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Helios: A Scalable 3D Plant 
and Environmental Biophysical 
Modeling Framework
Brian N. Bailey *

Department of Plant Sciences, University of California, Davis, Davis, CA, United States 

This article presents an overview of Helios, a new three-dimensional (3D) plant and 
environmental modeling framework. Helios is a model coupling framework designed 
to provide maximum flexibility in integrating and running arbitrary 3D environmental 
system models. Users interact with Helios through a well-documented open-source C++ 
API. Version 1.0 comes with model plug-ins for radiation transport, the surface energy 
balance, stomatal conductance, photosynthesis, solar position, and procedural tree 
generation. Additional plug-ins are also available for visualizing model geometry and data 
and for processing and integrating LiDAR scanning data. Many of the plug-ins perform 
calculations on the graphics processing unit, which allows for efficient simulation of very 
large domains with high detail. An example modeling study is presented in which leaf-
level heterogeneity in water usage and photosynthesis of an orchard is examined to 
understand how this leaf-scale variability contributes to whole-tree and -canopy fluxes.

Keywords: biophysical model, functional-structural plant model, software architecture, terrestrial LiDAR, three-
dimensional model

INTRODUCTION

Biophysical processes in plant and environmental systems traverse an extraordinary range of 
spatial and temporal scales, with high heterogeneity commonly present across these scales. In plant 
ecosystems, this is particularly true, as important effects of heterogeneity have been frequently 
reported across the full range of scales from cells up through the globe (e.g., Mott and Buckley, 
2000; Valladares, 2003). Often, it is convenient to study plant systems at scales most relevant to 
humans—leaves to canopies in space and seconds to months in time. Obtaining observations 
beyond these scales often requires high effort that may yield little additional useful information. 
However, it is clear that heterogeneity across scales can have significant impacts on exchanges of 
mass, momentum, and energy, and understanding how heterogeneity augments transport processes 
is key in understanding links between plant structure and function.

To circumvent limitations in our ability to observe plant systems across the entire range of 
relevant scales, it is common to use mathematical models to translate information obtained 
at one scale to another scale of interest where data are lacking. In order to do so, assumptions 
of homogeneity are typically made over a certain range of scales. The earliest, and still most 
frequently used, class of models of plant systems assumes homogeneity in horizontal directions, 
thus effectively treating a plant canopy as a “big leaf ” (Sinclair et al., 1976; Raupach and 
Finnigan, 1988; Amthor, 1994; Friend, 2001). In some cases, homogeneity is assumed in all 
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directions including the vertical, which is convenient because 
it means that a measurement or model prediction at any point 
in space can be considered representative of the entire plant 
system. A class of big-leaf models called “multilayer models” 
accounts for vertical heterogeneity by limiting assumptions 
of homogeneity to a discrete vertical level of vegetation 
(Meyers and Paw U, 1987; Baldocchi and Harley, 1995). As 
a compromise between the single big-leaf and multilayer 
approaches, two-leaf models have also been developed that 
assume that leaves are either sunlit or shaded, thus effectively 
limiting model calculations to two-leaf layers (DePury and 
Farquhar, 1997; Wang and Leuning, 1998).

Although assumptions of large-scale homogeneity are 
convenient in translating observations and understanding 
across scales, in nature these assumptions are frequently 
violated. The current generation of plant system models 
has tended toward a high-resolution, three-dimensional 
(3D) approach that explicitly resolves heterogeneity in plant 
structure at scales of individual plants or smaller (Wang and 
Jarvis, 1990; Pearcy and Yang, 1996; Sinoquet et al., 2001; 
Allen et al., 2005; Dauzat et al., 2007; Hemmerling et al., 2008; 
Pradal et al., 2008; Evers et al., 2018). Early 3D models began 
by discretizing canopies into individual plants, which allows 
for the representation of heterogeneity in plant shape, size, 
and arrangement (e.g., Wang and Jarvis, 1990; Cescatti, 1997). 
Advances in computational power have enabled more detailed 
models that discretize plants into homogeneous volumes at 
submeter scales (e.g., Sinoquet et al., 2001; Bailey et al., 2014; 
Bailey et al., 2016) or models that resolve individual leaves 
(e.g., Pearcy and Yang, 1996; Allen et al., 2005; Dauzat et al., 
2007; Hemmerling et al., 2008; Pradal et al., 2008).

There is no model that is ideally suited for all applications, 
and each of the models introduced above makes many trade-
offs that are suitable for the particular system and phenomena 
of interest. A few important trade-offs in plant systems models 
are discussed below:

Model complexity vs. computational expense. Increases in 
model complexity generally incur corresponding increases 
in computational expense. Simple models like the “big-leaf ” 
approach described above are very computationally efficient, 
and thus they can be used to simulate extremely large problems 
such as global ecosystem fluxes (Churkina et al., 2005; Reichstein 
et al., 2005; Lawrence et al., 2019). However, errors and biases 
can be sizable if subcanopy heterogeneity plays a significant 
role in the biophysical processes of interest (Friend, 2001; 
Ponce de León and Bailey, 2019). Models that resolve plant-
level heterogeneity often incur a significant computational cost, 
but simulations are usually limited to domain sizes with a few 
dozen large plants (Duursma and Medlyn, 2012; Vezy et al., 
2018). Leaf-resolving models incur yet another step increase in 
cost and usually limit the maximum domain size to a dozen 
or fewer plants depending on plant size and overall model 
complexity (Hemmerling et al., 2008; Pradal et al., 2008; Kahlen 
and Stützel, 2011; Woods et al., 2018).

Ease of use vs. flexibility. Providing users with more control 
over software configuration and execution typically comes 

with the trade-off of decreasing ease of use (Holzinger, 2005). 
By automating many tedious or technical tasks, developers can 
design software that can be readily utilized by inexperienced 
users. However, for more advanced users who may wish to use 
the software in ways not originally envisioned by the developers, 
this can create severe limitations. In the context of plant 
models, model coupling and execution are often not sequential. 
For example, if one wishes to simulate photosynthesis of 
a leaf, this process is cyclically dependent on a number of 
other processes; photosynthetic rates are dependent on leaf 
temperature, which is dependent on latent cooling as mediated 
by stomatal conductance as well as longwave emission, which 
is also dependent on the leaf temperature. Coupling of the 
above processes in a model often requires iteration, which can 
require flexibility if incorporated within a generalized modeling 
framework. This issue was discussed by Pradal et al. (2008) in 
the context of the development of the OpenAlea plant modeling 
framework, which increases ease of use by compromising 
some flexibility in terms of its execution model. Most 3D plant 
growth modeling frameworks use a linear work flow in which 
the execution of various submodules is predefined in order to 
produce a standard set of outputs (Hemmerling et al., 2008; 
Pradal et al., 2008; Henke et al., 2016).

Choice of programming language also has important 
implications in terms of this trade-off. In order to improve ease of 
use, many modeling frameworks choose to utilize simpler yet less 
efficient languages such as Python or Java that may not require an 
explicit compilation step or memory management (Hemmerling 
et al., 2008; Pradal et al., 2008; Boudon et al., 2012; Henke et al., 
2016). Other frameworks have transitioned toward more efficient 
and flexible languages such as C++ at a sacrifice in usability 
(Karwowski and Prusinkiewicz, 2003).

Model complexity vs. availability of input data. Increasingly 
complex models require increasingly complex inputs, and often 
progress in model development outpaces the development of 
methods for specifying detailed model inputs. In some cases, 
models originally built on a solid mechanistic foundation can 
essentially become overfitted empirical models when inputs 
turn into free parameters that cannot be measured (Ginzburg 
and Jensen, 2004). Thus, the development of detailed predictive 
models is frequently limited by the ability to provide them with 
realistic inputs, and the argument could therefore be made that 
in some cases simpler models may be more practical (Raupach 
and Finnigan, 1988).

This work introduces the new 3D plant and environmental 
modeling framework “Helios,” which is differentiated from other 
available frameworks in terms of the way in which the above 
trade-offs are prioritized. First, Helios is a flexible modeling 
framework that allows for efficient and extensible coupling 
between arbitrary submodels called plug-ins. Unlike most 
previous models, it is formulated to allow for maximum control 
by the user over submodel coupling, execution, and data flow, 
enabling models with complex feedbacks. However, this comes 
with a sacrifice in ease of use, as the user often must decide the 
order and timing of submodel execution. Helios is intended to 
utilize state-of-the-art biophysical models with high complexity 
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in order to maximize physical realism. In order to afford this high 
model complexity, many Helios plug-ins perform calculations 
using graphics processing unit (GPU) hardware, which enables a 
unique combination of model complexity and range of scales that 
can be feasibly represented. Finally, Helios includes a plug-in that 
allows for automatic generation of architectural inputs based on 
terrestrial LiDAR data.

The goal of this work is to provide a high-level overview of 
Helios. For specific details regarding implementation and usage, 
readers are referred to the extensive documentation included 
with the software.

CORE ENGINE

Model Geometry and Data
At the core of Helios is the Context class, which manages 
model geometry and data (Figure 1). Model geometry is 
formed using three types of primitive elements: triangles, 
patches (rectangles), and voxels (parallelepiped) (Figure 2). 
Triangles and patches can be masked using the transparency 
channel of a PNG image file to create planar elements with 

arbitrary shapes, which is a common approach in both 
computer graphics applications (Suffern, 2007) and other 
plant modeling software (Hemmerling et al., 2008). This often 
allows for a significant reduction in the number of elements 
needed to represent complex 3D geometries. For example, 
a complex leaf shape can be represented by one or a few 
primitive elements rather than a triangular mesh consisting of 
dozens of elements (Figure 2B).

Upon the creation of each element, a minimal set of data is 
generated that defines the primitive, such as the coordinates 
of vertices, surface area, color, and so on. As is common in 
object-oriented programming, each element is assigned a 
unique universal identifier (UUID), which can be stored and 
later used to reference the element. This UUID can be passed 
to functions that, for example, apply a transformation to the 
element’s position, change an attribute of the element, or be 
passed to a model plug-in to indicate that model calculations 
should only be performed for that particular element. This 
allows for dynamic modification of geometry at any point 
within the program.

Primitive elements are the basis for most model data 
structures (Figure 1). Scalar or vector data of various types can 

FIGURE 1 | Schematic of data representation and model coupling in Helios. The Context manages model geometry and associated data structures. Model 
geometry consists of elemental polygons: either triangles, patches (rectangles), or voxels (parallelepiped). Each element may have varying types of associated data 
called “primitive data,” and there may be additional data structures not mapped to individual elements called “global data.” Model plug-ins are coupled by operating 
on common data structures within the context.
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be associated with each element called “primitive data” (e.g., 
temperature). These data can be used to specify unique model 
parameters for each element, or it can provide a container for 
values computed by a model for a particular primitive. These 
data structures are also how models are typically coupled. For 
example, one could create primitive data for each element that 
specifies its reflectivity, which would be read by the radiation 
model, which would then write another piece of primitive data 
that give the value of the computed radiation flux. Another 
model such as a photosynthesis model could then read this 
radiation flux and write additional primitive data that give 
the value of the computed photosynthetic flux. Primitive data 
values can be set or retrieved using the appropriate setter or 
getter function (see the section C++ Application Programming 
Interface), which normally takes the UUID of the associated 
element(s) as an argument.

There is also a more generic data container called “global 
data,” which are not associated with any single geometric 
element. Global data can be scalar or vector valued and can 
have a number of different data types (e.g., double, float, 
integer, string). Global data are set or retrieved using the 
appropriate setter or getter function, but do not require the 
UUID of a primitive element because they are independent of 
any single element.

The data structure formulation used in Helios allows for 
maximum flexibility in model coupling, but comes with the 
trade-off of decreased ease of use. The Context itself simply 
provides a flexible central repository for model geometry and 
associated data and can also handle file I/O if needed. For 
this reason, it is very general and allows for arbitrary model 
coupling and workflows. Plug-ins only need to know the name 
of the data objects it should read from and write to. Thus, 
plug-ins can be executed in any order and can share arbitrary 
data structures.

Time-Series Data
Environmental models are commonly driven by time-series 
data provided by one or more sensors. The Helios Context 
includes tools to readily load and access these time-series data. 
Each data point is associated with some date and time and can 

either be read automatically from an XML file or added to the 
Context manually. By setting the date and time in the Context 
using the appropriate functions, the time-series data will be 
automatically interpolated to that instant in time and can be 
queried and used in model calculations.

C++ Application Programming Interface
Users interact with Helios through a C++ application 
programming interface (API), which means that users write their 
own program that utilizes the Helios library (see Listing 1). As 
mentioned above, this offers high flexibility but decreases ease 
of use because users must write their own main function that 
declares and runs plug-ins. Many tutorials and examples are 
included within the Helios documentation that illustrate how 
to utilize the various data structures and functions to perform 
common modeling tasks.

The Helios Context is a C++ class with many public member 
functions that are used to access model geometry and data. 
Listing 1 provides example code for declaring the Context, 
adding a triangular element, and then setting primitive data for 
that element. In this example, the geometry is added through 
the Context member function “addTriangle(),” which takes the 
Cartesian coordinates of each triangle vertex as arguments. There 
are a number of additional overloaded versions of the addTriangle() 
function, which can be used to explicitly set the triangle color, set 
a texture map, and so on.

The API has several functions that can read/write from/to 
standard file formats, namely, XML, PLY, and OBJ formats. 
XML files are used to read and write simulation data and are 
based on a convention specific to Helios, which is detailed in the 
documentation. PLY (Stanford polygon) and OBJ (Wavefront) 
files are standard formats for storing geometric information 
and are read and written by most 3D computer graphics or 
computer-aided design software programs. This allows Helios 
to easily read 3D models generated by other software or write 
geometry created within Helios to formats that can be read by 
other software for further analysis. This enables a means by 
which geometry could be coupled or transferred between other 
plant modeling platforms that can handle these formats such as 
OpenAlea or GroIMP.

FIGURE 2 | Types of primitive geometric elements available in Helios: (A) patch, (B) patch masked by an image transparency channel (C) triangle, (D) voxel.
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API Documentation
Helios uses Doxygen (www.doxygen.org) to automatically 
generate documentation for the API and to create a user guide 
and tutorials with embedded hot-links to associated function 
documentation. Each plug-in has a documentation page with 
a consistent structure that defines several key aspects needed 
to work with the plug-in. This includes, but is not limited to, 
required dependencies, necessary header files, and any primitive 
or global data read or written by the plug-in. All API functions 
and data structures are searchable in order to quickly locate 
information regarding their purpose and function arguments.

PLUG-INS

Helios plug-ins are implemented as C++ classes with a number of 
member functions that allow users to set up and run the models. 
The plug-in classes are typically passed a pointer to the Context 
class when they are declared, which gives them the ability to 
access data structures that define model geometry (e.g., vertex 
positions, surface area, normal vector) and read or write data 
structures in the Context. A brief description of plug-ins available 
in version 1.0 is given below, with corresponding software and 
hardware requirements given in Table 1.

Visualizer
The visualizer plug-in creates 3D renderings of model geometry 
and data based on standard approaches used in computer 
graphics (Marschner and Shirley, 2015). Utilizing a pointer 
to the Context, the visualizer parses all geometric elements in 
the Context and renders them to the screen using OpenGL. 
There are several means by which elements may be colored. The 

user can specify a color for the element or provide the path to 
an image to be used for texture mapping (cf. Marschner and 
Shirley, 2015). In either case, the Phong lighting model can be 
optionally used to shade elements, with an additional option 
to use a model for shadow rendering (Figure 3). Alternatively, 
the user can specify that elements should be colored using a 
pseudocolor mapping based on primitive data stored in the 
Context (Figure 3).

While the visualizer plug-in provides a seamless means of 
quickly visualizing model outputs, it is also possible to output 
geometry and data to file using the standard formats introduced 
previously, which allows for the use of more sophisticated 
rendering tools such as Blender. The drawback of this approach 
is that it adds an additional step to the workflow.

Radiation Transport Model
A GPU-accelerated model for radiation transfer is included 
as a plug-in to Helios, which is described in detail in Bailey 

Listing 1. Example C++ code illustrating the procedure for using the Helios API to add geometry and set associated primitive 
data.

#include “Context.h”

using namespace helios;

int main(void) {

    //Declare the Context class
    Context context;

    //Declare three 3D coordinates defining the triangle vertices
    vec3 vertex0(0, 0, 0);
    vec3 vertex1(0, 1, 0);
    vec3 vertex2(0, 1, 1);

    //Variable to contain unique universal identifier
    unit UUID;

    //Add the triangle, which returns the UUID for the element
    UUID = context.addTriangle(vertex0, vertex1, vertex2);

    //Set the primitive data called “label” to have a value of “mytriangle”
    context.setPrimitiveData(UUID, “label”, “mytriangle”);

}

TABLE 1 | Summary of Helios plug-ins in version 1.0 and their respective 
software or hardware requirements.

Plug-in Software/hardware requirements

Visualizer X11/xorg packages
Radiation model NVIDIA GPU, CUDA
Energy balance model NVIDIA GPU, CUDA
Solar model None
Stomatal conductance model None
Photosynthesis model None
Voxel intersection NVIDIA GPU, CUDA
Procedural tree generation None
LiDAR data processing NVIDIA GPU, CUDA
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(2018). The model uses a novel reverse ray-tracing approach 
for both solar radiation and terrestrial emission. While reverse 
ray-tracing approaches have been commonly used in previous 
models to provide more robust sampling of radiation sources 
(e.g., Lewis, 1999; Gastellu-Etchegorry et al., 2012; Henke and 
Buck-Sorlin, 2018), the model of Bailey (2018) presents a new 
reverse approach for modeling terrestrial emission that ensures 
that the model satisfies the second law of thermodynamics 
regardless of the number of rays used. The reduction in the 
number of rays required, along with the substantial acceleration 
achieved by utilizing a GPU-based parallelization, means that 
domains with hundreds of trees and tens of millions of fully 
resolved leaves can be simulated on a desktop workstation. Using 
simplified geometries with assumed radiative properties, Bailey 
(2018) showed that the model converges exponentially toward 
the exact analytical solution as the number of rays is increased. 
Currently, the model implementation does not support voxels, 
but a future release will include the ability to have a mixture of 
both planar primitive elements and voxels within the domain.

The model can be run over arbitrary wavebands, which 
are specified in the model by primitive data corresponding 
to surface radiative properties (i.e., absorptivity, reflectivity, 
emissivity) integrated over the particular waveband. 
External radiation sources can be represented by 1) a sphere, 
2) collimated radiation propagating in a particular direction, 
or 3) diffuse ambient radiation, each of which also requires 
the specification of its position or direction as well as its 
emissive flux for each radiative band, which can be calculated 

using the solar model plug-in (see the section Solar Position 
and Energy Model).

Surface Energy Balance Model
A surface energy balance can be solved for each primitive to 
calculate surface temperature and energy fluxes. The energy 
balance equation for a surface can be written as

 R T c g T T g
e T f e T h

ps p H s a M
s s s s a

atm
− = − +

−



εσ λ4 ( )

( ) ( )


+ Qother ,  (1)

where R is the absorbed all-wave radiation flux, ε is the 
surface emissivity, σ = 5.67 × 10–8 W m–2 K–4 is the Stefan-
Boltzmann constant, Ts is the surface temperature in absolute 
units, cp  =  29.25 J mol−1 K−1 is the heat capacity of air, gH is 
the surface boundary-layer conductance to heat, Ta is the air 
temperature in absolute units, λ = 44,000 J mol−1 is the latent heat 
of vaporization of water, gM is the overall conductance to water 
vapor from the surface to air outside the surface boundary 
layer, es(T) is the saturation vapor pressure at temperature T 
and is computed using the Tetens Equation (Campbell and 
Norman, 1998), fs is the fraction of water vapor saturation for 
the air immediately adjacent to the surface (by default fs = 1 
for leaves assuming air in the substomatal cavity is saturated), 
h is the relative humidity of air outside the boundary layer, 
and patm is the ambient air pressure. The flux Qother represents 
any additional energy fluxes that may be present at the 
primitive surface (e.g., storage). For the purposes of the case 

FIGURE 3 | Visualizations of Helios simulation results. (A) simulation of radiation emission for model geometry read from a standard polygon file (the so-called 
“stanford dragon”); (B) simulation of absorbed photosynthetically active radiation in a vineyard; (C) simulation of transpiration flux in an almond orchard generated 
from terrestrial LiDAR reconstruction; (D) almond tree canopy geometry created using the procedural tree generation plug-in.
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study presented below in the section Case Study: Quantifying 
Leaf-Level Variability of Transpiration and Photosynthesis in 
Whole-Canopies, it is noted that the rate of water loss E from 
the surface can be readily calculated from Eq. 1 by isolating 
the term gM (es (Ts)fs – es (Ta)h) / patm = E.

All parameters in Eq. 1 can be either specified directly by the 
user, computed from another plug-in, or otherwise assumed 
to take the default value given in the documentation. The 
absorbed radiation flux R can be computed using the radiation 
transport model plug-in (Section 3.2), and in the case where the 
primitive corresponds to a leaf, the conductance to moisture gM 
can be computed using the stomatal conductance plug-in (see 
the section Stomatal Conductance Model). The energy balance 
equation is iteratively solved for each primitive in parallel on 
the GPU using the secant method (Press et al., 2007).

Solar Position and Energy Model
A plug-in is available to estimate the position of the sun, as well as 
downwelling shortwave and longwave radiative fluxes. The solar 
position is calculated using standard astronomical relationships as 
described in Iqbal (2012). In the absence of direct measurements, 
the clear-sky solar radiative flux incident on a surface normal to 
the sun can be calculated using the REST2 model of Gueymard 
(2003). The REST2 model accounts for the effects of Rayleigh 
scattering and absorption due to water vapor, nitrogen dioxide, 
ozone, and aerosols. The model also provides an estimation of 
direct-diffuse partitioning of the incoming solar flux.

If measurements are not available, the downwelling longwave 
diffuse radiative flux can be calculated using this plug-in, 
which is based on the model of Prata (1996). The REST2 and 
longwave models both require specification of the precipitable 
water in the atmosphere, which is estimated using the model of 
Viswanadham (1981).

Stomatal Conductance Model
Stomata are typically important active regulators of water vapor 
transport between the inside of leaves and the atmosphere (Jarvis 
and McNaughton, 1986). This regulatory effect is represented 
by specifying a stomatal conductance, which is modeled in 
Helios using the semimechanistic model of Buckley et al. (2012). 
This model represents stomatal conductance gs as a hyperbolic 
function of photosynthetically active photon flux density and 
local vapor pressure deficit, which is given by the equation

 g E Q i
k bQ Q i Ds

m= +
+ + +

( )
( )

,0

0

  (2)

where Q is the photosynthetically active photon flux density, and 
D is the vapor pressure deficit between the intercellular leaf air 
spaces and the air outside of the leaf boundary layer. Note that 
the photon flux density is obtained from the energy flux in the 
PAR band using the factor 4.57 μmol m−2 s−1/(W m−2). Em, i0, k, 
and b are treated as empirical model coefficients.

Photosynthesis Model
Two leaf photosynthesis models are available in Helios: an 
empirical model based on the description of Johnson (2010), 

and the mechanistic biochemical model of Farquhar et al. 
(1980) for C3 photosynthesis. For completeness, the current 
implementation of the Farquhar et al. (1980) model is described 
in Appendix 1 because it is the model used in the case study 
presented in the section Case Study: Quantifying Leaf-Level 
Variability of Transpiration and Photosynthesis in Whole-
Canopies. The empirical model is also fully described in the 
Helios documentation.

Primitive Subvolume Grouping
One important motivation for using a detailed, leaf-resolving 
plant model is to understand the impacts of aggregation of 
leaf-level heterogeneity over multiple scales. In order to help 
facilitate this aggregation, a plug-in is available to rapidly 
group or bin primitives into arbitrary subvolumes. Users 
can define arbitrary voxels, and this plug-in will identify any 
planar primitive elements that are contained within each voxel. 
This is useful, for example, in calculating leaf area density/
index or calculating aggregated attenuation coefficients 
for comparison with simple models. The primitive binning 
calculations are performed on the GPU to significantly reduce 
execution times.

Terrestrial LiDAR Data Processing
Terrestrial LiDAR scanning is a powerful tool for 3D 
measurement of plant architecture, which has gained 
popularity in plant modeling applications. While the raw 
LiDAR point clouds provide a wealth of data that yield an 
incredibly detailed mapping of the canopy, processing this data 
into information that is usable in the context of modeling has 
proven to be a challenge. Raw LiDAR data provide millions of 
3D Cartesian coordinates in space. However, models generally 
cannot use points directly, but rather need information such 
as surfaces, areas, and so on.

The terrestrial LiDAR plug-in integrates a number of 
data processing algorithms, along with GPU acceleration, to 
provide the ability to translate LiDAR point clouds into leaf-
by-leaf reconstructions that can be fed directly into the Helios 
Context. The workflow starts by using the triangulation 
algorithm of Bailey and Mahaffee (2017b) to calculate the 
leaf angle distribution, which is used to calculate the leaf area 
projection function G (Ross, 1981). The G-function is then 
used to generate estimates of leaf area density for arbitrary 
volumes of leaves (voxels) following the approach of Bailey 
and Mahaffee (2017a). To reconstruct individual leaves, the 
triangulated leaf hit points are segmented to estimate the 
position and area of individual leaves that are in direct view 
of the LiDAR scanner (Bailey and Ochoa, 2018). Because a 
significant fraction of leaves may be occluded from view 
of the scanner, a statistical backfilling approach is used to 
ensure that the reconstructed tree leaf orientation and area 
distributions match the voxel-based measurements described 
above (see Bailey and Ochoa, 2018).

Each individual LiDAR scan typically consists of tens of 
millions of points, and grids for calculating leaf area density may 
consist of thousands of voxels. These dimensions compound 
to make data processing computationally expensive, and thus 
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several of the LiDAR processing routines are performed in 
parallel on the GPU. Point-based calculations lend themselves 
well to parallelization because each laser pulse can be analyzed 
independently from another.

Procedural Tree Generation
While the LiDAR plug-in provides a powerful means of 
incorporating measured tree architectures within Helios, certain 
types of modeling studies may require the ability to simulate 
a wide range of geometries that cannot be directly measured. 
The creation of semirandom tree geometries is made possible 
in Helios through the use of the procedural tree generation 
algorithm of Weber and Penn (1995). This framework describes 
the woody architecture of trees as a recursive set of branching 
levels, each described by their own set of parameters that 

provide rules for how branching structure should occur. 
A random perturbation of user-defined magnitude can be 
added to each parameter to reduce geometric uniformity in 
order to produce more realistic-looking trees. In the original 
formulation described by Weber and Penn (1995), leaf 
orientations are determined through an axial rotation about the 
branch from which they originate, which may create unphysical 
leaf orientation distributions. Additional functionality has been 
added to allow users to specify a custom leaf inclination angle 
distribution, perhaps that provided by LiDAR measurements 
(section Terrestrial LiDAR Data Processing).

The procedural tree generation plug-in comes with nine 
predefined tree geometries, which are shown in Figure  4. 
Arbitrary trees can be created by modifying the tree geometric 
parameters, which are commonly specified in an XML file. 

FIGURE 4 | Procedural tree model generation for nine tree species: (A) almond; (B) apple; (C) avocado; (D) lemon; (E) olive; (F) orange; (G) peach; (H) 
pistachio; (I) walnut.
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Parameters include quantities such as the number of recursive 
branching levels, average angle of branches with respect to 
their parent branch for each level, and so on. The end geometry 
produced by the Weber and Penn (1995) and the parameters 
used to specify the geometry are fairly similar to those produced 
by the commonly used L-systems approach (Prusinkiewicz 
and Runions, 2012). L-systems is more elegant in its notational 
and mathematical representation of the branching structures 
(it uses a string of characters to encode the structure), but the 
end result is similar to that used in Helios.

CASE STUDY: QUANTIFYING LEAF-LEVEL 
VARIABILITY OF TRANSPIRATION AND 
PHOTOSYNTHESIS IN WHOLE-CANOPIES

Background
While our collective understanding of plant biophysical processes 
for individual leaves has progressed rapidly over the past several 
decades, our understanding of canopy-level processes is limited 
by the need to aggregate highly heterogeneous processes over 
a wide range of scales. When measurements are performed 
at the leaf scale, it is often unclear how representative such 
measurements are of the canopy as a whole. On the other hand, 
when measurements are performed at large scales that aggregate 
many smaller scales, it is often unclear how different members of 
the community (i.e., leaves) contribute to aggregate behavior. In 
this brief case study, a tree canopy will be examined using Helios 
to visualize and quantify leaf-level variability in transpiration and 
photosynthesis in order to understand how individual elements 
contribute to system-level behavior.

Case Set-up
Canopies of Prunus dulcis were simulated to assess the impact 
of canopy architecture on light interception, microclimate, 
transpiration, and photosynthesis. Two canopy architectures 
were considered: an isolated tree and a relatively dense canopy of 

100 trees (1 tree per 36 m2). Individual trees were created using 
the procedural tree generation plug-in with the same parameters 
that were used to create the tree shown in Figure 4A. In order to 
maintain consistency within the test case, the isolated tree had 
the same architecture (within random variation) of each of the 
trees in the dense canopy, although in reality the architecture of 
the isolated tree would likely be different. The simulated trees had 
leaves with constant (one-sided) area of 60 cm2.

Field data collected in a canopy of P. dulcis were used 
to specify model parameters. The canopy was located in 
the California Central Valley (36.599°N 119.515°W), and 
consisted of 4-year-old trees that were approximately 7 m tall. 
Trees were spaced at 4 m in the East-West direction and 6.4 m 
in the North-South direction. The ambient air temperature 
and humidity were assumed to be spatially homogeneous and 
were specified using data collected from a nearby weather 
station (Figure 5). These data were also fed into the model 
that predicts the downwelling longwave radiation flux. 
Incoming direct and diffuse radiation fluxes were estimated 
using the REST2 model as described above (Figure 5), which 
were equally partitioned into PAR (assumed to be wavelengths 
<700 nm) and NIR (assumed to be wavelengths >700 nm) 
bands. A single diurnal cycle was simulated at time step of 
15 min. Leaf reflectivity and transmissivity were assumed to 
be 0.05 for the PAR band and 0.4 for the NIR band.

Leaf angles were specified by randomly drawing from the 
leaf angle distribution measured in the experimental canopy 
described above. The average leaf angle distribution was 
measured by scanning trees using a Riegl VZ-1000 terrestrial 
LiDAR scanner (Horn, Austria). The scan resolution in the 
zenithal direction was 0.04° across a range of 100° and 0.08° 
in the azimuth across a full 360° rotation. Four scans per tree 
were performed from the northwest, northeast, southwest, and 
southeast of each trunk at a distance of about 7.5 m. The raw 
LiDAR data were processed to determine the leaf inclination 
distribution as described by Bailey and Mahaffee (2017b) using 
the LiDAR data processing plug-in (Figure 6).

FIGURE 5 | Input time-series data used to drive case study simulations: ambient air temperature (left), air relative humidity (center), and incoming direct solar 
radiation flux normal to the sum direction, incoming diffuse radiation flux on a horizontal surface, and incoming longwave radiation flux on a horizontal surface (right).
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Leaf-level gas exchange measurements were collected using 
the LI-6800 portable photosynthesis system (LICOR, Lincoln, 
NE, USA). All measurements were performed at an ambient 
CO2 concentration of 390 μmol/mol, but at varying light, 
temperature, and humidity levels. The response of photosynthesis 
and stomatal conductance to light was determined by varying the 
photosynthetically active photon flux density between levels of 0, 
50, 200, 400, 800, 1,200, and 2,000 μmol m−2 s−1 at a leaf temperature 
of 25°C and 60% relative humidity. Importantly, a large amount 
of time was spent at each light level to ensure that stomata had 
time to fully equilibrate, which took around 1 h per light level. 
Control measurements with constant conditions were performed 
to verify that changes in whole-plant water status over this very 
long period did not significantly affect the response curves. At a 
saturating light level of 2,000 μmol m−2 s−1, leaf temperature varied 

between 25°C and 35°C, and relative humidity in the chamber 
varied between 30% and 60% for each leaf temperature. This 
procedure produced measurements at 10 different combinations 
of light, temperature, and ambient humidity, which were used to 
determine model coefficients for the stomatal conductance and 
photosynthesis models (Figure 7; Table 2).

In order to refine the initial representation of canopy 
architecture, a precursor simulation was performed to remove 
unrealistic leaves. The daily net CO2 assimilation rate was 
determined for every leaf within the precursor simulation. 
Leaves that had negative net CO2 assimilation over the day (i.e., 
daily respiration was larger than assimilation) were removed. 
This resulted in a final canopy LAI of 2.9, which had very few 
leaves with negative net daily CO2 assimilation (Figure 9). This 
LAI value is on the high end of what might be observed in real 
canopies but is reasonable given that nearly all leaves had positive 
net daily assimilation.

Results
Leaf Probability Distributions
Probability distribution functions (p.d.f.s) of net photosynthesis, 
transpiration rate, absorbed radiation, and temperature were 
calculated for all leaves in the tree or canopy. The distributions 
were formed across leaves for given instants throughout the day 
(Figure 8) or as an integration in time of values for each leaf over 
the entire day for daylight hours only (Figure 9).

Radiation flux. The distribution of absorbed radiation 
was highly heterogeneous, and followed a nearly exponential 
distribution, with most leaves absorbing relatively low amounts 
of radiation. This exponential distribution was an expected 
result based on Beer’s law (Ross, 1981), as the p.d.f. of absorbed 
flux over all leaves serves to approximate the probability of 
flux interception along the path of radiation propagation. The 
distribution is not perfectly exponential due to the presence 

FIGURE 6 | Leaf inclination probability density function (p.d.f.) used to 
generate tree geometrics for case study simulations.

FIGURE 7 | Parameterization of photosynthesis and stomatal conductance models. (A) response of net photosynthesis to varying photon flux density (Q) at a 
reference leaf temperature of TL = 25ºC given by gas exchange measurements (circles) and photosynthesis model (solid line); (B) response of net photosynthesis to 
temperature (TL) given by gas exchange measurements (circles) and photosynthesis model (solid line); and (C) comparison of stomatal conductance (gs) given by 
gas exchange measurements and predictions by the model.
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FIGURE 8 | Probability density function (p.d.f.) across all leaves in the canopy for photosynthetic photon flux density Q, leaf temperature TL (ambient temperature 
given by dashed vertical line), stomatal conductance to water vapor gs, transpiration rate E, and net rate of photosynthesis A. Columns correspond to different times 
of the day. Red lines correspond to the isolated tree case; blue lines correspond to the dense canopy case

TABLE 2 | Fitted parameter values for photosynthesis and stomatal conductance models.

Parameter Description Value Units

Photosynthesis
Rd,25 Respiration rate at 25ºC 1.491 µmol m−2 s−1

Vcmax,25 Maximum carboxylation rate at 25ºC 99.5 µmol m−2 s−1

Jmax,25 Maximum electron transport rate at 25ºC 185.0 µmol m−2 s−1

CJmax Jmax temperature response parameter 17.57* Unitless
ΔHa, Jmax Jmax temperature response parameter 43.54* kJ mol−1

 

α Light response parameter 0.41 Unitless
Stomatal Conductance

Em Maximum transpiration rate 20.43 mmol m−2 s−1

i0 PPFD offset for dark transpiration 38.48 µmol m−2 s−1

k Bulk stomatal parameter 18,383 µmol m−2 s−1 mmol mol−1

b Bulk stomatal parameter 49.68 mmol mol−1

*Assumed based on no growth temperature acclimation (Bernacchi et al., 2003).
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of diffuse ambient radiation and the fact that the tree/canopy 
is not optically thick, and therefore the ground absorbs some 
radiation. The instantaneous and daily integrated p.d.f.s showed 
a similar trend, except that the daily p.d.f. had a shorter tail. 
The highly skewed distribution meant that a relatively small 
number of leaves absorbed a large fraction of radiation at any 
instant of the day. Around the middle portion of the day, leaves 
in the top 10% in terms of absorbed radiation flux absorbed 
roughly 65% of the total radiation absorbed by the entire tree or 
canopy (Figure 10A). As the sun angle decreased, this fraction 
tended to decline, where near dawn and dusk the top 10% of 
leaves absorbed between 40% and 50% of the total absorbed 
radiation (Figure 10A), which is likely due to the increased 
diffuse fraction. When integrated over the entire day, 10% of 
leaves were responsible for absorbing about 48% of the total 
daily absorbed radiation for the isolated tree and 53% for the 
dense canopy (Table 3).

The probability distributions of absorbed radiation for the 
isolated tree and dense canopy cases were very similar when 
the sun was high, and decreasing sun angle tended to smooth 
the distribution slightly for the isolated tree (Figure 8). The 
distribution for the isolated tree was shifted slightly to higher 
radiation values, likely due to relatively high fraction of surface 
area in view of the sun at low sun angles. When integrated over 
an entire day, the discrepancies between the distributions for the 
isolated tree and dense canopy were relatively minimal, with the 
peak in the distribution smoothed slightly for the isolated tree 
(Figure 9A).

Leaf temperature. The distributions of leaf temperature were 
closer to Gaussian than the distributions of radiation absorption, 
although the temperature distributions were still positively skewed 
(Figure 8). Most leaves were below the ambient air temperature, 
with the peak occurring several degrees below the ambient air 
temperature. There was a significant difference between the leaf 

FIGURE 9 | Probability density functions (p.d.f.s) of daily (A) absorbed photosynthetic photons, (B) transpired water, and (C) net CO2 exchange (all per unit leaf area).

FIGURE 10 | Fraction of the instantaneous flux due the top 10% of all leaves (i.e., fraction of flux contained in the 90th percentile of leaves) for fluxes of (A) absorbed 
photon flux Q10%, (B) transpiration rate E10%, and (C) net photosynthesis A10%. (For example, a Q10% value of 0.75 would mean that only 10% of the leaves were 
responsible for 75% of the total absorbed PAR for the whole tree/canopy.
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temperature distributions for the isolated tree and dense canopy 
cases, particularly throughout the middle portion of the day. The 
lower end of the leaf temperature distributions for the tree was 
shifted upward by about a degree when compared with the dense 
canopy. The upper end of the leaf temperature distributions is 
similar between the tree and canopy cases, indicating that the 
highest temperature leaves, likely near the tops of the trees, are 
not significantly affected by the presence of neighboring trees. 
However, it should be noted that this includes only the radiative 
effect on temperature because the air temperature was held 
constant between the isolated tree and canopy cases in order to 
isolate the effects of geometry.

Stomatal conductance. During the middle portion of the 
day, the distribution of leaf stomatal conductance followed an 
interesting bimodal distribution with sharp peaks at either end 
of the distribution, which also exhibited minimal differences 
between the isolated tree and dense canopy cases. The lower 
peak results from the fact that a large portion of leaves are in 
shade, resulting in a large number of leaves with low stomatal 
conductance. The upper peak is perhaps more surprising and 
results from the nonlinearity of the stomatal response to light. 
For high light levels, stomatal conductance saturates and is 
relatively insensitive to changes in light, which thus results 
in a large cluster of leaves with stomatal conductances near 
the saturating value. Late in the day when sun angles are low, 
there is a significant positive shift in stomatal conductances 
in the isolated tree as compared with the dense canopy, which 
seemingly corresponds with the positive shift in radiation 
absorption between these two cases.

Transpiration rate. Unlike the distribution of stomatal 
conductance, the distribution of transpiration flux did not 
follow a bimodal distribution, but rather had a single sharp 
peak and large positive skewness. Since the transpiration 
flux is the product of the stomatal conductance and vapor 
pressure deficit, this means that the vapor pressure deficit 
increase at high temperature and light values was sharp 
enough to dominate the transpiration flux, although stomatal 
conductance becomes saturated. Overall, discrepancies 
between the highest and lowest transpiring leaves were smaller 
than those of absorbed radiation. During much of the day, the 
top 10% of leaves transpired between 40% and 45% of the total 
tree/canopy transpiration (Figure 10B), and when integrated 
over the day, the top 10% transpired roughly 35% of the total 
for both the tree and canopy cases.

The peak in the distribution of transpiration flux was shifted 
upward in the isolated tree case, which was presumably due 
to the corresponding upward shift in the leaf temperature and 
stomatal conductance (Figure 8). When the transpiration flux 

was integrated over the entire day, a similar pattern emerged, 
except that the positive tail of the distribution was shortened 
(Figure 9).

Net photosynthesis. During the middle portion of the day, the 
distribution of net leaf CO2 flux exhibits a peak near a value of 
zero and a secondary peak near the saturating value (Figure 8), 
with the overall distribution being fairly uniform. At low light 
levels, photosynthesis is primarily limited by the amount of 
available photosynthetically active light, and thus it is expected 
that for low light values the distribution of photosynthesis should 
be closely related to the distribution of absorbed light, which 
is evident from Figure 8. At high light levels, photosynthesis 
is relatively insensitive to light (Figure 7) but highly sensitive 
to the CO2 concentration within the leaf, which is tightly 
regulated by stomatal conductance. When integrated over an 
entire day, a strong peak in the photosynthesis distribution at 
low CO2 exchange values still exists but is shifted upward, and 
the region of nearly constant CO2 exchange values does not 
exist (Figure 9). For the middle of the day, the top 10% of leaves 
assimilated about 45% of the CO2 for the isolated tree and 50% 
for the canopy (Figure 10C). When integrated over the day, the 
top 10% of leaves assimilated 37% of the CO2 in the isolated 
tree and 43% in the dense canopy.

Leaf Trajectories
Visualization of time series or “trajectories” of individual leaf 
exchange rates provides an interesting perspective into how 
the behavior of individual leaves compares to that of the entire 
tree or canopy throughout the day. Trajectories are shown in 
Figure 11 for absorbed photosynthetically active radiation, leaf 
temperature, stomatal conductance, transpiration rate, and net 
rate of photosynthesis for 10 randomly chosen leaves. We can 
observe the wide range of scenarios encountered by different 
leaves. Some leaves remain in highly shaded conditions for 
most of the day except for a brief sunfleck, which allows them 
to assimilate enough CO2 to offset daily respiration. Other 
leaves are “lucky” in that they encounter extended periods of 
high light conditions. Examples can be observed in which the 
leaf radiation, temperature, and transpiration rate all increase 
substantially and in tandem for an extended period, whereas 
stomatal conductance and photosynthesis reach a maximum 
value and begin to decline as vapor pressure deficit climbs and 
stomata start to close.

DISCUSSION

The goal of most modeling efforts is to reduce complex 
processes to a tractable form that can mathematically represent 
interrelationships between quantities of interest. Here, our goal 
was to use a complex model that represents in detail individual 
members of a complex system (i.e., leaves in a tree/canopy) to 
help identify emergent behavior that is largely representative of 
the bulk response of the system, which can provide insight into 
how simplified experimental and modeling approaches can be 
formulated and interpreted. In this brief case study, Helios and 

TABLE 3 | Fraction of the total daily flux due the top 10% of all leaves (i.e., 
fraction of total flux contained in the 90th percentile of leaves) for fluxes of 
absorbed photon flux Q10%, transpiration rate E10%, and net photosynthesis A10%.

Variable Tree Canopy

Q10% 0.480 0.533
E10% 0.351 0.367
A10% 0.370 0.432
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its submodels for radiation transport, leaf temperature, stomatal 
conductance, and photosynthesis were used to examine leaf-level 
variability in these processes and how this variability contributes 
to whole-tree and -canopy behavior.

The results of this case study provide an interesting depiction 
of the extreme heterogeneity that exists within vegetation for 
important biophysical processes. Probability distributions across 
leaves are highly heterogeneous and skewed, and because of 
inherent nonlinearities in the biophysical processes examined, 
the general shape of distributions is not consistent across even 
tightly related processes. At any instance, the whole-tree/canopy 
behavior in terms of radiation interception and photosynthesis 
is dominated by a relatively small fraction of the leaf population. 
When integrated over an entire day, this effect is somewhat 
reduced, but it was still observed that a small fraction of leaves 
was responsible for a disproportionate amount of the daily  
CO2 assimilation.

A wide range of representations of the above biophysical 
processes are used in models. So-called “big-leaf” models consider 
the behavior of only one average leaf assumed to be representative 
of the entire plant system (e.g., Sinclair et al., 1976; Sellers et al., 
1986; Amthor, 1994). For the tree systems examined here, Figures 
8 and 9 illustrate the difficulties in utilizing this approach, given 
the high variability and skewness of the distributions across leaves, 
which has also been highlighted in more recent works (De Pury 
and Farquhar, 1997; Wang and Leuning, 1998; Friend, 2001). As an 
improved, yet still simple approximation, authors have suggested 
choosing two representative sets of leaves: sunlit and shaded (De 
Pury and Farquhar, 1997; Wang and Leuning, 1998). Examination 
of the distributions of absorbed radiation in Figures 8 and 9 would 
call this intuitive approximation into question. Although the naked 
eye may view two distinct radiation regimes within a tree, this can 
be deceiving given that leaves are at a variety of orientations with 
respect to incoming radiation. No clear separation of regimes is 

FIGURE 11 | Time-series or “trajectories” for 10 randomly selected leaves of photosynthetic photon flux density Q, leaf temperature TL, stomatal conductance gs, 
transpiration flux E, and net photosynthetic flux A. Each line/color represents the time series of a single leaf. Thick blue lines give the average over all leaves in the 
tree canopy.
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evident for absorbed radiation, temperature, and transpiration, 
although stomatal conductance and photosynthesis had two 
distinct peaks in the distribution for the middle portion of the 
day. The degree of separation between sunlit and shaded regimes 
is expected to vary based on the shape of the light response curve 
(Figure 7A) and the density of vegetation.

More complicated “multilayer models” (e.g., Meyers and Paw 
U, 1987; Bonan et al., 2012) appear suitable for representing the 
within-vegetation heterogeneity, provided that enough vertical 
layers are used. Subdividing the canopy into discrete zones 
effectively averages across all values within the zone. It is possible 
that using a zone that is too large can introduce problems due to 
the fact that the distribution within that zone can have fat tails 
that give large contributions to overall behavior.

The comparisons between the isolated tree and dense 
canopy in this study showed surprisingly small differences in 
the distributions of radiation absorption, transpiration, and 
photosynthesis through most of the day and in daily integrated 
distributions, which raises some interesting questions regarding 
the representation of isolated or sparse vegetation in simplified 
biophysical models. Because both the isolated tree and canopy 
cases showed a nearly identical exponential distribution in 
absorbed radiation, a simple homogeneous Beer’s law model 
could conceivably be used to predict total absorbed radiation per 
unit total leaf area for the isolated tree. However, the complication 
arises that we must know the total leaf area and representative 
ground area for the isolated tree to get an absorbed flux per unit 
ground area. Models that aggregate trees into homogeneous 
subvolumes (e.g., see Wang and Jarvis, 1990; Cescatti, 1997; 
Duursma and Medlyn, 2012) correctly represent tree-scale 
heterogeneity in absorption, but filter out subtree variability 

including the tails of the distributions, which were shown to have 
important contributions to whole-canopy behavior. On the other 
hand, multilayer models can represent this subtree variability 
but are not able to represent tree-level heterogeneity in sparse 
canopies (Ponce de Leόn and Bailey, 2019).
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APPENDIX 1. PHOTOSYNTHESIS MODEL 
EQUATIONS

Diffusion of CO2 into and out of the leaf is modeled using the 
following resistance analogy:

 A R g C Cd M a i+ = −0 75. ( ),  (3)

where is the CO2 assimilation rate, Rd is the respiration rate, 
and 0.75gM is the conductance to CO2 transport between the 
mesophyll and ambient air, which is assumed to differ from 
water vapor diffusion only based on its lower diffusivity in air 
(and hence the 0.75 factor). Diffusion is driven by a difference 
between the intercellular CO2 concentration Ci and the air CO2 
concentration Ca.

The CO2 assimilation rate is calculated following Farquhar 
et al. (1980) as

 A
C

W W R
i

c j d= −






−1 Γ * min{ , } ,  (4)

where Γ* is the chloroplastic CO2 compensation point. A is 
limited either by the Rubisco-limited carboxylation rate Wc, or by 
the rate of RuBP regeneration Wj (we neglect the TPU limitation 
state for conditions typical of the natural environment). Wc is 
calculated according to

 W V C
C K O Kc

c i

i c O
=

+ +
max

( / )
,

1
 (5)

where Vc,max is the maximum carboxylation rate, Kc is the 
Michaelis-Menten constant for RuBP carboxylation, Ko is the 
Michaelis-Menten constant for oxygenation, and O is the partial 
pressure of oxygen in the air. Wj is calculated according to

 W JC
Cc

i

i
=

+4 8Γ *
,  (6)

where the potential electron transport rate J is modeled using the 
hyperbolic relationship

 J J Q
Q J

=
+

max

max

α
α

,  (7)

where Jmax is the value of J at saturating Q, and α describes the rate 
at which J reaches Jmax with increasing Q.

In addition to the original formulation proposed by Farquhar 
et al. (1980), the temperature dependence of model parameters 
has also been included following the description given by 
Bernacchi et al. (2001) and Bernacchi et al. (2003), which are 
given by the following equations:

 Γ* exp( . . / ( )),= −19 02 37 83 RTL  (8a)

 K RTc L= −exp( . . / ( )),38 05 79 43  (8b)

 K RTO L= −exp( . . / ( )),20 30 36 38  (8c)

 R R RTd d L= −, exp( . . / ( )),25 18 72 46 39  (8d)

 V V RTc c Lmax max= −, exp( . . / ( )),25 26 35 65 33  (8e)

 J J C H RTc J a J Lmax max, max max= −25 exp( /( )),,∆  (8f)

where R is the universal gas constant, TL is the leaf temperature 
in absolute units, and the subscript 25 indicates the evaluation of 
the parameter at a temperature of 25°C. This leaves the following 
free parameters to be specified in the photosynthesis model: Rd,25, 
Vcmax,25, Jmax,25, α, CJmax, and ΔHa,Jmax.
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