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Abstract

In addition to producing profound subjective effects following acute administration, psychedelic 

compounds can induce beneficial behavioral changes relevant to the treatment of neuropsychiatric 

disorders that last long after the compounds have been cleared from the body. One hypothesis 

with the potential to explain the remarkable enduring effects of psychedelics is related to their 

abilities to promote structural and functional neuroplasticity in the prefrontal cortex (PFC). A 

hallmark of many stress-related neuropsychiatric diseases—including depression, post-traumatic 

stress disorder (PTSD), and addiction—is the atrophy of neurons in the PFC. Psychedelics 

appear to be particularly effective catalysts for the growth of these key neurons, ultimately 

leading to restoration of synaptic connectivity in this critical brain region. Furthermore, evidence 

suggests that the hallucinogenic effects of psychedelics are not directly linked to their ability 

to promote structural and functional neuroplasticity. If we are to develop improved alternatives 

to psychedelics for treating neuropsychiatric diseases, we must fully characterize the molecular 

mechanisms that give rise to psychedelic-induced neuroplasticity. Here, I review our current 

understanding of the biochemical signaling pathways activated by psychedelics and related 

neuroplasticity-promoting molecules, with an emphasis on key unanswered questions.
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Increasing preclinical1,2,3,4,5,6,7 and clinical8,9,10,11,12,13 evidence suggests that psychedelics 

produce therapeutic effects relevant to treating neuropsychiatric diseases like depression, 

PTSD, and substance use disorder (SUD). 14,15,16,17,18,19,20 Moreover, these effects exhibit 

rapid onset (within 24 h), occur after only a single or a few doses, and last long 

after the compounds have been cleared from the body. The sustained behavioral effects 

of psychedelics are truly remarkable and differentiate these compounds from traditional 

neurotherapeutics that must be administered daily. Currently, it is unclear exactly how 

psychedelics produce such long-lasting effects. One hypothesis is that psychedelics induce 

mystical-type experiences that can facilitate interactions with therapists, enable patients to 

gain insight into their disorders, and perhaps even enhance the placebo effect.21,22,23,24 

Another non-mutually exclusive explanation involves the ability of psychedelics to promote 

structural and functional neuroplasticity in the prefrontal cortex (PFC) enabling pathological 

circuits controlling mood, fear, and reward to be repaired.25,26,27,28

Cortical atrophy and dysfunction underlie many stress-related neuropsychiatric diseases 

including depression, PTSD, and SUD.29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44 Thus, 

compounds capable of rapidly and robustly re-growing atrophied neurons in the PFC have 

broad therapeutic potential. Our group has hypothesized that compound-induced cortical 

neuron growth might explain why psychedelics produce therapeutic effects across several 

distinct neuropsychiatric diseases,45 giving them the semblance of panaceas. Psychedelics 

belong to a broader class of compounds known as psychoplastogens (Figure 1),46 and 

unlike other small molecules capable of promoting induced plasticity (iPlasticity)47 such 

as fluoxetine, psychoplastogens produce robust, and lasting changes in cortical neuron 

growth following a single administration. The list of known psychoplastogens continues 

to grow and includes classic serotonergic hallucinogens such as lysergic acid diethylamide 

(LSD), psilocin, N,N-dimethyltryptmaine (DMT), and 2,5-dimethoxy-4-iodoamphetamine 

(DOI),6,7,48 entactogens like 3,4-methylenedioxymethamphetamine (MDMA),48 oneirogens 
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like ibogaine,49 deliriants like scopolamine,50 and dissociatives like ketamine.51,52,53 

Moreover, several non-hallucinogenic psychoplastogens, such as tabernanthalog (TBG) 

have recently been identified,49,54,55 suggesting that it may be possible to decouple 

the hallucinogenic effects of psychedelics from their sustained beneficial effects on 

behavior,56,57,58 though this hypothesis requires further testing in humans.

Penzes and co-workers were the first to demonstrate that serotonergic psychedelics can 

impact structural neuroplasticity.59 Using cultured cortical neurons, they demonstrated that 

DOI transiently increased dendritic spine size 30 mins after treatment, but that spine 

size returned to baseline after an hour. Muma and co-workers later demonstrated that 

DOI-induced changes in spine morphology involve 5-HT2A/5-HT2C-mediated activation 

of transglutaminase, Rac1, and Cdc42.60 In addition to promoting changes in spine 

morphology, Shiga and co-workers demonstrated that DOI increases spine density in 

embryonic rat cortical cultures treated for 24 h.61 They also showed that activation of 5-HT2 

receptors by DOI increases the size of cortical neuron dendritic growth cones in vitro.62

All of the early work studying the effects of psychedelics on structural plasticity had been 

performed with DOI, leaving open the possibility that the effects of DOI on neuronal 

structure could be an inherent property of the amphetamine scaffold rather than a general 

attribute of psychedelics. To address this question, our group directly compared the 

psychoplastogenic effects of psychedelics from the amphetamine, tryptamine, and ergoline 

families.48 We found that psychedelic compounds across diverse chemical space could 

all robustly promote neuritogenesis, spinogenesis, and synaptogenesis in rat embryonic 

cortical cultures,48 and that these changes can be induced by only transient stimulation (~1 

h).63 Interestingly, unlike DOI, D-amphetamine was unable to promote neuritogenesis,48 

demonstrating that the psychoplastogenic effects of DOI were due to its pharmacological 

properties rather than its core chemical structure. In vivo, D-amphetamine has been shown 

to promote growth in the medial PFC, though it decreases spine density in the orbital PFC 

and has no effect on neuronal growth in the parietal and occipital cortices.64,65,66 Moreover, 

these effects were observed after chronic dosing, which might yield different results than 

acute treatment. Like D-amphetamine, we found that serotonin did not promote the growth 

of cultured cortical neurons,48 suggesting that psychedelics have a unique ability to promote 

structural neuroplasticity.

In addition to producing psychoplastogenic effects in vitro, psychedelics also impact 

neuronal structure in vivo and across species (i.e, rodents and Drosophila).48 We found 

that a single administration of DMT to rats led to increased dendritic spine density measured 

in the PFC long after the compound had been cleared from the body. Moreover, this 

change in structural plasticity was accompanied by functional changes as well, including 

sustained increases in the amplitude and frequency of spontaneous excitatory postsynaptic 

currents (sEPSCs).48 In collaboration with Yi Zuo and co-workers, we performed two-

photon imaging in live mice to demonstrate that both hallucinogenic (i.e., DOI) and non-

hallucinogenic (i.e., TBG) psychoplastogens increase the rate of spine formation, but not 

elimination, over the course of 24 h.49 Furthermore, a single dose of TBG partially rescued 

dendritic spine loss induced by unpredictable mild stress and completely normalized the 

activity of cortical neurons.67 Following these studies, Kwan and co-workers reported that 
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a single administration of psilocybin increases cortical spine density for at least a month 

in mice, with females responding more robustly than males.6 Using a recently developed 

PET ligand, Knudsen and co-workers demonstrated the psilocybin increases cortical density 

of the presynaptic marker synaptic vesicle glycoprotein 2A (SV2A).68 Taken together, 

these long-lasting changes in neuronal structure and function could potentially explain why 

psychoplastogens produce sustained behavioral effects after a single dose.

Like psychedelics, several non-serotonergic psychoplastogens, including ketamine 

and scopolamine, increase dendritic spine density in the PFC50,51,52 and promote 

dendritogenesis in cortical cultures.48,63 Recently, an elegant study by Liston and co-

workers demonstrated a causal relationship between ketamine-induced spine growth in the 

PFC and the long-lasting antidepressant-like behavioral effects of the drug.53 While it is 

reasonable to hypothesize that spine growth in the PFC also underlies the long-lasting 

antidepressant-like effects of psychedelics in rodents, an experiment testing this hypothesis 

has not yet been performed. Interestingly, the effects of ketamine on spine density 

and antidepressant-like behavior last for approximately one week,69 while the effects of 

psilocybin appear to be significantly more enduring.2,6 Though all psychoplastogens appear 

to engage similar downstream biochemical signaling pathways leading to neuronal growth, 

their primary molecular targets can be distinct.26,70 For example, ketamine and scopolamine 

target NMDA and muscarinic receptors, respectively, while serotonergic psychedelics exert 

their primary effects through activation of 5-HT2A receptors.

Serotonergic psychedelics exhibit complex polypharmacology71 with many of these 

compounds targeting several GPCRs implicated in structural neuroplasticity including 5-

HT6 and 5-HT7 receptors.72,73,74,75,76 In fact, the unique polypharmacology of psychedelics 

might contribute to their psychoplastogenic and/or therapeutic effects.77 However, the one 

commonality shared by all classic serotonergic psychedelics is high affinity for 5-HT2 

receptors.78,79 There are three 5-HT2 receptor subtypes—5-HT2A, 5-HT2B, and 5-HT2C

—with 5-HT2A and 5-HT2C receptors being highly expressed in the brain. The exact 

contributions of 5-HT2A and 5-HT2C receptors to the effects of psychedelics have yet to be 

fully elucidated, though increasing evidence suggest that 5-HT2A receptor activation plays a 

critical role in both the hallucinogenic and psychoplastogenic effects of these compounds.

Glennon and co-workers found that the affinities of psychedelics for 5-HT2 receptors 

correlate very well with their human hallucinogenic potencies,80 and that 5-HT2A/5-HT2C 

antagonists can block the discriminative stimulus properties of psychedelics in rodents, 

suggesting that 5-HT2B activation does not play a role in their subjective effects.81 Blocking 

5-HT2 receptors in humans with the antagonist ketanserin eliminates hallucinations 

produced by both psilocybin82 and LSD,83,84 and the intensity of the hallucinogenic 

experience correlates with 5-HT2 receptor occupancy.85

Given the high sequence homology between 5-HT2A and 5-HT2C receptors, it has been 

challenging to identify selective pharmacological tools to disentangle their respective 

contributions to psychedelic-induced effects, though some evidence suggests that the 

5-HT2A receptor affinities of antagonists correlate better with their abilities to block 

the discriminative stimulus properties of psychedelics than do their 5-HT2C receptor 
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affinities.86 Given the selectivity issues associated with pharmacological probes, genetic 

tools have proven extremely valuable. Genetic knockout (KO) of 5-HT2A receptors 

completely abolishes psychedelic-induced head-twitch response (HTR) behavior in mice,87 

while 5-HT2C receptor KO only leads to a ~50% reduction.88 Potency in the HTR assay 

correlates exceptionally well with human hallucinogenic potency across a wide range of 

psychedelic compounds.89,90

Like their hallucinogenic effects, the psychoplastogenic effects of psychedelics appear 

to be mediated by 5-HT2A receptors. While ketanserin completely blocks the ability 

of psychedelics to promote dendritogenesis, spinogenesis, and synaptogenesis in cortical 

cultures,48 ketanserin pretreatment only leads to a partial block of psilocybin-induced 

structural plasticity in vivo.6 The inability of ketanserin to completely block the effects 

of psilocybin in vivo is likely due to pharmacokinetic considerations, as ketanserin is 

known to exhibit poor brain penetration91 and only occupies ~30% of cortical 5-HT2A 

receptors when administered to rats at 1 mg/kg.92 Our group has found that the passive 

diffusion of ketanserin across non-polar membranes is surprisingly poor, as measured via a 

PAMPA assay (unpublished results). To avoid the issues associated with 5-HT2 antagonists, 

González-Maeso and co-workers recently used 5-HT2A receptor KO mice to demonstrate 

that these receptors are critical for the increases in spine density observed following 

DOI administration.7 While evidence strongly suggests that 5-HT2A receptors mediate the 

psychoplastogenic effects of psychedelics, it is still unclear why serotonin cannot produce 

similar effects on structural plasticity.48

Though the sequences of 5-HT2A receptors are very similar across species, there are 

several key differences between the human and rodent receptors that lead to functional 

differences. In humans, residue 242 is a serine, while it is an alanine in rodents. In the 

human receptor, this particular serine can form a hydrogen bond with certain ligands, 

drastically impacting their binding potencies and kinetics.93,94,95 Additionally, the rat and 

human 5-HT2A receptors exhibit differences in recycling and internalization, which have 

been linked to their divergent C-terminal sequences.96 These important differences should be 

taken into consideration when evaluating psychoplastogenic effects across species.

Exactly how 5-HT2A receptor stimulation leads to structural plasticity remains a mystery, 

though several clues have emerged. Like ketamine and scopolamine,50,51 psychedelics 

seem to require TrkB, AMPA receptor, and mTOR signaling to produce psychoplastogenic 

effects48,63,97 with mTOR being a critical downstream kinase responsible for producing 

plasticity-related proteins.98 Using shotgun proteomics, Rehen and co-workers found that 

5-MeO-DMT modulated levels of proteins associated with structural neuroplasticity in 

cerebral organoids.99

The prevailing hypothesis is that both ketamine and psychedelics induce a glutamate 

burst100,101,102,103 leading to AMPA receptor activation and subsequent secretion of brain-

derived neurotrophic factor (BDNF).104,105 Secreted BDNF then binds to TrkB resulting in 

mTOR activation. As mTOR activation is known to increase the production of BDNF,106 

and BDNF can facilitate nonexocytotic glutamate release,107 the pathway can stay activated 

for some time though this autoregulatory feedback loop.63
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While psychoplastogens appear to catalyze neuronal growth processes involving AMPA 

receptors, TrkB, and mTOR, several questions remain. Activation of AMPA receptors seems 

to be necessary for psychoplastogen-induced neuronal growth, but it is unclear if a large 

glutamate burst is essential. Psychedelic- and ketamine-induced glutamate release in the 

cortex has been hypothesized to result in hallucinogenic effects through increased cortical 

excitation.108 Given that non-hallucinogenic analogs of psychedelics can produce similar 

psychoplastogenic effects,49,54,55 it is unclear if a large glutamate burst is critical to turn on 

biochemical pathways leading to sustained neuronal growth. Moreover, several alternative 

mechanisms do not invoke a glutamate burst to explain the effects of ketamine on pyramidal 

neuron structure and function. Monteggia and co-workers have hypothesized that ketamine 

might promote neuronal growth through homeostatic synaptic upscaling,109,110 while Kwan 

and co-workers suggest that ketamine might increase pyramidal neuron excitability by 

blocking NMDA receptors on GABAergic neurons within cortical microcircuits.26

Several studies have demonstrated that BDNF plays a critical role in mediating the effects 

of ketamine and scopolamine. The antidepressant effects of ketamine are absent when 

the drug is administered to inducible BDNF KO mice111 or Val66Met mutant mice.112 

Similarly, infusion of an anti-BDNF antibody into the PFC can block the antidepressant-

like effects of scopolamine.113 While it is largely assumed that BDNF is essential to the 

psychoplastogenic effects of serotonergic psychedelics, similar mechanistic studies have not 

yet been performed.

Though a causal link between BDNF and psychedelic-induced neuroplasticity has not 

yet been definitively established, psychedelics do increase BDNF gene expression in the 

cortex, and this effect is blocked by pretreatment with a 5-HT2A receptor antagonist.114 

Psychedelics also increase the expression of immediate early genes (IEGs) associated with 

neuroplasticity such as c-Fos, arc, egr-1, and egr-2, among others, and these increases 

in expression are abolished by 5-HT2A receptor antagonists or in 5-HT2A receptor KO 

mice.87, 115,116,117,118,119,120,121,122,123,124,125,126 Using selective inhibitors, Vaidya and 

co-workers found that psychedelic-induced expression of plasticity-related genes required 

activation of both CaMKII and MAPK pathways.127 Even though psychedelics produce 

profound, long-lasting changes in behavior, they induce differential expression of relatively 

few genes.7,128,129 Interestingly, a recent study suggests that a single administration of DOI 

leads to sustained epigenomic changes in the frontal cortex of mice, and that these changes 

were primarily found at enhancer regions of genes implicated in neuroplasticity.7 Given that 

the antidepressant-like effects of serotonergic psychedelics appear to be more sustained than 

those of ketamine,2 it would be interesting to directly compare the long-lasting epigenomic 

profiles of these classes of psychoplastogens.

Canonical G protein signaling pathways are believed to be responsible for some, but not 

all, of the gene expression changes observed after treatment with psychedelics.87,120,127 The 

5-HT2A receptor typically couples to Gq,130 and thus, stimulation of 5-HT2A receptors 

can lead to activation of phospholipase C (PLC), the production of inositol triphosphate 

(IP3), and an increase in intracellular calcium.131,132,133 Psychedelics such as LSD, DOI, 

and 5-MeO-DMT act as partial agonists of this pathway, as do several non-hallucinogenic 

5-HT2A ligands such as lisuride, 6-F-DET, and TBG.49,134,135,136,137,138 Increased c-Fos 

Olson Page 6

Biochemistry. Author manuscript; available in PMC 2023 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



expression following treatment with either hallucinogenic or non-hallucinogenic agonists 

of the 5-HT2A receptor is abolished in 5-HT2A receptor KO neurons or by pretreatment 

with a PLC inhibitor.87,120,127 However, the contribution of Gq signaling to the behavioral 

effects of psychedelics is unclear given that non-hallucinogenic 5-HT2A receptor ligands 

can activate Gq, and DOI still produces a robust HTR in Gq KO mice.139 Moreover, it is 

currently unknown what role, if any, canonical Gq activation plays in the psychoplastogenic 

effects of psychedelics. Full agonists like serotonin do not necessarily promote plasticity, 

and partial agonists like LSD can induce large increases in structural plasticity.48

In addition to activating PLC, psychedelics have also been shown to increase arachidonic 

acid release through activation of phospholipase A2 (PLA2),140,141 While this pathway is 

quite opaque compared to the pathway leading to PLC activation, it appears that it may 

require Gi/o, Gβγ, and G12/13 in NIH3T3–5HT2A cells.142 Cellular context seems to be 

critical for determining which signaling pathways psychedelics can activate, as Roth and 

co-workers recently used TRUPATH143 to demonstrate that LSD selectively activates Gq, 

G11, and G15 in HEK293T cells while Gonzalez-Maeso, Meana, and co-workers have shown 

that psychedelics can activate Gi in neurons.87,144 Given that non-hallucinogenic 5-HT2A 

agonists do not appear to be capable of activating Gi, yet they can promote neuroplasticity, it 

is unclear what role Gi signaling plays in the psychoplastogenic effects of psychedelics.

Stimulation of 5-HT2A receptors can activate a variety of other downstream effectors known 

to be involved in cell growth including, but not limited to, ERK,142,145 JAK2,146 and 

GSK3β,147 though no studies to date have assessed the roles of these key proteins in the 

psychoplastogenic effects of psychedelics. Similarly, β-arrestin activation can play important 

roles in the downstream effects of 5-HT2A ligands,148,149,150,151,152 but we currently do not 

know if β-arrestin is involved in psychedelic-induced structural neuroplasticity.

Given that the potencies and efficacies of 5-HT2A ligands for activating various 5-HT2A-

dependent signaling cascades do not correlate well with either their hallucinogenic or 

psychoplastogenic effects, we were interested in developing a direct fluorescence readout 

of 5-HT2A receptor conformation. To achieve this goal, we fused a circularly permuted 

green fluorescent protein to the third intracellular loop of the 5-HT2A receptor.55 Activation 

and inactivation of the sensor increases and decreases fluorescence intensity, respectively. 

Interestingly, when the sensor is expressed in HEK293T cells, its activation correlates 

very well with human hallucinogenic potency. Moreover, non-hallucinogenic agonists of 

the PLC pathway like lisuride, TBG, and 6-F-DET act as inverse agonists of this sensor. 

Given its ability to predict hallucinogenic potential across a wide range of structurally 

diverse compounds, we started calling this sensor psychLight.55 While psychLight is quite 

good at predicting hallucinogenicity, the current version of the sensor cannot predict 

psychoplastogenicity.

Ultimately, the integration of various 5-HT2A receptor signaling pathways can lead 

to compound-specific changes in the phosphoproteome and/or transcriptome. Several 

efforts have attempted to distinguish between hallucinogenic and non-hallucinogenic 5-

HT2A receptor agonists by comparing their phosphoproteomic145,153 or transcriptomic 

signatures.87,120 While these initial results are promising, the effects of many more 
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compounds from diverse chemical classes need to be assessed before any claims can be 

made about a particular phosphorylation or gene expression pattern being a hallmark of 

one group of compounds over another. Similar efforts should be undertaken to compare 

proteomic, phosphoproteomic, and transcriptomic signatures of psychoplastogens against 

their structurally related non-psychoplastogenic congeners.

Though we know relatively little about how 5-HT2A receptor signaling converges on 

activation of TrkB, AMPA receptors, and mTOR to promote neuronal growth, it is 

clear that ligands for this receptor can exhibit a high degree of functional selectivity 

or biased agonism.87,154,155,148,156,157 The 5-HT2A receptor interacts with a number of 

scaffolding proteins158 and forms heterodimeric complexes with metabotropic glutamate,155 

dopamine,159 cannabinoid,160 and serotonin161 receptors that can alter its signaling profile, 

though the in vivo functional relevance of these heterodimers is highly debated.162 The 

5-HT2A-mGlu2 heterodimer155,163,164,165 has received a lot of attention given that it seems 

to be selectively activated by hallucinogens.155 It is interesting to note that DOI-induced 

BDNF expression in the cortex can be modulated by mGlu2 receptor ligands.166 Thus, it is 

possible that psychedelics induce glutamate release through a presynaptic mechanism167,168 

involving a putative 5-HT2A-mGlu2 heterodimer. In theory, this glutamate burst could 

activate AMPA receptors leading to upregulation of BDNF/TrkB signaling. However, the 

role of a 5-HT2A-mGlu2 heterodimer in the psychoplastogenic effects of psychedelics is 

still unclear given that non-hallucinogenic ligands do not appear to activate this heterodimer 

and yet several non-hallucinogenic psychoplastogens have recently been discovered.

Because it is still unknown which 5-HT2A receptor signaling pathways are most 

critical to promoting neuronal growth (Figure 2), we focused our medicinal chemistry 

efforts on using phenotypic screening in neuronal cultures to identify non-hallucinogenic 

psychoplastogens.49,54,55 These compounds are structural analogs of psychedelics that 

do not induce a HTR, but are still capable of producing robust psychoplastogenic 

effects and sustained therapeutic behavioral responses after a single administration. 

Currently, tabernanthalog (TBG) is the most studied non-hallucinogenic psychoplastogen 

having demonstrated the ability to repair neural circuitry damaged by chronic stress67 

and to produce long-lasting behavioral effects relevant to treating both depression and 

addiction.49,169 Efforts to design new non-hallucinogenic psychoplastogens have relied 

heavily on structure-activity relationship studies, but with the advent of high resolution 

structures of the 5-HT2A receptor in both active and inactive states,95,170 rational design of 

improved psychedelic-related therapeutics might be possible in the near future.

CONCLUSION

Biochemical signaling resulting from 5-HT2A receptor activation is complex and depends 

on both the nature of the ligand and the cellular environment. In order to understand 

which pathways lead to psychedelic-induced neuroplasticity, we need to use a variety 

of pharmacological ad genetic tools to block these pathways in neurons. Additionally, 

the development of high-throughput assays to assess psychoplastogenic effects will be 

essential for correlating psychoplastogenic potencies and efficacies with those of more 

traditional assays relevant to 5-HT2A receptor signaling. While we know that 5-HT2 

Olson Page 8

Biochemistry. Author manuscript; available in PMC 2023 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



receptors appear to be essential for the psychoplastogenic effects of psychedelics, several 

key questions remain. Does the genetic localization of 5-HT2 receptors impart a level 

of cell-type selectivity in the psychoplastogenic effects of psychedelics? Do psychedelics 

induce growth of non-neuronal cells expressing 5-HT2 receptors? These are some of 

the many questions that need to be answered if we are to engineer better neuroplasticity-

promoting therapeutics based on psychedelics. For other perspectives on psychedelic-

induced neuroplasticity and the molecular mechanisms of psychedelics, please see several 

excellent recent reviews.25,71,171,172
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Figure 1. 
Chemical structures of psychoplastogens from various pharmacological classes

Olson Page 19

Biochemistry. Author manuscript; available in PMC 2023 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Biochemical pathways activated by psychedelics. Pathways with with strong, moderate, 

and weak supporting evidence are indicated with black, dark grey, and light grey arrows, 

respectively.
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