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ScienceDirect
Stimulus-driven gene expression is a ubiquitous feature of

biological systems, allowing cells and organisms to adapt their

function in a stimulus-driven manner. Neurons exhibit complex

and heterogeneous activity-dependent gene expression, but

many of the canonical mechanisms that transduce electrical

activity into gene regulation are promiscuous and convergent.

We discuss literature that describes mechanisms that drive

activity-dependent gene expression with a focus on those that

allow the nucleus to decode complex stimulus-features into

appropriate transcriptional programs.
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Introduction
Stimulus-dependent gene regulation is a core feature of

every cell, in every organism, and at every stage of life. An

intricate web of molecular signaling pathways links the

stimulus to the genomic response driving relevant

changes in function. Escherichia coli that have access to

glucose will produce the transporters and enzymes nec-

essary for its uptake and metabolism. Starve it of glucose,

but give it lactose, and the Lac operon is engaged,

revamping the cell’s metabolic capabilities in favor of

the available energy source. This ‘and-gate’ is elegant in

its execution: a transcriptional repressor is inhibited by an

early lactose metabolite), and a transcriptional activator

kicks in when the glucose concentration is low [1]. The

conjunction of these two events allows for the expression

of the operon, and so E. coli adapts its function in the

particular manner that allows its survival. The precise

coupling between input and output is a ubiquitous theme

in biological systems, with transcriptional regulation

closely aligned to fluctuations in functionally relevant

stimuli.
www.sciencedirect.com 
In neurons, the relationship between stimuli and gene

regulation remains mesmerizingly inscrutable. In the mid

80’s, several groups made the observation that extracel-

lular stimuli could trigger the expression of proto-onco-

genes including c-Fos and c-Myc (also called Fos and Myc)
in a variety of cell types [2–6]. Soon, several groups

demonstrated that seizures and sensory stimuli induced

Fos expression in the brain [7–9] and the field of activity-

dependent gene regulation in neurons was born.

Many of the stimuli critical to a neuron’s function arise

from synaptic activity and action potentials. How do

neurons, with their extraordinary morphologies and sig-

naling repertoires, tailor their transcriptional programs to

match these molecularly, spatially, and temporally com-

plex stimuli? We have made significant progress in the

past 30 years in understanding how signaling pathways

link global depolarization to gene regulation. Depolariza-

tion leads to calcium (Ca) influx through NMDA recep-

tors and L-type voltage-gated Ca channels (L-VGCCs).

These Ca signals engage a fleet of kinases, notably of the

ERK and CaMK families, that subsequently activate a

small number of phosphorylation-dependent transcrip-

tion factors (TFs), for example CREB, SRF, and

MEF2 which regulate gene expression ([10–14],

reviewed by Ref. [15]). At face value, this represents a

highly convergent program of activity-dependent gene

regulation. However, such convergence lacks the dexter-

ity necessary to drive programs of gene expression that

reflect the complexity of the neuronal stimulus space.

However, many examples of clear stimulus-specific genomic

regulation exist. In vivo, many experiences and pharmaco-

logical manipulations  transiently, and heterogeneously,

change the transcriptome of neurons [16–19]. Remarkably,

positive and negative experiences as well as those with

hedonicvalue oraddictive properties generate transcriptional

signatures that are distinct enough that the original experi-

ence can be inferred from the expression levels of a few genes

[20��]. This indicates that there are mechanisms that push

back against convergence of signaling pathways within a cell,

and support the articulation of stimulus-selective and expe-

rience-selective transcriptional responses. Here we discuss

some of the recent work that is beginning to reveal the layers

of refinement in these mechanisms (Figure 1).

Specificity that emerges from transcriptional
repressors
A first order mechanism that can contribute to the cus-

tomization of stimulus-specific gene regulation is the
Current Opinion in Neurobiology 2020, 63:131–136
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Mechanisms for communicating synaptic and neuronal activity to the nucleus. (a) Synaptic activity produces Ca signals via NMDA receptors and/

or L-VGCCs that drive signaling cascades that propagate to the soma. (b) Stimulus-dependent proteolysis of synaptic proteins, such as LRP8,

produces peptides that signal to the nucleus and interact with the genome. (c) Synaptically localized proteins, including Importins, transcriptional

repressors, and TF co-regulators, translocate to the nucleus in response to activity. (d) Synaptic activity induces local translation of TFs, for

example NPAS4 and ARNT1, which translocate to the nucleus. (e) Depolarization-induced Ca influx through L-VGCCs leads to activation of

kinases that phosphorylate transcription factors such as SRF, CREB, and MEF2. (f) Synaptic Ca signals (a) lead to translocation of kinases, such

as ERK, and TFs, such as NFAT, into the nucleus. (g) Depolarization leads to dynamic regulation of transcriptional repression.
induction of stimulus-selective transcription factors. Most

inducible TFs are somewhat promiscuous, sensitive to a

wide variety of stimuli when bath applied in vitro [12,21–

24]. The transcription factor NPAS4, however, is thus far

a notable and illustrative exception. NPAS4 is induced

robustly by depolarization [25], yet is largely insensitive

to neurotrophins, growth factors, or cAMP. Thus, NPAS4

is poised to execute depolarization-selective gene regu-

lation. Currently, little is known about how the transcrip-

tion of Npas4 itself is regulated, but it is clear that SRF
Current Opinion in Neurobiology 2020, 63:131–136 
binds the Npas4 gene and is necessary for its full induc-

tion [26]. At face value, this presents a paradox, as Npas4
induction exhibits more selectivity than SRF or other

mediators of stimulus-dependent transcription, suggest-

ing additional mechanisms contribute to the stimulus-

specificity.

A dynamic landscape of repression might shape the

activity-dependent transcriptional response in a way that

directs the convergent activity-dependent pathways
www.sciencedirect.com
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towards stimulus-selective transcriptional programs. This

possibility carries weight as it was recently demonstrated

that NCoR2, in association with ARNT2, suppresses the

expression of depolarization-induced genes in the

absence of depolarization. This suppression is decoupled

following depolarization, permitting transcription of the

NCoR2 bound genes [27�]. An additional mechanism for

dynamic repression of activity-regulated genes is

observed with the Class II HDACs which translocate

to the nucleus in response to stimuli and repress depolar-

ization induced genes, including Npas4 [28,29]. The

interaction between repressors and activators is by defi-

nition a competition; the absolute number of activating

and repressing proteins in the nucleus can sway the

outcome of this competition. Moreover, from an experi-

mental standpoint, it is easier to demonstrate induction

rather than repression of transcription. It will be essential

moving forward to assess these interactions in concert

using naturalistic stimuli that more accurately capture the

dynamic range of activity-dependent gene expression.

Specificity that emerges from temporal
dynamics
The specificity of a stimulus-dependent transcriptional

response also emerges from the duration and temporal

pattern of depolarization. Stimulus-dependent gene reg-

ulation has long been described as having early and late

phases that are translation independent and dependent,

respectively (reviewed by Ref. [30]), with only the early

response genes (ERGs) being the direct consequence of

the stimulus. Recently, it has been discovered that in

cortical neurons the early response elicited by direct

depolarization, disinhibition, or sensory experience can

be mechanistically subdivided into two stimulus dura-

tion-dependent components [31��]. The first requires

ERK signaling; the second is independent of ERK but

associated with open chromatin state. The mechanisms

driving this second stage may prove to be highly stimulus

selective, although this has yet to be determined.

Duration is not the only temporal feature that influences

gene regulation. In dissociated dorsal root ganglion neu-

rons, bursts of the same number of electrical stimuli lead

to different patterns of transcriptional regulation and TF

binding depending on the frequency and inter-burst

interval of the stimulus trains [32,33]. This demonstrates

that even within the same cell type, different patterns of

activity can be interpreted into different genomic

responses.

Specificity that emerges from the synapse
As telling as these results are, they are unable to distin-

guish between gene regulation that is triggered by syn-

aptic activity or action potentials. Indeed, distinct mech-

anisms that communicate synaptic activity to the nucleus

have been described, several of which are sensitive to the

location and distribution of the active synapses. For
www.sciencedirect.com 
example, P-ERK and NFAT are detected in the nucleus

in response to the activity of small numbers of synapses in

CA1 pyramidal neurons from organotypic cultures. In the

case of ERK, glutamate uncaging over as few as six spines,

when distributed over as many dendrites, produces an

NMDA receptor-mediated signal that leads to P-ERK in

the nucleus [34�]. For NFAT, uncaging over spines,

preferentially distributed throughout the distal dendrites,

triggers L-VGCC-mediated Ca spikes that propagate to

the soma and lead to translocation of NFAT from the

soma into the nucleus [35��]. Interestingly, in this latter

example, even though the synapses that are activated are

further from the soma, the signaling to the nucleus occurs

more rapidly, likely due to the use of voltage-gated ion

channels. Synaptically induced P-ERK accumulation is

much slower, requiring tens of minutes and a delay that

scales with the distance of the activated synapses from the

soma, suggesting the need for translocation of signaling

molecules from the dendrites to the soma and nucleus.

While clusters of synapses can collectively produce sig-

nals that are conveyed to the nucleus, even individual

synapses may have this capability by virtue of the com-

plement of molecules contained at and near synapses.

Transformative work out of the Martin lab has described a

number of synaptic molecules which undergo activity-

dependent nuclear translocation and which have the

potential to shape gene expression, including Importins,

transcriptional co-activators, and transcriptional repres-

sors [36–38]. This opens the possibility that the activity of

single synapses can tune gene regulation in a synapse-

specific manner

An intriguing example of this is seen with the dendriti-

cally localized protein Jacob. Global NMDA receptor

activation in cultured neurons leads to Jacob translocation

to the nucleus where it triggers the sustained dephos-

phorylation of CREB, synaptic pruning and cell death

[39]. In contrast, activation of synaptic NMDA receptors,

via disinhibition of cultures, leads to ERK-dependent

phosphorylation of dendritic Jacob, P-CREB and the

regulation of a plasticity-associated gene program

([40�]). Thus, building off the work of the Bading lab

[41], Jacob conveys information to the nucleus about the

activity of synaptic and extrasynaptic NMDA receptors

and elicits different programs of gene regulation

accordingly.

Synaptic activity can also lead to the proteolysis of syn-

aptic intramembrane proteins, liberating peptides that

signal to the nucleus (reviewed by Ref. [42]). This has

been shown to be the case with the low-density lipopro-

tein receptor-related protein 8 (LRP8). LRP8 is a com-

ponent of a multiprotein complex at excitatory synapses

that contains the NMDA receptor [43]. Coincident

NMDA receptor activation and Reelin binding leads to

LRP8 cleavage and translocation of the intracellular
Current Opinion in Neurobiology 2020, 63:131–136
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domain to the nucleus where it binds enhancers and

facilitates the transcription of many ERGs [44��]. For

Jacob, LRP8, and all molecules that signal synaptic

activity to the nucleus, it remains unknown how many

synapses need to be active to affect an impactful change

on gene regulation. To get to this point, additional

improvements in single-cell sequencing techniques that

can be used in combination with synapse-specific stimu-

lation paradigms and the tracking of small numbers of

molecules are needed.

Specificity that emerges from dendritic
translation
Through the work of many labs dendritic translation has

been shown to have stimulus, synapse, and transcript

specificity in a variety of systems ([23,45,46], reviewed

by Ref. [47]). However, relatively few have pointed to

activity-dependent dendritic translation as an additional

mechanism for signaling to the nucleus [48��,49,50].
Recent surveys of the ‘dendritic transcriptome’ have

identified many mRNAs, the overwhelming majority of

which encode proteins with a local function [51,52].

Transcriptome analysis excels at detecting mRNAs that

are abundant; the least numerous mRNAs, however, are

often not counted as ‘significantly enriched.’ As relatively

few nuclear signaling molecules are required to drive a

cellular response, these mRNAs are likely to be low

abundance, possibly accounting for their absence in these

datasets.

We have recently discovered an interesting example of

how dendritic translation can communicate information

about the activity of a spatially restricted population of

synapses to the nucleus. NPAS4 is induced by depolari-

zation [25] but it had been unclear if it was reporting

action potentials or synaptic activity to the nucleus. In

CA1 pyramidal neurons in acute slices, delivering a brief

train of action potentials leads to the transcription of

NPAS4 through conventional ERG pathways. NPAS4

induced through this mechanism heterodimerizes with

ARNT2, as has been previously described [53]. However,

synaptic activity also induces NPAS4, but through an

unconventional mechanism that is engaged by a spatially

restricted population of synapses. We have identified a

small pool of Npas4 mRNAs, which are distinctive in that

they have a long 5’ untranslated region (5’ UTR), that are

trafficked to a specific region of the dendrites. When

synapses in this region are active, the mRNAs are trans-

lated and NPAS4 protein is produced locally. Remark-

ably, a different NPAS4 binding partner, ARNT1, also

has mRNA in the dendrites; these mRNAs have a similar

localization to Npas4, are translated in response to the

same stimulus, and the two proteins heterodimerize

before being translocated to the nucleus. Critically, the

NPAS4-ARNT1 and NPAS4-ARNT2 heterodimers

exhibit distinct patterns of DNA binding, likely
Current Opinion in Neurobiology 2020, 63:131–136 
influencing distinct aspects of one or more transcriptional

programs [48��].

Dendritic translation of Npas4 and Arnt1 mRNA enables

NPAS4 to convey information originating from a select

population of synapses to the nucleus. While NPAS4 is

the first clear example of this, it is unlikely to be unique.

There are many other transcription factors with alterna-

tive 5’ UTRs that could be localized to the dendrites,

perhaps even with non-overlapping distributions and

translational dependencies. Stimulus-specific dendritic

translation of TF mRNAs may be able to serve as labeled

lines of communication with the nucleus.

Aspirations for the future
Neurons receive and send a constant stream of depolar-

izing signals which lead to gene regulation. A significant

challenge for the future is to understand how naturalistic,

and ultimately behaviorally driven, fluctuations of these

signals are communicated to the nucleus and decoded

into relevant changes in gene expression. This is particu-

larly important since artificial levels of activity can lead to

preternaturally high levels of second messengers, acti-

vated kinases, and inducible transcription factors that

obscure our ability to accurately assess the relationship

between stimuli and gene regulation. We are entering an

exciting era. As methods advance for delivering refined

stimuli that are informed by neuronal connectivity and

circuit architecture, we will continue to discover new

mechanisms that allow neurons to use stimulus-depen-

dent transcription to update their function.
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