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ABSTRACT 

Transcriptomic data is accumulating rapidly; thus,
scalable methods for e xtracting kno wledge from this
data are critical. Here, we assembled a top-down
expression and regulation knowledge base for Es-
c heric hia coli . The expression component is a 1035-
sample, high-quality RNA-seq compendium consist-
ing of data generated in our lab using a single ex-
perimental protocol. The compendium contains di-
ver se gro wth conditions, including: 9 media; 39 sup-
plements, inc luding antibiotics; 42 heter ologous pr o-
teins; and 76 gene knockouts. Using this resource,
we elucidated global expression patterns. We used
machine learning to extract 201 modules that ac-
count for 86% of known regulatory interactions, cre-
ating the regulatory component. With these mod-
ules, we identified tw o no vel regulons and quanti-
fied systems-level regulatory responses. We also in-
tegrated 1675 curated, publicl y-a vailable transcrip-
tomes into the resource. We demonstrated workflows
for analyzing new data against this knowledge base
via deconstruction of regulation during aerobic tran-
sition. This resource illuminates the E. coli transcrip-
tome at scale and pr o vides a blueprint for top-down
transcriptomic analysis of non-model organisms. 
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GRAPHICAL ABSTRACT 

INTRODUCTION 

Over the past decade, RN A sequencing (RN A-seq) has
emerged as an efficient, high-throughput method to deter-
mine the expression state of a cell population. Large RNA-
seq datasets ( 1–5 ) have enabled the development and ap-
plication of machine learning methods to advance our un-
derstanding of transcription and regulation ( 1 , 6–10 ). As
datasets continue to grow, analytic methods must keep pace
to convert this data to biological knowledge. A unified,
large-scale r esour ce integrating expr ession data, r egulatory
information, and analysis would address this need. 

Large RNA-seq datasets compiled from multiple sources
can be subject to batch effects that confound analysis. Mit-
iga ting these ef fects remains an important goal and an ac-
ti v e area of research ( 11 , 12 ). Single-protocol, high-quality,
cura ted RNA-seq da tasets r epr esent another strategy for
ba tch ef fect limita tion. Howe v er, genera ting such da tasets
is time- and cost-intensi v e. 
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A transcriptional regulatory network (TRN) is a key tool 
or analyzing regulation in an organism. A TRN is a di- 
ected graph with edges connecting regulators to the sets 
f genes they regulate (regulons). TRNs are also laborious 
o construct, as they depend on e xhausti v e bottom-up char- 
cterization of regulators binding to the promoter regions 
f their target genes and affecting transcription of those 
enes. Thus, top-down inference of regulatory signals di- 
ectly from an RNA-seq dataset –– without prior knowledge 
f the TRN –– may provide a useful addition as the regula- 
ory information component of a transcriptional r esour ce. 

Independent component analysis (ICA) ( 13 ) is a sig- 
al processing algorithm that outperforms other meth- 
ds for the extraction of biolo gicall y meaningful regula- 
ory modules from gene expression data ( 14 ). Applica- 
ion of this method to pub licly-availab le prokaryotic e x- 
ression data has consistently recovered TRN modules 
cross organisms ( 1 , 15–19 ). ICA’s effecti v eness results from 

ts ability to identify independent groups of genes that 
ary consistently across samples, regardless of group size 
r overlapping membership. Thus, a dataset with suffi- 
ient scale and di v ersity in conditions to activate a broad 

ange of regulatory signals is a key prerequisite for this 
ethod. 
Her e, we pr esent an expr ession and r egulation r esour ce

or the key model organism Esc heric hia coli K-12 MG1655. 
he expression component is PRECISE-1K, a 1035- 

ample, single-protocol RNA-seq dataset. This P recision 

 NA-seq E xpression C ompendium for I ndependent S ignal 
 xtraction contains 38% of all pub licly-availab le high- 
uality RNA-seq data for E. coli K-12 and includes a broad 

ange of growth conditions. These data were generated be- 
ween 2013 and 2021 in our lab (Figure 1 B). To create the
 esour ce’s r egulatory component, we use ICA to extract 
01 i ndependently modul ated groups of genes (iModulons) 
hat recover 86% of known regulatory interactions. Then, 
e demonstrate the use of this r esour ce by: (i) describing 

enome-wide expression patterns; (ii) elucidating systems- 
e v el transcriptome properties and responses; (iii) proposing 

ovel regulons for two putati v e transcription factors; (i v) 
dentifying a promoter sequence basis for two regulatory 

odules; (v) adding 1675 high-quality publicly available K- 
2 samples and extracting similar regulatory modules and 

vi) providing a workflow for systems-level transcriptome 
nalysis of external data using our knowledge base. This 
 xample wor kflow, along with all analyses pr esented her e, 
re available for use at our GitHub repositories, https: 
/github.com/SBRG/precise1k-analyze and https://github. 
om/SBRG/precise1k . The PRECISE-1K and Public K-12 

Modulons, along with those for the other organisms men- 
ioned above, can also be explored at iModulonDB.org ( 20 ). 

PRECISE-1K provides the expression component and 

Modulons provide the regulation component of a multi- 
cale transcriptomic knowledge base. This r esour ce in turn 

mpowers analyses that illuminate the transcriptomic re- 
ponses of this critical model organism for cellular biology, 
athogenicity, and systems biology. This r esour ce may be 
sed to inform novel experimental designs. Beyond its use 

n E. coli , this r esour ce also provides a blueprint for regu-
a tory informa tion extraction in other organisms, especially 

hose lacking e xhausti v e prior annotation. 
ATERIALS AND METHODS 

NA sequencing 

 ml of cell broth (OD 600 ∼ 0.5, unless otherwise specified 

n sample metadata file) was immediately added to two vol- 
mes Qiagen RNA-protect Bacteria Reagent (6 mL), vor- 
exed for 5 s, incubated at room temperature for 5 min, and 

mmediately centrifuged for 10 min at 11 000 × g . The su- 
ernatant was decanted, and the cell pellet was stored in 

he −80 

◦C. Cell pellets were thawed and incubated with 

eadylyse Lysozyme, SuperaseIn, Protease K and 20% SDS 

or 20 min at 37 

◦C. Total RNA was isolated and purified 

sing the Qiagen RNeasy Mini Kit (Cat#74104) columns 
nd following vendor procedures. An on-column DNase- 
reatment was performed for 30 min at room temperature. 
NA was quantified using a Nanodrop and quality as- 

essed by running an RNA-nano chip on a bioanalyzer. The 
RNA was removed using Illumina Ribo-Zero rRNA re- 
oval kit (Cat#20037135) for Gram-negati v e bacteria. A 

APA stranded RNA-Seq Kit (Kapa Biosystems KK8401) 
as used following the manufacturer’s protocol to create se- 
uencing libraries with an average insert length of around 

300 bp. Libraries were run on a HiSeq4000 or NextSeq 

Illumina). 

NA-seq processing and quality control 

tarting from 1055 candidate samples, data was processed 

sing a Nextflow ( 21 ) pipeline designed for processing mi- 
robial RNA-seq datasets ( 22 ), and run on Amazon Web 

ervices (AWS) Batch. 
First, raw read trimming was performed using Trim Ga- 

ore ( https://www.bioinformatics.babraham.ac.uk/projects/ 
rim galore/ ) with the default options, followed by FastQC 

 https://www.bioinformatics.babraham.ac.uk/projects/ 
astqc/ ) on the trimmed r eads. Next, r eads wer e aligned 

o the E. coli K-12 MG1655 r efer ence genome (RefSeq 

ccession number NC 000913.3) using Bowtie ( 23 ) with 

he following non-default options: −X 1000, −3 3, −n 2. 
he r ead dir ection was inferr ed using RSEQC ( 24 ) before
enerating read counts using featureCounts ( 25 ) with the 
ollowing non-default options: -p -B -C -P -fr acOver lap 

.5. Finally, all quality control metrics were compiled 

sing MultiQC ( 26 ) and the final expression dataset was 
eported in units of log 2 -transformed Transcripts Per 

illion (log 2 [TPM]). 
Samples were considered ‘high-quality’ if they met all of 

he following criteria: 

- ‘Pass’ on the all of the following FastQC checks: 
per base sequence quality, per sequence quality scores, 
per base n content, adapter content 

- At least 500 000 reads mapped to coding sequences 
(CDS) from the r efer ence genome (NC 000913.3) 

- Not an outlier in hierarchical clustering based on pair- 
wise Pearson correlation between all samples (outlier de- 
fined as cluster with number of samples < 1% of the total 
number of samples) 

- Minimum Pearson correlation with biological replicates 
(if any) 0.95 (if more than two biological replicates, 
keep samples with high correlation in ‘greedy’ manner, 

https://github.com/SBRG/precise1k-analyze
https://github.com/SBRG/precise1k
https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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made to determine the enrichment statistics. If none of these 
dropping samples that have at least one sub-threshold
correlation with all other replicates) 

Short non-coding transcripts ( < 100 nucleotides) and ex-
tr emely low-expr ession transcripts (FPKM < 10) were also
removed to reduce noise. 

Following this processing and QC workflow, 1035 high-
quality RNA-seq samples (each with 4257 gene expression
measur ements) r emained. These samples and their meta-
data define PRECISE-1K. log 2 [TPM], raw read count, QC
data files, and sample metadata for all 1055 original samples
may be found in the data directory of this project’s GitHub
repository . 

Differ entially expr essed gene (DEG) computation 

Differ entially expr essed genes (DEGs) wer e identified us-
ing the DESeq2 package ( 27 ) on the PRECISE-1K RNA-
seq dataset. Genes with a log 2 fold change greater than 1.5
and a false discovery rate (FDR) value less than 0.05 were
considered to be differentially expressed genes. Genes with
p-values assigned ‘NA’ based on extreme count outlier de-
tection were not considered as potential DEGs. The num-
ber of DEGs was computed for each unique pair of con-
ditions within each project in PRECISE-1K, for a total of
6104 pairwise computations. 

iModulon computation 

Log 2 [TPM] data (4257 gene rows by 1035 sample
columns) was centered to the control condition (log-
phase growth in M9 minimal media with glucose; sample
IDs ‘p1k 00001’ and ‘p1k 00002’); the mean log 2 [TPM]
of these two samples was computed, and the resultant
4257-gene log 2 [TPM] vector was subtracted from all 1035
samples (columns) of the log 2 [TPM] data table (including
the control samples themselves, such that the mean of these
samples was equal to 0). 

No batch effect correction method (such as ComBat-
Seq) was used –– use of such methods significantly re-
duced regulatory signal discovery in testing. Many com-
mon types of batch variation –– e.g. temperature, pH, growth
phase –– mediate expression changes through the TRN any-
how. Thus these minute perturbations - along with much
larger variation across samples and projects - initiate the
variant signals needed for ICA to identify regulatory
activity. 

The Scikit-learn ( 28 ) implementation of FastICA ( 29 )
was used to run ICA on the centered log 2 [TPM] data
tab le. FastICA numerically solv es the matrix decomposi-
tion equation X = MA ; X is the input matrix; M is the
‘i M odulon’ matrix, and A is the ‘ A ctivity’ matrix; these
terms will be used from here on in lieu of the traditional ter-
minology X = SA (‘signal’ and ‘mixing’ matrices) to avoid
confusion with the stoichiometric matrix S from metabolic
modeling. In this context, M has dimensions of number of
genes by number of components, and A has dimensions of
number of components by number of samples. Thus, the
M matrix contains weightings that specify how much each
gene (row) belongs to each independent component (IC;
column). The A matrix contains weightings that indicate
how acti v e each IC (row) is in each sample (column). 
Unlike PCA, this method r equir es pr e-specification of
the number of components (parameter name n components ;
also known as dimensionality) to use (the number of
columns in M and number of rows in A ). In order to choose
an optimal dimensionality, the previously described Op-
tICA method ( 30 ) was used. 

For PRECISE-1K, the selected optimal dimensionality
by this method was 290. The robust M and A matrices
from this dimensionality run were selected, yielding 201 ICs.
Thus, the final M matrix has dimensions of 4257 genes by
201 independent components, and the final activity matrix
A has dimensions of 201 iModulons by 1035 samples. 

The M matrix contains gene weightings, indicating how
much each gene (row) ‘belongs’ to each component (col-
umn), with larger absolute values indicating more associa-
tion of a particular gene with a particular IC. For a gi v en IC,
gene weightings are mostl y normall y distributed around 0,
with a few outlier gene weightings deviating from 0. To de-
fine an iModulon, a cutoff must be defined that allows seg-
mentation of the genes in an IC based on their gene weight-
ings. These cutoffs were determined with a previously de-
scribed method ( 1 ) using D’Agostino’s K 

2 test for normal-
ity. In this way, the final 201 iModulons were computed
from the 201 independent components. A binary matrix
M binary was then constructed with the same dimensions as
M ; for a gi v en gene (row) / iModulon (column) entry, a 1 in-
dicates membership of the gene in the iModulon, and a 0
indica tes tha t the gene is not a member of the iModulon. 

The final matrices M , M binary and A (along with iModu-
lon membership thresholds as defined above, regulatory an-
notation as described below, and all other iModulon meta-
data) are available in the supplementary data files and in this
project’s GitHub repository. 

iModulon annotation and curation 

Using the gold-standard TRN r efer ence annotation down-
loaded from RegulonDB v10.5 ( 31 ), enrichment of the set
of genes in each iModulon against known RegulonDB reg-
ulons was computed using Fisher’s Exact Test, with false
discovery rate controlled at 10 

−5 using the Benjamini–
Hochberg correction. By default, iModulons were com-
pared to all possible single regulons and all possible com-
binations of two regulons (intersection only). The regulons
used by default consisted of only strong and confirmed ev-
idence regulatory interactions, per RegulonDB. When mul-
tiple significant enrichments were available, the enrichment
with the lowest adjusted P value was used for annota-
tion. In the e v ent of near equal P values (within an or-
der of magnitude) across multiple enrichments, the prior-
ity was gi v en to intersection regulons, followed by single
regulons, followed by union regulons. If no significant en-
richments were available, the following adjustments were
used, in this order: relax evidence r equir ement to include
weak evidence regulatory interactions; search only for sin-
gle regulon enrichments; allow up to three regulons to be
combined for enrichment; allow regulon unions as well as
intersections (with priority gi v en to intersections). If the
iModulon consisted of genes with annota ted co-regula tion
by four or more genes, a specific enrichment calculation was



Nucleic Acids Research, 2023, Vol. 51, No. 19 10179 

a
l
s
u
t
r
c
n
O
c
U

f

s

a
t

 

 

r
c
t

w
n
h
w

f

D

D
w
i
o
s
t
d
i
F
o
w
r

djustments yielded a significant enrichment, the iModu- 
on was annotated as non-regulatory. All parameters and 

ta tistics rela ted to calcula tion of TRN enrichments for reg- 
latory iModulons are recorded in the iModulon metadata 

a ble, availa ble in the GitHub repository. If any significant 
egulatory enrichments were found after a ppl ying this pro- 
edure, the iModulon was annotated as Regulatory and 

amed according to the ruleset defined below in Case 1. 
therwise, the iModulon was assigned one of 4 additional 

ategories (Genomic, Biological, Single-Gene Dominant, 
ncharacterized), detailed in Cases 2–5 below, respecti v ely. 
iModulons were named and annotated according to the 

ollowing ruleset: 
General 

- Rule #1: iModulon names must be fewer than ∼15 char- 
acters. 

- Rule #2: iModulon names must be unique. If iModulons 
would otherwise have the same name, append ‘ −1 

′′ , ‘ −2 

′′ , 
etc., as needed to disambiguate. By default, order the 
suffix es by decr easing explained variance, unless another 
numbering is specifically pr eferr ed (e.g. aligning Crp-1 

and Crp-2 with Crp binding site classes). 

Case 1: Regulatory 

The iModulon has a significant regulon enrichment cho- 
en as described above: 

- Rule #1: Name the iModulon after the primary function 

of the enriched regulon(s) (e.g. the iModulon enriched for 
the CdaR regulon is named ‘Sugar Diacid’). 

- Rule #2: If no clear primary function is available for the 
iModulon, name the iModulon directly after the enriched 

regulon (e.g. the iModulon enriched for the CpxR regu- 
lon is named ‘CpxR’, as CpxR controls a di v erse set of 
functions). 

- Exception #1: if the enriched regulon corresponds to a 

well-known global regulator (i.e. Fur, CRP, RpoS), name 
the iModulon after that regulator. 

- Exception #2: if the name per Rule #1 would violate Gen- 
eral Rule #1, name the iModulon directly after the en- 
riched regulon (e.g. the iModulon enriched for the union 

of the FucR and ExuR regulons is named ‘FucR / ExuR’ 
instead of ‘Fucose / Galactur onate / Glucur onate’). 

- Exception #3: if a ppl ying Rule #2, and the regulon en- 
richment involves an intersection between a global reg- 
ulator and a local regulator (i.e. cooperati v e regulation), 
the global regulator may be dropped from the name (e.g. 
‘NtrC-1 

′′ instead of ‘RpoN + NtrC-1 

′′ , as RpoN is a 

larger-regulon sigma factor which co-regulates with the 
more-specific NtrC). 

Case 2: Genomic 
The iModulon activity profile has a clear correlation with 

 sample involving a specific genetic or genomic interven- 
ion: 

- Rule #1: if the iModulon captures intentional knockout 
of a gene (e.g. geneA is knocked out in sampleA , and the
iModulon has a large positi v e gene weight for geneA and 

a large negati v e acti vity le v el for sampleA , accounting
for the lack of geneA expression in sampleA ), name the 
iModulon ‘[gene name] KO’ (e.g. baeR KO). 

- Rule #2: Similarly, if the iModulon captures intentional 
ov ere xpression of a particular gene, name the iModulon 

‘[gene name] OE’ (e.g. ‘malE OE’). 
- Rule #3: if the iModulon captures expression changes 

in relation to e volv ed samples (ALE), as determined by 

comparing the iModulon activities to known ALE sam- 
ples, name the iModulon ‘[name of ALE project] Del’ (for 
deletions), ‘[name of ALE project] Amp’ (for amplifica- 
tions), or ‘name of ALE project] Mut’ (for mixed effect 
mutations) (e.g. ROS TALE Del-1). 

- Rule #4: if the iModulon also has a significant regu- 
lon enrichment as described above, prioritize the specific 
genetic / genomic change. 

Case 3: Biological 
The iModulon does not have a significant regulon en- 

ichment, does not relate to a specific genetic or genomic 
hange, but the member genes share a clear biological func- 
ion: 

- Rule #1: Name the iModulon after the shared biological 
function (e.g. the ‘LPS’ iModulon consists of many genes 
related to lipopolysaccharide biosynthesis and export, 
though no significant regulon enrichment was found for 
this iModulon’s genes). 

Case 4: Single-gene dominant 
The iModulon contains one specific gene with a gene 

eight at least twice as large as the next closest gene, does 
ot fall into Case 2 –– Genomic, and contains only the one 
ighly-weighted genes, or at most 5 other genes with gene 
eights very close to the iModulon’s threshold 

- Rule #1: Name the iModulon after the dominant gene 
(e.g. the ‘ymdG’ iModulon consists solely of the ymdG 

gene). 

Case 5: Uncharacterized 

The iModulon does not meet any of the previous criteria 

or naming 

- Rule #1: Name the iModulon ‘UC-#’ (short for ‘Unchar- 
acterized’), with the number incrementing for each un- 
characterized iModulon. 

ifferential iModulon activity computation 

ifferentially iModulon activities (DiMAs) were computed 

ith a similar process as previously detailed ( 1 ). For each 

Modulon, the average activity of the iModulon between bi- 
logical replicates, if available, was computed. Then, the ab- 
olute value of the difference in iModulon activities between 

he two conditions was compared to the fitted log-normal 
istribution of all differences in activity for the iModulon. 

Modulons that had an absolute value of activity > 5, and an 

DR < 0.05 were considered to be significant. The number 
f DiMAs was computed for each unique pair of conditions 
ithin each project in the PRECISE-1K compendium, mir- 

oring DEG computation. 
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Compiling the public K-12 dataset 

Data was compiled from NCBI SRA as described previ-
ousl y ( 22 ). Initiall y, all da ta annota ted as RNA-seq for E.
coli was inspected. RNA-seq samples were discarded if the
strain was not from a K-12 strain, if the strain was miss-
ing, or if the type of experiment was not actually RNA-seq.
After initial curation, 3125 samples remained. Next, these
data were processed and quality controlled as described pre-
viously. 74% of samples (2312) passed the RNA-seq quality
control checks (FastQC, minimum reads mapped to cod-
ing sequences, non-outlier clustering). 58% of the original
samples (1816) had suf ficient metada ta annota tion to ver-
ify biological replicates. Only conditions with at least two
biological replicates were kept at this step. Finally, the 0.95
minimum replicate correlation threshold was applied, yield-
ing the final set of 1675 high-quality pub licly-availab le sam-
ples (54% of the original set). Next, these 1675 samples
were combined with the 1035 samples of PRECISE-1K to
yield the ‘Public K-12’ dataset, comprising 2710 curated,
high quality expression profiles for E. coli strain K-12. The
log 2 [TPM], raw read count, QC data files and sample meta-
data for the high-quality public samples may be found in
the data directory of this project’s GitHub repository . After
centering the Public K-12 dataset to the PRECISE-1K con-
trol condition, iModulons were computed and annotated in
the same manner as described above. 

RESULTS 

PRECISE-1K is a 1035-sample, single-protocol, high-
precision RNA-seq compendium 

We constructed PRECISE-1K to enable a multi-scale anal-
ysis of transcription and regulation in E. coli K-12 MG1655
(Figure 1 A; Supplemental Figure S1). PRECISE-1K is a
large, high-fidelity expression compendium consisting of
1035 RNA-seq samples generated by a single r esear ch group
using a standardized experimental and data processing pro-
tocol (see Methods). The samples come from 45 distinct
projects. PRECISE-1K comprises a wide range of growth
conditions , including: 5 strains , 4 temperatures , 5 pHs , 9
base media, 18 carbon sources, 38 supplements, 76 unique
gene knockouts, 421 e volv ed samples and 87 fed-batch
cultures (Supplemental Figure S2). PRECISE-1K features
projects involving: adaptation to new growth conditions
( 32–36 ), expression of heterologous ( 37 ) and orthologous
( 38 ) genes, and a genome-reduced strain ( 39 ). PRECISE-
1K constitutes a nearly 4-fold increase in size from the orig-
inal 278-sample PRECISE(1) (Figure 1 B). Replicates are
tightly correlated, with a median Pearson’s r of 0.99 (Figure
1 C). PRECISE-1K thus r epr esents a broad range of condi-
tions under which changes in the composition of the E. coli
transcriptome may be studied. 

Principal component analysis (PCA) of PRECISE-1K re-
veals some expected ba tch ef fects. Separa tion between sam-
ples in principal component space largely stems from dif-
ferences between project growth conditions (Supplemen-
tal Figure S3). In particular, projects tha t fea ture di v erse
growth media (e.g. the two-component system knockout
( 40 ) and antibiotic resistance project ( 41 )) and projects that
significantly alter the genome (e.g. a genome-reduced E.
coli strain ( 39 )) notab ly di v erge from other projects. Clus-
tering by library pr epar er is largely explained by project-
based clustering, indicating - along with tight replicate cor-
relations - that this commonly observed batch effect ( 11 ) is
not prominent in PRECISE-1K. 

PRECISE-1K segments genes by expr ession, v ariance and
regulatory effect 

Le v eraging PRECISE-1K’s condition di v ersity and scale,
we e valuated systems-le v el e xpr ession tr ends to com-
pare data-dri v en observations to prior expectations. First,
we compared genes’ median e xpression le v els across
PRECISE-1K to their median absolute deviations (MAD).
This contrast enabled us to define expression-based cat-
egories for all genes (Figure 1 D). For e xample, e xpres-
sion of gadABCE - four genes of the glutamate-dependent
acid resistance system 2 - is medium in aggregate; how-
e v er, these genes e xhibit particularly high variation across
conditions, likely due to the specificity of their response.
The gene with the highest median expression is lipoprotein-
encoding lpp , long known to be the most abundant pro-
tein in E. coli ( 42 , 43 ). Likely owing to its structural role in
peptido gl ycan, its cross-condition variation is medium. The
plurality of genes have medium expression with medium
variation, w hile onl y 101 genes –– such as copper / silv er e x-
port system component cusF –– are both highly expressed
and highly variab le. Ov erall, most genes’ variation fell
within one standard deviation of the overall median vari-
ation across all genes: 82% of genes (3505 / 4257). Only
19 genes have low variation and low overall expression,
consisting mostly of insertion elements and prophage
genes. 

Next, we compared genes’ median expression levels to
their minimum and maximum le v els. In so doing, we identi-
fied the maximum extent to which regulation can influence
the expression level of each gene in both the upwards and
downwards dir ections (Figur e 1 E). Overall, 36.1% of genes
ar e expr essed in a tight range, e xhibiting relati v ely low ef-
fects of up- or do wn-regulation. Ho we v er, 45.6% of genes
demonstrate medium or high upwards inducibility, and 36%
have medium or high downwards inducibility. Thus, regu-
la tory ef fects can influence e xpression le v el by an or der of
magnitude or more for a majority of genes. For example,
cpxP - a protein responding to extracytoplasmic stresses
as part of the CpxAR two-component system ( 44 ) - has a
nearly unique tendency to be both highly up- and down-
regulated from its median le v el. This characteristic may re-
sult from CpxP’s role as both a direct effector of various
str ess r esponses and a negati v e feedback regulator for the
response pathway as a whole ( 45 ). 

PRECISE-1K also highlights relationships between gene
expression and other data types. Genes for which pro-
teomics data is available in two large datasets ( 46 , 47 )
have significantly higher expression ( P = 1.2E-150, Mann–
Whitney U , m = 2031, n = 2226), consistent with a known
bias towards higher-expressed genes amongst proteomics
samples (Figure 1 F). Howe v er, no significant difference
in variability was found ( P = 0.97). We also compared
the expression of poorly-annotated genes (referred to as
the ‘y-ome’ in E. coli ( 48 )) to genes with more complete
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Figure 1. PRECISE-1K, a 1035-sample high-pr ecision expr ession compendium, r eveals expr ession tr ends in the E. coli transcriptome. ( A ) Ov ervie w of 
construction of PRECISE-1K compendium. Values indicate the number of unique categories for each condition (except evo strains). abx = antibiotics. ( B ) 
The growth in single-protocol transcriptomics samples contained in the PRECISE to PRECISE-1K databases. ( C ) Histogram of Pearson’s r for both all 
replicate pairs and all non-replicate pairs (pairwise combinations of samples across projects that are not direct biological replicates). Samples included in 
PRECISE-1K ar e r equir ed to have r eplicate corr ela tions of a t least 0.95. ( D ) 2-D histogram of median e xpression le v el against median absolute deviation 
(MAD) of expression for all 4257 genes in PRECISE-1K. Table defines expression categories as per corresponding box color / location in histogram. For 
each axis, category splits are defined at median ± 1 standard deviation. ( E ) 2-D histogram of median-to-min expression difference against median-to- 
max expr ession differ ence for all 4257 genes in PRECISE-1K. Table defines regulatory categories as per corresponding box color / location in histogram. 
For each axis, low-to-medium split defined at 3 log 2 [TPM] units (8-fold change from median expression); medium-to-high split defined at 6 log 2 [TPM] 
units (32-fold change). ( F ) Median vs MAD expression 2D histogr am, separ ated by availability of proteomics data in two large recent datasets ( 46 , 88 ). 
Blue = proteomics data available; red = no proteomics data available. ( G ) Histogram of the number of differentially expressed genes (DEGs) computed 
between condition pairs within the same project ( n = 6103 pairs). GSH = glutathione, Met = methionine. 
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nnotation. y-ome genes have significantly lower expression 

 P = 1.0E-75, Mann–Whitney U, m = 1473, n = 2784) than 

on-y-genes, highlighting the lack of transcription in stan- 
ard laboratory conditions as a potential reason for these 
enes’ relati v e lack of annotation (Supplemental Figure S4). 
s expected, genes in the ‘Translation’ and ‘Cell Cycle’ 

unctional categories are expressed most highl y, w hile more 
pecialized categories such as ‘Carbohydrate Metabolism’ 
ave much lower median expression levels (Supplemental 
igure S5). 
We performed differential gene expression analysis 

ithin each member project for all projects in the 
RECISE-1K compendium. A median of 471 differentially 

xpressed genes (DEGs) were found across all pairwise 
ithin-project comparisons (Figure 1 G). Many compar- 

sons produced close to 0 DEGs –– or example, comparison 

f a qseF deletion to a wild-type control after 6 h of batch 

ulture yielded only six DEGs. Other in-project compar- 
sons yielded far more DEGs. For example, the comparison 

etween wild-type growth in minimal media and deletion 

f two-component system (T CS) r esponse r egulator baeR 

ith ethanol supplementation yielded 1868 DEGs. In gen- 
ral, using DEGs alone to deri v e biological insight may re- 
uire analysis of hundreds to thousands of genes. 
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Taken together, these results highlight PRECISE-1K’s
capability to capture genome-wide expression patterns that
both confirm existing expectations and reveal new knowl-
edge. PRECISE-1K is thus an expression knowledge base,
as it stores both expression data and informs knowledge-
generating analyses. Quantifying the impact of regulation
on gene expression at the systems le v el constitutes the next
scale of knowledge extraction facilitated by this knowledge
base. 

Top-down extraction of independently-modulated groups of
genes captures the transcriptome at the systems level 

We used ICA to identify 201 iModulons from PRECISE-
1K. iModulons are independently modulated groups of
genes that vary in concert across the dataset. iModulons
also have activity levels that quantify their response in each
PRECISE-1K condition. iModulons account for 83% of
the total variance in the dataset. 117 of these iModulons are
classified as Regulatory, as they are significantly enriched in
genes belonging to a known regulon (Figure 2 A; see Mate-
rials and Methods for regulatory enrichment details). These
regulatory iModulons explain 56% of the total variance in
PRECISE-1K. iModulons capturing smaller regulons tend
to align closely with the known regulon, while iModulons
capturing larger regulons tend to recover smaller subsets of
larger regulons’ genes, leading to lower precision and re-
call (Figure 2 B). 36 genomic iModulons that capture known
genetic alterations (e.g. gene knockouts) and 17 biological
iModulons (composed of genes with shared function but
lacking significant regulon enrichment) account for another
19% of the variance. 22 technical iModulons explaining just
2% of the variance are dominated by a single short, unchar-
acterized gene, including 12 consisting of only the one gene.
These iModulons likely capture noise in the dataset. Nine
uncharacterized iModulons account for just 6% of the vari-
ance in the dataset. Altogether, 88% of the variance cap-
tured by iModulons can be explained by either regulatory,
genomic or biological phenomena. 

Fifty-eight percent of genes (2485 / 4257) are members
of at least one iModulon. These genes have higher ex-
pression variation than genes not present in any iModu-
lons ( P = 1.03E-217, Mann–Whitney U test, m = 2485,
n = 1772) (Figure 2 C). Median expression itself does not
differ significantly ( P = 0.33). Thus, iModulon member-
ship is not restricted to higher-expressed genes. Indeed,
56% (823 / 1473) of y-ome genes –– demonstrated above to
be significantly less expr essed –– ar e members of at least one
iModulon, highlighting the potential for iModulons to un-
cov er putati v e functions for these uncharacterized genes
( 49 ). These observations highlight the need for genes to be
differ entially expr essed under some conditions in order to
be identified as a signal by ICA and incorporated into an
iModulon. 

The median iModulon consists of 10 genes, though many
iModulons are much larger, such as global stress responses
RpoS (122 genes) and SoxS (117) (Supplemental Figure
S6A). Of the 189 multi-gene iModulons, 77% (145) con-
sist of genes that are significantly inter corr elated compar ed
to expectation (Supplemental Figure S7A). 88% of regu-
latory and 82% of biological iModulons have significantly
inter corr elated genes, compar ed to just 47% of genomic
and 13% of technical iModulons. Genomic iModulons cap-
ture genetic alterations present in small subsets of the total
PRECISE-1K sample space –– thus it is reasonable to expect
that the genes perturbed in these limited samples need not
be globally correlated across the compendium. Indeed, this
observa tion indica tes tha t iModulons can capture localized
expression patterns beyond the reach of global correlation.
Interestingly, eight out of nine uncharacterized iModulons
contain significantly inter corr elated genes, highlighting an
opportunity for further biolo gicall y-rele vant discov ery. 

Thirty-fiv e percent of genes in an iModulon (879 / 2485)
are members of two or more iModulons, with two genes
( ynfM and bhsA ) appearing in se v en each (Supplemen-
tal Figure S6B). Only 15% (131) of multi-iModulon genes
are members of significantly correlated iModulons (Sup-
plemental Figure SBLAH). Howe v er, within each of their
iModulons, multi-iModulon genes rank in the 44th per-
centile in terms of inter corr elation with other iModulon
genes (BLAH). These results suggest that multi-iModulon
genes are influenced by distinct, recov erab le signals, high-
lighting iModulons’ ability to ca pture overla pping regu-
latory modules of varying scale. iModulon-gene relation-
ships are concentrated in a subset of large iModulons
and genes present in multiple iModulons (Supplemental
Figure S6C, D). 

Eighty metabolism and 50 str ess r esponse iModulons
account for 32% and 30% of the variance in PRECISE-
1K, respecti v ely (Supplemental Figur e S8A). This br eak-
down emphasizes a ‘fear-greed’ tradeoff ( 50 ). Interestingly,
the numbers of iModulons for these two functions dif-
fer considerably; the cell thus has a tendency towards
more di v ersified regulation for meta bolic capa bilities and
more centralized control for stress responses. Indeed, just
two iModulons –– RpoS and ppGpp, major stress response
regulators –– account for 6% of the variance in the dataset
(Supplemental Figure S8B-C). 

iModulons capturing the signals of global regulators
(r egulators with mor e than 25 r egulatory targets) account
for large proportions of the overall variance in the dataset.
Flagella-r elated r egulators FlhDC and FliA in combination
e xplain ov er 5% of the e xpression variance, while anaero-
bic growth regulators FNR and ArcA combine to explain
over 3% of the variance (Supplemental Figure S8C). These
insights highlight the ability of global regulators to mo-
bilize large-scale transcriptomic responses. Indeed, these
regulators (along with iron regulator Fur) are responsi-
ble for variance between wild-type control samples run
acr oss pr ojects, despite overall tight correlation between
those samples (Supplemental Figure S9). Importantly, these
ba tch varia tions ar e captur ed explicitly by these iModulon
activities. 

Regulatory modules r epr esent the majority of the known tran-
scriptional regulatory network 

iModulons extracted from PRECISE-1K reconstruct a sig-
nificant fraction of the total regulatory interactions avail-
able in RegulonDB ( 31 ), the premier database for curated
and valida ted regula tory network informa tion for E. coli .
32% of all known regulatory molecules (and 48% with
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Figure 2. iModulons extracted from PRECISE-1K capture the transcriptional regulatory network. ( A ) A breakdown of PRECISE-1K iModulons by their 
annota tion ca tegory: ‘Regula tory’ denotes significant enrichment of one or more known regulators; ‘Technical’ includes a single gene or technical artifact 
iModulon; ‘Genomic’ includes iModulons related to known genomic interventions (i.e. knockouts or segmental amplifications due to adapti v e laboratory 
evolution); and ‘Biological’ includes iModulons containing genes of related function without significant regulator enrichment, or pointing to potential new 

regulons. Pie chart denotes iModulon annota tion ca tegories by percentage of variance explained. Gray wedge indicates variance unexplained by iModulons. 
( B ) Summary of precision and recall for 117 r egulatory iModulons. RegulonDB ( http://r egulondb.ccg.unam.mx ) ( 31 ) r egulons used as r efer ence. ( C ) 2D 

histograms of median gene expression and median absolute deviation in gene expression by iModulon membership. ( D ) Comparison of regulators and 
r egulatory interactions r ecover ed b y PRECISE-1K iModulons and av aila ble in RegulonDB . All = all e vidence le v els; Str ong = only str ong evidence 
interactions per RegulonDB; P1K+ = all interactions for which the corr esponding r egulator is captur ed by an iModulon. ( E ) Histogram of RegulonDB 

r egulon sizes, color ed depending on whether each RegulonDB r egulon is or is not captur ed by at least one PRECISE-1K iModulon. ( F ) Histogram of 
the number of differential iModulon activities (DiMAs) computed between condition pairs within the same project ( n = 6103; same as Figure 1 G). ( G ) 
Comparison of number of DEGs and DiMAs for the same condition pairs. Linear best fit curve is shown in red, and indicates a ∼20-fold dimensionality 
reduction from DEGs to DiMAs. n = 4483 comparisons with non-zero DiMAs. 
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trong evidence) are captured by regulatory iModulons 
Figur e 2 D). Mor eover, 23% of all specific regulatory inter- 
ctions (33% of strong-evidence interactions) ar e r econsti- 
uted in iModulons. iModulons are known to capture reg- 
latory signals by identifying the most strongly-regulated 

enes in a regulon based on promoter sequence ( 51 ). This 
equence-based effect likely accounts for the relati v ely lower 
recision and recall enrichment statistics observed for larger 

Modulons that capture more global regulators. Thus, con- 
idering a regulatory iModulon as a biomarker for all 
f its regulator’s interactions re v eals that iModulons in 

act reconstitute 80% of all known regulatory interactions 
86% when considering only strong evidence). Importantly, 
Modulons pr efer entiall y ca ptur e the signals of larger r egu-
ons (Figure 2 E), increasing their utility in describing tran- 
criptome state across growth conditions. 
Subsampling PRECISE-1K and recomputing iModu- 
ons demonstra tes regula tory netw ork co verages a t dif ferent
ompendium sizes. On average across five trials, 20%-scale 
ubsamples of PRECISE-1K (207 samples) yield 111 iMod- 
lons, of which 67% ( 75 ) are regulatory iModulons also 

aptured from PRECISE-1K (Supplemental Figure S10A). 
s more samples are added, the total number of iModu- 

ons extracted also increases; however, the relative fraction 

f regulatory iModulons decreases. Nonetheless, regulatory 

 ecovery incr eases with scale: 33% of strong-evidence regu- 
ators ar e captur ed in iModulons from 20%-scale subsam- 
les, compared with 48% from PRECISE-1K’s iModulons 
Supplemental Figure S10B). Captured regulatory interac- 
ions follow a similar pattern. Critically, the step from 80%- 
cale subsamples (828 samples) to full PRECISE-1K elicits 
n increase in regulatory discovery following a plateau be- 

http://regulondb.ccg.unam.mx
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tween the 60%- and 80%-scales, indicating that PRECISE-
1K’s scale provides an advantage for regulatory recovery. 

In all, iModulons provide the regulatory component of
this transcriptome knowledge base. The subsequent sec-
tions demonstr ate tr anscriptomic knowledge that can be de-
ri v ed from these regulatory modules. 

Systems-level analysis of transcriptome states using regula-
tory modules 

Because iModulons include an explicit r epr esentation of
acti vity le v els, they enab le differential iModulon acti vity
(DiMA) analysis. DiMA analysis allows for a systems-le v el
comparison of transcriptome states by reducing hundreds
or thousands of DEGs to a median of just 28 iModulons
(Figure 2 F). On average, a comparison between any two
conditions in PRECISE-1K yields almost 20 times fewer
dif ferentially-activa ted iModulons than DEGs (Figure 2 G),
highlighting the particular usefulness of DiMA analysis
for systems-le v el transcriptional analysis. On median, Di-
MAs directly explain 37% of variance between conditions.
Because all iModulons explain a median of 80% of vari-
ance between conditions, DiMAs account for a median of
47% of variance explained by all iModulons (Supplemental
Figure S11). 

iModulon activities reflect the overall activity state of
a transcriptional regulator acr oss envir onmental condi-
tions in PRECISE-1K. A stimulon is a higher-le v el regula-
tory structure composed of multiple regulons that respond
to a particular stimulus (Supplemental Figure S1). While
iModulons, by definition, include independently modu-
lated groups of genes, in many instances these independent
groups of genes are regulated in response to similar environ-
mental stimuli, thus forming a stimulon. Two-component
systems (TCS) –– composed of a membrane-bound sensor
and a cytoplasmic response regulator –– enable the cell to
sense and respond to important extracellular signals. iMod-
ulons deri v ed from PRECISE-1K capture the response sig-
nal for 15 of 27 known T CS r esponse r egulators, providing
insight into the cell’s r egulatory r esponse to critical stimuli
such as nitrogen, inorganic phosphate and alkali metals. 

Additionally, iModulons can be clustered based on their
acti vities to re v eal higher or der structures in the E. coli tran-
scriptome. For example, one cluster captures the joint regu-
lation of flagella formation by transcription factor complex
FlhDC and sigma factor FliA ( �28 ) (Supplemental Figure
S12). Six iron-related iModulons, fiv e anaerobiosis-related
iModulons and four amino acid-related iModulons also
group together in this activity-based fashion. Thus, iModu-
lons in combination can shed light on broad transcriptome
patterns, providing a new definition of a stimulon. 

Regulon disco very f or putative tr anscription factors YgeV
and YmfT 

Functional annotation for putati v e transcription factors
(TFs) remains challenging ( 52–54 ). Howe v er, iModulons
are a powerful tool for the discovery and analysis of
new regulons. PRECISE elucidated the regulons for three
previously uncharacterized TFs (YieP, YiaJ / PlaR and
YdhB / AdnB), and expanded the regulons of three known
TFs (MetJ, CysB and KdgR) ( 1 ). Many of these regulatory
interactions were confirmed through DNA-binding profiles
( 1 , 55 , 56 ). Furthermor e, thr ee novel r egulons wer e pr edicted
from iModulons deri v ed from a microarray dataset ( 57 ).
iModulons from PRECISE-1K recapitulate these previous
results and re v eal two new potential regulons. 

The putati v e YgeV regulon contains 13 genes, of
which 7 are putati v ely involv ed in nucleotide trans-
port and metabolism (Figure 3 A). YgeV is predicted to
be a Sigma54-dependent transcriptional regulator, and
Sigma54-dependent promoters were previously identified
upstream of the xdhABC and ygeWXY operons, which are
in the YgeV iModulon ( 58 ). Although the iModulon does
not contain the gene ygeV , ygeV is divergently transcribed
from ygeWXY . A prior study ( 59 ) found that expression of
ygfT was reduced in a YgeV mutant strain. Since ygfT is in
the YgeV iModulon, this indicates that YgeV may serve as
an activator for the genes in its iModulon. The activity of
the YgeV iModulon rarely deviates from the reference con-
dition; howe v er, it is most acti v e when knockouts of TCS
r esponse r egulators BaeR or CpxR are exposed to ethanol
(Figur e 3 B). Ther efor e, we hypothesize that the TF YgeV
responds (either directly or indirectly) to ethanol to activate
genes related to purine catabolism, and is r epr essed by TCS
BaeRS and CpxAR. 

The putati v e YmfT regulon contains 15 genes, includ-
ing ymfT itself. It contains 12 of the 23 genes in the e14
prophage ( 60 ) (Figure 3 C). The putati v e YmfT iModulon
is most acti v e in strains lacking the ferric uptake regulator
Fur, or in strains challenged by oxidati v e stress through hy-
dr ogen per oxide (Figure 3 D). Absence of Fur leads to over-
pr oduction of ir on uptake pr oteins, oxidati v e damage, and,
subsequentl y, m utagenesis ( 61 ). Ther efor e, we hypothesize
that YmfT responds to oxidati v e stress to alter the expres-
sion of the e14 prophage. 

These examples illustrate the potential for iModulons to
pr edict new r egulons and identify optimal conditions to
study their activities. 

Str atifying promoter -level mechanisms of crp regulation 

iModulons discover independent sub-groups of genes
within global regulons that exhibit distinct regulatory dy-
namics. For example, the Fur-1 and Fur-2 iModulon activ-
ities (each capturing a subset of the Fur regulon) are non-
linearly correlated based on both iron availability and aero-
bicity ( 41 ). In this section, we demonstra te tha t iModulons
reflect biochemical mechanisms of TF binding by examin-
ing the relationship between two iModulons –– Crp-1 and
Crp-2 –– tha t stra tify the CRP regulon. CRP contains multi-
ple RN A pol ymer ase-inter acting domains (Ar1-3) ( 62 ) that
facilitate its binding to Class I and Class II promoters.
Class I promoters canonically involve binding centered 61.5
bp upstream of the transcription start site, and Class II are
centered 41.5 bp upstream ( 63 , 64 ) (Figure 4 A). 

The activities of the Crp-1 and Crp-2 iModulons across
all PRECISE-1K conditions form a distinct nonlinear re-
lationship (Figure 4 B). As expected, low activities of both
iModulons correspond with deletion of CRP, which is
known to activate most of the genes in the two iModulons.
Deletion of the Ar2 binding domain - implicated in Class
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Figure 3. iModulons discover new regulons. ( A ) iModulon gene weights for the putative YgeV iModulon versus median log 2 [TPM]. ( B ) Activity of the 
YgeV iModulon in different media conditions. Each colored bar is the mean of two biological replicates (shown as individual black points). ( C ) iModulon 
gene weights for the putati v e YmfT iModulon vs. median log 2 [TPM]. ( D ) Activity of the YmfT iModulon in different media conditions. Each colored bar 
is the mean of two biological replicates (shown as individual black points). 
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I regulation - results in some Crp-1 activity but no Crp-2 

ctivity (orange dot in Figure 4 B). CRP binding sites for 
enes unique to Crp-1 are broadly distributed, while Crp-2- 
pecific genes have CRP binding sites more consistently at 
he Class II location (Figure 4 C). A stead y-sta te biophysi- 
al model with 10-fold different binding affinities for Class I 
nd Class II binding sites yields a similar binding site occu- 
ancy relationship as that between the Crp iModulon ac- 
ivities (Figure 4 D). From this evidence, we propose that 
he Crp-1 and Crp-2 iModulons correspond to Crp regula- 
ory activity at Class I and Class II promoter genes, respec- 
i v el y. This anal ysis highlights the capability of PRECISE- 
K iModulons to ca pture m ulti-dimensional regulatory ef- 
ects within a single regulon. 

ncorporating 1675 high-quality publicly-available transcrip- 
omes into the knowledgebase highlights method’s scalability 

nd robustness 

o further expand our dataset, we sourced all publicly- 
vailable RNA-seq data for E. coli strain K-12 from 

CBI’s Sequence Read Archi v e (SRA) ( 65 ). From 3230 

-12 samples, our processing and quality control pipeline 
ielded 1675 high-quality K-12 expression profiles. We com- 
ined these samples with PRECISE-1K to yield the ‘K-12 

ataset’, a high-quality transcriptomics dataset consisting 

f 2710 expression profiles (Figure 5 A). These profiles come 
rom 134 different projects, including 15 K-12 substrains 
nd 9 distinct temperatures and pHs. ICA decomposition 

f the K-12 Dataset yields 194 iModulons. 
The distribution of iModulons by category – both in 

umber and by explained variance –– is broadly similar to 

hat of PRECISE-1K. Regulatory iModulons account for 
4% of the total number, and 57% of the total variance 
n the dataset (Figure 5 B). Coverage of known regulatory 

etwork interactions increases only minutely as compared 

ith PRECISE-1K alone, despite the more than doubling 

f the dataset’s size (Figure 5 C). Indeed, 89% of K-12 

′ s ex- 
lained variance comes from 155 iModulons highly corre- 

ated with iModulons extracted from either PRECISE or 
RECISE-1K (Figure 5 D). In contrast, 45% of explained 

ariance from PRECISE-1K comes from 134 iModu- 
ons not present in PRECISE. Nonetheless, 67 iModulons 
aptured in the original PRECISE are retained in both 

RECISE-1K and K-12, accounting for sizable fractions 
f explained variance in each of the latter datasets. The 
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Figure 4. iModulons stratify existing regulons by mode of binding. ( A ) Diagram of Class I and Class II CRP pr omoters. Arr ow indicates transcription start 
site. � = RN A pol ymerase (RN AP) sigma factor ; �N 

and �C = sigma factor N- and C-terminal regions; �, �’, � = RNAP core subunits; Ar1-3 = CRP 

activating regions (RNAP interaction sites). ( B ) iModulon phase plane between Crp-1 and Crp-2 iModulons. Colored points from samples involving partial 
and total CRP deletions. Ar r egions corr espond to panel A. Gl yc = gl ycerol carbon source; fru = fructose; glc = glucose. ( C ) Histogram of CRP binding 
site locations for Crp-1 and Crp-2 iModulons. TSS = transcription start site of transcription unit for each gene. Data from RegulonDB. ( D ) Simulated 
binding curve for CRP Class I and Class II promoters. Each point indicates a particular CRP concentration. Binding modeled as 10 × tighter at Class II 
versus Class I promoters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

iModulon structure remains largely consistent as dataset
scale is increased; in general, higher-variance signals dis-
covered by smaller-scale datasets are supplemented with
new, more niche iModulons, rather than the entire iMod-
ulon structure shifting with scale. iModulons can also ex-
plain a slightly larger fraction of variance in PRECISE-
1K than in the K-12 Dataset. iModulons extracted from
just the 1675 pub licly-availab le K-12 samples are similar to
those extracted from the 2710-sample compendium, albeit
with lower regulatory recovery (Supplemental Figure S13).
Taken together, these results suggest that PRECISE-1K has
sufficient scale and condition variety to r epr esent the E. coli
TRN, and additions of data beyond this scale may provide
diminishing returns. 

Howe v er, specific conditions in the K-12 dataset en-
able regulatory discovery. For example, 18 samples from a
project exploring the post-transcriptional carbon storage
r egulator CsrA r egulon ( 66 ) enabled recovery of a CsrA
iModulon that is unique to the K-12 dataset. The CsrA
iModulon is much larger than the known CsrA regulon:
it contains 65 genes, of which 10 overlap with the 21-gene
CsrA r egulon (Figur e 5 E). Nonetheless, the enrichment of
CsrA regulon genes in the iModulon is significant (adjusted
P = 6.7E-9), and the genes in both the iModulon and regu-
lon are particularl y highl y weighted in the iModulon. More-
over, the iModulon is m uch more highl y acti v e in a CsrA
deletion strain after arrest of transcription initiation than
the wild-type strain or other K-12 samples (Figure 5 F), in-
dicating relief of CsrA repression. Thus, the genes unique
to the iModulon are candidates for expansion of the CsrA
regulon. 

Applying the knowledge base to new data: the anaerobic to
aerobic transition 

This knowledge base can be used to analyze new E. coli
RNA-seq datasets. We demonstrate this capability for one
pr oject fr om the public K-12 Dataset. This pr oject - called
AAT for anaer obic-aer obic transition - captured six time-
points in triplicate from 0 to 10 min after aeration of a pre-
viously anaerobic chemostat culture of E. coli K-12 W3110
( 67 ). PRECISE-1K iModulon activities for the AAT project
can be inferred, without necessitating full re-processing
through the entire workflow. These inferred activities in turn
enable analysis of AAT’s samples both within the project
and within the context of all PRECISE-1K’s samples. The
code used for this case study is available at https://github.
com/SBRG/precise1k-analyze and can be used for analysis
of any new data. 

We hypothesized that certain iModulons would respond
to the onset of aerobic growth (Figure 6 A). For exam-
ple, the regulators Fnr and ArcA are each influenced by
oxy gen availa bility. Fnr is activ ated b y acquiring an iron-
sulfur (4Fe–4S) cluster and dimerizing ( 68 ); oxygen directly
inactivates Fnr by oxidizing the iron-sulfur cluster ( 69–71 ).
While acti v e, Fnr acti vates anaerobic metabolism genes and

https://github.com/SBRG/precise1k-analyze
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Figure 5. Adding public K-12 data to PRECISE-1K highlights PRECISE-1K’s stability. K-12 is a combined dataset composed of PRECISE-1K (1035 
samples) plus all pub licly-availab le high-quality RNA-seq data for E. coli K-12 (1675 samples). ( A ) The accumulation of high-quality RNA-seq data for 
K-12 over time. ( B ) K-12 iModulons by their annotation category (see Figure 2 A legend). Pie chart denotes iModulon annotation categories by percentage 
of variance explained. The 194 annotated iModulons together explain 81% of the v ariance. Gray wedge indicates v ariance unexplained b y iModulons. 
( C ) Comparison of regulators and regulatory interactions recovered by K-12 and available in RegulonDB. All = all evidence levels; Strong = only strong 
evidence interactions per RegulonDB; K-12+ = all interactions for which the corresponding regulator is captured by the K-12 Dataset. P1K values from 

Figure 2 D included for comparison. ( D ) Comparison of iModulons from three RNA-seq datasets: PRECISE(1); PRECISE-1K (this paper); and public K- 
12. Each small rectangle represents an iModulon for the corresponding dataset. Pairwise Pearson correlations were performed between PRECISE and P1K 

iModulons, and between P1K and K-12 iModulons; iModulons with correlations over 0.3 were considered to be the same iModulon (median correlation 
between PRECISE and P1K iModulons is 0.68; between P1K and K-12 is 0.70). Blue = iModulon exists in all three datasets; pink = iModulon only 
exists in PRECISE / PRECISE-1K; red = iModulon in PRECISE-1K / K-12 only; purple = iModulon unique to dataset. Explained variance is within each 
dataset (i.e. PRECISE iModulons explain ∼70% of variance in PRECISE, P1K iModulons explain ∼83% of variance in PRECISE-1K, etc.). iModulons 
ar e order ed by which dataset(s) they appear in, and sorted in decreasing order of explained variance within each da taset appearance ca tegory. ( E ) Overlap 
between the CsrA regulon per RegulonDB and the CsrA iModulon. ( F ) Activity of the CsrA iModulon after arrest of transcription initiation via addition 
of rifampicin (data from Potts et al ( 66 )). 
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 epr esses aerobic metabolism genes ( 72 ). ArcA is the TF 

omponent of a quinone-sensing two-component system. 
nder aerobic growth, quinols are oxidized to quinones 

s part of the electron transport chain; quinones in turn 

re v ent sensor kinase ArcB from phosphorylating and 

ctivating Ar cA ( 73 , 74 ). Ar cA largely r epr esses aerobic
etabolism genes, while also activating a few fermenta- 

i v e genes ( 75–77 ). Many aerobic metabolism genes - espe-
ially oxidoreductases and electron transport chain com- 
onents - r equir e iron-sulfur clusters to function. Thus, 
he global iron regulator Fur - which r epr esses iron ac- 
uisition genes when bound to iron ( 78 ) - is also impli-
ated in this transition ( 79 ). Finally, oxidati v e phospho- 
ylation under aerobic conditions generates reacti v e oxy- 
en species (ROS), triggering the SoxS ( 80 ) and OxyR ( 81 )
esponses. 

We identified the iModulons with di v ergent acti vities in 

AT compared to the rest of PRECISE-1K (Figure 6 B). 
Modulons related to energy metabolism featured promi- 
ently; for example, the formate hydrogen lyase (FHL) 

Modulon had a maximum absolute activity in AAT six 

tandar d de via tions of f the PRECISE-1K median. FHL is 
nown to be acti v e under anaerobiosis during glucose fer- 
entation ( 82 ). An activity histogram further contextual- 

zes these observations: while ArcA iModulon activity is 
v er three standar d de viations away from the PRECISE-1K 

edian at maximum in AAT, other AAT samples are closer 
o the PRECISE-1K median (Figure 6 C). 
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A
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Figure 6. PRECISE-1K and iModulons pro vide k ey insight for assessing systems-le v el transcriptome changes for new data. For all graphs in this figure, 
the example new data comes from the public K-12 Dataset AAT ( 67 ) (anaer obic-aer obic transition) (not in PRECISE-1K, but in public K-12 metadata) 
which took 6 time-point samples of E. coli from 0 to 10 min after aeration of a previously anaerobic chemosta t culture. ( A ) Schema tic highlighting selected 
iModulons and systems involved in aerobic transition. ( B ) Top 10 regulatory iModulons by maximum activity difference between within-aat and PRECISE- 
1K acti vity ( z -scored). For e xample, z -score of 5 for ‘Micr oaer obic’ iModulon indicates that the maximum activity of this iModulon amongst aat samples 
was 5 standard deviations from the mean activity of this iModulon in PRECISE-1K. ( C ) Histogram of iModulon activity across all PRECISE-1K samples 
and in new aat project (Ar cA as example). ( D ) Differ ential iModulon activity (DiMA) plot comparing iModulon activities a t aera tion onset and 10 min 
after aeration. iModulons with significant activity differences between the two time points are in blue and labeled (see Methods for DiMA details). ( E ) 
iModulon activity by time from aeration for Fnr-2 and SoxS iModulons. ( F ) Phase plane comparing activities of Fur iModulons for all PRECISE-1K 

samples (gray) and aat samples (colored). Black dots indicate PRECISE-1K samples with fur knocked out. ( G ) Phase plane comparing activities of Fnr-2 
and ArcA iModulons. aat color scheme same as (F). 
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To further characterize iModulon activity changes within 

AT, DiMA analysis can identify iModulons that change 
ignificantly between any two sets of samples. Comparing 

eration onset to 10 min post-aeration highlights the roles 
f key energy metabolism global regulators in facilitating 

his transition (Figure 6 D). Fnr is more acti v e at onset, 
hile ArcA and Fur are significantly increased in activ- 

ty 10 min after aeration. Fnr’s activity decreases nonlin- 
arly following aeration of the cultur e, r eaching its aerobic 
rowth r efer ence le v el within 5 min (Figure 6 E). In contrast,
oxS iModulon activity increases as aeration proceeds. Ac- 
ivity clustering highlights increased activity of the anaero- 
ic stimulon at aeration onset, followed by increased activa- 
ion of the iron stimulon 10 min post-aeration (Supplemen- 
al Figure S14). 

Activity phase planes, which compare two iModulons’ 
ctivities across conditions, are another key tool for ana- 
yzing new data. The dynamic transcriptomic changes in 

he AAT project are notable in the Fur -1 / Fur -2 (Figure 
 F) and Fnr / Ar cA (Figur e 6 G) phase planes. As aerobic
etabolism tak es o ver, iron-r elated genes r epr essed by Fur 

uring anaerobiosis increase in activity as iron demand in- 
reases. Activity of anaerobic regulator Fnr decreases as 
erobic r egulator Ar cA’s activity incr eases, with both ar- 
iving near the activity levels of PRECISE-1K’s aerobic 
r owth contr ol condition 10 min after aeration. 

Taken together, these observations highlight the essen- 
ial systems-le v el changes in the transcriptome composi- 
ion during the anaer obic-aer obic transition while exempli- 
ying PRECISE-1K’s function as an analysis r esour ce. Fur- 
her, they show the deep interpretation of TRN functions 
chie v ed through the use of iModulon activity phase planes. 

ISCUSSION 

his study establishes a multi-scale gene expression and reg- 
lation knowledge base for E. coli . The expression com- 
onent is PRECISE-1K, a single protocol, high qual- 

ty RNA-seq dataset containing 1035 samples covering a 

ide range of growth conditions. PRECISE-1K enables 
enome-wide ca tegoriza tion of genes based on expres- 
ion le v el and e xpression variance across conditions. Us- 
ng machine learning, we recover 117 regulatory modules 
iModulons) from PRECISE-1K that reconstitute 86% of 
nown regulatory interactions. iModulons –– unlike princi- 
al components –– explain variance in terms of knowledge 
f the TRN, not statistical magnitude. PRECISE-1K and its 

Modulons constitute the most complete top-down, com- 
utational transcription and regulation knowledge base yet 
enerated for a microorganism. This r esour ce enables reg- 
lon discovery and empowers novel experimental design. 
ost importantly, this r esour ce empowers deep systems- 

e v el analysis of novel data. 
We demonstra te tha t iModulons capture fundamental 

egulatory modes, not dataset-specific artifacts. iModulons 
rom PRECISE-1K r epr esent nearly all of the r egulatory 

Modulons extracted from its predecessor PRECISE. In- 
reasing the dataset size nearly f our-f old does not hinder 
 egulatory discovery; her e we mor e than double the num- 
er of discovered regulatory iModulons. Conversely, de- 
reasing the dataset’s scale via subsampling yielded poorer 
 egulatory r ecovery. This potential highlights the central 
ole tha t top-down, da ta-dri v en methods must take in tran- 
criptional regulatory discovery across organisms. Indeed, 
Modulons have already successfully generated top-down 

egula tory informa tion for other organisms ( 1 , 15–19 , 83 ). 
ontinued expansion of RNA-seq datasets for these and 

ew organisms will likely drive further regulatory discovery. 
Beyond their ability to systematically characterize a 

RN, iModulons also provide a key tool: activity levels. 
his quantitati v e aspect of iModulons enab les analysis of 

he functional transcriptome under specific environmental 
r genetic conditions. We demonstrate this capability by 

apturing two different functional regulatory modes of the 
rp regulon based on binding site location. DiMA anal- 
sis also greatly simplifies differ ential expr ession analysis; 
ith an average of nearly twenty times fewer significantly 

ifferential variables to anal yze, DiMA anal ysis empowers 
ystems-le v el analysis of transcriptomic changes, as demon- 
trated in the AAT case study. 

Critically, PRECISE-1K and iModulon activities enable 
s to discover and partially characterize putative regulons 

or predicted transcription factors. We demonstrate this ca- 
ability by assigning a putati v e function in ethanol stress 
olerance related to nucleotide metabolism to the YgeV reg- 
lon, based on the YgeV iModulon activation pattern. In 

articular, this activation coincides with knockouts of two- 
omponent system response regulators BaeR and CpxR; 
hus, YgeV’s role in nucleotide metabolism upon ethanol 
tr ess r esponse may arise as a compensatory mechanism fol- 
owing inactivation of these more prominent T CS r egula- 
ors. The specificity of this activating condition ma y pla y a 

ole in explaining why the functions of this regulator and the 
enes in its regulon remain unknown. Indeed, iModulons 
ave already proven useful in studies to characterize reg- 
lators and their regulons ( 49 , 84 , 85 ). PRECISE-1K likely 

ontains other instances of untapped insights and should 

ontinue to be mined for such discoveries. 
Howe v er, we also highlight the need for judicious selec- 

ion of growth conditions to maximize potential for regula- 
ory elucida tion. W hen we added all high-quality public K- 
2 data to PRECISE-1K, the iModulon structure remained 

uite similar, with the K-12 Dataset’s 124 regulatory iMod- 
lons accounting for 88% of known TRN interactions. This 
esult highlights two key points. Firstly, PRECISE-1K has 
ufficient scale and di v ersity to enable broad TRN discov- 
ry while avoiding noise introduced by combining data from 

 ultiple sources. Secondl y, adding large numbers of RN A- 
eq samples beyond the scale of PRECISE-1K can yield 

iminishing returns. That said, certain specific new condi- 
ions from the K-12 Dataset were disproportionately use- 
ul - for example, a project perturbing the CsrA regulator 
nab led e xtraction of a corr esponding r egulatory iModu- 
on. These observations likely highlight a limitation in the 
i v ersity of the available da ta, ra ther than of iModulons 
hemselves. Thus, capturing additional unr ecover ed r egula- 
ory signals will likely rely on selection of growth conditions 
ha t activa te niche transcriptional regulators with small reg- 
lons. Indeed, PRECISE-1K and the K-12 Dataset provide 
 blueprint for which conditions to prioritize for future dis- 
overy. Our knowledge base provides a centralized r efer ence 
or assessment of gene expression and regulatory activity 
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across conditions, empowering prudent study design. This
ca pability is especiall y important for cost-, labor-, or time-
intensi v e e xperiments, such as proteomics. 

Our example analysis of the AAT project from the K-
12 Da taset demonstra tes perhaps the most exciting appli-
cation of PRECISE-1K: analysis and contextualization of
new RNA-seq datasets. PRECISE-1K’s iModulons clearly
capture and summarize the regulatory dynamics at play
during aerobic metabolism transition. We provide a vari-
ety of tools, both here and in our pre viously pub lished
code package ( 22 ) that will easily facilitate similar analy-
ses f or an y other dataset. In this wa y, PRECISE-1K is not
just useful in and of itself but as a backdrop for deriv-
ing regulatory insight from new data. Our example work-
flow for analyzing new data with PRECISE-1K is avail-
able at at https://github.com/SBRG/precise1k-analyze; all
other analyses from this paper are available for use at https:
//github.com/SBRG/precise1k . These analyses have already
enriched multi-omic studies of the aerobic respiration sys-
tem ( 86 ), the adaptation of different E. coli strains ( 87 ), and
the response of E. coli to antibiotics ( 41 ). 

Overall, PRECISE-1K and iModulons r epr esent a crit-
ical r esour ce for studying expr ession and r egulation in E.
coli . We belie v e this r esour ce should be a standard tool
for systems-le v el anal ysis of E. coli RN A-seq data from
all sources. As the number of publicly available datasets
increases for other microorganisms, this study serves as a
r oadmap for interr oga ting similar da tasets for less charac-
terized organisms, with the potential to yield equally im-
pactful insights into those organisms’ transcription and
regulation characteristics. PRECISE-1K is disseminated
through iModulonDB.org. 

Limitations of the study 

Although this r esour ce pr esents many opportunities, some
limitations also merit mention. First of all, assembling at
least 200 high-quality, single-protocol RNA-seq profiles
presents an up-front challenge for generating a PRECISE
database for other organisms. While combining publicly
available data can help, we have demonstrated that single-
protocol datasets provide mor e r egula tory elucida tion on a
per sample basis. Secondl y, w hile PRECISE-1K does con-
tain a broad range of growth conditions, this set is by no
means e xhausti v e. Thus, minimal e xpr ession and r egula-
tory knowledge can be provided for these missing condi-
tions. Thirdly, iModulons are subject to limitations due to
the ICA algorithm by which they are computed. For exam-
ple, ICA assumes that each iModulon results from a sin-
gle signal (r egulator); ther efor e, genes with multiple r egula-
tors - or complex, multi-r egulator r egulons - can be more
difficult to capture in iModulons. Also, ICA does not al-
low for hierarchy; thus, iModulons do not always capture
the effects of regulators on other regulators, i.e. the activa-
tion of a set of local regulators by a global regulator. Addi-
tionall y, w hile ICA does maximize statistical independence,
its components are still based somewhat on variance. Thus,
as dataset scale increases, signals that were captured from
smaller datasets may not be captured from larger datasets
because they account for relati v ely less variance in the larger
dataset (hence the observation of some unique PRECISE
iModulons). iModulons also cannot directly capture a true
TRN –– iModulons r epr esent groupings of genes whose ex-
pression signals are intercorrelated while independent from
other genes, not groupings of genes directly influenced by
a regulator (as iModulons are computed without any prior
knowledge of the TRN). Finally, DiMas –– while indispens-
ab le for systems-le v el r egulatory analysis - ar e not guaran-
teed to capture all individual gene-level changes in a given
comparison. Indeed, the range of variance explained by Di-
MAs f or an y gi v en condition comparison is wide; although
a median of 47% of variance is explained by DiMAs, many
comparisons are much more ‘lossy’ than this. Thus, it re-
mains important to analyze gene expression data directly
- for which PRECISE-1K itself may be used. These im-
portant caveats should be kept in mind when using this
r esour ce to analyze new data or analyzing this r esour ce
itself. 

DA T A A V AILABILITY 

All data (aside from raw RNA-seq data) and code for
analysis and figures are available on Zenodo at: https:
//doi.org/10.5281/zenodo.8284223 . iModulons and related
data are also available from iModulonDB.org under the
dataset “E. coli PRECISE-1K” and “E. coli Modulome”
(Public K-12). Raw RNA-seq data have been deposited
at GEO and are publicly available as of the date of pub-
lication. Accession numbers are listed in the metadata
file, located in the same Zenodo repository at the path:
da ta / precise1k / metada ta qc.csv. Any additional informa-
tion r equir ed to r e-analyze the data r eported in this paper
is available from the lead contact upon request. 
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Supplementary Data are available at NAR Online. 
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