases for other microorganisms, this study serves as a
roadmap for interrogating similar datasets for less charac-
terized organisms, with the potential to yield equally im-
pactful insights into those organisms’ transcription and
regulation characteristics. PRECISE-1K is disseminated
through iModulonDB.org.

Limitations of the study

Although this resource presents many opportunities, some
limitations also merit mention. First of all, assembling at
least 200 high-quality, single-protocol RNA-seq profiles
presents an up-front challenge for generating a PRECISE
database for other organisms. While combining publicly
available data can help, we have demonstrated that single-
protocol datasets provide more regulatory elucidation on a
per sample basis. Secondly, while PRECISE-1K does con-
tain a broad range of growth conditions, this set is by no
means exhaustive. Thus, minimal expression and regula-
tory knowledge can be provided for these missing condi-
tions. Thirdly, iModulons are subject to limitations due to
the ICA algorithm by which they are computed. For exam-
ple, ICA assumes that each iModulon results from a sin-
gle signal (regulator); therefore, genes with multiple regula-
tors - or complex, multi-regulator regulons - can be more
difficult to capture in iModulons. Also, ICA does not al-
low for hierarchy; thus, iModulons do not always capture
the effects of regulators on other regulators, i.e. the activa-
tion of a set of local regulators by a global regulator. Addi-
tionally, while ICA does maximize statistical independence,
its components are still based somewhat on variance. Thus,
as dataset scale increases, signals that were captured from
smaller datasets may not be captured from larger datasets
because they account for relatively less variance in the larger
dataset (hence the observation of some unique PRECISE

iModulons). iModulons also cannot directly capture a true
TRN—iModulons represent groupings of genes whose ex-
pression signals are intercorrelated while independent from
other genes, not groupings of genes directly influenced by
a regulator (as iModulons are computed without any prior
knowledge of the TRN). Finally, DiMas—while indispens-
able for systems-level regulatory analysis - are not guaran-
teed to capture all individual gene-level changes in a given
comparison. Indeed, the range of variance explained by Di-
MAs for any given condition comparison is wide; although
a median of 47% of variance is explained by DiMAs, many
comparisons are much more ‘lossy’ than this. Thus, it re-
mains important to analyze gene expression data directly
- for which PRECISE-1K itself may be used. These im-
portant caveats should be kept in mind when using this
resource to analyze new data or analyzing this resource
itself.

DATA AVAILABILITY

All data (aside from raw RNA-seq data) and code for
analysis and figures are available on Zenodo at: https:
/ldoi.org/10.5281/zenodo.8284223. iModulons and related
data are also available from iModulonDB.org under the
dataset “E. coli PRECISE-1K” and “E. coli Modulome”
(Public K-12). Raw RNA-seq data have been deposited
at GEO and are publicly available as of the date of pub-
lication. Accession numbers are listed in the metadata
file, located in the same Zenodo repository at the path:
data/preciselk/metadata_qc.csv. Any additional informa-
tion required to re-analyze the data reported in this paper
is available from the lead contact upon request.
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