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Abstract

A biotinylated heparosan hexasaccharide was synthesized using one-pot multi-enzyme strategy, in 

situ activation and transfer of N-trifluoroacetylglucosamine (GlcNTFA) to heparin backbone 

significantly improved the synthetic efficiency. The biotinylated hexasaccharide could serve as a 

flexible core to diversify its conversion into heparan sulfate isoforms with potential biological 

applications and therapeutics

Heparosan is a linear polysaccharide copolymer consisting of α-1,4-linked D-glucosamine 

(GlcN) and β-1,4-D-glucuronioc acid (GlcA) disaccharide repeating unit (GlcN-α-1,4-GlcA-

β-1,4). It belongs to the glycosaminoglycans (GAGs) family and is found in the capsule 

polysaccharide of certain pathogentic bacteria. Heparosan also serves as the biosynthetic 

precursor of heparan sulfates (HSs), which are formed by extensive modifications of the 

heparosan backbone, namely, sulfations (O-sufations and N-sufations) and epimerization 

(C5 epimerization of GlcA to L-iduronic acid).1 Heparin and HS bind to a variety of protein 

ligands and regulate a wide variety of important biological activities, including blood 

coagulation, bacterial and viral infection, inflammation, growth factor regulation, cell 

adhesion, cell growth, tumor metastasis, lipid metabolism and diseases of the nervous 

system.2

Heparin and HS have been widely used as anticoagulant drugs for a century due to their 

capacity of strong binding to antithrombin.3 Synthetic homogenous heparins can eliminate 

detrimental effects caused by contamination of heterogeneous heparins purified from natural 

sources heparins.4 FDA-approved synthetic pentasaccharide (Fondaparinux or Arixtra®) 
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exhibits antithrombin III mediated anti-factor Xa activity for prevention and treatment of 

venous thrombolytic disorders5 (Figure 1). To date, there is still no efficient antidote 

available to neutralize the anticoagulant effect of fondaparinux in the case of hemorrhage 

due to overdose.6 Extensive efforts have been focused on the development of neutralizable 

strategy for heparin-based antithrombotic treatment.7 It was proposed that stable protein-

small molecule complexes, which are formed by strong binding of non-toxic avidin with 

biotin moiety of biotinylated HS drug molecules, facilitate the drug’s fast clearance from 

circulation.4a,8 Therefore, the biotinylated-fondaparinux conjugate can be neutralized by 

avidin to reverse the anticoagulant effect of fondaparinux.

Although much progress has been made in the chemical synthesis of heparin and HS, there 

are still significant challenges to synthetic chemists.9 These challenges include: 1) formation 

of the challenging 1,2-cis linkage from the GlcN donor; 2) tedious and non-productive 

protection/deprotection manipulations resulting in lengthy steps and low overall yields; 3) 

difficult access to L-iduronic acid and L-idose; 4) the necessity of choosing a set of 

orthogonal protecting groups for selective sulfations at desired positions, which often lead to 

unexpected difficulties.10 During the last decade, numerous methodologies, including the 

different protection strategies utilized for GlcN donors and acceptors (e.g., the late stage 

oxidations of glucose into GlcA after glycosylation), have been developed to address such 

limitations.11 However, large scale chemical synthesis of heparin and HSs in a pure and 

fully deprotected form is still not a routine practice. Alternatively, recent advances in 

identification and understanding of heparin biosynthetic enzymes’ substrate specificity in 

assembly of heparin and HS have made in vitro enzymatic heparin reconstitution practical 

and realistic.12 In this communication, we present a highly efficient one-pot multi-enzyme 

system to chemo-enzymatically construct a biotinylated heparosan hexasaccharide in a 

straightforward means, which can be used for multiple later-stage enzymatic modifications 

to furnish a library of HS-like isoforms bearing a highly valuable biotin moiety that could 

allow wide varieties of biological applications. For example, biotin could serve as an 

anchoring tip to immobilize such a oligosaccharide library onto the streptavidin-coated 

microarray surface for identification of previously unknown glycan-binding proteins (GBPs) 

at the molecular-level, providing insight into the potential relationship between sulfation/

epimerization patterns and protein binding specificities.13 Another important factor of 

designing such biotin conjugate arises from the fact that a fondaparinux-like biotin 

conjugate could be constructed by subsequently selective enzymatic epimerization, N-, 2-O-, 

6-O-, 3-O-sulfations (Figure 1).12g This will provide an opportunity for efficient regulation 

and management of its anticoagulation treatment to prevent hemorrhage by avidin 

neutralization.14

To date, several enzyme systems for heparosan synthesis have been identified. In 

Escherichia coli (E. coli), a pair of glycosyltransferases KfiA and KfiC are used to transfer 

hexosamine and glucuronic acid UDP precursors respectively to the non-reducing end of the 

growing chain.15 While in Pasteurella multocida (P. multocida), bifunctional 

glycosytransferase PmHS1 or PmHS2 is used to execute consecutive incorporation of 

hexosamine and glucuronic acid.16 Interestingly, the heparosan synthases from P. multocida 

(PmHS1 and PmHS2) possess both UDP-GlcN and UDP-GlcA transfering sites in the same 
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peptide chain, and employ both inverting and retaining polymerization mechanisms. 

Recently, KfiA from E. coli K5 and PmHS2 from P. multocida have been used in the 

synthesis of heparosan with a disaccharide as chain initiating scaffold, which is derived from 

degradation of heparosan by fermentation.12g, 17 However, the use of chemically modified 

biotinylated GlcA as a chain initiating scaffold, and in situ activation and transfer of N-

trifluoroacetylglucosamine (GlcNTFA) to heparosan backbone in one-pot multi-enzyme 

system have not been reported.

Prior to initiating heparin synthesis, the first issue needed to be addressed is whether the 

GlcA-biotin conjugate 5 could be tolerated and recognized by either KfiA or PmHS2 to 

form GlcNTFA-α-1-4-GlcA-biotin disaccharide using the corresponding sugar nucleotide 

donors. To this end, GlcA-biotin conjugate 5 was chemically synthesized.18 As outlined in 

Scheme 1, the synthesis started from glucose pentaacetate 1. Lewis acid-mediated 

glycosylation of 1 with 3-azidopropanol gave azido-glucoside 2 in 60% yield, which then 

went through Zemplén deacetylation, selective TEMPO-mediated oxidation of primary 

hydroxyl group of glucose, azide reduction by NaBH4 in the presence of palladium catalyst, 

and final conjugation with activated biotin succinimide ester (Biotin-OSu) 4. After 

purification by silica gel column chromatography, GlcA-biotin 5 was provided with 40–45% 

overall yield (over 4 steps) from compound 2. Remarkably, the synthesis of GlcA-biotin 5 
starting from compound 1 required only two silica gel column chromatographic purification 

steps, dramatically facilitating its synthetic efficacy. In fact, conjugate 5 was easily 

synthesized in grams scale in one batch.

With the substrate 5 in hand, KfiA from E. coli K5 and PmHS2 from P. multocida P-1059 

were overexpressed by E. coli BL21 (DE3) expression system and purified, respectively. 

Specifically, the KfiA gene from E. coli K5 was cloned and expressed as a fusion enzyme 

with maltose-binding protein (MBP) at the N-terminal and histidine6X-tag at the C-terminal. 

PmHS2 was cloned and expressed as an N-terminal histidine6X-tagged recombinant protein. 

In this work, the bi-functional PmHS2 was chosen as the sole chain elongation enzyme 

owing to its easier over-expression compared to KfiA in E. coli BL21 (DE3) expression 

system. Initially, one-pot three-enzyme system was used to convert GlcA-biotin conjugate 5 
to disaccharide 6. The reaction mixture (pH 7.0) containing GlcA-β-biotin conjugate 5 (1.0 

eq.), GlcNTFA (1.2 eq.), ATP (1.2 eq.), UTP (1.2 eq.), MgCl2, N-acetyl-hexosamine 1-

kinase (NahK)19, N-acetylglucosamine-1-phosphate uridyltransferase (PmGlmU) 20 and 

PmHS2 were incubated in one-pot fashion at 37 °C for 2 days to afford disaccharide 6 in 

90% yield (Schem 2, step 1). It’s worth mentioning that UDP-GlcNTFA donor is in situ 

generated using NahK and PmGlmU in the presence of GlcNTFA, ATP and UTP. The use 

of UDP-GlcNTFA rather than UDP-GlcNAc as donor substrate is based on the 

consideration of later stage N-sulfation for future preparation of heparin-like 

oligosaccharide, since trifluoroacetyl (TFA) group could be removed under mild basic 

conditions. Subsequently, enzymatic glycosylation reaction of 6 (1.0 eq.) with UDP-GlcA 

(1.0 eq.) using bi-functional PmHS2 in the presence of MnCl2 and Tris-HCl buffer (pH 7.0) 

at 37°C overnight to afford trisaccharide 7 in 88% yield (Scheme 2, step 2). Encouraged by 

the results of synthesis of disaccharide 6, we attempted to integrate UDP-GlcNTFA 

preparation with chain elongation in a one-pot three-enzyme system using simple GlcNTFA 
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as starting substrate to synthesize tetrasaccharide 8 (repeat step 1). As anticipated, the 

overall reaction rate was dramatically accelerated and the reaction completed within 24 h, 

providing far more straightforward stoichiometric control of the reaction than the stepwise 

version. As depicted in Scheme 2, the whole chain elongation was performed by repeating 

step 1 and step 2 alternatively. The progress of each chain elongation step was conveniently 

monitored by thin layer chromatography (TLC), in which the reactants and products could 

well be resolved using the combination of ethyl acetate, methanol, water and acetic acid as 

developing solvent system (typical TLC in Supporting Information S5). The corresponding 

products were purified by Biogel@ P2 size-exclusion chromatographic column. 

Interestingly, the enzymatic reaction normally proceeded at a faster rate as the chain became 

longer, indicating the preference and dependence of PmHS2’s activity on the acceptor 

length. In addition, the oligosaccharide acceptors in each elongation step could be cleanly 

and completely converted by PmHS2 to form the desired products. In last step of 

hexasaccharide preparation, non-reducing end terminal was capped with GlcNAc residue 

instead of GlcNTFA to provide a heparosan backbone potentially compatible for future 

selective epimerization of internal GlcA residue flanked by two GlcNTFA units into 

corresponding iduronic acid (IdoA) isoform after N-sulfation.12g Remarkably, by 

capitalizing on our improved one-pot three-enzyme approach and convenient monitoring of 

the reaction progress by a quick TLC analysis, one run of the whole synthetic scheme 

starting from 60 mg of GlcA-biotin conjugate 5 yielded 65 mg of the final biotinylated 

hexasaccharide 10 with 33% overall yield (averaging 80% yield of each step) in two weeks.

In summary, we have developed a streamlined, preparative scale and HPLC-free 

chemoenzymatic synthesis of biotinylated heparosan hexasaccharide. The synthesis features 

integration of in situ UDP-GlcNTFA generation with heparin backbone elongation in one-

pot fashion. As a result of such technical reformation, the overall synthetic efficacy is 

significantly increased. The flexible core hexasaccharide backbone allows multiple later-

stage enzymatic modifications to furnish a library of HS as highly useful molecular probes 

to dissect the heparin/heparin binding proteins’ interactions in biological settings, owing to 

that biotin moiety could be fished out by streptavidin. Efforts towards the final construction 

of fondaparinux-like biotin conjugate, which is formed via consecutive modifications of 10 
by N-sulfation, selective epimerization of internal GlcA into iduronic acid (IdoA) and 2-O-, 

6-O-, 3-O-sulfations, are currently underway.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Fondaparinux (Arixtra®) and its analogues
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Scheme 1. 
Synthesis of GlcA-biotin conjugate 5
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Scheme 2. 
Sequential one-pot multi-enzyme synthesis of biotinylated heparosan hexasaccharide 10
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