
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Software Assists to On-chip Memory Hierarchy of Manycore Embedded Systems

Permalink
https://escholarship.org/uc/item/8bx2m2hw

Author
Namaki Shoushtari, Abdolmajid

Publication Date
2018

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
availalbe at https://creativecommons.org/licenses/by/4.0/

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8bx2m2hw
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA,
IRVINE

Software Assists to On-chip Memory Hierarchy of Manycore Embedded Systems

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Computer Science

by

Majid Namaki Shoushtari

Dissertation Committee:
Professor Nikil Dutt, Chair

Professor Alex Nicolau
Professor Elaheh Bozorgzadeh

2018

Portion of Chapter 2 c© 2017 IEEE
Portion of Chapter 2 c© 2018 ACM
Portion of Chapter 3 c© 2015 IEEE
Portion of Chapter 3 c© 2017 IEEE

All other materials c© 2018 Majid Namaki Shoushtari

DEDICATION

In memory of my dear aunt Shahnaz, and my beloved grandmothers.

ii

TABLE OF CONTENTS

Page

LIST OF FIGURES vii

LIST OF TABLES xi

ACKNOWLEDGMENTS xii

CURRICULUM VITAE xiii

ABSTRACT OF THE DISSERTATION xvi

1 Introduction 1
1.1 Technology Implications . 1

1.1.1 Emerging Manycore Architectures . 1
1.1.2 Memory Subsystem of Manycores . 3

1.2 Workload Implications . 5
1.2.1 Data-intensive Workloads and Variation in their Memory Requirements 5
1.2.2 Error-Resilient Workloads . 6

1.3 Thesis Contributions and Organization . 7

2 Software-Programmable On-chip Memory Hierarchy 10
2.1 Introduction . 10
2.2 Prior Work on SPMs in Multicores and Manycores 14
2.3 Target System Architecture Template . 16

2.3.1 SPM Programming Model . 17
2.3.2 Architecture Model . 20
2.3.3 Execution Model . 21
2.3.4 Coherence Issues . 22
2.3.5 OS/Runtime Support . 23

2.4 Motivational Example . 24
2.5 ShaVe-ICE Details . 27

2.5.1 SPM Allocator . 28
2.5.2 Allocation Policies . 28

2.5.2.1 Non-preemptive Allocation Heuristics 29
2.5.2.1.1 Local Allocator(LA) 29
2.5.2.1.2 Random Remote Allocator (RRA) 30

iii

2.5.2.1.3 Closest Neighborhood Allocator (CNA) 30
2.5.2.2 Preemptive Allocation Heuristics 31

2.5.2.2.1 Closest Neighborhood with Guaranteed Local Share
Allocator (CNGLSA) 31

2.5.3 Hardware Support . 33
2.5.3.1 Distributed Memory Management Units 33
2.5.3.2 Network Protocol . 34

2.5.4 Data Movements in ShaVe-ICE . 35
2.5.4.1 Allocations/Deallocations 35
2.5.4.2 Accesses . 35
2.5.4.3 Data Migration . 36

2.6 SPM Sharing Evaluations . 37
2.6.1 Experimental Setup . 37
2.6.2 Remote vs. Off-chip Access Latencies 37
2.6.3 Memory Microbenchmark . 39
2.6.4 Performance Comparisons: ShaVe-ICE vs. Software Cache 41
2.6.5 Performance Comparisons: ShaVe-ICE Policies 42

2.6.5.1 Scenario 1: Core Underutilization 44
2.6.5.2 Scenario 2: Variation in Memory Working Set Size 46
2.6.5.3 Scenario 3: Reducing Network Traffic 47
2.6.5.4 Scenario 4: Guaranteeing SPM Share for Locally-pinned Thread 48

2.6.6 Energy Comparisons: ShaVe-ICE Policies 50
2.6.7 Experiments with Real Workload Mixes 51

2.7 Discussion on Overheads . 54
2.8 Cache+SPM and Shared Data Support Evaluations 56

2.8.1 Experiment 1: Coherence Overhead Due to False Sharing 57
2.8.2 Experiment 2: Coherence Overhead Due to Shared Data 58
2.8.3 Experiment 3: Dynamic Partitioning of Local Memory 59
2.8.4 Experiment 4: Sharing SPMs Between Cores 60

3 Approximate On-chip Data Storage 62
3.1 Introduction . 62
3.2 Prior Work on Memory Approximation . 64

3.2.1 Taxonomy of Prior Research on Approximate Memory Management . 64
3.2.2 Overview of Prior Research and Practices 69

3.3 Partially-Forgetful Memories . 80
3.4 Relaxed Cache . 82

3.4.1 Introduction . 82
3.4.2 Motivation . 84
3.4.3 Hardware Support . 86

3.4.3.1 Tuning Relaxed Ways Based on Architectural Knobs 87
3.4.3.2 Defect Map Generation and Storage 88
3.4.3.3 Non-Criticality Table . 90
3.4.3.4 Making Cache Controller Aware of Block’s Tag 91

3.4.4 Software Support . 91

iv

3.4.4.1 Programmer-Driven Application Modifications 91
3.4.4.1.1 Data Criticality Declaration 91
3.4.4.1.2 Cache Configuration 92

3.4.4.2 Runtime System . 95
3.4.5 Evaluations . 95

3.4.5.1 Experimental Setup . 95
3.4.5.2 Benchmarks . 97
3.4.5.3 Experimental Results . 97

3.4.5.3.1 Leakage Energy Savings 97
3.4.5.3.2 Fidelity Analysis 98
3.4.5.3.3 Performance Analysis 99

3.5 QuARK Cache . 101
3.5.1 Introduction . 101
3.5.2 STT-MRAM Reliability/Energy Trade-off Knobs 103

3.5.2.1 STT-MRAM Basics . 103
3.5.2.2 Reliability-Energy Knobs 104

3.5.3 The QuARK Approach . 105
3.5.3.1 Software Support . 106
3.5.3.2 Hardware Support . 107

3.5.3.2.1 QuARK Cache Approximation Table 108
3.5.3.2.2 QuARK Cache Controller 109
3.5.3.2.3 Support for Cache Fillings and Write-backs 109

3.5.4 Evaluations . 111
3.5.4.1 Experimental Setup . 111
3.5.4.2 Benchmarks . 112
3.5.4.3 Experimental Results . 113

3.6 Write-Skip SPM . 116
3.6.1 Introduction . 116
3.6.2 The Write-Skip Approach . 117

3.6.2.1 Read-Before-Write . 117
3.6.2.2 Approximate Equality . 117

3.6.3 Evaluations . 118
3.6.3.1 Approximate Value Locality 118
3.6.3.2 Output Fidelities . 120
3.6.3.3 Energy Consumption in On-chip Memory 121

3.7 Controlled Memory Approximation . 123
3.7.1 Introduction . 123
3.7.2 Problem Modeling . 125

3.7.2.1 Application Class . 125
3.7.2.2 Monitoring Quality at Runtime 126
3.7.2.3 Memory Approximation Knob(s) 126

3.7.3 Quality Control with Feedback Control Theory 127
3.7.4 Case Study: Video Edge Detection 129

3.7.4.1 Application Description and Error Metric 129
3.7.4.2 Memory Approximation Knob 129

v

3.7.5 System Identification . 129
3.7.5.1 Controller . 131
3.7.5.2 Fault Injection Mechanism 132
3.7.5.3 Input Dependency . 133
3.7.5.4 QoS Tracking . 133
3.7.5.5 Comparison . 133

4 Conclusions and Future Directions 137
4.1 Technical Contributions . 137
4.2 Future Directions . 138

Bibliography 140

vi

LIST OF FIGURES

Page

1.1 High-level overeview of the proposed software assisted memory hierarchy. . . 8

2.1 Number of memory accesses measured periodically for the execution of the
wikisort and fft benchmarks: utilization of memory resources changes within
a thread and between threads. 12

2.2 Software-assisted memory hierarchy vs. hardware-managed memory hierarchy.
Relative size of gray components shows their contribution in managing memory
hierarchy. 13

2.3 Number of CPU cycles that a thread has to be stalled for an SPM API to be
handled by the OS/HW. SPM page size is assumed to be 64 bytes. 19

2.4 A code snippet using SPM APIs. 19
2.5 A 4X4 example of target manycore architecture with software-assisted memory

hierarchy. 20
2.6 SPM manager. 23
2.7 ShaVe-ICE allocator is invoked when a thread Ti mapped on core Cj calls any

of the SPM APIs. It virtualizes and ultimately shares the entire distributed
SPM space between all the concurrently running threads. Dedicated hardware
assist enables remote allocations and remote memory accesses. 25

2.8 An example showing how sharing the entire SPM space improves the overall
performance of a 2X2 system with 3 thread running on it. The left-hand side
column shows the state of SPM allocations when allocations are limited to the
local SPM only; and right-hand side column shows the same scenario when
remote allocations are also possible in addition to local allocations. (a)&(a’):
only thread T1 is running, (b)&(b’): thread T2 starts execution after 20K
cycles while T1 is still running, (c)&(c’): thread T3 starts execution after
25K cycles while both T1 and T2 are still running. Average and maximum
execution times among all three threads are improved by about 2X and 2.9X
respectively. 26

2.9 Hop-distance-based search for empty SPM space in Closest Neighborhood
allocation policy. 31

2.10 SATT entry . 33
2.11 Average access latency for various hop distances. 38

vii

2.12 Overall flow of mem-ubench execution: each phase (prologue, body, epilogue)
is either memory or compute intensive to a configurable degree. Operations are
performed on three data arrays of configurable size with both regular (strided)
and randomized access patterns. The number of executions of each phase as
well as the entire 3-phase loop are configurable. 40

2.13 ShaVe-ICE vs. software cache – Case A: thread’s working-set is smaller than
software cache and SPM, Case B: thread’s working-set is larger than software
cache and SPM. Lower values are better. 42

2.14 Miss rate of various mem-ubench configurations for different available SPM
capacities. Miss rate does not have a linear relationship with SPM capacity
since not all the data is of the same importance. 43

2.15 Scenario 1: Average execution time among all threads in an 8x8 system - RRA
normalized to LA. Core underutilization provides the opportunity to RRA to
allocate more SPM space for the threads that have large working set size. . . 45

2.16 Scenario 2: Average execution time among all threads in an 8x8 system - RRA
normalized to LA: Threads with small working set size provide the opportunity
to RRA to utilize the SPM space unused by the locally-pinned thread in order
to allocate more SPM space for the threads that have large working set size. 46

2.17 Scenario 3: Average execution time among all threads in an 8x8 system -
CNA normalized to RRA: CNA allocates remote pages as close as possible to
the owner core resulting in reduced network traffic, faster access latency and
ultimately better overall performance compared to RRA. 48

2.18 Scenario 4: Difference in the local hit ratio - CNGLSA-CNA and average
execution time among all threads in an 8x8 system - CNGLSA normalized
to CNA: CNGLSA returns the remotely allocated SPM space to the
locally-pinned thread should that thread needs it. In some cases, this results
in improved local hit ratio and decreased average memory access latency
compared to CNA. 49

2.19 Dynamic energy in memory subsystem and network: CNA normalized to LA. 50
2.20 Dynamic energy in memory subsystem and network: CNGLSA normalized to

CNA. 50
2.21 Workload mixes with various core utilizations in a 4X4 platform. 52
2.22 Execution time comparison for various workload mixes as shown in Figure 2.21:

CNGLSA normalized to LA. Lower values are better. 53
2.23 Runtime overhead of SPM allocator for different combinations of allocation

size and page size: local policy (simplest policy). 55
2.24 Runtime overhead of SPM allocator for different combinations of allocation

size and page size: closest neighborhood with local reservation policy (most
complex policy). 56

2.25 Comparing software-assisted memory hierarchy with cache-based hierarchy
implementing MESI protocol when false data sharing exists. 57

2.26 Comparing software-assisted memory hierarchy with cache-based hierarchy
implementing MESI protocol when true data sharing exists. 58

2.27 Comparison of execution time with different configurations of a fixed size local
memory: cache only, SPM and cache, SPM only. Lower is better. 59

viii

2.28 Comparison of energy consumption with different configurations of a fixed size
local memory: cache only, SPM and cache, SPM only. Lower is better. 59

2.29 Comparison of execution time and energy consumption when remote SPMs
are available for allocation. Legends are shown as: (local cache, local SPM,
remote SPM at hop distance 1). Lower is better. 60

3.1 Exploring performance-energy-fidelity space for Image Smoothing benchmark
by adjusting Relaxed Cache controlling knobs (leakage energies and execution
times are normalized to a baseline that Uses 700 mV for SRAM array supply
voltage). 84

3.2 Trade-off between cache capacity, VDD, AFB and bit-cell leakage power (cache
block size=64-byte, technology=45nm). 85

3.3 High-level diagram showing HW/SW components of Relaxed Cache and their
interactions. 86

3.4 A Sample 4-way Cache with VDD=580mV and AFB=4. 88
3.5 Encoding and decoding defect map info in Relaxed Cache 89
3.6 Abstracting Relaxed Cache knobs up to metrics familiar to a software

programmer (i.e., performance, fidelity, and energy consumption). Note that
(VDD = High, AFB = Mild) and (VDD = High, AFB = Aggressive)
combinations are sub-optimal, hence not applicable. 93

3.7 A sample code showing programmer’s data criticality declarations and cache
configurations for Relaxed Cache. 94

3.8 SRAM BER for 45nm using models and data from [149] 96
3.9 Leakage energy savings for a 4-Way L1 cache with 3 relaxed ways (energy

savings are normalized to a baseline cache that uses 700mV). 98
3.10 Fidelity results for (a) Scale and (b) Image-Smoothing benchmarks. 99
3.11 Fidelity results for Edge-Detection benchmark (VDD=480mV). 100
3.12 FPS-PSNR trade-offs with and without Relaxed Cache scheme (AFB=4). . . 101
3.13 STT-MRAM knobs for reliability-energy trade-off in 1MB cache. (a) Write

Pulse Current Reduction (WPCR), and (b) Read Pulse Current Reduction
(RPCR). 105

3.14 A pseudo-code example showing how QuARK Cache APIs can be used in a
face detection application. 107

3.15 Integrating QuARK Cache into the architecture. Required changes are
highlighted in gray. 108

3.16 Distribution of overall and approximation read and write accesses in L2 cache
for the selected benchmarks. 113

3.17 QuARK Cache evaluation results: (a) Distribution of accesses in
mixed-reliability workloads, (b) Energy savings (normalized to fully-protected
STT-MRAM L2 cache), (c) Average relative error for blackscholes benchmark,
(d) PSNR for Scale and Image Smoothing benchmarks, and (e) Mean pixel
difference for Corner Detection, Edge Detection and Sobel benchmarks. . . . 116

3.18 Percentage of approximately-equal writes in image-smoothing. 119
3.19 Percentage of approximately-equal writes in sobel. 119
3.20 Percentage of approximately-equal writes in k-means. 119

ix

3.21 Output fidelity for image-smoothing. 120
3.22 Output fidelity for sobel. 120
3.23 Output fidelity for k-means. 121
3.24 Energy consumption in on-chip memory for image-smoothing normalized to

the baseline where none of the write operations are skipped. 122
3.25 Energy consumption in on-chip memory for sobel normalized to the baseline

where none of the write operations are skipped. 122
3.26 Energy consumption in on-chip memory for k-means normalized to the baseline

where none of the write operations are skipped. 122
3.27 Open-loop knob settings (prior works) vs. closed-loop quality control (this work).123
3.28 Closed loop approach (this work) for tuning memory approximation knob(s). 128
3.29 Predicted Model vs. Measured Output. 131
3.30 Variation of the quality of the edge detection in various video scenes when the

bit error rate is constant. 134
3.31 Quality tracking results. Red curve shows the acceptable error and the blue

curve shows the error achieved by the controller. 135
3.32 Comparing PI controller with manual step-wise re-calibration similar to [16]. 136
3.33 Canny edge detection applied to different images with various write bit error

rates resulting in different quality metrics. 136

x

LIST OF TABLES

Page

1.1 ITRS mobile devices trend [71] . 3

2.1 ShaVe-ICE APIs . 17
2.2 Details of threads in the motivational example of Figure 2.8 25
2.3 SPM-related network messages in ShaVe-ICE 34
2.4 List of benchmarks for ShaVe-ICE experiments 51
2.5 List of microbenchmarks . 56

3.1 Prior research In approximate memory management classified based on
abstraction levels involved . 65

3.2 Prior research In approximate memory management classified based on
approximation objective . 66

3.3 Prior research In approximate memory management classified based on the
memory component . 67

3.4 Prior research In approximate memory management classified based on the
memory technology . 67

3.5 Prior research In approximate memory management classified based on the
approximation strategy . 68

3.6 A sample criticality table for Relaxed Cache 90
3.7 gem5 settings for Relaxed Cache experiments 96
3.8 Relation between PSNR and perceptual quality in image processing domain . 97
3.9 QuARK Cache APIs . 106
3.10 gem5 settings for QuARK Cache experiments 111
3.11 Accuracy-energy transducer map for 1MB QuARK Cache-enabled

STT-MRAM cache. Energy consumptions are reported for a 64-byte
cache line. 112

3.12 List of approximate applications for QuARK Cache experiments. 112
3.13 List of workload mixes for QuARK Cache experiments. 113
3.14 List of approximate applications for Write-Skip experiments 118

xi

ACKNOWLEDGMENTS

I would like to express my utmost gratitude to my adviser, Professor Nikil Dutt. His
mentorship has helped me grow as a person and learn the necessary social skills to grow as a
successful individual in the society. I thank him for having faith in me, through my initial
struggles, and standing by me in my times of need.

I would like to thank the rest of my dissertation committee members Professor Alex Nicolau
and Professor Eli Bozorgzadeh for their time, support and invaluable advice.

I thank my friends and colleagues at UCI, who made a great impact on my life. In particular, I
thank Dr Hossein Tajik, Dr Abbas Banaiyan, Bryan Donyanavard, Hamid Nejatollahi, Sajjad
Taheri, Dr Jurngyu Park, Dr Amir Rahmani, Tiago Muck, Roger Hsieh, Kasra Moazzami, Dr
Luis (Danny) Bathen, Santanu Sarma, Hirak Kashyap, Amir Mahdi Hosseini Monazzah, Maral
Amir, Zhi Chen and Dr Nga Dang for their friendship, feedback, guidance, and collaborations.

I thank Dr Abbas Rahimi for mentoring me at the initial stages of my PhD.

I must thank my dear friends Amirali Ghofrani, Farshad Yazdi, Morteza Kayyalha, Aida
Ebrahimi, Mehrdad Biglarbegian, and Somayeh Sadeghi for their support and the good
memories we have created together.

I would like to thank UC Irvine graduate division, NSF Variability Expedition (Grant Number
CCF-1029783) and the school of ICS for providing funding opportunities during my PhD
program.

I am also very grateful to Professor Alex Nicolau who provided me with many teaching
opportunities and mentored me to be a better instructor.

I thank Melanie Sanders, Holly Byrnes, Kris Bolcer, Grace Wu and Melanie Kilian for making
ICS and CECS such enjoyable places to work and for all their help and advice on so many
different subjects.

I also thank ACM and IEEE for permissions to include parts of chapters 2 and 3 of my
dissertation, which were originally published in IEEE Embedded System Letters, ACM
Transaction on Embedded Computing Systems, ACM/IEEE International Symposium on
Low Power Electronics and Design.

I am deeply thankful to my family for their love, continued support, and sacrifices; especially
my brother Omid for setting high bars for educational and intellectual achievement.

xii

CURRICULUM VITAE

Majid Namaki Shoushtari

EDUCATION

Doctor of Philosophy in Computer Science 2018
University Of California, Irvine Irvine, CA

Master of Science in Computer Engineering 2012
University Of Tehran Tehran, Iran

Bachelor of Science in Computer Engineering 2009
University Of Tehran Tehran, Iran

RESEARCH EXPERIENCE

Graduate Student Researcher 2012–2017
University of California, Irvine Irvine, California

Graduate Research Assistant 2009–2012
University Of Tehran Tehran, Iran

TEACHING EXPERIENCE

Teaching Assistant 2014–2018
University of California, Irvine Irvine, CA

Teaching Assistant 2009–2012
University of Tehran Tehran, Iran

WORK EXPERIENCE

Software Engineering Intern June 2016 – Sept. 2016
NVIDIA Corp. Santa Clara, CA

Software Engineering Intern June 2015 – Sept. 2015
Rambus Inc. Sunnyvale, CA

Engineering Intern June 2008 – Sept. 2008
Kiatel Karaj, Iran

xiii

REFEREED JOURNAL PUBLICATIONS

Exploiting Partially-Forgetful Memories for
Approximate Computing

2015

IEEE Embedded Systems Letters

Automatic Management of Software Programmable
Memories in Many-core Architectures

2016

IET Computers & Digital Techniques

SAM: Software-Assisted Memory Hierarchy for Scalable
Manycore Embedded Systems

2017

IEEE Embedded Systems Letters

ShaVe-ICE: Sharing Distributed Virtualized SPMs In
Many-Core Embedded Systems

2018

ACM Transactions on Embedded Computing Systems

REFEREED CONFERENCE PUBLICATIONS

ARGO: Aging-aware GPGPU Register File Allocation 2013
International Conference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS)

Multi-layer Memory Resiliency 2014
Design Automation Conference (DAC)

Cross-layer Virtual/physical Sensing and Actuation for
Resilient Heterogeneous Many-core SoCs

2016

Asia and South Pacific Design Automation Conference (ASP-DAC)

QuARK: Quality-configurable Approximate
STT-MRAM Cache by Fine-grained Tuning of
Reliability-Energy Knobs

2017

International Symposium on Low Power Electronics and Design (ISLPED)

xiv

TECHNICAL REPORTS

A Survey of Techniques for Approximate Memory
Management

Sept. 2017

UC Irvine, Center for Embedded and Cyber-physical Systems, CECS TR 17-03

SPM-vSharE: Memory Management in SPM-based
Many-core Embedded Systems

Nov. 2016

UC Irvine, Center for Embedded and Cyber-physical Systems, CECS TR 16-08

Relaxing Manufacturing Guard-bands in Memories for
Energy Saving

Aug. 2014

UC Irvine, Center for Embedded and Cyber-physical Systems, CECS TR 14-04

SOFTWARE

gem5-spm https://github.com/duttresearchgroup/gem5-spm

SPM support for gem5 architectural simulator.

pin-memapprox https://github.com/mjshoushtari/pin-memapprox

A PIN-based fault injector tool to simulate annotated approximate programs.

xv

https://github.com/duttresearchgroup/gem5-spm
https://github.com/mjshoushtari/pin-memapprox

ABSTRACT OF THE DISSERTATION

Software Assists to On-chip Memory Hierarchy of Manycore Embedded Systems

By

Majid Namaki Shoushtari

Doctor of Philosophy in Computer Science

University of California, Irvine, 2018

Professor Nikil Dutt, Chair

The growing computing demands of emerging application domains such as

Recognition/Mining/Synthesis (RMS), visual computing, wearable devices and the

Internet of Things (IoT) has driven the move towards manycore architectures to better

manage tradeoffs among performance, energy efficiency, and reliability.

The memory hierarchy of manycore architectures has a major impact on their overall

performance, energy efficiency and reliability. We identify three major problems that

make traditional memory hierarchies unattractive for manycore architectures and their

data-intensive workloads: (1) they are power hungry and not a good fit for manycores in

face of dark silicon, (2) they are not adaptable to the workload’s requirements and memory

behavior, and (3) they are not scalable due to coherence overheads.

This thesis argues that many of these inefficiencies are the result of software-agnostic

hardware-managed memory hierarchies. Application semantics and behavior captured in

software can be exploited to more efficiently manage the memory hierarchy. This thesis

exploits some of this information and proposes a number of techniques to mitigate the

aforementioned inefficiencies in two broad contexts: (1) explicit management of hybrid

cache-SPM memory hierarchies, and (2) exploiting approximate computing for energy

efficiency.

xvi

We first present the required hardware and software support for a software-assisted memory

hierarchy that is composed of distributed memories which can be partitioned between caches

and software-programmable memories (SPMs) at runtime. This memory hierarchy supports

local and remote allocations and data movements between SPM and cache and also between

two physical SPMs. The distributed SPM space is shared between a mix of threads where

each thread explicitly requests SPM space throughout its execution. The runtime component

of this hierarchy shares the entire distributed SPM space between contending threads based

on an allocation policy. Unlike traditional memory hierarchies, we incorporate no coherence

logic in this hierarchy. The program explicitly allocates the shared data on the distributed

SPM space. For all threads of that program, the accesses to shared data are forwarded to

the same physical copy.

Next, we augment caches and SPMs in this hierarchy with approximation support in order to

improve the energy efficiency of the memory subsystem when running approximate programs.

We present approximation techniques for major building blocks of our hybrid cache-SPM

memory hierarchy. We introduce Relaxed Cache as an approximate private L1 SRAM cache

where the quality, capacity, and energy consumption of this cache are controlled through two

architectural knobs (i.e., voltage and the number of acceptable faulty bits per cache block).

We then present QuARK Cache, an approximate shared L2 STT-MRAM cache. The read

and write current amplitude provide two knobs to make a tradeoff between the accuracy of

memory operations and the dynamic energy consumption. We then introduce Write-Skip, a

technique that skips write operations in STT-MRAM data SPMs if the previous value and

the new value are approximately equal. Finally, we discuss a quality-configurable memory

approximation strategy using formal control theory that adjusts the level of approximation

at runtime depending on the desired quality for the program’s output.

We implemented all software and hardware components of the proposed software-assisted

memory hierarchy in the gem5 architectural simulator. Our simulations on a mix of RMS and

xvii

microbenchmarks show that our proposed techniques achieve better performance, energy, and

scalability for manycore systems over traditional hardware-managed memory hierarchies.

xviii

Chapter 1

Introduction

1.1 Technology Implications

1.1.1 Emerging Manycore Architectures

Up to early 2000s, the principal approach to improve the performance of processors was to

simply scale down the manufacturing technology, add more transistor and increase the clock

frequency. This was being fueled by the Moore’s law and Dennard Scaling. This was the trend

for from 1980s to 2000s until the processors started hitting physical limitations in terms of

their clock frequency and how effectively they could be cooled and still maintain accuracy.

Essentially, three primary factors led to the design of multicore processor:

1. The memory wall: the increasing gap between processor and memory speeds. This, in

effect, pushes for cache sizes to be larger in order to mask the latency of memory. This

helps only to the extent that memory bandwidth is not the bottleneck in performance.

2. The instruction-level parallelism (ILP) wall: the increasing difficulty of finding enough

1

parallelism in a single instruction stream to keep a high-performance single-core

processor busy.

3. The power wall: the trend of consuming exponentially increasing power with each

factorial increase of operating frequency. The power wall poses manufacturing, system

design and deployment problems that have not been justified in the face of the

diminished gains in performance due to the memory wall and ILP wall.

Multicores usually use a bus-based communication infrastructures, which may not scale

beyond dozens of cores. As opposed to multicores, a manycore architecture consists of a

network-like interconnect, and hundreds or even thousands of processing cores with their

own local memories (SRAM/non-volatile caches and scratchpad memories). At the heart of

these systems is the network-like communication infrastructure, which has been designed to

scale well beyond the dozens of cores. Multicore processors, are usually designed to efficiently

run both parallel and serial code, and therefore place more emphasis on high single thread

performance (e.g., devoting more silicon to out of order execution, deeper pipelines, more

superscalar execution units, and larger, more general caches), and shared memory. Manycore

processors are distinct from multicore processors in that: they are optimized from the

outset for a higher degree of explicit parallelism, and for higher throughput (or lower power

consumption) at the expense of latency and lower single thread performance.

The manycore revolution is also driven by the demand from new softwares such as media rich

applications (e.g., streaming content from the cloud), resulting in complex software stacks

that require new ways to improve system performance to cope with the increasingly complex

software stacks.

Examples of such manycore architectures are Intel SCC [100], Kalray MPPA-256 [44], Tilera

TILE64 [27], Adapteva Epiphany [4], Kalray MPPA2-256 [75], IBM Blue Gene/Q [65].

Although manycore architectures have not been deployed yet for widespread use, one clear

2

trend exists in the mobile computing domain. In recent years, mobile devices, notably

smartphones, have shown significant expansion of computing capabilities. ITRS [71] predicts

that the number of cores for Application Processors (AP) will moderately increase by 4x

in the time horizon. On the other hand, the number of cores in Graphics Processing Units

(GPU) will increase by 50x in this time horizon. This increase in GPU processing capacity

is necessary to keep up with the increasingly growing number of megapixel offered by the

displays. It is expected that the traffic between AP and memory will have to correspondingly

increase more than 2x.

Table 1.1: ITRS mobile devices trend [71]

Year 2015 2017 2019 2021 2023 2025
Number of AP cores 4 9 18 18 28 36

Number of GPU cores 6 19 49 69 141 247
Number of GPU cores Max frequency
of any Component in System (GHz)

2.7 2.9 3.2 3.4 3.7 4

Number of Mega pixels in Display 2.1 2.1 3.7 8.8 8.8 33.2
Number of Mega pixels in Display Bandwidth

between AP and Main memory (Gb/s)
25.6 34.8 52.6 57.3 61.9 61.9

Manycore technology has been viewed as a way to improve performance at the processor

level, but its profound implications on the energy efficiency and reliability of future embedded

systems with 100s or 1000s of cores has not been studied in depth. Facing the challenges

brought by dark silicon [50], it is more important than ever to deploy energy-efficient

mechanisms to continue supporting the growing high performance requirements of future

embedded systems.

1.1.2 Memory Subsystem of Manycores

The advent of manycore computing platforms exacerbates the classical processor-memory

performance bottleneck. As we scale to manycore systems, it becomes increasingly challenging

to scale the traditional cache-based memory hierarchies [125]. One important reason is because

the overhead of coherence logic increases rapidly with the number of cores. As we scale the

3

number of cores on a cache coherent system, “cost” in “time and memory” grows to a

point beyond which the additional cores are not useful in a single parallel program. This

is called Coherency Wall. Some processors have already tried to alleviate this problem by

removing hardware cache coherence from processors either partially or completely, e.g. Intel

SCC [100], Kalray MPPA-256 [44]. In these architectures, the coherence – whenever needed

by the application/system – must be implemented in software. However in these systems,

caching – without coherence – is still implemented in hardware. The fact that hardware

caching in manycore architectures becomes power-hungry due to the complexity of caching

logic is another challenge hardware implemented caches are facing in scaling to manycore

architectures.

An alternative mechanism is to deploy software caching mechanisms for smart data

management, using the raw memories in the processor. Here the data movement between

the close-to-processor memory and the main memory has to be done explicitly in software,

typically done through the use of Direct Memory Access (DMA) instructions. We refer to the

raw memories in such processors as Software Programmable Memories (SPM). IBM Cell [69],

Tilera TILE64 [27], Adapteva Epiphany [4] use SPMs in their on-chip memory hierarchy.

SPMs offer many advantages over caches. When application designers have deep

understanding of the data requirements of their applications – especially in embedded systems

– the use of SPMs allows developers to exploit application semantics effectively to achieve

efficient execution. SPMs offer many other advantages over caches. The first is power efficiency

by eliminating the hardware overhead of traditional caching. The second is predictability, a

critical factor for real-time systems. Third, there is potential for performance improvement

by orchestrating the management of data transfers explicitly in software.

The need for more energy efficient memories and denser memory space to accommodate for

emerging data-intensive applications in the embedded domain has led designers to design

Non-Volatile Memories (NVMs) as alternatives to SRAM for on-chip memories. Typically,

4

NVMs (e.g., Spin-Transfer Torque (STT) Memories, Phase-Change Memory (PCM)) offer

high densities, low leakage power, comparable read latencies and dynamic read power with

respect to traditional embedded memories (SRAM/eDRAM). One major drawback across

NVMs is the expensive write operation (high latencies and dynamic energy per access) and

wearout constraints overtime.

One of the potential benefits of using SPMs is the ability to explicitly manage data accesses

for thermal and wearout constraints, particularly for NVMs.

1.2 Workload Implications

1.2.1 Data-intensive Workloads and Variation in their Memory

Requirements

One of the most critical challenges for today’s and future data-intensive and big-data problems

(ranging from economics and business activities to public administration, from national

security to many scientific research areas) is data storage and analysis. The primary goal is to

increase the understanding of processes by extracting highly useful values hidden in the huge

volumes of data. The increase of the data size has already surpassed the capabilities of today’s

computation architectures which suffer from the limited bandwidth, due to communication

and memory-access bottlenecks.

Data-centric nature of several emerging media-rich applications in the embedded domain

creates demand for denser memories. Memories are likely to dominate energy as well as

reliability concerns [112] for computing systems.

While memory resources are becoming more vital to embedded computing platforms, because

of the nature of the emerging applications running on them, their importance could vary

5

over time and at a time between concurrently running applications. Tajik et al. [143, 142]

have shown the variation in memory requirements between concurrently running threads and

within a thread during its course of execution.

1.2.2 Error-Resilient Workloads

Inherent application resilience is the property of an application to produce acceptable

outputs despite some of its underlying computations being incorrect or approximate. It is

prevalent in a broad spectrum of applications such as digital signal processing, image, audio,

and video processing, graphics, wireless communications, web search, and data analytics.

Emerging application domains such as Recognition, Mining and Synthesis (RMS) [49],

which are expected to drive future computing platforms, also exhibit this property in

abundance. The inherent resilience of these applications can be attributed to several factors:

(1) significant redundancy is present in large, real-world data sets that they process, (2) they

employ computation patterns (such as statistical aggregation and iterative refinement) that

intrinsically attenuate or correct errors due to approximations, and (3) a range of outputs

are equivalent (i.e., no unique golden output exists), or small deviations in the output cannot

be perceived by users.

The distributed memory subsystem is one of the fundamental performance and energy

bottlenecks in emerging manycore systems and is likely to dominate energy as well as

reliability concerns for those systems. This error resilience can be exploited to build more

efficient computing systems, more specifically to improve the energy efficiency of the memory

subsystem in emerging manycore architectures.

6

1.3 Thesis Contributions and Organization

Any strategy for memory management of manycores should address a number of challenges:

(1) adaptation to the workload with varying memory requirements (in terms of working-set

size, access pattern, reliability of accesses) (2) energy efficiency, and (3) scalable coherence

management.

This thesis takes the stand that many of these challenges cannot be addressed by today’s

software-agnostic hardware-managed memory hierarchies. We argue that these challenges

could be overcome by using more sophisticated memory hierarchy management techniques

that receive some form of software-assist (e.g., information about a program’s semantics,

memory access patterns, memory phases, etc). Figure 1.1 shows an overview of our

contributions in this thesis towards achieving this software assisted memory hierarchy.

Chapter 2 presents a software-assisted memory hierarchy for manycore embedded systems

along with the details of its hardware and software support. This hierarchy is composed of

distributed memories that can be partitioned between caches and SPMs at runtime. The

distributed SPM space is shared between a mix of unknown threads where each thread

explicitly requests SPM space for its most accessed data objects throughout its execution.

The runtime component of this hierarchy shares the entire SPM space between contending

threads based on their requirements and a choice of allocation policy. It also decides about

how local memories are partitioned between SPM and cache. Unlike traditional memory

hierarchies, we incorporate no coherence logic in this hierarchy. The program explicitly

allocates the shared data on the distributed SPM space. For all threads of that program,

the accesses to shared data are forwarded to the same physical copy. This memory hierarchy

supports local and remote allocations and data movements between SPM and cache and also

between two physical SPMs.

Chapter 3 augments caches and SPMs in this hierarchy with approximation support in

7

Program 1
Program 2

Program 3

Approximation Pass SPM Pass

Compiler/Profiling

Application 3

Programming Interface

Runtime
Memory Manager

Runtime
Approximation

Manager

$

SP
M

M
M
U

$

SP
M

M
M
U

$

SP
M

M
M
U

$

SP
M

M
M
U

$

SP
M

M
M
U

$

SP
M

M
M
U

$

SP
M

M
M
U

$

SP
M

M
M
U

$

SP
M

M
M
U

Application 2
Application 1

...

Programs

Application
Binaries

Operating
System

...

Architecture

Figure 1.1: High-level overeview of the proposed software assisted memory hierarchy.

order to improve the energy efficiency of the memory subsystem. We present approximation

techniques for major components of the memory hierarchy introduced in Chapter 2. We

introduce Relaxed Cache as an approximate private L1 SRAM cache where the quality,

capacity, and energy consumption of this cache are controlled through two architectural

8

knobs. We then present QuARK Cache, an approximate shared L2 STT-MRAM cache. The

read and write current amplitude provide two knobs to to make a tradeoff between the

accuracy of memory operations and the dynamic energy consumption. We then introduce

Write-skip for STT-MRAM data SPMs. Finally, we discuss a strategy to control the level of

memory approximation at runtime depending on the desired output quality.

In Chapter 4 we conclude this thesis and address future directions for this research.

9

Chapter 2

Software-Programmable On-chip

Memory Hierarchy

2.1 Introduction

Future embedded systems are expected to use 10s to 100s of simple processing cores,

forming Manycore Embedded System (MES) platforms that hold the promise of increasing

performance through parallel execution.

However, these systems cannot rely on traditional approaches for system integration. Most

notably: (1) The bus-based communication architecture is not a scalable solution for these

systems – adopting Network-on-Chip (NoC) communication allows the system to reach a

high level of parallelism and scalability. (2) The traditional cache-based memory hierarchy

imposes a huge inefficiency in power consumption, due to the complexity of caching logic,

and also in performance, due to the network traffic generated by coherence protocols.

The traditional hardware-managed memory hierarchy needs to be revisited to: (1) address

10

shortcomings (e.g., coherence overhead) of current techniques when cores are replicated

beyond certain numbers, and (2) adapt the memory subsystem to a diverse workload, with

variable memory requirements, running on a MES.

Traditionally, cache-coherent memory hierarchies have been the default choice for the memory

subsystem of embedded systems, mainly because they hide the memory hierarchy from

software and don’t require any software intervention. Unfortunately, the overhead of purely

hardware-managed memory hierarchy grows very fast as the number of cores increases. This

overhead manifests itself in the exacerbated power consumption of the memory subsystem

and the cache coherence logic and also the coherence traffic in the NoC. On the other

hand, hardware is generally oblivious to the variable requirements of individual threads

in a workload. Tuning allocation of memory resources to threads in order to improve the

overall performance of the entire workload proves challenging for purely hardware-managed

hierarchies.

Software-Programmable Memories (SPM, also known as scratchpad memories) are a

promising alternative to hardware-managed caches. For equivalent data capacity, SPMs

are around 30% smaller, slightly faster, yet consume about 30% less power than cache [22].

Additionally, no coherence management is required due to their software-programmable

nature. However, SPMs require explicit software management. Researchers have previously

proposed methods to ease this burden [115, 95, 137, 20, 78, 17].

Most previous efforts have assumed a single thread running on a core with a private SPM

in isolation of other threads running concurrently or entering the system at a later time,

or they assumed the workload mix is known ahead of time. The shortcomings are twofold:

(1) They do not utilize memory resources that are local to idle cores – these idle memory

resources present an opportunity for more efficient use of on-chip memory to boost the overall

system efficiency. (2) The variation in the memory intensity level as well as working set

size between concurrently running threads in emerging diverse workloads is neglected – this

11

0

500

1,000

1,500

Time

#
A
cc
es
se
s

0
200
400
600
800

Time

#
A
cc
es
se
s

0

2,000

4,000

Time

#
A
cc
es
se
s

0

500

1,000

1,500

Time

#
A
cc
es
se
s

1

(a) wikisort

0

500

1,000

1,500

Time

#
A
cc
es
se
s

0
200
400
600
800

Time

#
A
cc
es
se
s

0

2,000

4,000

Time

#
A
cc
es
se
s

0

500

1,000

1,500

Time

#
A
cc
es
se
s

1

(b) fft

Figure 2.1: Number of memory accesses measured periodically for the execution of the wikisort
and fft benchmarks: utilization of memory resources changes within a thread and between
threads.

variation causes on-chip memory resources to be more valuable for some threads over others.

The utilization of data memory can vary not only between threads in a workload, but also

within a single thread over the course of its execution. Figure 2.1 illustrates the variation in

temporal memory access patterns both between and within two different benchmarks.

Here we outline an alternative hierarchy organization for MES that employs a

Software-Assisted Memory (SAM) hierarchy composed of both cache and SPM guided by

static analysis as well as a holistic runtime support. SAM alleviates the aforementioned

drawbacks of cache-only hierarchies. Figure 2.2 compares the SAM hierarchy with a purely

hardware-managed hierarchy. SAM hierarchy requires less hardware management and relies

on the software components of a system (i.e., application, compiler and operating system) to

manage memory resources allowing it to be more adaptable to workload’s needs and consume

less power.

We first, propose ShaVe-ICE, system software and hardware support for management of

distributed SPMs in manycore embedded systems. ShaVe-ICE enables the system to efficiently

share the SPM resources distributed across the chip. Sharing the SPM resources improves the

average access latency for all the concurrently running threads, and hence improves the overall

performance of the system. By sharing the physically distributed SPM space between all the

running threads through virtualization, memory resources can be utilized more efficiently.

12

$

S
P
M

$
S
P
M

$
S
P
M

$

S
P
M

$
S
P
M

$
S
P
M

$

S
P
M

$ $ $

$ $

$ $ $

Runtime Memory Manager

GCC GCCCompile-
time

Operating
System

Hardware

Advantage(s)

$
S
P
M

$
S
P
M

$

Transparent to software
Better for unpredictable accesses

Energy efficient
Scalable

Workload adaptation

Hardware-managed Memory HierarchySoftware-assisted Memory Hierarchy

Figure 2.2: Software-assisted memory hierarchy vs. hardware-managed memory hierarchy.
Relative size of gray components shows their contribution in managing memory hierarchy.

Unlike previous approaches, in this work we allow all threads to opportunistically exploit

the entire physical memory space from all distributed SPMs for unpredictable workloads.

ShaVe-ICE supports dynamic SPM sharing for workloads in which threads may enter and

exit at any time and contend for on-chip memory resources.

It is worth mentioning that ShaVe-ICE does not focus on analyzing the access pattern of

data objects in order to find the most profitable data objects to bring on-chip. That is an

orthogonal problem which researchers have looked into extensively [43]. Instead, we focus

on sharing a distributed SPM space between a mix of unknown threads where each thread

explicitly requests SPM space for its most accessed data objects throughout its execution.

We define the necessary software/hardware components for sharing distributed SPMs under

contention from unpredictable workloads, and build the foundation towards SPM-based

manycore embedded systems. To the best of our knowledge, ShaVe-ICE is the first scheme

13

for sharing distributed SPMs in manycore embedded systems when an unpredictable mix of

workloads is executing.

We then, extend ShaVe-ICE to support a hybrid composed of both distributed SPMs

and caches and show how shared data is managed in such a hierarchy. Through sample

microbenchmarks, we present the opportunities made possible by this hierarchy to reduce

coherence protocol overhead, lower the energy consumed in memory subsystem, and adapt

the memory configuration to workload’s requirements to reduce execution time.

2.2 Prior Work on SPMs in Multicores and Manycores

Extensive research exists on SPM management1. Initially, researchers focused on static

approaches to manage the SPM for a single thread running on a single-core architecture.

The static SPM management techniques identify the part of overall data set that maximally

improves the runtime performance of applications (e.g. most frequently used data) upon

placement in SPM [116, 135, 15, 113, 147, 136]. However, data placement is fixed throughout

the application’s execution meaning that the locations of data can not be changed during

execution. Alternatively, dynamic approaches allow the movement of data at runtime, enabling

the system to swap in the more frequently accessed data and swap out less-used data over

time and achieve greater performance optimization [47, 89, 76].

Other works have considered a scenario in which multiple tasks are simultaneously running

on a single-core architecture and sharing a single physical SPM. [57] proposes a compile-time

analysis approach to support concurrent execution of tasks sharing the same SPM resource and

assumes all working sets are known at compile time. [55] provides a high-level programming

interface for SPM and DMA which can be used by the programmer for heap management.

At runtime, a dynamic memory manager responds to memory space requests and maps data

1A more comprehensive survey can be found in [133].

14

to the physical SPM as long as there is space.

More recently, the advent of integrating multiple processor cores on a single chip has resulted

in a shift of focus for SPM management in the direction of multicore processors. In the realm

of multicore SPM management, [78, 20, 95, 18, 19] all propose various compiler-based dynamic

data management techniques for a memory hierarchy that incorporates SPM transparently

without requiring explicit memory management.

Additionally, approaches have been proposed for managing SPM data in multicore systems

with multiple tasks sharing SPM space. [137, 40] both propose compile time static analysis

techniques for SPM allocation for a fixed set of tasks. [137] specifies an ILP formulation

that integrates task scheduling with SPM partitioning and allocation at compile time to

produce both a schedule and static data allocation that optimize performance by profiling

the set of tasks. [40] generates SPM allocation of arrays using static analysis at compile time

for a fixed set of tasks executing on a MPSoC sharing distributed SPMs in order to both

improve performance and minimize energy consumption in embedded systems. Similarly, [98]

defines an OpenMP extension and compiler optimization to allocate parts of data arrays to

distributed SPM for parallel programs executing on an MPSoC. They improve performance

by locating data near the processing elements that access it most frequently. [138] proposes

algorithms that use profiling information to produce SPM mappings in order to minimize

the worst case response time of a multitasking workload sharing SPM. These approaches all

define SPM data allocation and mapping prior to execution, and, whether static or dynamic,

therefore cannot handle diverse and unpredictable workloads.

Runtime adaptive approaches typically incorporate compile-time information with runtime

observations to make allocation decisions at runtime. [39] profiles a fixed set of multimedia

applications with varying inputs and passes this information to a runtime routine. The

runtime routine monitors the application behavior and attempts to match it to one of the

known profiles, and maps data to SPM accordingly to reduce energy consumption. [45] defines

15

a framework that allows programmers to guide runtime decisions for allocating heap data to

SPM in order to reduce energy consumption. [26, 25, 23, 24] require programmer guidance for

allocation, but also specify a virtualization layer that abstracts the explicit SPM management

from the programmer and supports over-subscription. All of these adaptive approaches make

allocation decisions at runtime for multicore architectures with multiple tasks sharing and

contending for SPM space.

Recent efforts have considered a hybrid memory architecture where every core has a private

SPM as well as a private cache. Their focus was to distinguish between data better suited for

cache versus SPM. [7] and [81] both propose hybrid memory hierarchies (i.e. caches + SPM)

that support globally addressable and coherent address spaces. Alvarez et al. [7] addressed

the issue of keeping these two separate SPM and Cache memories within a core coherent.

Chakraborty et al. [36] proposed a configurable hybrid local memory that can be dynamically

partitioned between a cache and a SPM based on the varying requirements of a thread,

with the idea that sometimes the varying workload may benefit from different SPM or cache

capacities.

In ShaVe-ICE, we enable unpredictable mix of threads contending for SPM space to

transparently allocate and access SPMs physically distributed throughout a chip. Through

virtualization, our solution supports unlimited SPM allocation sizes, and makes global

allocation decisions to benefit the performance of the overall workload. The access and

allocation mechanism and policies are scalable for manycore systems.

2.3 Target System Architecture Template

We target an architecture in which a number of threads are running concurrently on a

manycore system explicitly requesting SPM allocations/deallocations. Here we describe the

16

SPM programming model, architecture model and the execution model of such an architecture.

2.3.1 SPM Programming Model

With SPM-based memory hierarchy, the programmer and/or the compiler have explicit control

on data movements. This enables them to prefetch a frequently used data object earlier than

its actual access. SPM-based systems usually rely on explicit allocation/deallocation requests

made by threads utilizing specified Application Programming Interfaces (APIs). A set of

APIs, registered with the kernel, will be used by the programmer and/or the compiler to

program SPMs. The API calls we define are listed in Table 2.1:

SPM ALLOC() and SPM DEALLOC() APIs can be used explicitly in the source code to request

moving parts of a thread’s virtual address space between on-chip SPMs and the main memory

through Direct Memory Access (DMA) transfers.

SPM ALLOC() receives the base virtual address (BaseVA) and the size in bytes (Size) as

arguments along with a flag (AllocationMode) which determines the allocation mode. There

are two possibilities for the AllocationMode flag: COPY and UNINITIALIZE. When the flag

is set to COPY, the allocated data is copied from main memory to SPM, whereas if the flag

Table 2.1: ShaVe-ICE APIs

Method Parameters Type Note

SPM ALLOC
BaseVA uint64 Base virtual address of memory region
Size uint Size of allocation
AllocationMode uint Type of allocation
isSharedData bool Flag to determine if this is shared data
Metadata uint Other encoded hints for runtime manager

SPM DEALLOC
BaseVA uint64 Base virtual address of memory region
Size uint Sizeof deallocation
DeallocationMode uint Type of deallocation
isSharedData bool Flag to determine if this is shared data
Metadata uint Other encoded hints for runtime manager

17

is set to UNINITIALIZE, the allocation simply reserves SPM space without initializing the

allocated memory. UNINITIALIZED allocations eliminate unnecessary DMA transfers when

the data object values are not initialized in memory yet, so the current values do not need

to be copied from main memory. isSharedData declares if the data belongs to one thread

or it is shared data.

Similarly, SPM DEALLOC() receives the base virtual address (BaseVA) and the size in bytes

as arguments along with a flag (DeallocationMode) which determines the deallocation

mode. There are two possibilities for the DeallocationMode flag: when this flag is set to

WRITE BACK, the data is written back to main memory from SPM; if the flag is set to DISCARD,

the deallocation happens without updating the values in main memory. DISCARD flag is useful

when the data is not needed anymore, preventing unnecessary memory write-back. A common

case is to discard a piece of heap data in SPM that is going to be freed immediately, therefore

does not need to be written back to main memory.

Figure 2.3 shows the number of cycles that allocation and deallocations of different sizes

take with different modes. While the overhead of allocation and deallocation with COPY and

WRITE BACK grows substantially as the size of allocation grows, UNINITIALIZE and DISCARD

keep this overhead low and near constant. Note that allocations with COPY could take more

cycles than deallocations with WRITE BACK because of the fact that some of the allocations

have to wait additional cycles for data migration.

These method calls can be inserted manually by a domain expert programmer or automatically

by a compiler pass or a combination of both. Finding best candidates for SPM mapping

is an orthogonal issue that previous researchers have looked into and is not the focus of

this work. Currently, in a preprocessing step, we analyze the source code automatically to

identify heap allocation and deallocation sites and insert SPM ALLOC and SPM DEALLOC for

each pair, accordingly. We also add SPM ALLOC and SPM DEALLOC to handle each function’s

stack. Anytime a function is called, a SPM ALLOC is responsible for bringing that function’s

18

100 101 102 103 104 105

0

2

4

·105

Number of Pages

C
P

U
C

y
cl

es
Alloc. : UNINITIALIZE
Alloc. : COPY
Dealloc. : DISCARD
Dealloc. : WRITE BACK

Figure 2.3: Number of CPU cycles that a thread has to be stalled for an SPM API to be
handled by the OS/HW. SPM page size is assumed to be 64 bytes.

stack on-chip and right before returning from that function, a SPM DEALLOC call will remove

that from SPM. These SPM annotations are then pruned by profiling the program’s memory

accesses and removing annotations for rarely accessed data objects.

The code snippet in Figure 2.4 shows how these APIs can be used within the source code of

an example thread.

Calling these APIs transfers control to the operating system’s SPM allocator. The ShaVe-ICE

allocator decides whether or not to grant the request and broadcasts messages throughout

the platform accordingly. These API calls are blocking, meaning that control does not return

...

int *buffer = (int*) malloc (BUF_LENGTH*sizeof(int));

SPM_ALLOC (buffer , BUF_LENGTH*sizeof(int), UNINITIALIZED);

...

for (i = 0; i<BUF_LENGTH; i++) {

buffer [i] = buffer [i] * 2;

}

...

SPM_DEALLOC (buffer , BUF_LENGTH*sizeof(int), WRITE_BACK);

...

free(buffer);

...

Figure 2.4: A code snippet using SPM APIs.

19

to the thread until the data transfers are complete.

2.3.2 Architecture Model

We target manycore embedded systems in which cores are connected via a mesh-like NoC as

shown in Figure 2.5.

Each core consists of a simple in-order Central Processing Unit (CPU), a local memory (LM)

that can be partitioned between L1 data cache and SPM, a Memory Management Unit

(MMU), a Direct Memory Access (DMA) engine, a L1 instruction cache, an optional L2 cache

for both data and instructions, and a network interface to manage NoC traffic for inter-core

communication. The on-chip data memory is distributed evenly among all cores throughout

the system.

In this architecture, the SPM address space is disjoint from the main memory address space,

creating another layer in the memory hierarchy. All or a subset of distributed SPM space

is accessible to each core. To enable that, each core’s MMU is extended to include an SPM

Address Translation Table (SATT). SATT stores all of the virtual page to physical SPM

address mappings for the pages that belong to that core.

R

R

R

R

Core

CoreCore

Core

R

R

Core

Core

R

R

Core

Core
R R

CoreCore

R

Core

R

Core
R R

CoreCore

R

Core

R

CoreCPU

LM MMU

TLB SATTL1 D$ SPM

Network
InterfaceL2 $

L1 I$

DMA
Engine

Memory Controller

Memory Controller

Figure 2.5: A 4X4 example of target manycore architecture with software-assisted memory
hierarchy.

20

To avoid the problems of cache-coherent architectures, there is no cache coherence logic in

this architecture and therefore caches are used to store private data only. On the other hand,

the entire on-chip SPM space is accessible from any core. Any data that needs to be shared

between multiple threads have to be explicitly copied to the SPM space by the software.

The local memory of each core is initially partitioned into two equally-sized cache and SPM.

[36] has shown how having a hybrid local memory could be advantageous compared to a

cache only hierarchy in terms of execution time and/or energy consumption. NVIDIA has

used this approach in their Fermi GPGPUs [3]. We assume there are hardware mechanisms

to change this balance at runtime. These hardware mechanisms have to be triggered by the

runtime SPM manager, which we discuss later in this section.

2.3.3 Execution Model

Many modern embedded platforms support the concurrent execution of multiple independent

applications on shared resources where applications start and stop at any time. We assume

a number of processes, possibly each one spawning a number of threads, executing on this

platform. Because of the abundance of cores, each thread is mapped to a core and stays there

until completion so there is no context switching on a core.

In manycore systems, coherency is a major bottleneck for scalability. If a piece of data is

duplicated on different cores, the consistency of those copies should be guaranteed by a

coherence protocol. If any thread updates one of these copies, all other copies should be

invalidated which is a very costly operation [157].

To avoid coherence issues, we only keep one copy of data on-chip and all threads access the

same physical copy.

Note that, the support for mutual exclusion is still there. Every thread still needs to acquire

21

a lock in order to enter its critical section. The only difference is that, unlike cache coherence

protocols that try to keep multiple copies coherent, here we only keep one copy.

Consider a multithreaded application with virtual address space shared between threads.

Once a thread requests a part of the virtual address space to be mapped on-chip, accesses

from all other threads to that region of virtual address space will be forwarded to the single

copy of that data in the on-chip SPM.

For multithreaded applications, we assume that the programmer explicitly creates threads,

for example using POSIX library, and synchronizations are done explicitly in software. Using

SPM APIs, the programmer informs the runtime system about the data objects that are

going to be shared between multiple worker threads before spawning them.

2.3.4 Coherence Issues

Since SATT is accessed in parallel with Translation Lookaside Buffer (TLB), for every memory

request, there is never any confusion whether the data should be accessed from SPM or cache.

Therefore, unlike [6], there is no coherence issue between SPM and cache within each core.

To avoid coherence issues when a data is shared between multiple threads, we only keep one

copy of each data with all threads accessing the same physical copy. This requires the SATT

mappings for shared data to be replicated on all of the cores on which the worker threads

are mapped to so that all accesses to shared data are forwarded to the unique copy on SPM.

During a clone or fork system call, SATT mappings for shared data are copied as part of

the process execution state along with other necessary data. Worker threads can allocate

their own private data on SPM as well, but the assumption is that all shared data objects

are allocated on SPM by the boss thread before worker threads are dispatched. Future work

could relax this restriction by allowing cores to exchange SATT mappings.

22

2.3.5 OS/Runtime Support

The SPM manager, as part of the operating system’s memory manager, is the core software

component of an architecture with software-programmable memories. Any SPM API call

from any thread invokes the operating system and this call will be forwarded to the SPM

manager to manage the request. Consequently, a resulting research problem is to define

intelligent policies to efficiently manage memory resources based on the current needs of the

workload.

Figure 2.6 shows the organization of the SPM manager. SPM Manager receives the API calls

and optionally some memory related hardware counters and makes decisions about SPM

data allocations / deallocations / migrations and also partitioning LM into a cache and SPM

for each core. These actions are effected by sending messages to MMUs distributed across

the platform.

Repartitioning the local memory of each core requires the SPM manager to detect memory

phase changes. Tajik et al. [142] has shown memory phases can be detected at runtime using

simple hardware counters. Of course there is an open problem for determining the appropriate

size of cache and SPM for each phase at runtime to be addressed in future work.

Static analysis during compilation can be used to classify data for cache/SPM mappings and

could help the SPM manager at runtime decide how the local memories should be partitioned

- Data Allocation
- Data Deallocation
- Data Migrations
- LM Partitioning

SPM Manager

Current
on-chip Memory

State

- API Calls
- Hardware Counters /
Signatures

Figure 2.6: SPM manager.

23

[35].

2.4 Motivational Example

In many scenarios, the amount of data requested by a thread to be allocated on-chip is larger

than the capacity of the SPM local to the core that the thread is running on. Therefore, some

portion of the data must remain off-chip. In such cases, borrowing physical SPM space from

neighboring SPMs could boost the overall performance.

Figure 2.7 shows an example of a platform with four cores, when three threads (T1, T2, and

T3) with various memory working set sizes are running on cores C1, C4, and C2 respectively.

Previous approaches would restrict each thread to use only the physical SPM local to the

core it executes on. However, by sharing the SPM space, T2’s data can be placed not only

on C4’s SPM but also on C3’s SPM, which is an idle core, and on C2’s SPM, where T3 has

a small working set size and does not need its entire local SPM. At the same time, T1 can

also benefit from sharing by using part of C3’s SPM that is not used by T2. The end result

is the improvement in the overall performance of these three threads.

Figure 2.8 shows a more detailed motivating scenario using a synthetic example where three

threads T1, T2, and T3 are sequentially entering a system with four cores (C1, C2, C3, and

C4), where every core has a local data SPM. The left-hand side panel shows the state of the

system when the local only allocator is used, while the right-hand side panel shows the same

state when a local/remote allocator is used. In both panels, time is progressing from left to

right. Details of each thread are shown in Table 2.2.

We consider hit latency to be 1 cycle for local hits, 5 cycles for remote hits to account for the

network latency, and miss latency to be 100 cycles to account for off-chip memory accesses.

24

T1

SPM_ALLOC

SPM_DEALLOC

T3
SPM_ALLOC

SPM_DEALLOC

R
Platform

OS

Threads

R

R

C3: Idle

T3=>C2

T2=>C4

T1=>C1

R

T2

SPM_ALLOC

SPM_DEALLOC

Process
Management

Virtual File
System

System Call Interface

Memory
Management

ShaVe-ICE
Allocator

... ...

Figure 2.7: ShaVe-ICE allocator is invoked when a thread Ti mapped on core Cj calls any of
the SPM APIs. It virtualizes and ultimately shares the entire distributed SPM space between
all the concurrently running threads. Dedicated hardware assist enables remote allocations
and remote memory accesses.

T1 enters the system in cycle 0 and is scheduled to run on C1. This thread requests 12KB of

SPM space, however with local-only allocator, only 8KB of SPM can be given to this thread

although C2, C3, and C4 are all idle (Figure 2.8.a). However, if we allow remote allocation

on neighboring cores, all 12KB can be granted to T1 (Figure 2.8.a’).

Table 2.2: Details of threads in the motivational example of Figure 2.8

Thread Core
Entrance

Cycle
Working
Set Size

#Accesses
#Execution Cycles

if all accesses are hit
with access latency = 1 cycle

T1 C1 0 12KB 18000 60K
T2 C2 20K 20KB 24000 65K
T3 C4 45K 6KB 3000 40K

25

12KB 1800012KB 18000
...

20KB 2400020KB 24000
...

20KB 2400020KB 24000
...

6KB
3000

6KB
3000

...

Local Only Allocation Local/Remote Allocation (SPM Sharing)

120K

229K

229K

45K 85K

20K

20K 20K

20K

45K 90K

60K

85K

85K

T1

T2

T3

T2

Cycle

0 0 230K 100K

...
65K60K

...
92K85K

...
100K85K

(a) (a’)

(b) (b’)

(c) (c’)

C1 C2

C4C3

C1 C2

C4C3

C1 C2

C4C3

C1 C2

C4C3

C1 C2

C4C3

C1 C2

C4C3

C1 C2

C4C3

C1 C2

C4C3

C1 C2

C4C3

C1 C2

C4C3

C1 C2

C4C3

C1 C2

C4C3

85K

12KB 18000
...

120K60K

T1

12KB 18000
...

120K60K

T1

- - - - - - - - - - - -

12KB 18000
...

65K60K

12KB 18000
...

65K60K

CPU Cycle

Working Set Size

#Accesses

Physical SPMs

Figure 2.8: An example showing how sharing the entire SPM space improves the overall
performance of a 2X2 system with 3 thread running on it. The left-hand side column shows the
state of SPM allocations when allocations are limited to the local SPM only; and right-hand
side column shows the same scenario when remote allocations are also possible in addition to
local allocations. (a)&(a’): only thread T1 is running, (b)&(b’): thread T2 starts execution
after 20K cycles while T1 is still running, (c)&(c’): thread T3 starts execution after 25K
cycles while both T1 and T2 are still running. Average and maximum execution times among
all three threads are improved by about 2X and 2.9X respectively.

26

T2 gets scheduled on core 4 after 20 kilocycles. This thread needs 20KB of SPM space. While

with local-only allocator, a maximum of 8KB can be given to this thread (Figure 2.8.b),

remote allocation allows us to accommodate all 20KB by borrowing space from neighboring

idle cores namely C3 and C2 (Figure 2.8.b’).

Finally, T3 gets scheduled on core 2 after 45 kilocycles. This thread only needs 6KB of SPM

space which can be granted with the local-only allocator (Figure 2.8.c). However, as we saw

in the previous case, with a local/remote allocator, T2 occupied the entire SPM belonging

to core 2. Therefore, as shown in (Figure 2.8.c’), half of the SPM space on core 2 is made

available for T3 by evicting some of the pages that were previously allocated to T2.

To summarize, when we are limited to local SPM allocations (left panel of Figure 2.8), all

three threads complete their execution after 229 kilocycles, and on average each thread takes

about 123 kilocycles to finish, 2.2X more than the ideal case.

But when we virtualize the entire available SPM space and enable all threads to use it (right

panel of Figure 2.8), all three threads complete their execution after 100 kilocycles. In this

case, each thread takes about 60 kilocycles on average, which is 2X faster than the previous

case. The reduction in off-chip memory traffic also results in energy savings.

This simple scenario shows how virtualizing the entire SPM space and allowing threads

to compete for memory resources distributed across a chip can help improve the overall

performance of threads running on manycore systems with SPMs.

2.5 ShaVe-ICE Details

ShaVe-ICE is an operating system implementation to support virtualization and sharing

of on-chip SPMs, and includes required architectural support. Software consists of the

27

SPM allocator (Sections 2.5.1 and 2.5.2) and hardware support includes custom memory

management units along with a network protocol (Section 2.5.3).

2.5.1 SPM Allocator

The SPM allocator, as part of the operating system’s memory manager, is the core of the

ShaVe-ICE scheme. An SPM API call from any thread invokes the operating system and

this call will be forwarded to the ShaVe-ICE’s SPM allocator to make a decision about the

request. Currently, we assume all API calls are done by a centralized SPM manager that

runs on the same core as the request was made. The allocation is done at the granularity

of a page. The allocator aligns the boundaries of an allocation request and also makes sure

that a page is not allocated more than once. The allocator, based on its policy (discussed in

Sec. 2.5.2), determines the set of actions required and subsequently broadcasts proper SPM

management messages throughout the platform to accommodate the request. The requests

are served by a centralized manager in a first-come, first-served (FCFS) order and therefore

there is no chance for erroneous behavior and/or deadlock in decision makings.

2.5.2 Allocation Policies

ShaVe-ICE’s allocation policies have to balance the memory needs of locally-pinned threads,

while allowing for sharing of SPM resources among cores. We present both non-preemptive

as well as preemptive heuristics. All policies work in a best effort manner. Their goal is to

reduce the average execution time of all threads that are running, possibly degrading some

for the benefit of the whole mix. They attempt to map the maximum number of requested

pages to on-chip SPMs. Anything that can not be mapped to on-chip SPMs due to capacity

limitation, stays in the main memory.

28

Policy 1: Local Allocator (LA)

Input: a new allocation request for P pages from thread running on core[i];
Output: number of mapped pages M;

1 R = P;
2 T = maximum number of contiguous free pages on SPM[i];
3 while R >0 and T >0 do
4 allocate min(R,T) pages on SPM[i];
5 R -= min(R,T);
6 T = maximum number of contiguous free pages on SPM[i];

7 end
8 M = P - R;

2.5.2.1 Non-preemptive Allocation Heuristics

In non-preemptive allocators, once the data has been allocated on-chip, it stays there until

the thread explicitly calls SPM DEALLOC() for that piece of data.

2.5.2.1.1 Local Allocator(LA)

With the Local allocator, a thread’s allocation request is granted only if there is space available

on the local SPM. The pseudo-code of this policy is shown in Policy 1. In each iteration

(lines 3...7), the maximum number of free contiguous physical pages on the SPM are found

and allocated. Depending on the current allocation status of the local SPM, pages requested

by the thread could get allocated contiguously or dispersed throughout the physical SPM.

At the end, the number of pages that are successfully mapped is returned.

The Local allocator implements the simplest allocation policy and does not need any hardware

support for remote accesses. Since the state-of-the-art techniques for SPM management are

limited to the physical SPM local to each core, we will use this policy as the baseline.

29

Policy 2: Random Remote Allocator (RRA)

Input: a new allocation request for P pages from thread running on core[i];
Output: number of mapped pages M;

1 R = P - LocalAllocator(P, i);
2 RL = list of cores;
3 while R >0 and RL is not exhausted do
4 j = Randomly pick a core from RL;
5 R -= LocalAllocator (R, j);

6 end
7 M = P - R;

2.5.2.1.2 Random Remote Allocator (RRA)

The Random Remote allocator grants a thread’s allocation requests if there is space available

anywhere on-chip, and assigns data to random SPMs. This allocator implements the simplest

allocation policy for remote SPM allocation. We have intentionally implemented this policy

to evaluate the pure advantage of sharing discarding the importance of data placements. The

pseudo-code of this policy is shown in Policy 2. It initially behaves like the local allocator

trying to allocate as many pages as possible on the local SPM. If there are more pages to

allocate, in each iteration (lines 3...6), a core is chosen randomly and the maximum number

of free pages on its SPM is allocated for the thread’s request.

2.5.2.1.3 Closest Neighborhood Allocator (CNA)

With the Closest Neighborhood allocator, the nearest available SPM slots are allocated for

any allocation request. The pseudo-code of this policy is shown in Policy 3.

The order in which the neighboring SPMs are considered for data allocation (lines 2...6) is

based on the hop distance from the core that issued the allocation request. Only cores that

are within T radius of the home core will be considered. Figure 2.9 shows one example where

the white core in the middle issues an allocation request. First, the allocator searches for free

physical pages in the local SPM (hop distance=0). Next candidates are the SPMs distanced

within one hop from the core requesting allocation (labeled 1 through 4). If more SPM pages

30

Policy 3: Closest Neighborhood Allocator (CNA)

Input: a new allocation request for P pages from thread running on core[i],
hop-threshold = T;

Output: number of mapped pages M;
1 R = P - LocalAllocator(P, i);
2 DL = list of cores within T radius of core[i] sorted based on distance from that core;
3 while R >0 and DL is not exhausted do
4 j = next element in DL;
5 R -= LocalAllocator(R, j);

6 end
7 M = P - R;

are needed, the allocator will search the SPMs within hop distance two (labeled 5 through

12). And this process continues until all pages are allocated or all candidates are exhausted.

21 14 7 15 22

5 1 0 3 9

13 6 2 8 16

20 12 4 10 17

24 19 11 18 23

Figure 2.9: Hop-distance-based search for empty SPM space in Closest Neighborhood
allocation policy.

2.5.2.2 Preemptive Allocation Heuristics

Preemptive allocation heuristics may allow for more efficient sharing of memory resources,

but could affect previously allocated data by (1) migrating it to a different place on-chip or

(2) evicting it to main memory.

2.5.2.2.1 Closest Neighborhood with Guaranteed Local Share Allocator

(CNGLSA)

This heuristic is a modified version of the Closest Neighborhood allocator that finds the

31

nearest available SPM slot for any allocation request. However, it also guarantees that a

predefined percentage of each SPM is allocated for requests from the thread running on

that SPM’s local core, should that thread need it. The pseudo-code of this policy is shown in

Policy 4. Note that this policy does not reserve the SPM ahead of time, rather it frees up

the required SPM space by relocating the data from there to a different SPM or to off-chip

memory.

With this policy, if a new thread is assigned to an idle core while that core’s SPM was already

allocated for another thread, all or a portion of that SPM will be relocated/deallocated in

order to be used by the new thread. Currently, we support two ways of determining the

page(s) that should be relocated (line 4): (1) least recently accessed page, (2) least frequently

used page. The assumption is that there are hardware counters that can keep track of these

statistics at runtime. Once the page is selected, we attempt to relocate that page to a free

SPM nearest to its owner. If the entire on-chip SPM space within a certain hop distance is

Policy 4: Closest Neighborhood with Guaranteed Local Share Allocator (CNGLSA)

Input: a new allocation request for P pages from thread running on core[i],
hop-threshold = T, guaranteed local share = X%;

Output: number of mapped pages M;
1 R = P - LocalAllocator(P, i);
2 S = local SPM share;
3 while R >0 and S <X do
4 EP = select a page which doesn’t belong to the thread running on core[i] to be

evicted;
5 core[j] = owner of EP;
6 relocate EP to the closest free SPM to core[j] or deallocate to off-chip-memory if

no SPM space is available;
7 allocate one page on SPM[i] for the new request;
8 R -= 1;
9 S = local SPM share;

10 end
11 if R >0 then
12 R -= ClosestNeighborhoodAllocator(R,i);
13 end
14 M = P - R;

32

utilized, we evict that page to the main memory.

2.5.3 Hardware Support

Many of the previous allocation policies require some hardware support to manage the

distributed memory mappings as well as to handle remote accesses via the NoC. This

subsection explains all the required hardware assists.

2.5.3.1 Distributed Memory Management Units

MMUs are core on-chip components enabling all the memory-related communications. A

MMU sends/receives all memory-related network messages from/to their local SPM. They

are distributed throughout the chip, one MMU per core. Every memory request from the

CPU is handled by the MMU. Each MMU has its own SPM Address Translation Table

(SATT) which holds all the virtual to physical address translations for the thread on that

core. Each entry of an SATT (Figure 2.10) holds five kinds of information: (1) the virtual

page address, (2) the id of the core hosting that page, (3) the physical address on host SPM,

(4) a bit flagging if the entry is a valid entry, and (5) a flag bit indicating if the information

in that row is shared data or private data. If no mapping exists on SATT for the memory

location requested by CPU, the data cannot be found on-chip; the address translation will

be done through the Translation Lookaside Buffer (TLB) and the request is forwarded to

off-chip memory.

valid virtual page host core ID physical SPM address shared data

Figure 2.10: SATT entry

33

2.5.3.2 Network Protocol

Table 2.3 lists all the network messages required to implement the SPM-related

communications between MMUs via the NoC. There are 6 kinds of request messages

and five types of response messages. SPMReq READ and SPMReq WRITE are used

for remote memory read and write accesses which are respectively responded with

SPMResp DATA and SPMResp WRITE ACK. SPMReq ALLOC and SPMReq DEALLOC

are also used for allocating and deallocating a virtual page and are both responded with

SPMResp GOV ACK. In certain scenarios, allocating a page for a thread requires relocating

a page from another thread. In such cases, the core that has to relocate its page sends a

SPMReq RELOCATION READ to the current host of that page. When the data is read

from SPM, the current host will forward the data with a SPMReq RELOCATION WRITE

to the future host of that page while sending back a SPMResp RELOCATION HALFWAY

to the owner core. The owner then can signal the core who wants to allocate a new page

that the space is freed up. Future host node receives the request and after copying the data

on its SPM sends a SPMResp RELOCATION DONE to the owner core so it can resume its

execution.

Table 2.3: SPM-related network messages in ShaVe-ICE

SPM Request Messages SPM Response Messages
Type Purpose Type Purpose

SPMReq READ Request for a data read SPMResp DATA Data for read requests
SPMReq WRITE Request for a data write SPMResp WRITE ACK Acknowledgment for write requests

SPMReq ALLOC
Request for allocating a
page on a physical SPM SPMResp GOV ACK

Acknowledgment for
ALLOC/DEALLOC requests

SPMReq DEALLOC
Request for deallocating a
page from a physical SPM

SPMReq RELOCATION READ
Request for read part of

an on-chip page migration
SPMResp RELOCATION HALFWAY

Used to notify a MMU that data
has been relocated from specific

SPM slots and those slots are now free

SPMReq RELOCATION WRITE
Request for write part of

an on-chip page migration
SPMResp RELOCATION DONE

Used to signal the end of
a relocation request

34

2.5.4 Data Movements in ShaVe-ICE

Three types of events encompass all possible scenarios for managing SPM data in ShaVe-ICE:

allocation/deallocation, access, and migration.

2.5.4.1 Allocations/Deallocations

Allocations and deallocations are initiated via explicit API calls in the application. An

allocation request with its related information (address, size) is sent to the SPM allocator,

which holds the state of all on-chip memory and can determine whether or not the request

will be granted. If the SPM allocator can grant the allocation request it sends one or more

message(s) back to the requesting core. Every message contains a number of allocation

information: number of pages granted, core hosting the allocated SPM space, base physical

address on the target SPM, etc. The requesting node updates its SATT entry for the virtual

page(s), it communicates with the host core and finally the host core’s MMU initiates DMA

transfers to fulfill the request.

Deallocation follows a similar flow: upon receiving the deallocation request, the SPM allocator

notifies the requesting node so it can invalidate the associated SATT entry, and also notifies

the host node so that it can invalidate the SPM space and initiate a write-back to main

memory.

2.5.4.2 Accesses

Every memory read/write request is initially forwarded to the local MMU. MMU issues a

SATT lookup in parallel with the TLB. Since SATT stores all the SPM mappings for its host

core, this lookup yields the location of the object. If the look-up is a miss, the data is stored

in the cache hierarchy or main memory. If the look-up is a hit, the data exists somewhere on

35

the distributed physical SPM – either the local SPM or any of the remote SPMs.

If the page containing the requested data exists on the local SPM, the MMU provides the

physical SPM address and forwards the request to the local SPM, which returns or updates

the data.

If the page is on a remote SPM, the MMU initiates a request (SPMReq READ or

SPMReq WRITE) for the remote MMU on the node that holds the data while the requesting

CPU stalls. Upon receiving the request from the NoC, the remote MMU fetches or updates the

data, and returns a message (SPMResp DATA or SPMResp WRITE ACK) to the requester.

Finally, the requesting MMU notifies its local core upon receiving the response and execution

continues.

2.5.4.3 Data Migration

Under certain conditions, we may need to relocate a page from one SPM to another SPM or

evict it to main memory. This is usually needed in order to free space for a thread that has

more priority to use a physical SPM in the case of preemptive allocation policies. Migrations

are initiated by the allocator, and carried out by network messages (SPM Req RELOCATI

ON READ, SPM Req RELOCATION WRITE, SPM Resp RELOCATION HALFWAY, S

PM Resp RELOCATION DONE) exchanged between the affected MMUs; namely: owner

of that page, current host of that page, and future host of that page. During migration, the

thread whose data is being migrated is stalled to make the execution safe.

36

2.6 SPM Sharing Evaluations

We conducted experiments to evaluate the capability of ShaVe-ICE for improving the overall

performance and power consumption of the memory sub-system for a SPM-based platform

by sharing the distributed SPM space.

2.6.1 Experimental Setup

We prototyped the ShaVe-ICE scheme in the gem5 architectural simulator [29]. We

extended gem5 by adding the SPM, MMU, and SATT components; defining a new network

protocol for SPM-related communications; and adding support for SPM API calls through

pseudo-instructions. We ran our experiments in the system emulation (SE) mode of gem5

using in-order alpha cores to configure mesh NoCs using the gem5’s simple network to model

the contention delay. Every SPM API call invokes the ShaVe-ICE manager implemented

inside the simulator to emulate the behavior of a real operating system.

In the following experiments, all threads begin their execution at the same time and we set

the hop distance threshold to 8.

We used Noxim [34] to estimate the energy consumed within the NoC and CACTI [111] to

estimate the SPM access energy. DRAM access energy is estimated using the results from

[117].

2.6.2 Remote vs. Off-chip Access Latencies

While on-chip accesses tend to be faster than off-chip accesses, if the hop distance between the

home core and the host core becomes too long, which is quite possible in larger platforms, the

network delay could overcome the benefit of remote allocations. In the most extreme cases,

37

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

20

40

60

80

average latency of off-chip accesses

Hop Distance

A
cc

es
s

L
at

en
cy

(C
y
cl

es
)

Figure 2.11: Average access latency for various hop distances.

an on-chip memory access may become more costly than an off-chip access. The exact hop

distance that could result in degraded performance is dependent on the implementation of

the network as well as the latency of off-chip DRAM. We conducted experiments to measure

the pure effect of network delay on remote accesses in a 8X8 mesh NoC. For that, we run

a thread on corner of the mesh (i.e., core (0,0)) accessing a 4KB stack array within a loop

performing some basic arithmetic operations on elements of that array. All other cores are

idle. In 15 different runs, we allocate this 4KB array on all 15 possible hop distances from

the home core (i.e., 0 to 14). In another run, we allocate that array on the off-chip DRAM.

Figure 2.11 shows the average memory access latency of this thread for different hop distances.

The dashed red line shows the average access latency when the data is accessed from off-chip

DRAM. On average, every hop adds 4 cycles to the latency. After 13 hops, the latency

experienced by the thread to access on-chip SPM will exceed the latency of off-chip DRAM.

This analysis is done assuming there is no other network traffics generated by other cores

and therefore a more conservative threshold has to be selected. In our experiments we set

the hop distance threshold to 10 2.

2This analysis was done just to highlight the pure effect of the network on the latency of remote access.
All the comparisons in Section 2.6 are done with the network traffic being generated by multiple threads
running concurrently.

38

2.6.3 Memory Microbenchmark

Since our goal is to evaluate the efficiency of different allocation policies, we generated

synthetic threads using an in-house configurable memory microbenchmark (mem-ubench)

generator designed to stress the memory resources with different intensities (Figure 2.12).

This microbenchmark has three phases (prologue, body, epilogue) that are repeatedly

executed and can be independently adjusted in order to make them more compute-bound or

memory-bound. The prologue and epilogue consist of mainly regular and random memory

operations respectively; while the body consists mainly of compute operations. Each function

operates on three arrays: two globally allocated arrays, and a third local to the function.

This way, we can exercise many diverse scenarios using the coarse-grained intensity setting

in combination with the finer-grained duration settings.

The list of configuration parameters for mem-ubench is:

• length: This parameter controls the length of execution.

• working-set-size: This parameter sets the amount of data that the benchmark allocates

and accesses.

• mem/comp-intensity: This parameter defines the ratio of memory operations to compute

operations for all phases.

• prologue-duration: This parameter controls the relative duration of the first phase of

execution.

• body-duration: This parameter controls the relative duration of the second phase of

execution.

• epilogue-duration: This parameter controls the relative duration of the third phase of

execution.

In this early investigation of SPM-based manycore system, our goal was to explore the key

factors that could affect the performance and power of such systems. Towards this end, we

39

MEM operations

ALU operations

MEM operations

ALU operations

Memory-bound function Compute-bound function

mem-ubench

Global
Data 1

Global
Data 2

Global
Data 1

Global
Data 2

Prologue: Memory-bound function <Regular Accesses>

Body: Compute-bound function

Epilogue: Memory-bound function <Random Accesses>

Local
Data

Local
Data

Global
Data 1

Global
Data 2

Figure 2.12: Overall flow of mem-ubench execution: each phase (prologue, body, epilogue)
is either memory or compute intensive to a configurable degree. Operations are performed
on three data arrays of configurable size with both regular (strided) and randomized access
patterns. The number of executions of each phase as well as the entire 3-phase loop are
configurable.

use only combinations of the memory microbenchmark that stimulate specific behaviors to

understand these key factors and relate them to the overall behavior of the system. Therefore,

we avoided using all combinations of configurations that could result in randomly mixing

different kinds of microbenchmarks. In particular, we developed configurations to evaluate the

following policies: (1) Local Only, (2) Random Remote, (3) Closest Neighborhood, (4) Closest

Neighborhood with Local Reservation. In each policy comparison, we highlight a specific

opportunity that is exploited to improve performance/power. For each policy comparison

we combined specific configuration(s) of the microbenchmark to exacerbate the advantage

of the superior policy, and allowed us to isolate the sources of improvement so as to more

clearly explain them. The following two subsections present the result of our performance

40

and energy evaluations.

2.6.4 Performance Comparisons: ShaVe-ICE vs. Software Cache

In the first set of experiments, we compare ShaVe-ICE with a software cache. A software

cache consists of a simple memory array (similar to SPM) and a software system that is

capable of automatically managing that memory to behave similar to hardware-managed

cache. Instead of using specially-designed hardware for cache management, a software cache

uses general-purpose instructions.

Here, we compare the performance of a system using ShaVe-ICE with a similar system that

uses software caching. The software cache has the same size as the SPMs in ShaVe-ICE. It

implements a direct-mapped cache. The hit and miss latencies of this cache are 11 and 430

cycles respectively. These latencies account for the execution times of lookup and the miss

handling routines and are extracted from [118]. A SPM access which hits the local SPM takes

two cycles: one cycle to translate the virtual address to physical SPM address and one cycle

to access the SRAM array.

We consider two cases. In both cases, we configure a 5X5 mesh-based manycore platform

with a utilization of 50%: Case A) The size of the SPM and software cache is larger than

the thread’s working-set, therefore ShaVe-ICE allocates every memory object on the local

SPMs and the software cache has a very low miss rate (Figure 2.13). The address translation

for hit accesses in a software cache has to be done in software as opposed to the address

translation table (SATT in Figure 2.5) which is used in ShaVe-ICE. Because of that, although

most accesses are hit in both cases, the thread’s performance with ShaVe-ICE is significantly

better compared to a system that uses software cache. Case B) The working-set-size of some

threads is larger than local SPM and the software cache (miss rate = ∼15%) and some

threads’ working-set are smaller than the local SPM and the software cache (Figure 2.13).

41

Figure 2.13 shows the improvements in the average and maximum execution time among

all running threads for both cases. More improvements are observed in case A compared to

case B, because in case A, ShaVe-ICE is allocating all data objects on the local SPM and

therefore hit accesses are faster.

2.6.5 Performance Comparisons: ShaVe-ICE Policies

In the second set of experiments, we evaluate various ShaVe-ICE policies with a workload

composed of different mem-ubench configurations. In all of the following experiments, we

consider an 8X8 mesh-based manycore with equally distributed physical SPMs. To explore

the design space, we vary local SPM size from 4KB to 16KB and core utilization from 25%

to 100%. We consider four different scenarios to show the benefits of ShaVe-ICE policies

under various conditions. Scenario 1 evaluates ShaVe-ICE in the face of core underutilization.

Scenario 2 evaluates ShaVe-ICE when threads have different working set sizes. Scenario 3

explores the effect of reducing network traffic for remote memory accesses. Scenario 4 explores

scenarios that guarantee a share of each SPM for its locally-pinned thread, thereby improving

performance in some cases.

Case A Case B
0

20

40

60

N
or

m
al

iz
ed

E
x
ec

u
ti

on
T

im
e

(%
)

Longest Running Thread Avg. Exec. Time

Figure 2.13: ShaVe-ICE vs. software cache – Case A: thread’s working-set is smaller than
software cache and SPM, Case B: thread’s working-set is larger than software cache and SPM.
Lower values are better.

42

2KB 4KB 8KB 16KB 32KB
0

20

40

60

80

100

Available SPM Capacity

M
is

s
R

at
e

(%
)

config 1
config 2
config 3

Figure 2.14: Miss rate of various mem-ubench configurations for different available SPM
capacities. Miss rate does not have a linear relationship with SPM capacity since not all the
data is of the same importance.

For these evaluations, we use three configurations of mem-ubench with different working set

sizes. Figure 2.14 shows the miss rate of each of these configurations based on the available

SPM capacity. In all three configurations, around 28% of executed instructions are memory

operations. These three configurations are chosen to exercise different memory workloads by

combining various working set sizes and different sensitivities to the available SPM size. Note

that the improvement in miss rate does not have a linear relationship with the SPM size.

For all core utilizations, thread mappings are done in a way that the workload is evenly

distributed across the platform. This also holds true when a mix of two types of mem-bench

are used to compose the workload.

For the following studies, we discuss the interesting trends observed in the results. However,

we note of course that due to the dynamism in multiple dimensions (e.g., type of mem-ubench

threads, importance of data objects, arrival time of requests, etc.) it is difficult to identify

the cause of specific trends over all cases due to their complex interactions.

For instance, the dynamism is complicated by different memory objects accessed with different

levels of importance (i.e., number of accesses to each data object). In our mem-ubench this is

the order of importance of the data objects: stack-data ¿ global-heap-data ¿ local-heap-data.

However, the fact that stack-data is more important than other data bjects does not mean

43

that if the SPM space is limited, only that piece of data will be allocated. This is because

allocations requests are served on a best effort manner (first-come-first-served basis) without

knowing the future demands. In this work, we have no support for prioritizing more important

data over less accesses data. We have stated in our future work that we are working on a

light-weight monitoring of accesses through some counters to make sense of the importance of

their data objects. The fact that not all data is of the same importance is also corroborated

in 2.21. The miss rate drop with additional SPM capacity is not constant as the available

SPM space increases. Due to the varying arrival time of the allocation deallocation request

and the system-level status of allocations, one policy may allocate more important data when

the SPM size is smaller and/or utilization is higher, while the other policy may allocate a

less important data with a larger SPM size and/or lower utilization.

2.6.5.1 Scenario 1: Core Underutilization

The first scenario we examine is when the number of threads running on the platform is

smaller than the number of cores (i.e., core underutilization). In this case not all CPUs are

active, therefore some cores are not occupied and traditional SPM management techniques

result in idle cores’ SPM space not being used. For this experiment, we replicate identical

config 2 mem-ubenchs to generate the workload.

Figure 2.15 shows the average execution time of all threads in the workload when sharing

is enabled using the simplest remote allocation (i.e., RRA) normalized to the same metric

when threads can only use their local SPM (i.e., LA). This ratio is reported for three different

core utilizations from 25% to 75%. For SPM sizes of 16KB, improvements are minimal to

none because 16KB can fit most of the config 2’s working set according to Figure 2.14. In all

cases, when SPMs are sized smaller, significant improvement in execution time is observed.

This is due to SPM sharing – when SPMs are smaller than a thread’s working set, sharing

of remote SPMs prevents off-chip memory accesses that are otherwise required for allocation

44

core-util=25% core-util=50% core-util=75%
0

25

50

75

100

N
or

m
al

iz
ed

E
x
ec

u
ti

on
T

im
e

(%
)

SPM=4KB SPM=8KB SPM=16KB

Figure 2.15: Scenario 1: Average execution time among all threads in an 8x8 system - RRA
normalized to LA. Core underutilization provides the opportunity to RRA to allocate more
SPM space for the threads that have large working set size.

policies that only allow threads to use their local SPMs.

Highest improvements are observed for 8KB SPMs because the miss rate drops significantly

when the available capacity becomes larger than 8KB. This is justified by observing the

sharp decline in the miss rate for config 2 when moving from 8KB to to 16KB SPM space.

The maximum improvement happens when SPM is 8KB and the utilization is 50%. This

is because at this utilization and with the local allocator, 32 threads have most of their

working set off-chip. Therefore, there is a high traffic on the off-chip memory side further

increasing the off-chip access latency that each thread experiences. With remote random

allocator, all threads get most of their working set allocated on-chip, reducing the number

of off-chip accesses which in turn reduced the off-chip access latency as well. At 75% core

utilization, not all thread gets their working set allocated, therefore improvement is smaller.

On the other hand, when sharing is enabled with 4KB SPMs, in lower utilizations (e.g., 25%)

a lot of nearby SPM space is available to compensate for the shortage of local SPM space. The

improvements are expected to be slightly lower than when SPMs are 8KB. With 8KB SPMs,

the miss rate of config2 mem-ubench is about to significantly drop if it gets remote SPM space.

Remote SPMs are also in hop distance one so the execution time improves significantly. With

4KB SPMs, we require a lot of remote SPMs for the miss rate to drop significantly. In this

45

case more accesses will be remote with higher average latency. As expected, lower utilizations

generally result in larger improvements because more remote SPM space is available for

threads.

2.6.5.2 Scenario 2: Variation in Memory Working Set Size

Next, we examine a scenario that unlike scenario 1, there is a variation in the memory working

set size of threads concurrently running on the platform. This would result in some cores not

utilizing their entire SPM space, and can therefore lend SPM space to other cores in need

even if the core utilization is high. We examine this scenario under different core utilizations.

For this experiment, we use a mix of config 1 and config 3 mem-ubenchs where config 3 has

a significantly larger working set size compared to config 1. However, both types of threads

have the same memory utilization (i.e. percentage of dynamic instructions that were memory

accesses) equal to 28%.

Figure 2.16 shows the average execution time of different threads in the workload when

sharing is enabled using the simplest remote allocator (i.e., RRA) normalized to the same

metric when threads can only use their local SPM (i.e., LA).

core-util=25% core-util=50% core-util=75% core-util=100%
0

25

50

75

N
or

m
al

iz
ed

E
x
ec

u
ti

on
T

im
e

(%
)

SPM=4KB SPM=8KB SPM=16KB

Figure 2.16: Scenario 2: Average execution time among all threads in an 8x8 system - RRA
normalized to LA: Threads with small working set size provide the opportunity to RRA to
utilize the SPM space unused by the locally-pinned thread in order to allocate more SPM
space for the threads that have large working set size.

46

The trend of execution time ratios with 16KB SPMs is noteworthy. Improvements increase at

higher utilizations. With 16KB, all config 1 threads have enough space but config 3 threads are

close to their tipping point. On the other hand, with the local allocator, at higher utilizations

a significant memory traffic is generated which degrades the performance of config 3 threads

dramatically because off-chip accesses take a long time to complete. The random remote

allocator allocates more space for config 3 threads, alleviating both issues.

The execution time reductions when even all cores are utilized shows the benefit of SPM

sharing for workloads with diverse memory requirements. This is due to the fact that although

half of the threads require more SPM space than what is locally available, the other half do

not fully occupy their local SPMs and can lend it to more demanding threads.

2.6.5.3 Scenario 3: Reducing Network Traffic

The third set of experiments are devised to show the effect of hop distance on memory latency

when borrowing space from remote cores. Like scenario 2, we use a mix of config 1 and config

3 mem-ubenchs for this experiment.

Figure 2.17 shows the average execution time of the workload for the neighborhood allocator

normalized to the random remote allocator. Improvements are minimal for 4KB SPM since a

lot of them are already occupied by their locally-pinned thread especially when core utilization

is higher than 25%. At the low core utilization of 25% – because there is more available SPM

space in the pool of free SPMs – the execution time will be reduced more significantly when

the remote allocations are done as close as possible to the owner core compared to when they

are done at random hop distances.

The simple neighborhood allocator performs better than the random remote allocator in

almost all cases except one. The execution time becomes higher at the highest utilization

and the smallest SPM size because of the config 3 threads having a higher probability of

47

core-util=25% core-util=50% core-util=75% core-util=100%
0

25

50

75

100

N
or

m
al

iz
ed

E
x
ec

u
ti

on
T

im
e

(%
)

SPM=4KB SPM=8KB SPM=16KB

Figure 2.17: Scenario 3: Average execution time among all threads in an 8x8 system -
CNA normalized to RRA: CNA allocates remote pages as close as possible to the owner
core resulting in reduced network traffic, faster access latency and ultimately better overall
performance compared to RRA.

occupying the SPM space that otherwise would have belonged to config 1. As shown in

Figure 2.14, config 1 threads can benefit more of 4KB of SPM compared to config 3 threads.

Because of the way that two types of threads are evenly distributed, every config 3 thread

has four config 1 threads within hop distance of 1. Therefore with the closest neighborhood

allocator, there is a 100% probability that a config 3 thread fills in the SPM of one of its

config 1 neighbors should they have free space. With the random remote allocator there is a

50% chance that a config 3 fill in a config 1’s local SPM.

2.6.5.4 Scenario 4: Guaranteeing SPM Share for Locally-pinned Thread

The neighborhood allocator looks for available SPM space with the shortest hop distance.

With this policy, it is possible that a core occupies the entire SPM that is local to another core

while that core itself needs it. In the fourth set of experiments, we evaluate if guaranteeing a

portion of each SPM for its local thread helps improve the overall performance. Again, we

use a mix of config 1 and config 3 mem-ubenchs for this experiment. The local SPM share is

set to 100%.

The top part of Figure 2.18 shows the difference in average local hit ratio of different threads

48

0

10

20

30
D

iff
er

en
ce

in
L

o
ca

l
H

it
R

at
e

core-util=25% core-util=50% core-util=75% core-util=100%
0

50

100

N
or

m
al

iz
ed

E
x
ec

u
ti

on
T

im
e

(%
)

SPM=4KB SPM=8KB SPM=16KB

Figure 2.18: Scenario 4: Difference in the local hit ratio - CNGLSA-CNA and average
execution time among all threads in an 8x8 system - CNGLSA normalized to CNA: CNGLSA
returns the remotely allocated SPM space to the locally-pinned thread should that thread
needs it. In some cases, this results in improved local hit ratio and decreased average memory
access latency compared to CNA.

running on a system with the neighborhood allocator with and without guaranteed local share.

The improvement in local hit rate as utilization increases indicates that this improvement

is due to reduced remote SPM accesses. Because the threads are intentionally mapped as

sparsely as possible, at lower utilizations there are very few conflicts between neighboring

cores competing for SPM space, and therefore local hit rates are nearly identical with both

policies. However, this increase in local hit rate does not always turn into execution time

reduction. Sometimes, the overhead associated with on-chip data relocation might offset the

benefit of more local hits if the data that is being allocated locally is not accessed frequently

enough.

The lower part of Figure 2.18 shows the corresponding normalized execution times and as

it can be seen only in two cases a noticeable execution time reduction is the gained. The

large improvement when SPM size is 8KB at higher utilization is due to config 1 threads. At

49

core-util=25% core-util=50% core-util=75% core-util=100%
0

20

40

60

N
or

m
al

iz
ed

D
y
n
am

ic
E

n
er

gy
(%

)

SPM=4KB SPM=8KB SPM=16KB

Figure 2.19: Dynamic energy in memory subsystem and network: CNA normalized to LA.

core-util=25% core-util=50% core-util=75% core-util=100%
0

20
40
60
80

100
120

N
or

m
al

iz
ed

D
y
n
am

ic
E

n
er

gy
(%

)

SPM=4KB SPM=8KB SPM=16KB

Figure 2.20: Dynamic energy in memory subsystem and network: CNGLSA normalized to
CNA.

that SPM size and with the neighborhood allocator, the neighboring config 3 thread(s) that

need more than 8KB of SPM space, immediately fill up the entire platform leaving nothing

for the config 1 threads. But when neighborhood allocator with guaranteed local share is

used, config 1 threads will get all 8KB SPM space that they need which results in dramatic

reduction of their execution time.

2.6.6 Energy Comparisons: ShaVe-ICE Policies

Access to off-chip memory is an order of magnitude more costly than on-chip accesses in

terms of energy consumption. Although ShaVe-ICE primarily targets improving the overall

performance, it can also help reduce the total energy consumed by the memory subsystem.

50

Figure 2.19 shows total dynamic energy consumed for SPM accesses, off-chip DRAM accesses,

and the NoC when distributed SPMs are shared using the closest neighborhood policy

normalized to the same metric when allocations are limited to local SPMs only. As expected,

the energy savings trend is similar to the performance improvement, as both are primarily a

result of reducing off-chip memory accesses.

A similar comparison is made in Figure 2.20 between the neighborhood allocator with

and without the use of guaranteed local share. Similar to the performance comparisons

in Figure 2.18, only when the benefit of accessing the data locally is higher the cost of

migration energy savings can be obtained.

2.6.7 Experiments with Real Workload Mixes

In the last set of experiments, we configure a 4x4 system and run a number of real benchmarks

on the platform under different core utilizations. Every core’s SPM is 32 kilobytes. The

benchmarks and their respective sources are listed in Table 2.4.

In order to annotate the source code of these benchmarks with ShaVe-ICE APIs: (1) We

run the benchmark on gem5 to collect memory traces. These memory traces are generated

independent of the memory hierarchy. In the same run we collect the cycles each function was

called and when it returned. We also collect the virtual address boundaries of various data

Table 2.4: List of benchmarks for ShaVe-ICE experiments

Benchmark Acronym Source
fast fourier transform FFT [63]
huffman encoding HUF [1]
wikisort WS [1]
nbody NB [2]
susan-cornering SU-C [63]
susan-edging SU-E [63]
susan-smoothing SU-S [63]

51

SU-C

HUF

SU-C

FFT

NB

HUF

SU-E

SU-C

FFT

NB

HUF

SHA

SU-E

SU-C

NB

FFT

WS

NB

HUF

SHA

SU-E

SU-C

NB

FFT SHA

SU-S

WS

NB

HUF

SHA

SU-E

SU-C

WS

NB

FFT SHA

SU-S

WS

NB

HUF

HUF SHA

(a) core-util = 2/16 (b) core-util = 4/16 (c) core-util = 6/16 (d) core-util = 8/16 (e) core-util = 10/16 (f) core-util = 12/16

Figure 2.21: Workload mixes with various core utilizations in a 4X4 platform.

objects (function stacks, heap objects, etc) (2) We feed the trace along with this information

into our memory trace analyzer which analyzes the trace knowing each access in the memory

trace maps to which data object tagged to its corresponding function. The report generated

by the analyzer is finally used to add annotations for a subset of the most frequently accessed

data objects within proper places in the source code.

We evaluate this system under different core utilizations, various working set sizes, and with

two local and closest neighborhood with guaranteed local share allocators. Figure 2.21 shows

all the mixes of benchmarks running at the same time. We start from having only two

benchmarks running and in each step we add two more benchmarks to the workload mix

until the core utilization becomes 75% (i.e., 12/16).

Figure 2.22 shows the execution time of workload with closest neighborhood with guaranteed

local share allocator normalized to the execution time with local allocator which is our

baseline. It reports four different values, namely: (1)normalized longest execution time among

all threads, (2)normalized average execution time among all threads (3)normalized execution

time of the thread benefiting the most and (4)normalized execution time of the thread

benefiting the least.

The longest running thread in all first five mixes ((a) through (e)) is HUF where its execution

time is reduced to around 50% in all cases. In mix (f) another thread of HUF benchmark

with a larger input/working set size is the longest running thread and its execution time is

reduced to 43.5%. The second HUF benchmark benefited more because of its larger working

52

set size and the availability of remote SPM capacity when all other threads have finished

execution.

The average execution time has reduced to 43% - 92% depending on the core utilization

and the working set size demands. Generally less core utilization means more performance

improvement. But it also depends on the mix of the threads that are running at the same

time. As shown in Figure 2.22, going from mix (e) to mix (f) results in the average execution

time to be reduced due to the extra advantage that the second HUF thread receives, as

discussed earlier.

The highest improvement bars report the best performance improvement experienced by any

of the threads in the mix. Similarly, the lowest improvement bars show the the least benefit

experienced by a thread. Except for mix (a), in all other cases there is at least one thread

whose execution time is not reduced by using the closest neighborhood with guaranteed local

share allocator. And that is because there are threads whose working set size is smaller than

each core’s local SPM. In fact, in mixes (c) through (f) there is a thread whose execution

time is increased by 0.4%. Although the local SPM share was set to 100% for this experiment,

there are times that a thread has to wait for guest thread’s pages to be relocated which incurs

(a) (b) (c) (d) (e) (f)
0

25

50

75

100

Workload MixesN
or

m
al

iz
ed

E
x
ec

u
ti

on
T

im
e

(%
) Longest Running Thread Avg. Exec. Time

Most Improved Thread Least Improved Thread

Figure 2.22: Execution time comparison for various workload mixes as shown in Figure 2.21:
CNGLSA normalized to LA. Lower values are better.

53

some small overhead.

2.7 Discussion on Overheads

Not all components of ShaVe-ICE are unique to the solution. SPM-based platforms require

an API and a mechanism for address translation to enable allocation and access for local

SPMs. However, additional hardware and software components of ShaVe-ICE are required

to enable sharing of remote SPMs.

The software component that incurs additional overhead for ShaVe-ICE is the SPM allocator.

All SPM-based platforms require a mechanism for allocation and a policy to resolve contention

(e.g. sharing or over-subscription of the local SPM). For an allocator that does not share

the entire SPM space, if we assume the SPM page size is P and the allocation size is S,

the worst-case time complexity is O(P*S). Since SPM is not shared, the time complexity

is not dependent on the number of cores. For allocators that share the entire SPM space

between threads, if we assume the SPM page size is P, the allocation size is S, and the

number of remote SPMs accessible by the core requesting allocation is N, the worst-case time

complexity is O(P*S*N). Accurate analysis of runtime overhead requires implementing the

policies inside operating system which is the topic of our future work. To estimate the upper

bound of execution times, we measured the time spent in the allocation and deallocation

routines inside gem5 every time a thread calls an SPM API. Figures 2.23 and 2.24 show the

runtime of these routines for different page sizes and allocation sizes.

The SPM allocator must additionally maintain system-wide SPM state, which includes

information specifying each unique virtual page occupying each on-chip SPM page, as well

as a list of free pages.

Hardware overhead associated with ShaVe-ICE manifests in the form of address translation

54

and network communication. Similar to the allocator algorithm, storage for translation

required in SPM systems depends on the number of pages per SPM: each core must maintain

address translation for its local SPM. Supporting sharing means that each core must now

have the capacity to additionally store translation information for remote SPM pages it has

access to. In order to mitigate this storage overhead, we can adjust the page size to reduce

the number of ATT entries, or limit the amount of total SPM space a core can allocate to a

subset of the entire physical SPM space.

As illustrated in Section 2.6, the additional on-chip communication required by ShaVe-ICE

yields an overall improvement in average access latency as well as system energy consumption.

Although more transactions are required in the NoC to allocate, access, and update local

ATT entries, the reduction in off-chip accesses mitigates this penalty. However, as the size

of the platform grows to 10s or 100s of cores, the latency penalties incurred by excessive

hop distances between cores and remote SPMs could become comparable to off-chip accesses.

Therefore, there needs to be a platform-specific threshold for the maximum hop distance

when an allocation policy searches for available space during a remote SPM allocation.

64 128 256 512
0

50

100

150

200

Page Size

O
ve

rh
ea

d
(C

y
cl

es
) 1K

2K

4K

8K

(a) Allocation routine

64 128 256 512
0

50

100

150

200

Page Size

1K

2K

4K

8K

(b) Deallocation routine

Figure 2.23: Runtime overhead of SPM allocator for different combinations of allocation size
and page size: local policy (simplest policy).

55

64 128 256 512
0

50

100

150

200

Page Size

O
ve

rh
ea

d
(C

y
cl

es
) 1K

2K

4K

8K

(a) Allocation routine

64 128 256 512
0

50

100

150

200

Page Size

1K

2K

4K

8K

(b) Deallocation routine

Figure 2.24: Runtime overhead of SPM allocator for different combinations of allocation size
and page size: closest neighborhood with local reservation policy (most complex policy).

2.8 Cache+SPM and Shared Data Support

Evaluations

In this section we present experiments that compare the hybrid memory hierarchy with

a cache-based hierarchy implementing a cache coherence protocol (MESI) and show

opportunities for energy saving and/or execution time improvement. We ran our experiments

in the system emulation mode of gem5 using in-order ARM cores to configure a 4*4 mesh

NoC with one level of on-chip memory. We present preliminary results using use a number of

synthetic microbenchmarks – each designed to exercise different memory behavior – (Table 2.5)

Table 2.5: List of microbenchmarks

Benchmark Parameters Description

counter inc num-threads
An array of counters are incremented by
a number of threads. Every thread increases
its own counter so there is no true data sharing.

histogram
num-threads
data

It computes the histogram of a large array of
data. Each worker thread get a portion of the
array and updates the histogram for that chunk.

regular access num-iterations
It generates regular(strided) accesses to
an array of integer data.

irregular accesses num-iterations
It generates irregular(random) accesses to
an array of integer data.

56

to highlight the opportunities.

2.8.1 Experiment 1: Coherence Overhead Due to False Sharing

The first experiment compares both hierarchies when false sharing exists. False sharing

happens when threads unwittingly impact the performance of each other while modifying

independent variables sharing the same cache line. In this experiment we use the counter inc

microbenchmark (designed to stress false sharing), varying number of threads from 2 to 10.

With the cache-based memory hierarchy, counters share the same cache line causing a false

sharing every time a thread accesses its counter. With the software-assisted hierarchy, we

allocate the array holding counters on the SPM space and all threads perform remote accesses

to the same physical copy. For this letter, we simply allocate the single copy on the SPM of

the core spawning the threads; data placement could be further optimized in future work.

Figure 2.25 shows the execution times and network traffic of SAM hierarchy normalized to

that of the cache-based hierarchy. As the number of threads increases, the cache coherence

overhead becomes more pronounced; indeed we see from Figure 2.25 more improvements

for higher number of threads by using a software-assisted memory hierarchy that manages

shared data through SPMs.

2T 4T 6T 8T 10T

0.25

0.5

0.75

1

Number of Threads

S
of

tw
ar

e-
A

ss
is

te
d

H
ie

ra
rc

h
y

N
or

m
al

iz
ed

to
C

ac
h
e-

b
as

ed
H

ie
ra

rc
h
y Avg. Exec. Time Total Size of Messages

Figure 2.25: Comparing software-assisted memory hierarchy with cache-based hierarchy
implementing MESI protocol when false data sharing exists.

57

2.8.2 Experiment 2: Coherence Overhead Due to Shared Data

In the second experiment, we evaluate how keeping a single copy of shared data on-chip

and forwarding all accesses to that copy could improve the average performance of threads

compared to when a cache coherence protocol is used to guarantee data correctness. In this

experiment we use the histogram microbenchmark (designed to generate accesses to shared

data). While the data array is read by all threads, it is never written to by any of threads

resulting in no coherence issues for that data object. The shared data object that has to be

kept coherent across threads is the data structure keeping the computed histogram thus far.

Mutex objects are also shared between different threads. We allocate these two data objects

on the SPM space and let cache handle other objects. Figure 2.26 shows the execution times

and network traffic of SAM hierarchy normalized to that of the cache-based hierarchy. Similar

to the previous experiments, improvements are more significant when more number of worker

threads are spawned.

2T 4T 6T 8T 10T

0.25

0.5

0.75

1

Number of Threads

S
of

tw
ar

e-
A

ss
is

te
d

H
ie

ra
rc

h
y

N
or

m
al

iz
ed

to
C

ac
h
e-

b
as

ed
H

ie
ra

rc
h
y Avg. Exec. Time Total Size of Messages

Figure 2.26: Comparing software-assisted memory hierarchy with cache-based hierarchy
implementing MESI protocol when true data sharing exists.

58

2.8.3 Experiment 3: Dynamic Partitioning of Local Memory

The third experiment explores opportunities to improve performance/energy consumption

if we are able to dynamically partition the local memory into SPM and cache. For this

experiment, we use regular access and irregular access microbenchmarks that generate

accesses to a large array of data. We only allocate all or a portion of the data array on SPM.

Other memory accesses, to the unallocated part of data array or other scalar data objects in

the program, are left to be handled by cache or main memory. The local data memory size

is assumed to be 32Kb which could be partitioned in three different modes: 1) 32-KB cache,

2) 32-KB SPM, and 3) 16-KB cache / 16-KB SPM. SPM and Cache access latencies are

assumed to be equal (2 cycles). For different runs, we set the size of the data array to 12-KB

R-small I-small R-medium I-medium R-large I-large
0

0.25

0.5

0.75

1

1.25

N
or

m
al

iz
ed

E
x
ec

u
ti

on
T

im
e

32-KB $ 16-KB $ & 16-KB SPM 32-KB SPM

Figure 2.27: Comparison of execution time with different configurations of a fixed size local
memory: cache only, SPM and cache, SPM only. Lower is better.

R-small I-small R-medium I-medium R-large I-large
0

0.25
0.5

0.75
1

1.25
1.5

1.75

N
or

m
al

iz
ed

E
n
er

gy
C

on
su

m
p
ti

on
in

M
em

or
y

S
u
b
sy

st
em

32-KB $ 16-KB $ & 16-KB SPM 32-KB SPM

Figure 2.28: Comparison of energy consumption with different configurations of a fixed size
local memory: cache only, SPM and cache, SPM only. Lower is better.

59

(small), 48-KB (medium) and 64-KB (large) in microbenchmarks. For energy consumption,

we consider total dynamic energy consumed in caches, SPMs, NoC, and DRAM. Figures 2.27

and 2.28 show the execution time and energy consumption of each configuration normalized

to cache only configuration. Depending on the relative sizes of working set to the local

memory size and access pattern, in each case, different partitionings result in the best energy

consumption, execution time, or both. A runtime manager with this knowledge, through

both static analysis as well as runtime monitoring, can exploit and tune the partitioning to

improve desired objectives.

2.8.4 Experiment 4: Sharing SPMs Between Cores

In Experiment 3, we assumed each core can allocate memory on its local SPM only. If

we virtualize the distributed SPM space and let threads do remote allocations, a better

performance/energy trade-off might be achievable when there is core underutilization or a

thread does not need its entire local memory. We redo Experiment 3 for the irregular access

microbenchmark when working set is larger than the local memory (I-medium and I-large)

and also allowing remote SPM allocations of sizes 16-KB and 32-KB on neighboring cores.

I-medium I-large
0

0.25

0.5

0.75

1

N
or

m
al

iz
ed

E
n
er

gy
C

on
su

m
p
ti

on
in

M
em

or
y

S
u
b
sy

st
em

Execution Time

I-medium I-large
0

0.25

0.5

0.75

1

Energy

(32,0,0) (32,0,16) (32,0,32) (16,16,16) (16,16,32) (0,32,16) (0,32,32)

Figure 2.29: Comparison of execution time and energy consumption when remote SPMs are
available for allocation. Legends are shown as: (local cache, local SPM, remote SPM at hop
distance 1). Lower is better.

60

Figure 2.29 shows the execution time and energy for different allocation scenarios normalized

to cache only hierarchy. Comparing Figure 2.28 and Figure 2.29 shows the opportunity to

both improve performance and save energy in memory hierarchy enabled by sharing SPMs

which results in reducing off-chip accesses.

61

Chapter 3

Approximate On-chip Data Storage

3.1 Introduction

Approximate computing leverages the intrinsic resilience of applications to inexactness in

their computations, to achieve a desirable trade-off between efficiency (i.e., performance,

energy or both) and acceptable quality of results. The need for approximate computing is

driven by two factors: a fundamental shift in the nature of computing workloads, and the

need for new sources of efficiency.

Many important application domains such as computer vision, machine learning, signal

processing, web search, augmented reality, big data analytics, etc. can inherently tolerate

inaccurate computation [38]. Today’s systems waste time, energy, and complexity to provide

uniformly pristine operation for applications that do not require it.

In embedded systems, where battery life or other resources are constrained many applications

can live with inexactness. This is true especially where the input is analog. For example,

speech recognition applications turn analog input signals into a sentence, and navigation

62

software turns maps and location estimates from a GPS into driving directions. This is also

true where the output is analog such as in audio, image and video processing, since human

perception is inherently inaccurate.

Motivated by the benefits available via relaxing stringent correctness and precision

requirements, researchers have proposed a variety of approximate computing strategies

both in software and hardware. Approximation strategies in software include: dynamically

selecting between different implementations of an specification that provide varying

accuracy-energy-performance tradeoff (Dynamic Knobs [68], Green Framework [16], Levels

[83], ViRUS [150], Variable Accuracy Algorithms [10]), skipping some of the loop iterations

(Loop Perforation [134] [107]), eliminating synchronization in multi-threaded programs

(Dubstep [108], Approx. Data Structures [124]), unsound parallelization of sequential programs

(QuickStep [105]), adjusting floating point precision (Precimonious [126]) randomizing

deterministic programs ([106, 160]). Different approximation techniques in hardware level are

proposed including: underdesigned functional units that produce wrong results occasionally

(approximate adders [61, 62, 74, 101], approximate floating point units [5, 31], approximate

multipliers [82, 91, 90, 66]), utilizing separate processing units with different levels of

reliability (ERSA [87]), memory approximation (Relaxed Cache [132], QuARK [109], Flikker

[92], Approx. Storage [130])1. EnerJ [129] and ACCEPT [128] are two compiler frameworks

that provide the required language constructs and a library of approximation strategies to

the developer to write and analyze approximate programs. Truffle [51] presents the required

architecture support to execute applications written with a language like EnerJ. Although

a significant amount of research on approximate computing has been presented in recent

years, performing approximation in a controlled manner has remained an open problem. Most

of the previous work have attempted to show it is possible to operate at different design

points in the accuracy-energy-performance space. Very recently there have been a few work

(Green [16], Rumba [79], Proactive Control [139]) on developing online checking of the result

1A complete overview of related work on approximate memories is presented in Section 3.2.

63

of approximate computations.

Previous work have shown that designing such systems in a general-purpose computing

environment requires a holistic view of all layers from algorithms, programming models,

system software, and hardware down to the transistor level, rather than focusing on a single

layer.

In this chapter, we explore approximation strategies for on-chip data storage of modern

embedded systems.

3.2 Prior Work on Memory Approximation

3.2.1 Taxonomy of Prior Research on Approximate Memory

Management

The majority of work on approximate computing focuses on computation. However, the

idea of quality-energy-performance trade-offs lends itself to storage as well. This includes

both transient data stored on-chip on in the main memory or persistent data stored in

the secondary storage. Here, we present a taxonomy of research on approximate memory

management. Accordingly, we classify techniques along five axes:

1. Memory Technology

2. Memory Component

3. Approximation Objectives

4. Approximation Strategy

5. Abstraction Layers Involved

64

Depending the specific memory hierarchy component that is subject to approximate storage,

different layers of the system abstraction come into play. Table 3.1 depicts the abstraction

layers covered by recent efforts. It can be seen that many of the previous work leverage multiple

layers of abstraction. While majority of approaches target reducing energy consumption as

the main objective, some approaches attempt in increasing the performance and/or increasing

the lifetime of the memory substrate (Table 3.2). Approximations can be applied to memory

structures abstractions (Table 3.3) such as L1/L2 cache [132] [114, 131] [103] [104] [86] [56]

[127] [80] [102] [72], scratchpad memory [122], main memory [92] [119] [52] [121] [156] [155],

Table 3.1: Prior research In approximate memory management classified based on abstraction
levels involved

Abstraction Layer
Related Work Application/

Algorithm
Compiler/

ISA
OS /

Runtime
Architecture Device

Shoushtari et al. - 2015 [132]
Monazzah et al. - 2017 [109]

Lee et al. - 2006 [86]
Liu et al. - 2011 [92]

Sampson et al. - 2013 [130]
Oboril et al. - 2016 [114, 131]

Ranjan et al. - 2015 [122]
Raha et al. - 2017 [119]

Thwaites et al. - 2014 [145, 154]
Miguel et al. - 2015 [103]
Rinard et al. - 2013 [124]
Tian et al. - 2015 [146]

Miguel et al. - 2014 [104]
Ganapathy et al. - 2015 [56]

Cho et al. - 2014 [41]
Fang et al. - 2012 [52]

Sampaio et al. - 2015 [127]
Guo et al. - 2016 [59]

Jevdjic et al. - 2017 [73]
Xu et al. - 2015 [153]

Kislal et al. - 2016 [80]
Arumugam et al. - 2015 [13]

Chen et al. - 2016 [37]
Miguel et al. - 2016 [102]
Ranjan et al. - 2017[121]
Zhang et al. - 2017[155]

Jain et al. - 2016[72]
Zhao et al. - 2017[156]

65

secondary storage [153] [130] [59] [73], in a single-layer or cross-layer fashion. These techniques

have three main objectives: making a trade-off between the quality of the generated output

and (1) energy consumption [109] [122] [132] [92] [119] [114, 131] [103] [86] [104] [52] [56] [41]

[146] [127] [153] [102] [121] [155] [156], (2) performance of the memory subsystem [145, 154]

[130] [114, 131] [104] [56] [124] [59] [73] [153] [80] [13] [37] [102] [121] [155] [72], and (3)

improving their lifetime [52] [130].

These objectives are often dependent on the memory technology used (Table 3.4). Different

memory technologies have different limitations, for example, SRAM and (e)DRAM consume

Table 3.2: Prior research In approximate memory management classified based on
approximation objective

Goal
Related Work

Energy Perf. Lifetime
Shoushtari et al. - 2015[132]
Monazzah et al. - 2017[109]

Lee et al. - 2006[86]
Liu et al. - 2011[92]

Sampson et al. - 2013[130]
Oboril et al. - 2016[114, 131]

Ranjan et al. - 2015[122]
Raha et al. - 2017[119]

Thwaites et al. - 2014[145, 154]
Miguel et al. - 2015[103]
Rinard et al. - 2013[124]
Tian et al. - 2015[146]

Miguel et al. - 2014[104]
Ganapathy et al. - 2015[56]

Cho et al. - 2014[41]
Fang et al. - 2012[52]

Sampaio et al. - 2015[127]
Guo et al. - 2016[59]

Jevdjic et al. - 2017[73]
Xu et al. - 2015[153]

Kislal et al. - 2016[80]
Arumugam et al. - 2015[13]

Chen et al. - 2016[37]
Miguel et al. - 2016[102]
Ranjan et al. - 2017[121]
Zhang et al. - 2017[155]

Jain et al. - 2016[72]
Zhao et al. - 2017[156]

66

Table 3.3: Prior research In approximate memory management classified based on the memory
component

System Component Prior Research

Cache

Shoushtari et al. - 2015 [132]
Oboril et al. 2016 [114, 131]
Miguel et al. - 2015 [103]
Miguel et al. - 2014 [104]
Lee et al. - 2006 [86]
Ganapathy et al. - 2015 [56]
Sampaio et al. - 2015 [127]
Kislal et al. - 2016 [80]
Miguel et al. -2016 [102]
Jain et al. -2016 [72]

SPM Ranjan et al. - 2015 [122]

Main Memory

Liu et al. - 2011 [92]
Raha et al. - 2017 [119]
Fang et al. - 2012 [52]
Ranjan et al. - 2017 [121]
Zhang et al. - 2017 [155]
Zhao et al. - 2017 [156]

Secondary Storage

Xu et al. - 2015 [153]
Sampson et al. 2013 [130]
Guo et al. - 2016 [59]
Jevdjic et al. - 2017 [73]

Table 3.4: Prior research In approximate memory management classified based on the memory
technology

Memory Technology Prior Research

NVM

Xu et al. - 2015 [153]
Fang et al. - 2012 [52]
Sampson et al. - 2013 [130]
Ranjan et al. - 2015 [122]
Monazzah et al. - 2017 [109]
Oboril et al. 2016 [114, 131]
Sampaio et al. - 2015 [127]
Guo et al. - 2016 [59]
Jevdjic et al. - 2017 [73]
Zhao et al. - 2017 [156]

DRAM/eDRAM

Liu et al. - 2011 [92]
Raha et al. - 2017 [119]
Cho et al. - 2014 [41]
Ranjan et al. - 2017 [121]
Zhang et al. - 2017 [155]

SRAM
Shoushtari et al. - 2015 [132]
Ganapathy et al. - 2015 [56]

high leakage and refresh power, respectively, while NVMs have high write energy/latency

and/or low write endurance. To reduce energy consumption of these memories and improve

67

Table 3.5: Prior research In approximate memory management classified based on the
approximation strategy

Approximation Strategy Prior Research

Precision scaling

Miguel et al. - 2015 [103]
Tian et al. - 2015 [146]
Ranjan et al. - 2017 [121]
Jain et al. - 2016 [72]
Zhao et al. - 2017 [156]

Load value approximation
Thwaites et al. - 2014 [145, 154]
Miguel et al. - 2014 [104]
Miguel et al. - 2016 [102]

Memory access skipping
Thwaites et al. - 2014 [145, 154]
Fang et al. - 2012 [52]
Kislal et al. - 2016 [80]

Using faulty or
unprotected memory

Oboril et al. - 2016 [114, 131]
Sampson et al. - 2013 [130]
Lee et al. - 2006 [86]
Ganapathy et al. - 2015 [56]
Sampaio et al. 2015 [127]
Guo et al. - 2016 [59]
Jevdjic et al. - 2017 [73]
Xu et al. - 2015 [153]

SRAM voltage scaling /
DRAM refresh rate reduction /
NVM current amplitude or
duration reduction

Monazzah et al. - 2017[109]
Shoushtari et al. - 2015 [132]
Liu et al. - 2011 [92]
Raha et al. - 2017 [119]
Ranjan et al. - 2015 [122]
Sampson et al. - 2013 [130]
Cho et al. - 2014 [41]
Zhang et al. - 2017 [155]

the lifetime of NVMs, approximate storage techniques sacrifice data integrity by reducing

supply voltage in SRAM [132] [56] and refresh rate in (e)DRAM [92] [119] [41] [121] [155], and

by relaxing or skipping read/write operation in NVMs [153] [52] [130] [122] [109] [114, 131]

[127] [59] [73] [156] (Table 3.4).

These objectives are achieved by a number of general strategies (Table 3.5), namely: (1)

precision scaling [103] [146] [121] [72] [156], (2) approximating load operations [145, 154] [104]

[102], (3) skipping store operations [145, 154] [52] [80], (4) using faulty or unprotected memory

substrate [114, 131] [130] [86] [56] [127] [59] [73] [153], (5) tweaking technology-dependent

reliability-energy knobs [109] [132] [92] [119] [122] [130] [41] [155].

68

3.2.2 Overview of Prior Research and Practices

This section overviews related work on approximate memory management.

� Approximate Spintronic SPM: Ranjan et al. [122] explore the energy-quality trade-off

in STT-MRAM memories. They study three types of approximations: (1) approximations

through incorrect read decisions (2) approximations through read disturbs (3) approximations

through incomplete writes. They design a quality-configurable memory array in which data

can be stored to varying levels of accuracy based on application requirements. For that

they employ an additional peripheral circuitry, which allows adjusting the degree of these

approximation mechanisms. They integrate the quality-configurable array as a scratchpad

in the memory hierarchy of a programmable vector processor and expose it to software

by introducing quality-aware load/store instructions within the ISA. They also develop an

auto-tuning framework that utilizes gradient descent search to determine the quality fields

of the load/store instructions in a given application program so as to minimize energy for a

desired application output quality.

� Approximation-Aware Multi-Level Cells STT-RAM Cache Architecture:

Sampaio et al. [127] propose a partially-protected cache architecture based on MLC

STT-RAM. They consider an n way set-associative cache where the last way stores Error

Correction Codes (ECCs) for error protection and is implemented by SLC cells. Thus, at

every read and write operation, these ECCs must be accessed to serve as input for the error

correction unit. They realize approximate storage by avoiding error protection of applications’

non-critical data. In this case, the last cache way is enabled for data storage, dynamically

increasing the associativity of the cache which results in improved performance.

� Relaxing Non-volatility of STT-MRAM Caches: The authors of [114, 131] also

propose approximate STT-MRAM but unlike [109] their knob is the non-volatility property

of STT-MRAM. Reducing the the thermal stability factor decreases the access latency and

69

since the current required to switch the bit-cell content is applied for a smaller duration, the

write energy will become significantly better. To protect the critical data, they propose to use

multiple copies of the content of this data, such as dual or triple modular redundancy, or to use

ECC, which protects the data by adding check bits. In order to choose the optimal thermal

stability factor and application they calculate the impact of various thermal factors on failure

rates, write latency and write energy at device level. These values are then projected at the

architecture level to estimate per access metrics. Finally at the system-level, the application

output is evaluated using the Signal to Noise Ratio (SNR) metric.

� Selective Data Protection: Lee et al. [86] propose selective data protection for

mitigating failures caused by soft errors in multimedia embedded applications when power

consumption is a concern. They extend the concept of horizontally partitioned cache by

incorporating two caches at the same level of the memory hierarchy. One of the caches

are protected against soft errors with Single-Error Correction and Double-Error Detection

(SECDED) and the other one is left unprotected. Each memory address is mapped excursively

to one of these caches. They partition the application’s data objects into failure critical and

failure non-critical and map the first data category to the protected cache while the second

data category is mapped to the unprotected cache. Their approach minimizes the protection

overheads while achieving a failure rate close to an architecture with a single fully protected

cache.

� Flikker: Flikker [92] allows parts of a DRAM module to be refreshed at a much lower

rate than the standard refresh rate, allowing retention errors to happen but saving significant

DRAM refresh power. The programmer identifies critical and noncritical data. During

execution, data objects are allocated to different parts of the DRAM. The critical data

are mapped to the regions that are refreshed at regular rates, while the noncritical data are

mapped to the regions that are refreshed at a lower rate.

� Quality Configurable Approximate DRAM: Raha et al. [119] propose the notion

70

of a quality-aware approximate DRAM and develop a novel data allocation scheme for the

proposed approximate DRAM. The core idea is that at sub-optimal refresh rates, DRAM

physical pages can be split into a number of quality bins based on the characteristics of

the errors seen in each page. Approximate data can then be allocated to pages belonging

to the bins in decreasing order of quality, ensuring that they always allocate to the least

erroneous pages. The location and nature of the bit-errors are obtained through extensive error

characterization of off-the-shelf DRAM ICs at various refresh rates. These errors correlate

well with the eventual application-level output quality and hence, are used to guide the

allocation of application data to DRAM pages based on the output quality specification.

Their proposed mechanism is inherently quality configurable since it has the provision of

increasing the refresh rate as needed, which increases the number of pages in higher quality

bins (with lower errors), leading to better quality. Compared to [92], their work requires

only a single refresh interval for the entire DRAM. Therefore, it is simpler to implement and

results in a better energy-quality trade-offs.

� DrMP: Mixed Precision-aware DRAM: Zhang et al. [155] propose DrMP to exploit

process variations within and across DRAM rows to save data with mixed precision. They

describe three variants of the approach: DrMP-A, DrMP-P, and DrMP-U.

(1) DrMP-A is to achieve high performance approximate computing. It reduces restore

time and maps important data bits of different data types to fast reliable row segments

for improved performance. (2) DrMP-P pairs memory rows together to reduce the average

restore time for precise computing. (3) DrMP-U combines DrMP-A and DrMP-P to support

both approximate and precise computing.

� Approximate Storage in MLC NVM: Sampson et al. [130] introduce two techniques

enabling applications to store data approximately in PCM memories in order to improve

their lifetime, density, and performance. Increasing the number of levels, improves the density

of storage, however multilevel cells (MLC) are slower to write due to the need for tightly

71

controlled iterative programming. The first technique they introduce reduces the number

of programming pulses used to write to an MLC. This allows errors in multi-level cells but

improves performance and energy efficiency. On the other hand, this technique can also be

used to improve the storage density for a fixed power budget or performance target. Their

second technique extends memory lifetime by mapping approximate data onto blocks that

have exhausted their hardware error correction resources. In order to reduce the effect of

erroneous bits on the final result, higher priority is given to the correction of higher-order

bits compared to lower-order bits. Their evaluations show that approximate writes in MLC

PCM are faster than precise writes. Also using faulty blocks improves the endurance of the

memory module with bounded quality loss.

� SoftPCM: Fang et al. [52] propose SoftPCM that reduces the number of writes to a

PCM-based main memory by taking advantage of the error-tolerance property of video

applications. SoftPCM compares the new data with the old data and when the new data to

be written are same as the existing stored data, this technique terminates the write operation

and takes the old data as the new data. SoftSPM provides significant energy savings and

lifetime extensions for PCM memories with a negligible reduction in video quality.

� SoftFlash: Xu and Huang [153] leverage error-tolerance capability of data-centric

applications for reducing ECC overhead in flash-based Solid-State Drives (SSD). They design

a framework for monitoring and estimating soft-error rates of Flash SSD at runtime. They

also carry out extensive fault-injection experiments on a wide range of applications including

multimedia, scientific computation, and cloud computing to understand the requirements

and characteristics of data level error tolerance. These two studies show that their target

applications can tolerate a much higher error rate than that targeted by Flash SSDs.

Depending on the difference between the error rate of the SSD obtained using their monitoring

framework and the error rate that the application can tolerate, SoftFlash dynamically lowers

the ECC protection or avoids using ECC altogether. They show that their approach provides

72

significant performance and energy efficiency gains with an acceptable quality.

� Synchronization-Free Approximate Data Structures: Rinard [124] presents

approximate data structures with construction algorithms that execute without

synchronization. The data races present in these algorithms may cause them to drop inserted

or appended elements. Nevertheless, the algorithms 1) do not crash and 2) may produce a

data structure that is accurate enough for its users to use successfully. Rinard advocates

an approach in which the approximate data structures are composed of basic tree and

array building blocks with associated synchronization-free construction algorithms. These

data structures have been engineered to execute successfully in parallel contexts despite the

presence of data races. Rinard shows that using these data structures results in significant

speedup in time.

� Approximate Memory Compression: Ranjan et al. [121] propose a technique to

reduce off-chip memory traffic and energy by leveraging the intrinsic resilience of emerging

workloads such as machine learning and data analytics. Their objective is to reduce memory

traffic rather than overall memory footprint. In order to realize approximate memory

compression, they enhance the memory controller to be aware of memory regions that contain

approximation-resilient data. They propose an application programming interface to expose

approximation-tolerant memory regions to the memory controller. The memory controller

then transparently compress/decompress the data written to/read from these regions. To

provide control over approximations, the quality-aware memory controller conforms to a

specified error constraint for each approximate memory region. They also incorporate a

runtime framework to dynamically modulate the error constraints for each region.

� ApproxMA: Tian et al. [146] present ApproxMA, a technique for dynamic precision

scaling of off-chip accesses. They apply their technique to a mixed-model-based clustering

problem, which is inherently error-resilient and needs large amount of data accesses from

off-chip memory. ApproxMA is comprised of runtime precision controller and memory access

73

controller. For data accesses, runtime precision controller firstly generates the customized

bit-width according to runtime quality requirements, and then memory access controller

loads the scaled data from off-chip for computations. The runtime precision controller works

based on the fact that in a clustering algorithm, a functional error happens only when a

sample is assigned to a wrong cluster. Based on this, the precision can be lowered as long

as the relative distances between clusters and samples are still in correct order, so that no

functional error happens. From the point view of error resilience capability, an appropriate

amount of functional errors are acceptable. The iterative nature of clustering algorithm is to

continuously correct the mixture models and re-label all the samples by using higher precision

in later iterations. By analyzing subset of data and/or intermediate computational results,

runtime precision controller calculates precision constraints (when there will be a functional

error) and error resilience capability (how many functional errors are tolerable), and then

decides the required bit-width for the current data access. Since use of approximation can

lead to fluctuation in membership, on detecting such a situation, their technique increases the

precision of data. To realize loading certain most significant bits of data from off-chip memory,

the memory controller reorganize the data. Bits of the same significance in different words

are combined to form new words and stored in off-chip memory. They show that, compared

to fully precise off-chip access, their technique saves significant energy with a negligible loss

in accuracy.

� Sorting Algorithms on Approximate Memory: Chen et al. [37] study sorting on

a hybrid storage system with both precise storage and approximate storage. Unlike many

other works, the sorting algorithm cannot accept any error. This work is an example of

precise computing on approximate storage. Their approximate storage is an approximate

MLC configuration that reduces the guardband to provide better write performance and

energy efficiency. They propose an approx-refine execution mechanism to improve the

performance of sorting algorithms on the hybrid storage system to produce precise results. A

lightweight refinement stage transforms the nearly sorted output to a totally sorted output.

74

Their optimization gains the performance benefits by offloading the sorting operation to

approximate storage, followed by an efficient refinement to resolve the unsortedness on the

output of the approximate storage.

� Inexact Memory Aware Algorithm Co-design: Arumugam et al. [13] introduce

inexact memory aware algorithm design and presents several relevant algorithms for sorting

and string matching.

� Mitigating the Impact of Faults in Unreliable Memories: Ganapathy et al. [56]

present a technique for minimizing the magnitude of errors when using unreliable memories.

In contrast to ECC techniques that correct the errors, the proposed approach minimizes the

magnitude of the error (caused due to a faulty cell) quantified in terms of a suitable metric.

This is ensured by placing bits of lower significance into the faulty cells. To achieve that, on

each write their approach shifts the data circularly in such a way that the least significant

bits are stored in the faulty cells. By controlling the granularity of the shuffling, the proposed

technique enables trading-off quality for power, area, and timing overhead. Compared to

error correction codes, their approach improves latency, power and area. Also, use of their

technique allows tolerating a limited number of faults, which reduces the manufacturing cost

compared to the conventional zero-failure yield constraint.

� Cache-Aware Approximate Computing for Decision Tree Learning: Kislal et al.

[80] exploit the flexibility inherent in decision tree learning based applications regarding

performance and accuracy trade-offs and propose a framework to improve performance with

negligible accuracy loss. This framework employs a data access skipping module that skipss

costly cache accesses according to the aggressiveness of the strategy specified by the user and

a heuristic to predict skipped data accesses to keep accuracy losses at minimum. They make

two important observations: 1) The inaccuracy resulting from skipping data accesses depends

more on the number of data accesses skipped, rather than which specific data accesses are

skipped. 2) In contrast, the performance benefits achieved through data access skipping

75

depends strongly on which specific data accesses are skipped.

� Concise Loads and Stores: Jain et al. [72] aim at reducing the pressure on the memory

subsystem by enabling concise storage – a storage paradigm where the data elements are

stripped of their marginal bits, removing the movement and storage costs associated with

those bits in the memory subsystem. They propose asymmetric compute-memory extension

(ACME) for conventional architectures. In ACME, data can be treated asymmetrically;

computation is done on conventional 32-bit IEEE 754 single precision values – while data is

stripped of its marginal bits before being used in the memory hierarchy. ACME includes a

simple ISA extension that can be leveraged by the programmer and compiler, adding two

new instruction classes to the ISA to operate on concise data – load-concise and store-concise

– to perform conversions between concise and single precision format.

� High-Density Image Storage Using Approximate Memory Cells: Guo et al. [59]

targets storing images in approximate solid-state memories with multi-level cell (MLC)

capability. They make this observation that changes in different bits in the compressed

image file lead to different kinds of distortion in the output image. Hence, to preserve quality

in the decoded image, different bits should be subject to different levels of approximation.

The key idea is to determine the relative importance of encoded bits created by the encoding

algorithm, and store them into separate regions of approximate storage, each of which tuned

to match the error tolerance of the bits it stores. Their analysis shows that: (1) Lower

frequency coefficients, often higher in value, are the most important coefficients for image

quality; (2) control bits affect output quality more than the run-length bits, and run-length

bits affect the output quality significantly more than refinement bits. Based on this analysis

they store different parts of the image file into different parts of storage with appropriate

level of approximation.

� VideoApp: Jevdjic et al. [73] propose VideoApp, a methodology to compute bit-level

reliability requirements for encoded videos by tracking visual and metadata dependencies

76

within encoded bitstreams. They add an analysis framework to the video encoder as a

post-processing step which computes the importance of each bit with respect to the visual

damage flipping that bit would cause. The encoded videos are then partitioned into multiple

streams, where each stream is stored with a different level of error correction depending on

its reliability requirements.

� Approximate Image Storage with MLC STT-MRAM Main Memory: Zhao et al.

[156] target energy-efficient data movement in image processing applications, by leveraging

2-bit MLC STT-MRAM technology. 2-bit MLC STT-MRAM cells have a unique property

writing to the two bits (a soft bit and a hard bit) can be performed by asymmetric write

current. The soft bit has a higher resistance than the hard bit and it requires a smaller

switching current. Their mechanism skips the writes of neighbor pixels that are sufficiently

similar. For example when 4 neighboring pixels have similar values, they only store the code

of one pixel into the soft bits of each MLC STT-MRAM cell with small write current, when

the image is initially written or updated in the memory. The other three memory locations are

reserved for other three pixels but are not written to. When they are read by the application,

the values are copied from the first pixel. This copying consumes less energy than writing all

four precise pixel values, since similar values on soft and hard bit only require a single write

operation as opposed to two that is required for writing precise values. They report significant

energy saving is possible with their technique for various image processing functionalities.

� eDRAM-based Tiered-Reliability Memory: Cho et al. [41] proposes a technique for

saving refresh energy in eDRAM-based frame buffers for video applications. The human visual

system is known to be more sensitive to a change in the higher-order bits of a pixel value

than the lower-order bits. Their technique divides the memory array into different segments,

each of which can be refreshed at different periods. The basic idea is that the higher order

bits of a pixel are allocated to the more reliable segments of the memory. Based on the

application characteristics and user preference, the number of segments and their refresh

77

rates can be changed. Their technique saves significant refresh power without incurring loss

in visual perception quality of the video.

� Doppelgänger Cache: Miguel et al. [103] introduce Doppelgänger cache which takes

advantage of approximate similarity of data blocks stored in the last-level cache (LLC). They

identify cache blocks that are approximately similar and associate their tags to a single entry

in the data array. Multiple blocks share a single data entry, which serves as an acceptable

approximation of their values. This reduces the footprint of data that LLC needs to store.

To determine whether a similar cache block exists prior to inserting an incoming block,

Doppelgänger cache computes maps for each block using a hash function of data; the hash

function is chosen such that similar blocks generate the same maps. They show that their

cache design uses the available capacity more efficiently, which results in substantial area

and energy savings.

� Bunker Cache: Miguel et al. [102] propose the Bunker Cache, a design that exploits

an application’s spatio-value similarity to reduce both off-chip memory accesses and cache

storage requirements. Spatio-value similarity refers to their observation that data elements

that are approximately similar in value tend to be stored at regular intervals in memory.

Bunker cache works by storing similar data blocks in the same location in the cache since

substituting one for the other still yields acceptable application quality. The blocks that

exhibit spatio-value similarity are usually stored at spatially regular intervals (or strides).

Therefore, the implementation of the Bunker Cache is contained entirely within the cache

index function. Bunker cache is an approximate computing technique that can achieve

efficiency gains with mostly commodity hardware.

� LVA: Miguel et al. [104] presents a load value approximator, a hardware mechanism that

estimates memory values. By approximating the load value on a cache miss, the processor can

immediately proceed without waiting for the cache response. Traditional load-value predictors

fetch a predicted block on every cache miss to confirm the correctness of prediction. LVA

78

only fetches the approximated blocks occasionally just to train the approximator. Unlike

traditional load-value predictors which perform rollbacks upon mispredictions, with this

technique rollbacks are not required since the applications can tolerate errors. They show that,

with negligible degradation in output quality, their technique provides significant speedup

and energy saving.

� RFVP: The authors of [145, 154] present present an approximate computing approach

to deal with the fact that the performance of modern GPUs is significantly limited by the

available off-chip bandwidth. RFVP relies on the programmer annotating the code to identify

the memory accesses that are not critical. Of these, the load accesses that result in a large

fraction of misses are selected. The impact of approximating each of these loads on quality is

measured and a subset of loads that lead to a smaller quality degradation are finally selected

for approximation. When these loads miss in the cache, the requested values are predicted

and the prediction is not checked against the actual value later on to avoid pipeline flush

overheads. Controlling the drop rate can be used as a knob to balance quality degradation

and performance improvement. Since GPUs execute in SIMD mode, load accesses happen

simultaneously for multiple concurrent threads. To avoid the overhead of having a value

predictor for each thread separately, they leverage the value similarity across accesses in

adjacent threads to design a multi-value predictor that has only two parallel specialized

predictors, one for threads 0 to 15 and another for threads 16 to 31. Use of special strategies

for the GPU architecture, such as use of a multi-value predictor, distinguishes their technique

from that of Miguel et al. [104]. They show that their technique improves performance and

energy efficiency with bounded QoR loss in both the GPU and CPU.

79

3.3 Partially-Forgetful Memories

This chapter proposes a class of on-chip memories for approximate computing called

Partially-Forgetful Memories (PFMs). Potential advantages of deploying PFMs include: (1)

better energy efficiency for memory accesses, (2) reduced average memory access latency, and

(3) increased lifetime of the memory subsystem.

The following challenges need to be addressed to effectively exploit PFMs for approximate

computing:

1. Data Partitioning: Data structures can be defined as critical (i.e., any corruption leads

to catastrophic failure or significant quality degradation) or non-critical (i.e., quality

degradation resulting from corruption may be acceptable). This concept has been

used before in [92]. A simple partitioning of data – into critical and non-critical – has

been shown to improve DRAM energy efficiency [92]. Further categorization of the

non-critical data can lead to even more energy efficiency. For example: (i) integer data

can be partitioned based on the magnitude of tolerable error, and (ii) floating point

data can be partitioned based on a limit on precision. These categorizations can be

reflected in the program by annotating different data structures. One approach [129][33]

defines type qualifiers and dedicated assembly-level store and load instructions for this

purpose. We present another approach for PFMs that uses dynamic declarations which

are enforced by a runtime system, as shown by an example in Section 3.4.

2. Data Mapping: The data partitioning annotations in the previous step should guide

mapping of each data category to an appropriate part of memory based on its reliability

characteristics. Depending on the type of memory, this mapping can be done by the

hardware, application/compiler, or operating system. For caches, the cache controller

decides where to map a new incoming cache block. In case of software-controlled

memories (e.g., scratchpads), the compiler aggregates data with the same reliability

80

requirement in tagged groups, and then a runtime system (having knowledge about

underlying hardware) does the actual mapping based on this tagging. For main

memories, the operating system should do the mapping during logical-to-physical

mapping.

3. Controlling Exposed Error Rate to Program: Most of the previous attempts at utilizing

relaxed-reliability memories [92][130] lack the ability to dynamically adjust the exposed

error-rate to the program. Taassori et al. [141] have shown how the DRAM timing

margin can be dynamically changed to make a precision-performance trade-off. We

believe this is necessary because different applications have different levels of tolerance

to errors. Even within an application, one execution phase may have more tolerance

to errors (i.e., less criticality) than another phase. Therefore, it is important to enable

adjustment of the guardbanding knobs based on the characteristics of application.

Examples of these knobs are: DRAM Refresh Rate, SRAM Voltage, STT-RAM

Retention Time, IRESET Current in PCM, etc.

4. Adaptation to Phasic Behavior of Applications: There are three main reasons to change

memory guardbanding knobs during runtime: (1) Depending on the (set of) applications

that are executed, we might tolerate different levels of error, (2) We may need to change

the ratio of reliable to unreliable memory capacity to prevent performance degradations

for specific situations (e.g., where most of the working set objects should be mapped to

reliable parts of memory), and (3) The programmer can save power by disabling idle

parts of the memory for computation-bound application phases (this works even for

applications that do not tolerate any errors).

In this chapter, we present exemplars of PFMs for different memory components and

technologies. Section 3.4 presents Relaxed Cache for L1 SRAM data caches, Section 3.5

presents Quark Cache for L2 STT-MRAM caches and Section 3.6 presents Write-Skip for

81

data STT-MRAM SPMs. Finally in Section 3.7 we discuss the idea of using formal control

theory to control the quality of PFMs.

3.4 Relaxed Cache

3.4.1 Introduction

As the semiconductor industry continues to push the limits of sub-micron technology, the

ITRS expects hardware variations to continue increasing over the next decade [71]. The

memory subsystem is one of the largest components in today’s computing systems, a main

contributor to the overall power consumption of the system, and therefore one of the most

vulnerable components to the effects of variations. Device manufacturers have partially

masked the presence of variability by guardbanding mechanisms [60].

Guardbanding leads to over-design with less than optimal power and/or lifetime for different

memory technologies. In SRAM-based on-chip memories, the desire to operate at low voltages

necessitates the need for guardbanding because of significant threshold voltage variations

in those regimes. This guardbanding is usually a combination of using: (1) higher supply

voltage levels; (2) larger transistors; (3) complex logic for error detection/correction, and (4)

spare cells. Here, we focus mainly on the first technique.

There is a large body of work on fault-tolerant voltage-scalable SRAM cache designs that

attempt to use the best combination of aforementioned guardbanding techniques which

minimize power overhead while satisfying a yield threshold [9, 151, 152, 8, 21]. All of these

approaches are application-agnostic and do not adapt the guardbanding to the requirements

of application.

Findings of [148] show that masking all variabilities in 90nm SRAM requires an increase

82

in data retention voltage from nominal value of 0.35V to 0.7V. Reddi et al. [123] show

that as feature size becomes smaller, more guardbanding is required. While 20% voltage

guardbanding can improve error rate in 45nm by an order of magnitude, it can improve error

rate of 16nm SRAM cell only by 3X.

We proposes the idea of removing or reducing the typical guardbanding for the memories,

more specifically for SRAM memories. Reducing guardbanding causes some faults to appear in

memory. This class of memories can be used for the systems running approximate applications

that can tolerate some level of error.

We present Relaxed Cache which exploits the application’s behavior for adaptive relaxation

of guardbands in cache memories to save energy. Unlike previous efforts on memories for

approximate computing [130, 92], here this relaxation is done in a disciplined manner. Using

language extensions, Relaxed Cache provides two knobs to the software programmer, which

then (s)he uses for controlling the amount of guardbanding during different phases of execution.

These knobs are: (1) SRAM array voltage (VDD), and (2) number of acceptable faulty bits

in a cache block (AFB). The application developer also tags the approximate data objects.

Later, based on this tagging, the cache controller knows if a piece of data is critical and

should be protected, or if relaxed caching is acceptable and accordingly performs the block

replacement. The knob adjustment along with this data tagging enable the programmer to

guide the system to dynamically alternate between different cache operational points during

runtime seeking the optimal point in each phase of execution. This optimality can be defined

based on various metrics including energy, performance, output fidelity or a combination

thereof.

83

PSNR

VDD
AFB

Norm. Leakage Energy

0 Very Low (1)
600 mV 560 mV 520 mV 480 mV 440 mV

inf 37 dB 32 dB 28 dB 26 dB
0.78 0.71 0.64 0.58 0.53

Low (2) Mild (3) High (4)

Norm. Exec. Time 1.00008 1.0001 1.0001 1.0003 1.03

Figure 3.1: Exploring performance-energy-fidelity space for Image Smoothing benchmark
by adjusting Relaxed Cache controlling knobs (leakage energies and execution times are
normalized to a baseline that Uses 700 mV for SRAM array supply voltage).

3.4.2 Motivation

Here, using the Susan/Image-Smoothing benchmark from MiBench [63], we show how these

knobs can be used to save leakage energy in the underlying cache with minimal impact on

the performance and output fidelity of the application. This benchmark is commonly used

for smoothing images in order to remove specks of dust and artifacts from scanning. Figure

3.1 shows the output of smoothing the Lena test image with different levels of AFB and

VDD. Figure 3.1 also shows normalized leakage energy and execution time w.r.t. the baseline

system that uses a cache with 700mV supply voltage. This example shows that depending

on the acceptable quality for the output of this benchmark, the programmer can achieve up

to 47% leakage energy saving by adjusting controlling knobs at the application-level.

Before detailing the Relaxed Cache approach, we present the rationale behind the

performance-energy-fidelity trade-off offered by adjusting controlling knobs in caches. To

increase memory density, memory bit-cells are typically scaled to reduce their area. High

density SRAM bit-cells use the smallest devices in a technology, making SRAMs more

84

0

5

10

15

20

25

30

35

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.7 0.68 0.66 0.64 0.62 0.6 0.58 0.56 0.54 0.52 0.5 0.48 0.46 0.44

C
e

ll
 L

e
a

k
a

g
e

 P
o

w
e

r
(m

W
)

C
a

ch
e

 C
a

p
a

ci
ty

 (
%

)

VDD (v)

AFB=0 AFB=1 AFB=2 AFB=3 AFB=4 Leakage Power

~
6

3
%

Figure 3.2: Trade-off between cache capacity, VDD, AFB and bit-cell leakage power (cache
block size=64-byte, technology=45nm).

vulnerable to manufacturing variations. On the other hand, static power, dominated by

sub-threshold leakage current, is the primary contributor of power in memories and has an

exponential dependence on supply voltage [53]. Reducing supply voltage for saving power

makes the SRAM even more vulnerable to variations, especially in 65nm and below, which

results in an exponential increase in the probability of cell failure [149].

Figure 3.2 shows that the capacity of a cache with traditional assumption of 100% fault-free

behavior (i.e., AFB=0), drops exponentially as we lower the voltage, which can dramatically

degrade the performance of execution due to too many misses. This prevents the cache

manufacturers to set the Vdd-min below a certain threshold. But if we consciously allow the

SRAM to violate data integrity by increasing AFB to a value more than zero (as we did in

the example shown in Figure 3.1), we can effectively lower this threshold depending on the

level of tolerable errors in the application. Therefore, it’s advantageous to let the application

determine the (VDD, AFB) operational points of the cache. Even when no error is tolerable,

the programmer can exploit the application’s phasic behavior, e.g. lowering the cache voltage

for an application’s phase that will not require a large cache capacity. Note that moving from

a voltage level to a lower voltage, even with same AFB level, helps the system to save energy.

85

Criticality-aware
Replacement Policy

Cache Controller

Relaxed
Ways

P
rotected
W

ays

Critical
Cache Blocks

Non-Critical
Cache Blocks

Critical
Objects

Non-critical
Objects

Programmer

Criticality Table
Updater

Runtime System

D
efect M

ap

OS Governors

Software
Support

Hardware
Support

Tagged
Cache Blocks

Non-
Criticality

Table

Table
Seeker

Critical/Non-Critical
Data Declarations

(VDD,AFB) Configurations

Figure 3.3: High-level diagram showing HW/SW components of Relaxed Cache and their
interactions.

Relaxed Cache lets the application programmer adjust the cache guardbanding knobs and

therefore adapt its reliability and capacity to the application’s demands. Accordingly, the

application programmer needs to identify critical memory objects as well as major criticality

and computational phases of the application.

Figure 3.3 shows the high-level overview of the Relaxed Cache scheme. Our scheme requires

some small modifications to both the traditional hardware and software components of a

system (shaded component of Figure 3.3). In the following, we describe the changes required

for hardware and software support.

3.4.3 Hardware Support

Here, we present the hardware support for Relaxed Cache that requires the following minor

changes to traditional caches (shaded components in the hardware blocks of Figure 3.3):

86

1. Tuning Relaxed Ways based on the architectural knob settings (AFB and VDD).

2. Modifying the Defect Map to store special defect information required by Relaxed

Cache.

3. Adding a piece of on-chip memory that keeps the Criticality Table and comparators to

search it.

4. Making the Cache Controller aware of critical vs. non-critical blocks.

We describe each in more detail below.

3.4.3.1 Tuning Relaxed Ways Based on Architectural Knobs

Consider a cache that has N ways. A fixed small number (e.g., logN) of these ways are

protected, by using a combination of high voltage and error correction codes that assure their

fault-free storage(Protected Ways). The remaining cache ways in a cache set work with a

lower dynamically adjustable voltage.

The operation of the SRAM array for relaxed ways is controlled by two architectural knobs:

(1) Supply voltage (VDD), and (2) Number of acceptable faulty bits (AFB) per each cache

block. Every block with more than AFB faults is disabled. The definition of AFB allows us

to relax the guardbands for a majority of cache ways while controlling the level of error that

is exposed to the program. The combination of AFB and VDD also determines the active

portion of the cache, hence can be tuned for required performance.

According to these definitions, we can have four types of cache blocks for each (VDD, AFB)

setting:

• Protected Block (PB): All blocks in the protected ways.

87

0 1 3 0

7 0 5 0

0 2 0 0

0 6 5 0

4 0 0 0

way 3

low power/relaxed ways
(configurable Vdd-low)

high power/protected way
(fixed Vdd-high)# of faulty bits

Protected Block (PB)
Relaxed Block (RB)

Disabled Block (DB)

Clean Block (CB)

way 4 way 2 way 1

Figure 3.4: A Sample 4-way Cache with VDD=580mV and AFB=4.

• Clean Block (CB): All fault-free blocks in the relaxed ways.

• Relaxed Block (RB): All blocks in the relaxed ways that have at least one but no more

than AFB number of faults.

• Disabled Block (DB): All blocks in the relaxed ways that have more than AFB number

of faults.

Figure 3.4 demonstrates these terminologies using a sample 4-way cache when AFB=4.

3.4.3.2 Defect Map Generation and Storage

Disabling those blocks that have more than AFB number of faults requires a defect map for

bookkeeping as in previous fault-tolerant voltage-scalable caches (e.g.,[21]). To populate the

cache defect maps, we can use any standard Built-In Self-Test (BIST) routine that can detect

memory faults (e.g., March Tests [64]). If BIST is done once at test-time, then a non-volatile

(NV) storage will be needed to store the defect map for the duration of the device lifetime.

If it is done at every power-up of the chip, then no extra NV storage is necessary.

The defect map bookkeeping requires a few additional bits in the tag array of each cache

88

V0 0 1 0 0

V1

V2

Voltage
Levels

01
01
00

01

A0=0
A1=1
A2=2
A3=3

AFB
Levels 01

00
11

01
10
00
00

10

(a) Output of March Test

(b) Encoded Defect Map Metadata

00
01
10
11

(c) Decoded Metadata

10
10
10

10

Voltages that incur less than AFB faultsCode

V0
V0, V1

V0, V1, V2
None

1 2 2 0

5 4 2 0

Figure 3.5: Encoding and decoding defect map info in Relaxed Cache

block. However, if the number of AFB and VDD levels are limited, this overhead is negligible.

For instance, assume that we have four levels of AFB and three levels of VDD. We can show

that in this case the defect map overhead is about 1.5% for a cache with block size of 64-byte.

Assume that our VDD levels are V0 > V1 > V2. Similarly we have A0 < A1 < A2 < A3

for AFB levels. Figure 3.5(a) shows the result of running a march test on four blocks of a set

in a 4-way cache for three different VDD levels. The digits inside blocks represent number

of faulty bits for each block at that VDD. Note that blue blocks belong to a protected way,

therefore they are fault-free for all VDDs. The fault inclusion property [58] states that the

bits that fail at some supply voltage level will also fail at all lower voltages. Therefore by

decreasing the voltage, number of faulty bits increases monotonically. We use this property

and for each AFB=Ai encode the lowest voltage level that results in Ai number of faults or

less (Figure 3.5(b)). In this manner, for each 64-byte block we use 8 bits to capture defect

status of that block in all available (VDD, AFB) pairs, resulting in a 1.5% area overhead for

a traditional cache.

89

3.4.3.3 Non-Criticality Table

A dedicated piece of on-chip memory is used to store the application’s virtual addresses that

can be approximated (a sample is shown in Table 3.6). Before replacing a block with an

evicted block, this table is searched by hardware comparators to check if the block’s address

is contained in any of the address ranges in this table. Accordingly the block is tagged.

The number of entries in the table is a design choice, and our experiments show that

approximately 30 entries are sufficient. Thus the storage overhead is 30 * (32+32+1) bits ≈

4 cache blocks, which is less than 1% of cache capacity.

Table 3.6: A sample criticality table for Relaxed Cache

Valid Start End

1 0x100ef310 0x100ef79c
1 0x100ec940 0x100efdcc
0
0
0

Hardware comparators check if the block’s address is contained in one of the table entries.

While the data is being fetched from L2 or main memory, these comparators sequentially

search for the address inside the table. One comparator checks if the block’s start address

is greater than Start and the other one checks if the block’s end address is less than End.

The output of both comparators are ANDed to determine if the block is found in the table.

The number of comparators is also a design choice. To keep the performance overhead of

tagging low, more than 1 pair can be used. Note that since the access latency of L2 cache is

in the order of 10 cycles, for a 30-entry table, the delay of the table searching can be masked

using 3 pairs of comparators that would effectively make the performance overhead zero.

These comparators will be activated only during cache misses (<10% of accesses). Our power

analysis using Synopsys Design Compiler shows that total (dynamic and leakage) power

consumption of this comparators will be about 1% of the total leakage power in baseline

90

mode. This means any leakage saving of more than 1% would effectively compensate this

power overhead.

3.4.3.4 Making Cache Controller Aware of Block’s Tag

Relaxed Cache’s replacement policy needs to discriminate between critical and non-critical

blocks. Whenever a miss occurs and the missed data block is tagged as a non-critical block the

replacement policy should select a victim block from the relaxed ways of the corresponding

cache set. However, a critical block is always allocated in a protected way. Note that for

very aggressively-scaled voltage levels, it’s possible that all of the blocks in the relaxed ways

become disabled based on the specified AFB. In this case, the replacement policy uses a block

in one of the protected ways for bringing a non-critical block into the cache. This allows us to

operate at very low voltage levels and trade cache capacity for power saving for applications

that are not memory-bound in certain phases of their execution. Because block replacement

logic is not in the critical path for hit read/write accesses, this minor modification does not

affect cache access latency.

3.4.4 Software Support

We now describe changes to software components in Figure 3.3:

3.4.4.1 Programmer-Driven Application Modifications

3.4.4.1.1 Data Criticality Declaration

In order to utilize relaxed ways, the software programmer should identify non-critical data

structures in the program to be mapped to those relaxed ways. We believe a software

programmer can easily make this distinction since (s)he is aware of the functionality and

91

semantics of different parts of the application and related data structures. Frameworks like

Rely [33] and ACCEPT [128] could also assist the programmer in identifying non-critical

data objects in a program.

The memory footprint of an application has four segments: Code, Global, Stack, and Heap.

The code segment usually can not tolerate any errors. Global, stack and heap can contain

both critical and non-critical data. In our experiments we found most of the non-critical

data to be allocated on heap. However, our implementation supports non-critical data in all

memory segments.

The constructs ADD APPROX(Start-VA, End-VA) and REMOVE APPROX(Start-VA, End-VA)

are used to declare and undeclare data non-criticality dynamically within code. Start-VA

and End-VA are the virtual address boundaries of target region. The additional capability

of undeclaring a data region becomes important in two cases: (1) When an error bounding

procedure should be performed on non-critical data object before passing it to the next stage

of program in order to reduce the propagated error magnitude; here, it is usually desirable

to stop introducing any further errors in data after error bounding. (2) When a critical

procedure should be done on a piece of non-critical data (e.g., computing checksum of pixels

at the end of image compression).

3.4.4.1.2 Cache Configuration

The intuition behind letting the programmer configure the cache settings, is a key insight

in today’s energy management techniques for systems and applications: they respond to

phases. Accordingly, our scheme leverages the programmer’s knowledge for managing energy

consumption. The programmer, with in-depth knowledge of the software is in the best

position to identify different phases of application and based on that manages the settings

of the underlying hardware. On the other hand, a programmer can respond to the system’s

operational mode by devising provisions that adapt the execution to these modes [42]. For

92

HIGH

MILD AGRESSIVE

MEDIUM

LOW

NONEVDD
AFB

P
er

fo
rm

an
ce

 (
P

)

F
id

el
it

y
(F

)

E
ne

rg
y

(E
)

P

E

E

E

E

E

E

E

F

F

F

F

F

F

F

P

P

P

P

P

P

Figure 3.6: Abstracting Relaxed Cache knobs up to metrics familiar to a software programmer
(i.e., performance, fidelity, and energy consumption). Note that (VDD = High, AFB = Mild)
and (VDD = High, AFB = Aggressive) combinations are sub-optimal, hence not applicable.

example, a programmer can decide to render a high-fidelity image when the user’s smart-phone

is fully charged, and only a low-fidelity image when the battery level of the phone falls below

25%.

To utilize the capabilities offered by Relaxed Cache, the software programmer can annotate

the code regions with cache configuration hints. These hints are then used by the system

to dynamically control the VDD and AFB knobs to adjust the guardbanding to the current

phase of execution. The programmer, with in-depth knowledge of the software is in the best

position to identify application phases with different criticality and/or memory-insensitivity

and based on that guide the adaptive guardbanding in hardware.

To accommodate programmers with different levels of hardware familiarity, we can abstract

the Relaxed Cache knobs as shown in Figure 3.6. An embedded system programmer, with

fairly good understanding of hardware details, can explicitly set Relaxed Cache’s knobs to

fully exploit its capabilities. On the other hand, for a traditional software developer (with

little knowledge of hardware), we can abstract the hardware knobs settings into discretized

“levels” allowing the programmer to qualitatively set the knobs based on their effects (e.g.,

low power setting, or high-fidelity setting), as shown in Figure 3.6.

93

#include "Approximations.h" // Enables approximation annotations

int main(int argc , char**argv){

// Capturing Raw Image on Camera

// Compress Raw Image

/* -------------------------- Image Scaling -------------------------*/

CONFIG_CACHE(MEDIUM VDD , MILD AFB);

int *src , *dest;

dest = (int*) malloc (* num_elmnts*sizeof(int));

#ifdef APPROX_SRC

ADD_APPROX ((uint64_t)src , (uint64_t)(src+num_elmnts));

#endif

#ifdef APPROX_DEST

ADD_APPROX ((uint64_t)dest , (uint64_t)(dest+num_elmnts));

#endif

src = read_image(in_filename ,&sw ,&sh ,& src_dim);

dest = allocate_transform_image(scale_factor ,sw ,sh ,&dw ,&dh ,& dest_dim);

scale(scale_factor , src , sw, sh, dest , dw, dh);

#ifdef APPROX_SRC

REMOVE_APPROX ((uint64_t)src , (uint64_t)(src+num_elmnts));

#endif

#ifdef APPROX_DEST

REMOVE_APPROX ((uint64_t)dest , (uint64_t)(dest+num_elmnts));

#endif

free(src);

/* --*/

// Other Image Transformations/Editing

}

Figure 3.7: A sample code showing programmer’s data criticality declarations and cache
configurations for Relaxed Cache.

Language extensions then let the programmer use CONFIG CACHE(VDD-LEVEL, AFB-LEVEL)

for configuring the cache knobs. Since this reconfiguration incurs a penalty of several cycles,

it should be done only in certain phase transitions of an application.

Figure 3.7 shows an image resizer code fragment that uses declarations and cache configuration

94

to save energy. In this example, two large regions of data that can tolerate some level of

errors are the original image’s data structure (pointed to by src), and the data structure

for storing up-scaled image (pointed to by dest); the programmer has declared both regions

as candidates for relaxed caching. After returning from the scale() function, and before

moving to the next program phase, (s)he has undeclared both regions.

3.4.4.2 Runtime System

We assume a runtime system uses the programer’s declarations to keep and update a table of

virtual addresses that contain non-critical data objects for each application. During a miss,

while the data is fetched from the lower level of memory (L2 data cache or main memory),

the comparators in the table seeker sequentially search for the block’s address inside the

table; the table seeker then tags the block as critical/non-critical. This tagging is used by

cache controller’s replacement mechanism to find an appropriate cache way for replacement.

Note that, in order for a block to be tagged as non-critical, the entire data block should hold

non-critical data. A data block with mixed critical/non-critical data would still be tagged

as critical. Further optimization is possible through criticality-aware data placement during

compilation to avoid having mixed criticality blocks, which is out of the scope of this work.

3.4.5 Evaluations

3.4.5.1 Experimental Setup

We modified the cache architecture in the gem5 framework [29] to implement our scheme in

detail and used gem5’s pseudo-instruction capability for implementing the required language

extensions. The common gem5 parameters used in all our simulations are summarized in

Table 3.7. We used the Random block replacement policy that is commonly used in embedded

95

100 200 300 400 500 600 700 800 900 1,000

10−1

10−3

10−5

10−7

10−9

10−11

VDD(mV)

B
E

R

Figure 3.8: SRAM BER for 45nm using models and data from [149]

processors [11, 12] due to its minimal hardware and power cost.

Table 3.7: gem5 settings for Relaxed Cache experiments

Parameter Value Parameter Value

ISA Alpha Replacement Policy Random
CPU Model Detailed (OoO) Cache Block Size 64B
No. Cores 1 L1$ Size, Assoc. 32KB, 4-way

Cache Config. L1 (Split), L2 L2$ Size, Assoc. 256KB, 8-way
Simulation Mode Syscall Emul. Main Memory LPDDR3, 512MB

We injected errors into different cache blocks randomly, with uniform distribution over different

bit positions. Our SRAM bit error rates (BER) are shown in Figure 3.8. These were computed

by [58] using the data and models from [149], which performed a detailed analysis of SRAM

noise margins and error rates for a commercial 45nm technology. Using these BERs, we found

the distribution for number of faults for each data array voltage, thus allowing us to compute

the expected cache capacity in each AFB.

Cache power consumption is estimated based on the model in [58]. CACTI 6.5 [111] is

modified to extract static power for the baseline and Relaxed Cache. Note that baseline cache

does not have any fault tolerance and does not support voltage scalability.

96

3.4.5.2 Benchmarks

We selected a number of multimedia benchmarks to examine the energy savings enabled by

Relaxed Cache.

1) Scale: Scale is an image resizer application. We use Peak-Signal-to-Noise Ratio (PSNR)

as the fidelity metric for this application. Table 3.8 shows the relation between PSNR and

perceptual quality.

Table 3.8: Relation between PSNR and perceptual quality in image processing domain

PSNR Perceptual Quality

< 28.0 Low
28.0 ≤ · · · < 30.0 Acceptable
30.0 ≤ · · · < 33.0 Good

≥ 33.0 Excellent

2) Susan: Susan is an image recognition package from MiBench [63]. We used

Image-Smoothing and Egde-Detection kernels from this package. PSNR is used as the fidelity

metric for Image-Smoothing. For Edge-Detection, accuracy metric is defined as the fraction

of detections that are true positives rather than false positives. A value of 0.8 or more is

usually considered acceptable.

3) x264: This application is an H.264 video encoder [28]. PSNR of 32dB can provide

satisfactory video quality for many types of videos.

3.4.5.3 Experimental Results

3.4.5.3.1 Leakage Energy Savings

Figure 3.9 summarizes the achievable leakage energy savings for different Relaxed Cache

knob settings (VDD, AFB). The baseline cache is assumed to use 700mV for supply voltage.

We assume power-gating for disabled blocks. Consequently, if we keep voltage constant

97

and increase AFB (effectively reclaiming faulty memory blocks), the leakage energy saving

decreases. Also note that for voltages ≥ 540mV increasing AFB does not reduce energy

savings. This is due to the low number of faulty blocks at those voltages. This analysis shows

that we can decrease leakage energy up to 74% by adjusting the Relaxed Cache knob settings.

440 460 480 500 520 540 560 580 600 620 640 660 680

10

20

30

40

50

60

70

80

VDD(mV)

L
ea

ka
ge

E
n
er

gy
S
av

in
g(

%
)

AFB=0 AFB=1 AFB=2 AFB=3 AFB=4 AFB=5

Figure 3.9: Leakage energy savings for a 4-Way L1 cache with 3 relaxed ways (energy savings
are normalized to a baseline cache that uses 700mV).

3.4.5.3.2 Fidelity Analysis

Figure 3.10a shows the PSNR difference between the images up-scaled using Scale benchmark

running on a system with energy-efficient Relaxed Cache versus a system that uses a

guardbanded baseline cache.

The PSNR values for Image-Smoothing kernel of Susan package are reported in Figure 3.10b.

Same as Scale benchmark, many of the (VDD, AFB) settings result in an acceptable output.

However, it is interesting to note that on average the PSNR values are larger than the ones

reported for Scale. This shows that the Image-Smoothing is more error-tolerant and therefore

the programmer can use a more aggressive policy for that kernel. This observation confirms

that different applications have different levels of error-tolerance which can be exploited for

energy saving.

98

440 480 520 560 600

10

20

30

40

VDD(mV)

P
S
N

R
(d

B
)

AFB=1 AFB=2 AFB=3 AFB=4

(a) Scale

440 480 520 560 600

10

20

30

40

VDD(mV)

P
S
N

R
(d

B
)

AFB=1 AFB=2 AFB=3 AFB=4

(b) Image-Smoothing

Figure 3.10: Fidelity results for (a) Scale and (b) Image-Smoothing benchmarks.

Susan/Edge-Detection is the most error-tolerant application that can produce good results

even at high error rates. Figure 3.11 shows the result of Susan/Edge-Detection on the Lena

test image with different AFBs while VDD is set to 480mV. We can see that even AFB=6

(which reclaims 99% of the Relaxed Cache faulty blocks at that voltage) can result in an

acceptable output.

3.4.5.3.3 Performance Analysis

99

AFB=0 AFB=1 AFB=2 AFB=3

AFB=4 AFB=5 AFB=6 AFB=7

Accuracy=1.0000 Accuracy= 0.9975 Accuracy= 0.9867 Accuracy= 0.9544

Accuracy= 0.9159 Accuracy=0.8577 Accuracy= 0.8317 Accuracy=0.7871

Figure 3.11: Fidelity results for Edge-Detection benchmark (VDD=480mV).

Operating at low voltages effectively disables cache regions affected by errors. Reduced

cache capacity has minor impact on the performance of programs with small working

set size. The degradations in total execution times are bounded by 3% for Scale and

Edge-Detection benchmarks and 2% for Image-Smoothing benchmark over all (VDD, AFB)

settings in our experiments. However, for applications with big working set size, the increased

cache miss rate due to reduced cache capacity considerably degrades the performance. But,

Relaxed Cache’s AFB knob allows us to reclaim parts of the lost cache capacity, thereby

increasing performance of the application. This is particularly useful for application instances

where a partial/less-accurate result generated within a deadline is more valuable than a

late-but-perfect result. Relaxed Cache provides the means for a programmer to explore this

trade-off space, by deciding when higher performance is desirable and when higher output

fidelity is preferable.

For instance, Figure 3.12 shows the adverse effect of reducing the voltage for the H.264

encoder: x’s correspond to PSNR loss and circles mark FPS loss. Due to the reduced cache

100

capacity, a normal cache (Baseline in blue) would see 38% decrease in FPS, while maintaining

the PSNR quality. On the other hand, Relaxed Cache (in red) trades off the PSNR quality

for less degradation in FPS (up to 9.5%). However, in all the experiments the PSNR of

degraded-quality video is still above 32dB threshold, yielding acceptable quality for the user.

3.5 QuARK Cache

3.5.1 Introduction

Deployment of SRAM memories in embedded systems is greatly challenging in advanced

VLSI technologies in particular in sub-45nm features sizes [120] due to high leakage power,

reliability issues as well as low density, making them less appealing for modern embedded

systems. These limitations have led to the development of alternative memory technologies

with different energy-performance-reliability characteristics such as Spin Transfer Torque

Magnetic RAM (STT-MRAM). STT-MRAM offers a high-density, high-speed, non-volatile

choice of random access memory, however, it suffers from a critical reliability issue, called

stochastic switching [46], which if properly handled can make STT-MRAM a promising

460 540 620 700

0

−10

−20

−30

−40

VDD(mV)

F
P

S
L

os
s(

%
)

Baseline FPS Loss (%)
RC FPS Loss (%)

460 540 620 700
−15

−10

−5

0

P
S
N

R
L

os
s(

d
B

)

Baseline PSNR Loss (dB)
RC PSNR Loss (dB)

Figure 3.12: FPS-PSNR trade-offs with and without Relaxed Cache scheme (AFB=4).

101

replacement for SRAM in many applications.

Stochastic switching affects both read and write operations. It affects the read operation by

causing the read disturbance phenomenon which is defined as the process of unintentionally

changing the stored value in a STT-MRAM cell while reading the cell. Similarly, a write

operation may not succeed in correctly changing the value of the cell and a write failure

occurs.

Conventional approaches that address these sources of unreliability to preserve data integrity

use a conservatively high current for write operation as well as incorporating ECC to recover

the potential errors [140, 77]. Both solutions significantly exacerbate the energy consumption

of STT-MRAMs, counteracting some of the advantages of STT-MRAM over SRAM.

We present QuARK Cache, a hardware/software approach for trading reliability of

STT-MRAM caches for energy savings in the on-chip memory hierarchy of systems running

approximate applications. QuARK Cache utilizes fine-grained actuation knobs to efficiently

control reliability-energy trade-offs for individual accesses of concurrently running applications.

The STT-MRAM approximation knobs considered in QuARK Cache are read and write

current amplitudes.

Compared to Relaxed Cache (Section 3.4) for SRAM caches that uses cache-way-level knobs,

QuARK presents a more fine-grained actuation capability enabling it to offer the following

advantages: (1) the knob actuations do not affect any other cache block unlike the actuation

in Relaxed Cache which requires flushing all the affected blocks, (2) multiple applications

with different degrees of reliability can share the same cache without affecting each other’s

guaranteed level of reliability, and (3) the reliability level requested for a piece of data can

be changed at runtime, if the quality of output is not satisfactory.

102

3.5.2 STT-MRAM Reliability/Energy Trade-off Knobs

In this section, we first review the structure of a STT-MRAM cell and the mechanisms

of reading from and writing to it. Then, we discuss the available circuit-level knobs in

STT-MRAMs which can be used to trade accuracy for energy.

3.5.2.1 STT-MRAM Basics

The standard STT-MRAM cell (1T-1J) includes a Magnitude Tunnel Junction (MTJ), and

an access transistor. MTJ consists of an oxide barrier layer that is sandwiched between two

ferromagnetic layers. One of the ferromagnetic layers has fixed magnetic field direction (i.e.,

reference layer), while the magnetic field direction of the other layer can be changed (i.e., free

layer). Relative magnetic field direction of these layers delivers different resistances use to

store values. STT-MRAM cell stores a value, based on the resistance of MTJ. If the magnetic

field directions of two ferromagnetic layers are in parallel state, MTJ delivers a low resistance.

Otherwise it manifests as a high resistance. Read and write operations in STT-MRAM cell

are performed by applying either a small current to read MTJ resistance by sense amplifier,

or a high current to change the resistance (i.e., write a new value) in the MTJ.

To read the value of a STT-MRAM cell, a small current is applied to measure the resistance

of MTJ by a sense amplifier. Similarly, during a write operation, current should be applied to

MTJ to change the magnetic field direction of the free layer in order to write a value in the

STT-MRAM cell. The direction of applied write current is determined based on the required

magnetic field direction in the free layer.

103

3.5.2.2 Reliability-Energy Knobs

As noted previously, STT-MRAM switching is a stochastic operation. Therefore, read and

write operations can be performed at different levels of reliability and consequently energy

consumption [110, 88].

Write Operation: During a write operation, depending on the amount and duration of the

applied write current, the direction of the magnetic field of the free layer in MTJ may not

change, which can result in a write failure. The write failure probability can be calculated

by Equation (3.1) [97]:

Pwf (tw) = exp(−tw × 2µBp(Iw − IC0)

(c+ ln(Π2 ∆
4

)) × (em(1 + p2))
) (3.1)

where ∆ is the thermal stability factor, IC0 is the critical MTJ switching current at 0◦K, c is

the Euler constant, e is the magnitude of electron charge, m denotes the magnetic momentum

of the free layer, p is the tunneling spin polarization, µB is the Bohr magneton, Iw is the

write current, and tw is the write pulse width. Iw is one of the effective circuit-level knobs

available to control the reliability-energy trade-off during a write operation. Generally, a

lower Iw decreases the write energy, but it also amplifies the probability of a write failure.

Based on the data reported in [122], we modeled a 1MB STT-MRAM cache in NVSim [48].

Figure 3.13(a) shows the write energy vs. write error rate of this cache at different write

currents. We see that modulating Iw leads to savings in write operation energy, e.g., 2X

improvement for an error probability of 9 × 10−4.

Read Operation: During a read operation, depending on the amount and duration of the

applied read current, an unintentional magnetic field direction flip in the free layer of MTJ

may happen due to stochastic switching which can result in read disturbance. The read

disturbance probability can be calculated using Equation (3.2) [144]:

104

Ideal

18% WPCR

22% WPCR

29% WPCR

1.E-07
1.E-06
1.E-05
1.E-04
1.E-03

5 6 7 8 9 10 11

W
rit

e
Er

ro
r R

at
e

(a) Write Energy (nJ)

Ideal38% RPCR

46% RPCR

51% RPCR

2.E-06

2.E-05

2.E-04

60 80 100 120 140 160

R
ea

d
Er

ro
r R

at
e

(b) Read Energy (pJ)

Figure 3.13: STT-MRAM knobs for reliability-energy trade-off in 1MB cache. (a) Write Pulse
Current Reduction (WPCR), and (b) Read Pulse Current Reduction (RPCR).

Prd = 1 − exp(−tr
τ
× exp(−∆(IC0 − Ir)

IC0

)) (3.2)

where τ is the attempt period, Ir is the read current, and tr is the period of read pulse. Unlike

write operation, both the read energy consumption and the read disturbance probability

are decreased by reducing Ir. However, another constraint prevents us from applying a very

small read current. Lowering the read current amplitude below a pre-defined sense amplifier

threshold leads to different type of read errors in STT-MRAM which is called decision failure.

Accordingly, Ir is one of the effective circuit-level knobs to control the reliability-energy

trade-off during a read operation. Figure 3.13(b) depicts the reliability-energy trade-off for

read operation of aforementioned 1MB STT-MRAM cache. We see that decreasing the read

pulse current results in energy savings for read operation. For example, modulating Ir leads

to over 2.2X improvement in read energy consumption for an error probability of 9 × 10−5.

3.5.3 The QuARK Approach

QuARK Cache enables a system with STT-MRAM caches running approximate computing

applications to trade accuracy of storage in on-chip memory for energy savings. It captures the

105

information about non-critical data objects from software and adjusts the reliability-energy

knobs accordingly. This section presents the details of software and hardware supports for

QuARK Cache.

3.5.3.1 Software Support

The software support required for QuARK Cache is very similar to the one described for

Relaxed Cache (Section 3.4.4). QuARK Cache provides two API calls to the programmer:

ADD APPROX and REMOVE APPROX. Table 3.9 shows their formats. BaseVA is the base

address of the non-critical data object, Size is the size of non-critical data object, and

ReliabilityLevel is the required reliability guarantee for that data object. Note that

ADD APPROX receives an additional parameter (i.e., ReliabilityLevel) in comparison to

Relaxed Cache.

The QuARK Cache APIs communicate with the QuARK Cache hardware support (introduced

in Section 3.5.3.2) to pass the information about non-critical data objects and their acceptable

reliability level. There are two possible approaches for integrating these two APIs into the

system: 1) The ISA of the processor can be modified to support the QuARK Cache APIs.

With this approach, the processor has to be modified to be able to directly communicate

with the QuARK Cache hardware support. 2) The QuARK Cache APIs can be implemented

within a special runtime library. With this approach, hardware components of QuARK Cache

become memory-mapped interfaces. The runtime library uses normal read/write instructions

Table 3.9: QuARK Cache APIs

Method Parameters Note

ADD APPROX
BaseVA
Size
ReliabilityLevel

Base virtual address of approx. memory region
Size of the approx. memory region
Required reliability guarantee

REMOVE APPROX
BaseVA
Size

Base virtual address of approx. memory region
Size of the approx. memory region

106

unsigned *image;

int reliability_level = RL0;

...

image = (unsigned int*) malloc(WIDTH*HEIGHT*sizeof(unsigned));

if(approximation_enabled) {

switch(get_environment_lighting ()) {

case 0~30 :

reliability_level = RL0;

case 30~70 :

reliability_level = RL1;

case 70~100:

reliability_level = RL0;

}

}

ADD_APPROX(image ,WIDTH*HEIGHT*sizeof(unsigned),reliability_level);

...

load_image(image);

face_detection(image);

...

REMOVE_APPROX(image ,WIDTH*HEIGHT*sizeof(unsigned));

...

Figure 3.14: A pseudo-code example showing how QuARK Cache APIs can be used in a face
detection application.

to transfer the information provided by the APIs to the hardware.

Figure 3.14 shows an example on how QuARK Cache APIs can be used in the source code

of a hypothetical face-detection application. According to [54], the environmental lighting

affects the quality of face detection algorithm. Thus, considering a reasonable output quality

in the worst case environmental lighting (when the lighting is either very low or very high),

we can trade quality for energy saving in the cases that lighting is in normal condition (30∼70

in this example).

3.5.3.2 Hardware Support

Figure 3.15 shows how the required hardware support for QuARK Cache can be integrated

into the architecture. Deploying QuARK Cache for L1 private and L2 shared caches of

memory hierarchy in a multicore architecture requires adding two types of modules: (1)

QuARK Cache approximation table and (2) QuARK Cache controllers. Additionally, the

107

PA

R

R PA

PA

WB:
VA query?R

TLB

VA

D
A

T
A

DATAPA

DATA

2

4
W

B

1
3

Core 2 Core nCore 1

L1 I Cache

...

QuARK
Controller

Cache
Controller

L2 Cache

QuARK
Controller

Cache
Controller

L1 D Cache

Interconnect

Interconnect

Shared L2 Cache

Main Memory

CPU

Interconnect

QuARK
Table

Figure 3.15: Integrating QuARK Cache into the architecture. Required changes are
highlighted in gray.

interconnect should be modified to carry the reliability level information. These modifications

are highlighted in gray in Figure 3.15.

3.5.3.2.1 QuARK Cache Approximation Table

QuARK Cache approximation table is responsible for storing the information provided by

the QuARK Cache APIs. Each core includes a private approximation table. Anytime an

ADD APPROX is called in the thread running on that core, its parameters (i.e, baseVA, size, and

reliability level) are saved in one of the rows of this table. Similarly, REMOVE APPROX removes

all or part of the information stored in a row.

This table is placed next to the Translation Look-aside Buffer (TLB) of each core. For every

memory access, and during the TLB lookup, the QuARK Cache approximation table is also

searched. If the virtual address of the memory access falls within the boundaries of one of the

108

rows in the table, the reliability of that access is set according to the reliability level stored in

the corresponding row. For accesses that do not hit any row in the table, the reliability level is

set to the maximum possible reliability. QuARK Cache controls STT-MRAM knobs at cache

block granularity. The virtual address ranges provided by the APIs should be aligned to cache

block boundaries, because the cache blocks that contain a mix of critical and non-critical data

should not be approximated. An address alignment module embedded in the approximation

table performs the required alignment. The addresses provided by the QuARK Cache APIs

that will be stored in QuARK Cache approximation table are Virtual Address (VA). However,

in most architectures (e.g., ARM), caches work with Physical Addresses (PA).

3.5.3.2.2 QuARK Cache Controller

The reliability level for each access is set by looking up the QuARK Cache approximation

table. Then the memory request, now augmented with a reliability level, is passed to QuARK

Cache controller(s). QuARK Cache controller sits next to the cache controller and it is

responsible for setting the STT-MRAM reliability-energy trade-off knobs (i.e., read current

and write current) for each access. The feasibility of designing efficient peripheral circuits for

changing the current (voltage) level during the runtime is evaluated in [70, 85, 122]. QuARK

Cache controller receives the reliability level set by the approximation table and selects the

minimum current setting that satisfies the proper level of reliability for that access. One

QuARK Cache controller is needed for each private L1 cache and one for each shared L2

cache.

3.5.3.2.3 Support for Cache Fillings and Write-backs

Special consideration might be needed for interactions between L1 and L2 caches anytime

there is an L1 data cache miss.

� L1 Cache Filling: Anytime a cache miss occurs in L1 data cache, a cache filling is required.

109

The memory access that resulted in a cache miss is already augmented with a reliability level

when the approximate table was searched during TLB lookup. The QuARK Cache controller

will use this reliability level to fill the L1 cache line when the request is served by the L2

cache.

� L2 Cache Filling: Cache filling in L2 is required whenever a L1 cache request is missed in the

L2 cache. Similar to the previous case, the reliability level of this request is already provided

by the approximation table. The QuARK Cache controller of L2 will use this reliability level

during the filling operation of L2 cache line from upper-level memories.

� Write-backs from L1 to L2: There are some times that L1 cache controller decides to evict

a dirty cache line from L1 cache. This happens when either a new block should be replaced

by dirty a one, or the last modified version of the block in L1 cache should be written to

upper-level memories. For write-back from L1 data cache to L2 cache, QuARK Cache follows

a different flow. Following Figure 3.15, the detailed steps to write back a dirty block from L1

data cache to L2 cache are as follows:

1) QuARK Cache controller in L1 data cache sends the PA of dirty block to the QuARK

Cache table.

2) QuARK Cache table produces the VA queries for all of its entries and checks the TLB

PA output to find the PA of dirty block in address intervals of entries. Then, QuARK

Cache table determines the reliability level of this write back request.

3) The QuARK Cache controller of L1 data cache reads the data of dirty block with the

provided reliability level and passes the data and reliability level to L2 cache.

4) The QuARK Cache controller of L2 cache adjusts the current level and performs the

L1 data write back operation.

� Write-backs from L2 to upper-level memory: Write-backs from L2 cache are issued due

110

to the same reasons that mentioned for L1 write-back requests. For all of the write-back

operations from L2 cache, QuARK Cache considers the highest reliability level for reading

the victim blocks from L2 cache and writing them to the upper-level memory.

3.5.4 Evaluations

In the following, we show experiments with a mix of approximate applications to evaluate

the QuARK Cache’s capabilities in saving energy in the on-chip memory hierarchy under

different levels of accuracy demanded by applications.

3.5.4.1 Experimental Setup

In order to implement our scheme in detail, we modified the cache architecture in the

gem5 framework [29] for a multicore architecture. In this work, to assess the efficiency of

the QuARK Cache in enhancing the energy characteristics of multicore architectures, we

enable QuARK Cache for L2 cache as an exemplar. We used gem5’s pseudo-instructions for

implementing QuARK Cache’s language extensions. The common gem5 parameters used in

all our simulations are summarized in Table 3.10.

We randomly injected faults into different cache blocks during read and write operations, with

uniform distribution over different bit positions. We used bit error rate (BER) and access

current data from [122] and modeled a 1MB STT-MRAM cache in NVSim [48] to extract

Table 3.10: gem5 settings for QuARK Cache experiments

Parameter Value Parameter Value
ISA ARMv7-A L1 $ Size, Assoc. 64KB, 4
No. of Cores 4 L2 $ Size, Assoc. 1MB, 16

Cache Configuration
L1 (Private)
L2 (Shared, QuARK Cache-enabled)

Cache Block Size 64B

111

Table 3.11: Accuracy-energy transducer map for 1MB QuARK Cache-enabled STT-MRAM
cache. Energy consumptions are reported for a 64-byte cache line.

Accuracy
Level

Read
Current

Read
Error Rate

Read
Energy

Write
Current

Write
Error Rate

Write
Energy

L0 (Baseline) 49µA protected 0.146nJ 653µA protected 10.755nJ
L1 30µA 7 × 10−6 0.080nJ 529µA 5 × 10−5 7.059nJ
L2 26µA 2 × 10−5 0.071nJ 503µA 1 × 10−4 6.386nJ
L3 24µA 9 × 10−5 0.066nJ 461µA 9 × 10−4 5.378nJ

Table 3.12: List of approximate applications for QuARK Cache experiments.

Benchmark Domain Quality Metric
Corner Detection Computer Vision Mean Pixel Differsence
Edge Detection Computer Vision Mean Pixel Difference
Image Smoothing Computer Vision PSNR
Blackscholes Financial Analysis Average Relative Error
Image Scale Multimedia PSNR
Sobel Filter Computer Vision Mean Pixel Difference

energy consumption. The details of error rates and energy consumptions of the modeled cache

can be seen in Table 3.11.

3.5.4.2 Benchmarks

Table 3.12 lists the RMS applications we use in our evaluations and their quality metrics.

We annotated each application by inserting ADD APPROX and REMOVE APPROX in the source

code for non-critical data objects .

Figure 3.16 shows the distribution of overall and approximate read/write operations in L2

cache for the benchmarks listed in Table 3.12 when they run on a single-core configuration.

As it can be seen, on average, 80% of accesses to L2 cache in these benchmarks can be done in

the approximate mode, showing the significant energy saving potentials in such applications.

Furthermore, about 45% of these accesses are for read requests and 35% are for write requests.

To evaluate the efficiency of QuARK Cache, we consider the effects of multi-programming

112

Table 3.13: List of workload mixes for QuARK Cache experiments.

Workload
Mixes

Benchmarks RLs

Comb1 (Corner Detection, Sobel, Image Smoothing, Blackscholes) (RL1, RL3, RL2, RL3)

Comb2 (Scale, Blackscholes, Sobel, Image Smoothing) (RL2, RL2, RL1, RL3)

Comb3 (Sobel, Corner Detection, Scale, Edge Detection) (RL2, RL3, RL2, RL1)

Comb4 (Blackscholes, Scale, Edge Detection, Image Smoothing) (RL3, RL1, RL2, RL2)

0%
20%
40%
60%
80%

100%

Corner
Detection

Edge
Detection

Image
Smoothing

Blackscholes Scale Sobel Average

D
is

tri
bu

tio
n

Read Ratio Write Ratio Approx Read/Total Access Approx Write/Total Access

Figure 3.16: Distribution of overall and approximation read and write accesses in L2 cache
for the selected benchmarks.

in a shared L2 cache equipped with QuARK Cache. To this end, we run different

mixes of benchmarks mentioned in Table 3.13 in two modes: fixed-reliability mode, and

mixed-reliability mode. In fixed-reliability mode, we run each workload mix in four reliability

levels (RLs): RL0 (i.e., fully-protected), RL1, RL2 and RL3 (i.e., least-reliable) configurations.

In the mixed-reliability mode, we consider different levels of reliability for each benchmarks

in each combination. Our empirically-chosen criteria to set the RL for each application is

based on the user-level QoS desirability. For instance, as shown in the motivational example,

RL3 provides an acceptable QoS for Image Smoothing, while for Edge Detection RL2 is more

desirable. Note that these RLs can be chosen by the user/designer w.r.t any other policies.

The workload mixes along with their reliability levels are listed in in Table 3.13.

3.5.4.3 Experimental Results

Figure 3.17 shows a summary of our experiments. We evaluate QuARK Cache in a multicore

platform from these perspectives: 1) flexibility in running different applications with different

113

reliability levels, 2) energy savings, and 3) delivered quality.

Figure 3.17(a) depicts the average reliability level distribution of accesses to the shared L2

cache equipped with QuARK Cache. To evaluate the flexibility of QuARK Cache in delivering

the L2 cache accesses with these various required reliability levels, over the approaches that

use coarse-grained actuation knobs, we conduct an experiment, where we divide the execution

time of workloads to 10ms epochs. Unlike QuARK Cache that uses fine-grained actuation

knobs and assigns the required reliability level to each accesses on-demand, the coarse-grained

approaches either should decide about the reliability level of the cache ways (memory banks)

statically, or in the best case, dynamically and at the start of each epoch.

Thus, in each epoch, the coarse-grained approaches always should set the reliability level of

cache ways, based on the most vulnerable data that should be served by that way. However,

both static and dynamic fine-grained approaches can modify cache replacement policy and

restrict the traffics of vulnerable data to susceptible ways by paying significant performance

penalty. According our experimental results, for all workloads mentioned in Figure 3.17(a), all

the 16 ways of the simulated shared L2 cache contains at least one vulnerable block (accessed

in RL0 mode) at each epoch. Thus, in all epochs, coarse-grained approaches should pay extra

energy overhead to maintain the integrity of vulnerable blocks in the cache ways (even for

the blocks that contain imprecise data), while fine-grained actuation knobs in QuARK Cache

not only keeps the integrity of vulnerable data, but also provide the opportunity for energy

saving in the blocks that contain imprecise data.

Considering the energy consumption reported in Table 3.11, we can find that with the current

distribution of approximate read and write operations in the selected benchmarks, and the

significant difference between L2 cache read and write energy consumptions, the write energy

saving offered by QuARK Cache dominates the gain achieved by approximate read operations

in QuARK Cache. Thus, to keep a reasonable trade-off between output quality and energy

consumption, we decided to only use the write operation knob in our experiments in following.

114

It should be noted that QuARK Cache read operation knob would be still useful for the read

intensive approximation benchmarks or future STT-MRAM technologies that alleviate the

difference between read and write energy consumptions.

From Figure 3.17(b), we see that QuARK Cache delivers up to 40% energy saving for Comb3

at level 3 of fixed-reliability mode. For mixed-reliability mode, it can be observed that the

assigned reliability level to each benchmarks as well as the combination of benchmarks in

each workload have a major contribution in the energy saving of L2 cache equipped with

QuARK Cache. For example, considering mixed-reliability mode, it can be seen that changing

the reliability level of Blackscholes from level 3 to 2, and also replacing Corner Detection by

Scale are the two most important contributors for less energy saving in Comb2 compared

with Comb1.

To compare the quality of the benchmarks, we used the quality metrics introduced in Table

3.12. Figure 3.17(c) depicts the average results of relative error for Blackscholes in all

experiments. We see that using level 1 or 2 for the reliability of L2 cache keeps the quality

degradation less than 5%. However, high energy saving delivered by using level 3 may not

be acceptable for some applications due to high degree of quality degradation (23%). Figure

3.17(d) shows the average PSNR used as quality metric for image smoothing and Scale. We

see that Scale is more susceptible to approximation computing. The average calculated PSNR

of Scale outputs at level 3 is less than 30dB threshold, which may not be acceptable for some

applications (still level 1 or 2 can be selected for these applications). However, the average

PSNR of image Smoothing in all of the reliability levels are higher than 30db threshold. Figure

3.17(e) shows the mean pixel difference used as quality metric for Corner detection, Edge

detection, and Sobel filter. We see that among these three applications, on average, Corner

detection is more susceptible to approximate cache storage. However, its output quality is

still degraded by less than 10% using RL3 execution mode.

115

0

0.2

0.4

0.6

0.8

1

Comb1 Comb2 Comb3 Comb4

N
or

m
al

iz
ed

 D
yn

am
ic

 E
ne

rg
y

C
on

su
m

pt
io

n

Workloads

RL0 RL1 RL2 RL3 Mixed Reliability

0%

20%

40%

60%

80%

100%

Comb1 Comb2 Comb3 Comb4

L2
 A

cc
es

s
D

is
tri

bu
tio

n

Mixed-Reliability Workloads

RL0 RL1 RL2 RL3

0.00

0.05

0.10

0.15

0.20

0.25

RL1 RL2 RL3

A
ve

ra
ge

 R
el

at
iv

e
Er

ro
rs

Reliability Levels

Blackscholes

0

10

20

30

40

50

60

RL1 RL2 RL3

PS
N

R

Reliability Levels

Image Smoothing Scale

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

RL1 RL2 RL3

M
ea

n
Pi

xe
l D

iff
er

en
ce

Reliability Levels

Corner Detection Edge Detection Sobel

(a) (b) (c) (d) (e)

Figure 3.17: QuARK Cache evaluation results: (a) Distribution of accesses in mixed-reliability
workloads, (b) Energy savings (normalized to fully-protected STT-MRAM L2 cache), (c)
Average relative error for blackscholes benchmark, (d) PSNR for Scale and Image Smoothing
benchmarks, and (e) Mean pixel difference for Corner Detection, Edge Detection and Sobel
benchmarks.

3.6 Write-Skip SPM

3.6.1 Introduction

STT-MRAM offers a high-density, high-speed, non-volatile choice of random access memory.

Despite all these features, high write access energy is still a challenge for its widespread use.

We propose the idea of skipping expensive write operations in spintronic memories when

the new data is approximately-equal to the old data, thereby trading off accuracy in return

for energy savings and performance improvements. Skipping some of the write operations is

possible for certain class of applications in approximate computing domain.

Read-before-write schemes were proposed before to remove redundant write operations

in phase change memories (PCM) [158] and STT-MRAM memories [30] to enhance the

endurance of the bit-cells and reduce the energy consumption respectively. In this work we

extend this idea by relaxing the requirement for strict equality instead using approximate

equality when avoiding unnecessary write operations.

116

3.6.2 The Write-Skip Approach

3.6.2.1 Read-Before-Write

Write-Skip reuses the existing read circuitry to read the current data of the memory at

a specific address before writing a new data. In general, the read time of STT-MRAM

is comparable to that of SRAM and it is significantly less compared to the write time of

STT-MRAM [159]. Consequently, there is just a small timing penalty when a read operation

is performed before write. The read access energy is also about two orders of magnitude

smaller than the write energy [159].

3.6.2.2 Approximate Equality

Approximate equality can be defined for primitive integer and floating-point data types with

different bit widths (e.g. float, double, int, unsigned int, long int, short int, etc).

To check approximate equality of two n-bit integers, simply exclusive-oring the n-k upper bits

of two data is enough where k is the number of lower bits dropped when verifying equality.

Two numbers are approximately-equal if all XOR gates for individual bits generate 0. k is a

knob controllable by the software for trading accuracy for energy savings. Higher values of k

result in potentially more write operations being skipped, hence higher energy savings, but

at the cost of quality degradation.

For floating-point data, we use the fact that adjacent floats have integer representations that

are adjacent. That means by dropping the lower k bits of the binary representation of two

n-bit floating-point numbers and XORing the upper n-k bits, we can verify their approximate

equality.

117

3.6.3 Evaluations

We evaluate Write-Skip by integrating it into the software-assisted memory hierarchy

introduced in Chapter 2. The SAM hierarchy introduced in Chapter 2 uses a distributed

on-chip memory composed of both cache and software-programmable memory (SPM). In

this work we augment SPMs with Write-Skip and map all the approximate data to SPM.

We extend the APIs provided by the SAM hierarchy to pass two kinds of information from

software down to on-chip memory hierarchy: (1) data type, (2) number of bits discarded

when checking approximate-equality of two consecutive write operations.

Table 3.14 lists the approximate applications we use in our evaluations and their quality

metrics. We annotated each application by inserting add approx and remove approx in the

source code for non-critical data objects.

Table 3.14: List of approximate applications for Write-Skip experiments

Benchmark Domain Quality Metric
Image-Smoothing Multimedia PSNR
Sobel Filter Computer Vision Mean Pixel Difference
K-means Machine Learning Average Distance from Cluster Centers

3.6.3.1 Approximate Value Locality

Figures 3.18, 3.19 and 3.20 show the percentage of write operations, respectively for

image-smoothing, sobel and k-means, that are approximately equal to the previous write to

the same memory location. The ratios are shown with respect to both total write operations

as well as just write operations to SPM that holds approximate data. Both image-smoothing

and sobel have some exactly-equal consecutive writes – exploited by the approach in [30] – and

dropping a number of bits during equality check increases this ratio even more. K-means’ write

accesses have less value locality. At least 14 bits of float data objects in k-means should be

dropped during equality check in order to see a significant percentage of approximately-equal

118

writes.

0 1 2 3 4 5 6

20

30

#bits dropped for equality check

%
of

ap
p
ro

x
im

at
al

y
-e

q
u
al

w
ri

te
s

%of SPM Writes
%of Total (SPM+$) Writes

Figure 3.18: Percentage of approximately-equal writes in image-smoothing.

0 1 2 3 4 5 6
0

20

40

60

#bits dropped for equality check

%
of

ap
p
ro

x
im

at
al

y
-e

q
u
al

w
ri

te
s

%of SPM Writes
%of Total (SPM+$) Writes

Figure 3.19: Percentage of approximately-equal writes in sobel.

0 2 4 6 8 10 12 14 16

0

20

40

#bits dropped for equality check

%
of

ap
p
ro

x
im

at
al

y
-e

q
u
al

w
ri

te
s

%of SPM Writes
%of Total (SPM+$) Writes

Figure 3.20: Percentage of approximately-equal writes in k-means.

119

3.6.3.2 Output Fidelities

Figures 3.21, 3.22 and 3.23 show the quality of generated outputs compared to the golden

output generated when none of the write operations are skipped. The average PSNRs of output

generated by image smoothing in all cases where 1 to 6 bits are dropped during equality check

are higher than 30dB acceptable threshold. The worst case mean pixel difference between

the approximate output and the golden output for sobel is less than 0.015. And for k-means,

the output generated when discarding lower 16 bits during equality check only increases the

average euclidean distance of all data points from the cluster centers by about 6%. These

preliminary results exhibit the opportunity to skip up to 34% of write operations for certain

applications and still produce outputs with acceptable quality.

1 2 3 4 5 6

10

20

30

40

50

#bits dropped for equality check

P
S
N

R

Figure 3.21: Output fidelity for image-smoothing.

1 2 3 4 5 6
0

5 · 10−3

1 · 10−2

1.5 · 10−2

2 · 10−2

#bits dropped for equality check

M
ea

n
P

ix
el

D
iff

er
en

ce

Figure 3.22: Output fidelity for sobel.

120

0 2 4 6 8 10 12 14 16
0.95

1

1.05

1.1

#bits dropped for equality check
N

or
m

al
iz

ed
A

v
g.

E
u
cl

id
ea

n
D

is
ta

n
ce

fr
om

C
lu

st
er

C
en

te
rs

.
Figure 3.23: Output fidelity for k-means.

3.6.3.3 Energy Consumption in On-chip Memory

Figures 3.24, 3.25 and 3.26 show the energy consumption in both SPM and Cache of SAM

hierarchy, respectively for image-smoothing, sobel and k-means, normalized to the baseline

where none of the write operations are skipped. The Write-Skip approach is applied only to

SPM and the energy consumed in cache for read and write operations is not affected by our

approach. However the energy comparisons are done for the total energy consumed in both

SPM and cache. Write-Skip performs a read before every write and therefore imposes some

energy overhead. However since the read operations are much cheaper than write operations

from energy consumption point of view, the overhead is offsetted by the savings for most

of the cases. In our experiments, only for k-means and when the number of bits discarded

during equality check is between 1 to 10, the overhead is not counterbalanced. However

the worst-case overhead is less than 0.8%. Our preliminary experiments demonstrate that

Write-Skip enables a useful trade-off in spintronic memories: The energy cost of write accesses

can be reduced by up to 30% when the application can tolerate approximate storage of its

data.

121

1 2 3 4 5 6
50

60

70

80

90

100

110

#bits dropped for equality check
N

or
m

al
iz

ed

E
n
er

gy
(%

)
Figure 3.24: Energy consumption in on-chip memory for image-smoothing normalized to the
baseline where none of the write operations are skipped.

1 2 3 4 5 6
50

60

70

80

90

100

110

#bits dropped for equality check

N
or

m
al

iz
ed

E
n
er

gy
(%

)

Figure 3.25: Energy consumption in on-chip memory for sobel normalized to the baseline
where none of the write operations are skipped.

2 4 6 8 10 12 14 16
50

60

70

80

90

100

110

#bits dropped for equality check

N
or

m
al

iz
ed

E
n
er

gy
(%

)

Figure 3.26: Energy consumption in on-chip memory for k-means normalized to the baseline
where none of the write operations are skipped.

122

Application Layer

Middleware Layer

Hardware Layer

(a) Open-loop Knob
Setting

(b) Closed-loop
Quality Control

Quality
Goal

Knob
Values

Figure 3.27: Open-loop knob settings (prior works) vs. closed-loop quality control (this work).

3.7 Controlled Memory Approximation

3.7.1 Introduction

Previous work on approximate memories has focused mainly on open-loop and profile-guided

approaches for setting approximation knobs statically to appropriate values [132, 92, 109].

Based on some design-time analysis the system designer or the programmer set the reliability

knob(s) to appropriate values (Figure 3.27(a)).

Our focus here is the quality control problem for systems with a quality-configurable memory

running approximate programs. This problem has not been addressed in most of the literature

on approximate memories. Instead of putting the burden of setting approximation knob(s)

on the system designer or the programmer, we aim at automatically controlling the quality

by utilizing a feedback controller in the middleware layer that finds the optimal knob values

at runtime (Figure 3.27(b)) depending on the requested quality for the application. With

our approach, the programmer, instead of setting the knobs directly, only needs to declare

123

the desired quality. This not only ease up the task of the programmer but also makes the

approximation portable across different platforms/memory technologies.

Profile-guided open-loop approaches suffer also from two major disadvantages: (1) They make

approximation decisions based on average or worst-case input behavior. These techniques rely

on training with inputs that are representative of real-world inputs, which may be difficult

to achieve in practice. Laurenzano et al. [84] have shown that the accuracy of approximate

programs depend heavily on program input. (2) It is difficult to model an under-designed

memory in order to measure the output accuracy at different settings. Temporal faults that

are variability-induced, temperature-induced, etc cannot be modeled easily. Unlike, software

approximation strategies that are easier to evaluate, hardware approximation requires a more

rigorous runtime tuning. A perfect fixed knob(s) to quality metric mapping is unfeasible to

obtain through profiling.

In this work, we target streaming applications in which the application is given a sequence of

inputs and the results from processing previous inputs can be used to adjust the knobs for the

successive inputs because of the correlation of the inputs as well as the temporal behavior of

the memory errors. Formal control theory lends itself well to this kind of applications where the

history and trend of the previous inputs can be utilized to make predictions for future inputs.

In other words, when the system dynamics can be formulated using difference/differential

equations.

The closest work to our work is Green compiler [16]. Green targets tuning software

approximation and constructs a feedback mechanism for calibrating the knob settings.

However it does not propose a systematic strategy to recalibrate the knob(s) settings. The

authors of [139] propose a proactive control strategy for non-streaming programs that uses

machine learning to learn complex cost and error models offline and utilizes these models at

runtime to determine knob settings. These models are not light-weight and not easy to build

and do not consider the temporal similarity in the inputs for streaming applications.

124

We believe that despite the randomness of errors introduced into the execution of the program

because of the memory approximation, the system’s deterministic dynamic can be captured

in way that a formal control-theoretic technique can effectively control the quality of the

program even in presence of stochastic (non-deterministic) behavior.

Our solution to this problem employs a controller to construct a closed-loop feedback control

mechanism. This controller monitors at the error (i.e., difference between target output quality

and measured output quality) and applies a correction accordingly.

Our contributions are as follows:

• We propose a strategy to control the quality of programs with approximate memory and

remove the burden of manually setting the approximation knobs from the programmer.

• We show that black-box system identification technique is able to identify the

deterministic dynamics of the system in order to create a model based on that.

• We present a prototype of our control strategy for an edge-detection program.

3.7.2 Problem Modeling

3.7.2.1 Application Class

We define streaming application as an application that operates over a long sequence of input

data items. The data items are fed to the application from some external source, and each

data item is processed for a limited time before being discarded. Most streaming applications

are built around signal-processing functions applied on the input data set with little if

any control-flow between them. Examples of streaming applications include communication

protocols, audio and video processing, cryptographic kernels, and network processing.

125

We target streaming applications where a stable computation pattern is applied on consecutive

inputs. Usually these applications are either state-less, meaning that the inputs are processed

completely independent and they have no effect on each other, or they have a limited effect on

each other. In the context of approximate computing, this means that the quality degradation

of kth input is either purely dependent on the hardware errors happened during processing

that input or is just slightly affected by the quality degradation in previous inputs (i.e., 1 st

through k-1 th).

3.7.2.2 Monitoring Quality at Runtime

In order to construct a closed loop feedback mechanism and adjust the memory approximation

knob(s) at runtime, the system needs to occasionally sample the current quality of the output

with the current knob(s) settings.

This quality measurement method is application dependent and normally the programmer

provides a software routine to measure it at runtime. In many cases, this quality measurement

would require computing the precise and approximate versions of the output for comparison.

Previous work have used the same method for monitoring quality [16, 14].

3.7.2.3 Memory Approximation Knob(s)

Depending on the approximation strategy used and the memory technology, there is always

one or more knobs that can tune the degree of approximation storage. For example, in

SRAM memories, voltage is the main knob. Refresh rate is the error-energy knob for DRAMs.

For non-volatile memories (NVMs) such as STT-MRAM memories, read and write current

amplitudes are two key knobs. If the approximation strategy is to skip some of the memory

accesses – often stores – or predicting the value of load operations, the percentage of such

operations could be the knob that tuning of which would adjust the final quality of the

126

output.

The implicit assumption is that a more aggressive knob setting makes the memory more

unreliable but at the same time lowers down the energy consumption, while a more

conservative knob setting enhances the reliability of memory operations but at the cost

of higher energy consumption. The ultimate goal is to set the most aggressive knob setting

that satisfies the quality goal in order to gain the highest energy savings possible.

3.7.3 Quality Control with Feedback Control Theory

In control theory, a controlled system is represented as a feedback control loop as in Fig.

3.28(a). At the epoch k, the controller reads the measured output y(k) of a system in state

x(k), compares it against the target value yref , and based on the difference (or error e(k)),

generates the control input u(k) to actuate on the system and reduce the error.

In our case, the system is composed of both quality-configurable memory as well as the

software running on a system with this memory. The control input to the system is the value

of a knob and the measured output of the system is the quality of the generated output.

The closed loop approach for tuning knobs is shown in Fig. 3.28(b). The application runs

on a processor with a quality-configurable memory. With a pre-determined frequency, the

quality monitor routine measures the current quality of the output. This quality is compared

against the quality goal. A positive difference means there is still room to relax the reliability

requirements of the memory and the controller accordingly sets a more aggressive knob setting.

A negative difference means that the quality has degraded more than what was intended.

The controller accordingly sets a more conservative knob setting.

To formally control such a system, a model of the system dynamics that describes the

relation between control input(s) (i.e., knob(s)) and the measured output (i.e., the quality of

127

Controller
(c)

 +
 _

System
(x)

Target (y0)

yuError

(a)

Closed loop approximate system

Controller Memory
Substrate

Application
User Provided
Quality Goal

Reliability Knob(s)

Quality
Monitor

 +
 _

(b)

Figure 3.28: Closed loop approach (this work) for tuning memory approximation knob(s).

the program’s output) as a function of time epoch, is needed.

A common practice to extract the dynamic model of complex systems is through System

Identification Theory [93, 94] where we experimentally collect input-output data and use

black-box identification methods to isolate the deterministic and stochastic components of

the system. In this way, we can build a model entirely from true data for arbitrarily complex

systems. In our design, we follow this approach and show that quality configuration (i.e.,

tracking) in memory-oriented approximate computing can be modeled as a formal quality

control problem, which can be then addressed by using classical off-the-shelf controllers.

128

3.7.4 Case Study: Video Edge Detection

3.7.4.1 Application Description and Error Metric

We use canny video edge detection [32] as our case study. Edge detection is the process of

identifying sharp changes in image brightness. This is important because it detects physical

changes in the objects imaged. For video processing, the edge detection is often conducted

on a frame-by-frame basis independently. The temporal similarity between adjacent frames

of a scene in a video allows the controller to adjust the quality based on the history of the

system from previous frames.

We use miss-classification error as our quality metric, that is the ratio of total number of

pixels mistakenly classified as edge/non-edge to the total number of pixels in the frame.

3.7.4.2 Memory Approximation Knob

For simplicity, we assume that all the memory accesses hit the memory substrate in which

we are interested to actuate the error rate. This could translate into adjusting knobs for a L1

data cache where the hit rate for approximate data is very close to 100%. We choose write

reliability as the tuning knob as the write current amplitude which is shown in previous work

to be an appropriate approximation knob for spin-transfer torque memories [109, 122, 130],

and there is a relationship between the amount of the current applied for write operations

and the write error probability.

3.7.5 System Identification

In order to design a controller for the system, we need to model the system first. The

first step towards that is to generate test waveforms from training applications for system

129

identification. A test waveform contains a series of samples for controller inputs and outputs

for a training application, and should exercise as many input permutations as possible. The

system dynamics is exercised often by applying a staircase waveform to the control input

(e.g., write bit error rate). Such staircase would stimulate system behaviour in response to

various levels of control input. In our work, we change write bit error rate from 10E-7 to

10E-3 with steps of 10E-7.

In this method, training sets use varying frequency (e.g., a set of out-of-phase staircase

signals for the control input) in order to isolate the deterministic and stochastic aspects of

the system. This model is then evaluated to predict the expected data from the identified

system. Abnormal behaviour from this model can raise a flag that the controller to be designed

from this model might be inaccurate.

We use MATLAB’s system identification toolbox for this process [99]. Figure 3.29 shows the

result of system identification for canny when a series of 2400 frames are inputted. It can be

seen that the predicted model closely fits the measured data.

In this method, training sets use varying frequency (e.g., a set of out-of-phase staircase

signals for the control input) in order to isolate the deterministic and stochastic aspects of

the system. This model is then evaluated to predict the expected data from the identified

system. Abnormal behavior from this model can raise a flag that the controller to be designed

from this model might be inaccurate. In our work, we used MATLAB’s system identification

toolbox for this process [99].

Figure 3.29 shows the result of system identification for canny when a series of 2400 frames

are inputted. It can be seen that the predicted model closely fits the measured data.

130

W
rit

e
B

it
Er

ro
r R

at
e

M
is

cl
as

si
fic

at
io

n
Er

ro
r

Time (s)
0 10 20 30 40 50 60 70 80

Predicted Model
Measured Output

-4
-3
-2
-1
0
1
2
3
4

-5

5

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

×10-5

Control Input

Figure 3.29: Predicted Model vs. Measured Output.

3.7.5.1 Controller

According to the assumptions made in subsections 3.7.4.1 and 3.7.4.2, our system is a simple

single-input-single-output (SISO) control system with write bit error rate as control input and

edge detection miss-classification rate as measured output2. We use a proportional-integral

(PI) controller to control this system. The proportional term refers to the fact that the

controller output is proportional to the amplitude of error signal, while Integral indicates

2Note that while in this case study we utilize a SISO controller, we also acknowledge the possibility of
using a multiple-input-multiple output (MIMO) controller for other systems that may provide more than one
output quality metric and memories that provide more than one to tune – either because there are multiple
knobs per memory component (i.e., STT-MRAM read and write current) or the controller is tuning multiple
individual memory components in the memory hierarchy.

131

that the controller output is proportional to the integral of all past errors [67]. The PI control

law has the form:

u(k) = u(k − 1) + (KP +KI)e(k) −KP e(k − 1) (3.3)

Where KP and KI denote the coefficients for the proportional and integral terms, respectively.

Controller design is a mature field which utilizes many tools that provide off-the-shelf

controllers. We use Matlab PID tuner toolbox to design and deploy our controllers.

It is important to note that although derivative control law is helpful to add predictability

to the controller, stochastic variations in the system output may cause inaccuracy in the

controller. This issue becomes more severe in computer systems as they commonly have a

significant stochastic component. Therefore, for computer systems PI controllers are preferred

over proportional-integral-derivative (PID) controller [67]. PI control benefits from both

integral control (zero steady-state error) and proportional control (fast transient response).

In most computer systems a first-order PI controller provides rapid response and is sufficiently

accurate [67].

3.7.5.2 Fault Injection Mechanism

To simulate the behavior of a system with approximate memory, we developed a PIN-based

[96] memory fault injector. This fault injector is able to inject memory faults into read

and/or write operations according to a given error rate. In order to inject faults only into the

non-critical data objects of the program, the source code of the program is annotated with

add approx() and remove approx() methods to declare the address of those data objects

in the program. These methods are called in the program at appropriate places and are

captured by the fault injector. The fault injector records these addresses into a table. During

the execution, it instruments all the memory accesses. If the virtual address of the access

132

falls into the any of the given address boundaries, it attempts to inject fault into the part of

data referenced by that memory access.

3.7.5.3 Input Dependency

Figure 3.30 shows the variation of the quality of the edge detection in a video composed of

multiple scenes when the write bit error rate is set at a constant value, similar to what an

open-loop approach would do. This variation confirms the dependency of the quality of a

program running on a platform that uses an approximate memory on the input.

3.7.5.4 QoS Tracking

Figure 3.31 shows a sample of how the feedback loop works in practice for different video

sequences. The red curve shows the quality goal and the blue curve shows the achieved quality

when the PI controller manages the quality by adjusting the knob.

3.7.5.5 Comparison

Figure 3.32 compares the performance of a PI controller in tracking target quality with a

manual calibration scheme. The manual scheme measures the difference between the desired

quality and the current quality. If the difference is within -+10% it does not change the

knobs. Otherwise it changes the knob in one direction with certain fine-grained steps until

the quality returns back to the acceptable quality region.

133

Sheet1

Page 1

0 30 60 90 120 150 180 210 240 270 300 330 360 390 420
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Frame Number

N
or

m
al

iz
ed

E

dg
e

D
et

ec
ti

on
 B

ad
ne

ss

(a) BER = 1E-3
Sheet1

Page 1

0 30 60 90 120 150 180 210 240 270 300 330 360 390 420
0

0.005

0.01

0.015

0.02

0.025

0.03

Frame Number

N
or

m
al

iz
ed

E

dg
e

D
et

ec
ti

on
 B

ad
ne

ss

(b) BER = 1E-4
Sheet1

Page 1

0 30 60 90 120 150 180 210 240 270 300 330 360 390 420
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

Frame Number

N
or

m
al

iz
ed

E

dg
e

D
et

ec
ti

on
 B

ad
ne

ss

(c) BER = 1E-5

Figure 3.30: Variation of the quality of the edge detection in various video scenes when the
bit error rate is constant.

134

0 30 60 90 120 150 180 210 240 270 300
0

0.005

0.01

0.015

0.02

0.025

Frame Number

N
or

m
al

iz
ed

E

dg
e

D
et

ec
ti

on
 B

ad
ne

ss

(a) news, t = 1

0 30 60 90 120 150 180 210 240 270
0

0.005

0.01

0.015

0.02

0.025

0.03

Frame Number

N
or

m
al

iz
ed

E

dg
e

D
et

ec
ti

on
 B

ad
ne

ss

300

(b) news, t = 5

0 30 60 90 120 150 180 210 240 270 300
0

0.005

0.01

0.015

0.02

0.025

0.03

Frame Number

N
or

m
al

iz
ed

E

dg
e

D
et

ec
ti

on
 B

ad
ne

ss

(c) soccer, t = 1

0 30 60 90 120 150 180 210 240 270 300
0

0.005
0.01

0.015
0.02

0.025
0.03

0.035
0.04

0.045
0.05

Frame Number

N
or

m
al

iz
ed

E

dg
e

D
et

ec
ti

on
 B

ad
ne

ss

(d) soccer, t = 5

0 30 60 90 120 150 180 210 240 270 300
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Frame Number

N
or

m
al

iz
ed

E

dg
e

D
et

ec
ti

on
 B

ad
ne

ss

(e) marymax, t = 1

0 30 60 90 120 150 180 210 240 270
0

0.01

0.02

0.03

0.04

0.05

0.06

Frame Number

N
or

m
al

iz
ed

E

dg
e

D
et

ec
ti

on
 B

ad
ne

ss

300

(f) marymax, t = 5

Figure 3.31: Quality tracking results. Red curve shows the acceptable error and the blue
curve shows the error achieved by the controller.

135

student-1-pid

Page 1

0 30 60 90 120 150 180 210 240 270 300
0

0.005

0.01

0.015

0.02

0.025

0.03

Frame Number

N
or

m
al

iz
ed

E

dg
e

D
et

ec
ti

on
 B

ad
ne

ss

(a) pi controller

student-1-manual

Page 1

0 30 60 90 120 150 180 210 240 270 300
0

0.002

0.004

0.006

0.008

0.01

0.012

Frame Number

N
or

m
al

iz
ed

E

dg
e

D
et

ec
ti

on
 B

ad
ne

ss

(b) manual calibration

Figure 3.32: Comparing PI controller with manual step-wise re-calibration similar to [16].

BER = 0 BER = 1e-6 BER = 1e-5 BER = 1e-4 BER = 1e-3

0.0000098 0.0002661 0.0029438 0.0152044

0.0000000 0.0000049 0.0063853 0.0089849

0.0000423 0.0005944 0.0071542 0.0404427

0.0000000 0.0000501 0.0013885 0.0035272

Figure 3.33: Canny edge detection applied to different images with various write bit error
rates resulting in different quality metrics.

136

Chapter 4

Conclusions and Future Directions

Technology limitations and application demands have driven the emergence of manycore

embedded systems. The memory hierarchy of manycore architectures has a major impact

on their overall performance, energy efficiency and reliability. We identified three major

issues with the traditional memory hierarchies that make them unappealing for manycore

architectures and their data-intensive workloads: (1) they are power hungry and not a good fit

for manycores in face of dark silicon, (2) they are not adaptable to the workload’s requirements

and memory behavior, and (3) they are not scalable due to coherence overheads.

This dissertation showed that many of these challenges can be addressed by through different

types of software-assists. Application semantics and behavior captured in software can be

exploited to more efficiently manage the memory hierarchy.

4.1 Technical Contributions

The novel contributions of this thesis are:

137

• SAM: Hybrid Memory Hierarchy for MES with Software-Managed Coherence

• ShaVe-ICE: Software & Architectural Support for Sharing Distributed SPMs in MES

• Relaxed Cache: Relaxed Guardbanding for Process-Variation-Affected SRAM Caches

• QuARK Cache: Fine-grained Tuning of Reliability-Energy Knobs in Shared

STT-MRAM Caches Write-Skip SPM: Skipping Write Operations in STT-MRAM

SPMs

• CTRL-MEM-APRX: Controlled Approximation in Quality-Configurable Memories

4.2 Future Directions

There are many future possibilities to extend the software-assisted memory hierarchy proposed

in this dissertation:

• The ShaVe-ICE runtime memory manager along with its various allocation policies

need to be integrated into a real operating system (e.g, Linux) as a kernel module to

explore the overheads.

• The SPM allocation policies introduced in Section 2.5 show promising advantages

over the baseline strategy, that limits the allocation to the SPM local to each core.

However, we need more intelligent policies that take into account several other factors

like functional/power characteristics of heterogeneous memory resources as well as the

phasic behavior of applications.

• The current version of the ShaVe-ICE allocator works on a first-come-first-served basis.

To make the allocation more fair and also further improve the overall data placements,

we need to keep a backlog of unserved allocation requests and judiciously choose between

138

them and new requests which one to grand when space becomes available. In doing

that these allocation policies should have a measure of relative importance in order to

prioritize the allocation of different data objects when there is spillovers.

• Although the current version of the software-programmable hierarchy introduced in

Chapter 2 relies on explicit annotation by the programmer or the compiler, ideally we

would like to remove this burden to some extent and be able to monitor the memory

behavior of the application at runtime and protectively decide about which data to

bring on-chip and if they should be put in cache or local SPM or remote SPM and also

how to partition the available the memory space between cache and SPM depending

on workload’s memory behavior.

• For shared data, we considered simply allocating the single copy on the SPM of the

core spawning the threads. However, data placement could be further optimized in

future work. Worker threads can allocate their own private data on SPM as well,

but the assumption is that all shared data objects are allocated on SPM by the boss

thread before worker threads are dispatched. Future work could relax this restriction

by allowing cores to exchange SATT mappings.

• There is a growing need for mechanisms that adjust memory approximation knobs

automatically and coordinate their effect on the final quality of the output. Our approach

in Section 3.7 is an initial attempt towards this end. More works need to be done to

build better system models and design multi-input-multi-output (MIMO) controllers

that coordinate different knobs across the different layers of the memory hierarchy as

well the system stack.

139

Bibliography

[1] Coyotebench. https://github.com/Microsoft/test-suite/tree/master/

SingleSource/Benchmarks/CoyoteBench. Accessed: 2016-10-31. (Cited on
page 51).

[2] The Computer Language Benchmarks Game. http://benchmarksgame.alioth.

debian.org/. Accessed: 2016-10-31. (Cited on page 51).

[3] NVIDIAs Next Generation CUDA Compute Architecture: Fermi. Technical report,
NVIDIA, 2009. (Cited on page 21).

[4] Adapteva. Epiphany Architecture Reference, 2014. Rev 14.03.11. (Cited on pages 2
and 4).

[5] C. Alvarez, J. Corbal, and M. Valero. Fuzzy Memoization for Floating-Point Multimedia
Applications. IEEE Transactions on Computers (TC), 2005. (Cited on page 63).

[6] L. Alvarez, L. Vilanova, M. Gonzalez, X. Martorell, N. Navarro, and E. Ayguade.
Hardware-Software Coherence Protocol for the Coexistence of Caches and Local
Memories. IEEE Transactions on Computers (TC), 2015. (Cited on page 22).

[7] L. Alvarez, L. Vilanova, M. Moreto, M. Casas, M. Gonzàlez, X. Martorell, N. Navarro,
E. Ayguadé, and M. Valero. Coherence Protocol for Transparent Management of
Scratchpad Memories in Shared Memory Manycore Architectures. In Proceedings
of the International Symposium on Computer Architecture (ISCA), 2015. (Cited on
page 16).

[8] A. Ansari, S. Feng, S. Gupta, and S. Mahlke. Archipelago: A Polymorphic Cache Design
for Enabling Robust Near-threshold Operation. In Proceedings of the International
Symposium on High Performance Computer Architecture (HPCA), 2011. (Cited on
page 82).

[9] A. Ansari, S. Gupta, S. Feng, and S. Mahlke. ZerehCache: Armoring Cache Architectures
in High Defect Density Technologies. In Proceedings of the IEEE/ACM International
Symposium on Microarchitecture (MICRO), 2009. (Cited on page 82).

[10] J. Ansel, Y. L. Wong, C. Chan, M. Olszewski, A. Edelman, and S. Amarasinghe.
Language and Compiler Support for Auto-tuning Variable-accuracy Algorithms. In

140

https://github.com/Microsoft/test-suite/tree/master/SingleSource/Benchmarks/CoyoteBench
https://github.com/Microsoft/test-suite/tree/master/SingleSource/Benchmarks/CoyoteBench
http://benchmarksgame.alioth.debian.org/
http://benchmarksgame.alioth.debian.org/

Proceedings of the IEEE/ACM International Symposium on Code Generation and
Optimization (CGO), 2011. (Cited on page 63).

[11] ARM. Cortex-A5 processor manual. http://www.arm.com. (Cited on page 96).

[12] ARM. Cortex-R4 processor manual. http://www.arm.com. (Cited on page 96).

[13] G. P. Arumugam, P. Srikanthan, J. Augustine, K. Palem, E. Upfal, A. Bhargava,
Parishkrati, and S. Yenugula. Novel Inexact Memory Aware Algorithm Co-design
for Energy Efficient Computation: Algorithmic Principles. In Proceedings of the Design,
Automation & Test in Europe Conference & Exhibition (DATE), 2015. (Cited on
pages 65, 66, and 75).

[14] Aurangzeb and R. Eigenmann. Harnessing Parallelism in Multicore Systems to Expedite
and Improve Function Approximation. In Proceedings of the International Workshop on
Languages and Compilers for Parallel Computing (LCPC), 2016. (Cited on page 126).

[15] O. Avissar, R. Barua, and D. Stewart. Heterogeneous Memory Management for
Embedded Systems. In Proceedings of the International Conference on Compilers,
Architecture, and Synthesis for Embedded Systems (CASES), 2001. (Cited on page 14).

[16] W. Baek and T. M. Chilimbi. Green: A Framework for Supporting Energy-conscious
Programming Using Controlled Approximation. In Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI), 2010.
(Cited on pages x, 63, 124, 126, and 136).

[17] K. Bai, J. Lu, A. Shrivastava, and B. Holton. CMSM: An Efficient and Effective Code
Management for Software Managed Multicores. In Proceedings of the IEEE/ACM/IFIP
International Conference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS), 2013. (Cited on page 11).

[18] K. Bai and A. Shrivastava. Heap Data Management for Limited Local Memory (LLM)
Multi-core Processors. In Proceedings of the IEEE/ACM/IFIP International Conference
on Hardware/Software Codesign and System Synthesis (CODE+ISSS), 2010. (Cited
on page 15).

[19] K. Bai and A. Shrivastava. Automatic and Efficient Heap Data Management for Limited
Local Memory Multicore Architectures. In Proceedings of the International Conference
on Design Automation and Test in Europe (DATE), 2013. (Cited on page 15).

[20] K. Bai, A. Shrivastava, and S. Kudchadker. Stack Data Management for Limited
Local Memory (LLM) Multi-core Processors. In Proceedings of the IEEE International
Conference on Application-specific Systems, Architectures and Processors (ASAP), 2011.
(Cited on pages 11 and 15).

[21] A. BanaiyanMofrad, H. Homayoun, and N. Dutt. FFT-cache: A Flexible Fault-tolerant
Cache Architecture for Ultra Low Voltage Operation. In Proceedings of the International
Conference on Compilers, Architectures and Synthesis for Embedded Systems (CASES),
2011. (Cited on pages 82 and 88).

141

[22] R. Banakar, S. Steinke, B.-S. Lee, M. Balakrishnan, and P. Marwedel. Scratchpad
Memory: A Design Alternative for Cache On-chip Memory in Embedded Systems. In
Proceedings of the International Symposium on Hardware/Software Codesign (CODES),
2002. (Cited on page 11).

[23] L. Bathen and N. Dutt. HaVOC: A hybrid Memory-aware Virtualization Layer for
On-chip Distributed ScratchPad and Non-Volatile Memories. In Proceedings of the
Design Automation Conference (DAC), 2012. (Cited on page 16).

[24] L. A. D. Bathen and N. D. Dutt. SPMCloud: Towards the Single-Chip Embedded
ScratchPad Memory-Based Storage Cloud. ACM Transactions on Design Automation
of Electronic Systems (TODAES), 2014. (Cited on page 16).

[25] L. A. D. Bathen, N. D. Dutt, A. Nicolau, and P. Gupta. VaMV: Variability-aware
Memory Virtualization. In Proceedings of the Conference on Design, Automation and
Test in Europe (DATE), 2012. (Cited on page 16).

[26] L. A. D. Bathen, N. D. Dutt, D. Shin, and S.-S. Lim. SPMVisor: Dynamic Scratchpad
Memory Virtualization for Secure, Low Power, and High Performance Distributed
On-chip Memories. In Proceedings of the IEEE/ACM/IFIP International Conference
on Hardware/Software Codesign and System Synthesis (CODES+ISSS), 2011. (Cited
on page 16).

[27] S. Bell, B. Edwards, J. Amann, R. Conlin, K. Joyce, V. Leung, J. MacKay, M. Reif,
L. Bao, J. Brown, M. Mattina, C. C. Miao, C. Ramey, D. Wentzlaff, W. Anderson,
E. Berger, N. Fairbanks, D. Khan, F. Montenegro, J. Stickney, and J. Zook. TILE64
- Processor: A 64-Core SoC with Mesh Interconnect. In Proceedings of the IEEE
International Solid-State Circuits Conference (ISSCC), 2008. (Cited on pages 2 and 4).

[28] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC Benchmark Suite:
Characterization and Architectural Implications. In Proceedings of the International
Conference on Parallel Architectures and Compilation Techniques (PACT), 2008. (Cited
on page 97).

[29] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hestness,
D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D.
Hill, and D. A. Wood. The gem5 simulator. ACM SIGARCH Computer Architecture
News, 2011. (Cited on pages 37, 95, and 111).

[30] R. Bishnoi, F. Oboril, M. Ebrahimi, and M. B. Tahoori. Avoiding unnecessary write
operations in STT-MRAM for low power implementation. In Proceedings of the
International Symposium on Quality Electronic Design (ISQED), 2014. (Cited on
pages 116 and 118).

[31] V. Camus, J. Schlachter, C. Enz, M. Gautschi, and F. K. Gurkaynak. Approximate
32-bit Floating-point Unit Design with 53Product Reduction. In Proceedings of the
European Solid-State Circuits Conference (ESSCIRC), 2016. (Cited on page 63).

142

[32] J. Canny. A Computational Approach to Edge Detection. IEEE Transactions on
Pattern Analysis and Machine Intelligence (TPAMI), 1986. (Cited on page 129).

[33] M. Carbin, S. Misailovic, and M. C. Rinard. Verifying Quantitative Reliability
for Programs That Execute on Unreliable Hardware. In Proceedings of the ACM
International Conference on Object Oriented Programming Systems Languages &
Applications (OOPSLA), 2013. (Cited on pages 80 and 92).

[34] V. Catania, A. Mineo, S. Monteleone, M. Palesi, and D. Patti. Noxim: An Open,
Extensible and Cycle-accurate Network On-chip Simulator. In Proceedings of the IEEE
International Conference on Application-specific Systems, Architectures and Processors
(ASAP), 2015. (Cited on page 37).

[35] P. Chakraborty and P. R. Panda. SPM-Sieve: A Framework for Assisting Data
Partitioning in Scratch Pad Memory Based Systems. In Proceedings of the International
Conference on Compilers, Architectures, and Synthesis for Embedded Systems (CASES),
2013. (Cited on page 24).

[36] P. Chakraborty, P. R. Panda, and S. Sen. Partitioning and Data Mapping
in Reconfigurable Cache and Scratchpad Memory–Based Architectures. ACM
Transactions on Design Automation of Electronic Systems (TODAES), 2016. (Cited
on pages 16 and 21).

[37] S. Chen, S. Jiang, B. He, and X. Tang. A Study of Sorting Algorithms on Approximate
Memory. In Proceedings of the International Conference on Management of Data
(SIGMOD), 2016. (Cited on pages 65, 66, and 74).

[38] V. K. Chippa, S. T. Chakradhar, K. Roy, and A. Raghunathan. Analysis and
Characterization of Inherent Application Resilience for Approximate Computing. In
Proceedings of the ACM/EDAC/IEEE Design Automation Conference (DAC), 2013.
(Cited on page 62).

[39] D. Cho, S. Pasricha, I. Issenin, N. Dutt, M. Ahn, and Y. Paek. Adaptive Scratch
Pad Memory Management for Dynamic Behavior of Multimedia Applications. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems (TCAD),
2009. (Cited on page 15).

[40] D. Cho, S. Pasricha, I. Issenin, N. Dutt, Y. Paek, and S. Ko. Compiler Driven Data
Layout Optimization for Regular/Irregular Array Access Patterns. In Proceedings
of the ACM SIGPLAN-SIGBED Conference on Languages, Compilers, and Tools for
Embedded Systems (LCTES), 2008. (Cited on page 15).

[41] K. Cho, Y. Lee, Y. H. Oh, G. c. Hwang, and J. W. Lee. eDRAM-based Tiered-Reliability
Memory with Applications to Low-power Frame Buffers. In Proceedings of the
IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED),
2014. (Cited on pages 65, 66, 67, 68, and 77).

143

[42] M. Cohen, H. S. Zhu, E. E. Senem, and Y. D. Liu. Energy Types. In Proceedings of the
ACM International Conference on Object Oriented Programming Systems Languages
and Applications (OOPSLA), 2012. (Cited on page 92).

[43] J. Cong, H. Huang, C. Liu, and Y. Zou. A Reuse-aware Prefetching Scheme for
Scratchpad Memory. In Proceedings of the Design Automation Conference (DAC),
2011. (Cited on page 13).

[44] B. D. de Dinechin, P. G. de Massas, G. Lager, C. Lger, B. Orgogozo, J. Reybert, and
T. Strudel. A Distributed Run-Time Environment for the Kalray MPPA-256 Integrated
Manycore Processor. Procedia Computer Science, 2013. (Cited on pages 2 and 4).

[45] N. Deng, W. Ji, J. Li, and Q. Zuo. A Semi-automatic Scratchpad Memory Management
Framework for CMP. In Proceedings of the International Conference on Advanced
Parallel Processing Technologies (APPT), 2011. (Cited on page 15).

[46] T. Devolder, J. Hayakawa, K. Ito, H. Takahashi, S. Ikeda, P. Crozat, N. Zerounian,
J.-V. Kim, C. Chappert, and H. Ohno. Single-Shot Time-Resolved Measurements of
Nanosecond-Scale Spin-Transfer Induced Switching: Stochastic Versus Deterministic
Aspects. Physical Review Letters, 2008. (Cited on page 101).

[47] A. Dominguez, S. Udayakumaran, and R. Barua. Heap Data Allocation to Scratch-pad
Memory in Embedded Systems. Journal of Embedded Computing, 2005. (Cited on
page 14).

[48] X. Dong et al. NVSim: A Circuit-Level Performance, Energy, and Area Model for
Emerging Nonvolatile Memory. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems (TCAD), 2012. (Cited on pages 104 and 111).

[49] P. Dubey. Recognition, Mining and Synthesis Moves Computers to the Era of Tera.
Intel Technology Journal, 2005. (Cited on page 6).

[50] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and D. Burger. Dark
Silicon and the End of Multicore Scaling. In Proceedings of the Annual International
Symposium on Computer Architecture (ISCA), 2011. (Cited on page 3).

[51] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger. Architecture Support
for Disciplined Approximate Programming. In Proceedings of the International
Conference on Architectural Support for Programming Languages and Operating Systems
(ASPLOS), 2012. (Cited on page 63).

[52] Y. Fang, H. Li, and X. Li. SoftPCM: Enhancing Energy Efficiency and Lifetime of
Phase Change Memory in Video Applications via Approximate Write. In Proceedings of
the IEEE Asian Test Symposium (ATS), 2012. (Cited on pages 65, 66, 67, 68, and 72).

[53] K. Flautner, N. S. Kim, S. Martin, D. Blaauw, and T. Mudge. Drowsy Caches: Simple
Techniques for Reducing Leakage Power. In Proceedings of the International Symposium
on Computer Architecture (ISCA), 2002. (Cited on page 85).

144

[54] Forczmański et al. An Algorithm of Face Recognition Under Difficult Lighting
Conditions. Electrical Review, 2012. (Cited on page 107).

[55] P. Francesco, P. Marchal, D. Atienza, L. Benini, F. Catthoor, and J. M. Mendias. An
Integrated Hardware/Software Approach for Run-time Scratchpad Management. In
Proceedings of the Design Automation Conference (DAC), 2004. (Cited on page 14).

[56] S. Ganapathy, G. Karakonstantis, A. Teman, and A. Burg. Mitigating the Impact of
Faults in Unreliable Memories for Error-resilient Applications. In Proceedings of the
IEEE/ACM Design Automation Conference (DAC), 2015. (Cited on pages 65, 66, 67,
68, and 75).

[57] L. Gauthier, T. Ishihara, H. Takase, H. Tomiyama, and H. Takada. Minimizing Inter-task
Interferences in Scratch-pad Memory Usage for Reducing the Energy Consumption of
Multi-task Systems. In Proceedings of the International Conference on Compilers,
Architectures and Synthesis for Embedded Systems (CASES), 2010. (Cited on page 14).

[58] M. Gottscho, A. BanaiyanMofrad, N. Dutt, A. Nicolau, and P. Gupta. Power / Capacity
Scaling: Energy Savings With Simple Fault-Tolerant Caches. In Proceedings of the
Design Automation Conference (DAC), 2014. (Cited on pages 89 and 96).

[59] Q. Guo, K. Strauss, L. Ceze, and H. S. Malvar. High-Density Image Storage Using
Approximate Memory Cells. In Proceedings of the International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS),
2016. (Cited on pages 65, 66, 67, 68, and 76).

[60] P. Gupta, Y. Agarwal, L. Dolecek, N. Dutt, R. K. Gupta, R. Kumar, S. Mitra, A. Nicolau,
T. S. Rosing, M. B. Srivastava, S. Swanson, and D. Sylvester. Underdesigned and
Opportunistic Computing in Presence of Hardware Variability. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems (TCAD), 2013. (Cited on
page 82).

[61] V. Gupta, D. Mohapatra, S. P. Park, A. Raghunathan, and K. Roy. IMPACT: IMPrecise
Adders for Low-power Approximate Computing. In IEEE/ACM International
Symposium on Low Power Electronics and Design (ISLPED), 2011. (Cited on page 63).

[62] V. Gupta, D. Mohapatra, A. Raghunathan, and K. Roy. Low-Power Digital Signal
Processing Using Approximate Adders. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems (TCAD), 2013. (Cited on page 63).

[63] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B.
Brown. MiBench: A Free, Commercially Representative Embedded Benchmark Suite.
In Proceedings of the IEEE International Workshop on Workload Characterization
(WWC), 2001. (Cited on pages 51, 84, and 97).

[64] S. Hamdioui, A. J. van de Goor, and M. Rodgers. March SS: A Test for All Static
Simple RAM Faults. In Proceedings of the IEEE International Workshop on Memory
Technology, Design and Testing (MTDT), 2002. (Cited on page 88).

145

[65] R. Haring, M. Ohmacht, T. Fox, M. Gschwind, D. Satterfield, K. Sugavanam, P. Coteus,
P. Heidelberger, M. Blumrich, R. Wisniewski, a. gara, G. Chiu, P. Boyle, N. Chist, and
C. Kim. The IBM Blue Gene/Q Compute Chip. IEEE Micro, 2012. (Cited on page 2).

[66] S. Hashemi, R. I. Bahar, and S. Reda. DRUM: A Dynamic Range Unbiased Multiplier
for Approximate Applications. In Proceedings of the IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), 2015. (Cited on page 63).

[67] J. L. Hellerstein, Y. Diao, S. Parekh, and D. M. Tilbury. Feedback Control of Computing
Systems. John Wiley & Sons, 2004. (Cited on page 132).

[68] H. Hoffmann, S. Sidiroglou, M. Carbin, S. Misailovic, A. Agarwal, and M. Rinard.
Dynamic Knobs for Responsive Power-aware Computing. In Proceedings of the
International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2011. (Cited on page 63).

[69] IBM. The Cell Project, 2005. (Cited on page 4).

[70] F. Ishihara, F. Sheikh, and B. Nikolić. Level Conversion for Dual-supply Systems.
IEEE Transactions on Very Large Scale Integration Systems (TVLSI), 2004. (Cited on
page 109).

[71] ITRS. http://www.itrs.net, 2015. (Cited on pages xi, 3, and 82).

[72] A. Jain, P. Hill, S. C. Lin, M. Khan, M. E. Haque, M. A. Laurenzano, S. Mahlke,
L. Tang, and J. Mars. Concise Loads and Stores: The Case for an Asymmetric
Compute-memory Architecture for Approximation. In Proceedings of the IEEE/ACM
International Symposium on Microarchitecture (MICRO), 2016. (Cited on pages 65, 66,
67, 68, and 76).

[73] D. Jevdjic, K. Strauss, L. Ceze, and H. S. Malvar. Approximate Storage of Compressed
and Encrypted Videos. In Proceedings of the International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS), 2017. (Cited
on pages 65, 66, 67, 68, and 76).

[74] A. B. Kahng and S. Kang. Accuracy-configurable Adder for Approximate Arithmetic
Designs. In Proceedings of the Annual Design Automation Conference (DAC), 2012.
(Cited on page 63).

[75] Kalray. MPPA2-256 (Bostan), 2015. (Cited on page 2).

[76] M. T. Kandemir, J. Ramanujam, M. J. Irwin, N. Vijaykrishnan, I. Kadayif, and
A. Parikh. Dynamic Management of Scratch-Pad Memory Space. In Proceedings
of the Design Automation Conference (DAC), 2001. (Cited on page 14).

[77] W. Kang, W. Zhao, J. O. Klein, Y. Zhang, C. Chappert, and D. Ravelosona. High
Reliability Sensing Circuit for Deep Submicron Spin Transfer Torque Magnetic Random
Access Memory. Electronics Letters, 2013. (Cited on page 102).

146

[78] A. Kannan, A. Shrivastava, A. Pabalkar, and J.-e. Lee. A Software Solution for Dynamic
Stack Management on Scratch Pad Memory. In Proceedings of the Asia and South
Pacific Design Automation Conference (ASP-DAC), 2009. (Cited on pages 11 and 15).

[79] D. S. Khudia, B. Zamirai, M. Samadi, and S. Mahlke. Rumba: An Online Quality
Management System for Approximate Computing. In Proceedings of the International
Symposium on Computer Architecture (ISCA), ISCA, 2015. (Cited on page 63).

[80] O. Kislal, M. T. Kandemir, and J. Kotra. Cache-Aware Approximate Computing
for Decision Tree Learning. In Proceedings of the IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW), 2016. (Cited on pages 65,
66, 67, 68, and 75).

[81] R. Komuravelli, M. D. Sinclair, J. Alsop, M. Huzaifa, M. Kotsifakou, P. Srivastava, S. V.
Adve, and V. S. Adve. Stash: Have Your Scratchpad and Cache It Too. In Proceedings
of the International Symposium on Computer Architecture (ISCA), 2015. (Cited on
page 16).

[82] P. Kulkarni, P. Gupta, and M. Ercegovac. Trading Accuracy for Power with an
Underdesigned Multiplier Architecture. In Proceedings of the International Conference
on VLSI Design (VLSID), 2011. (Cited on page 63).

[83] A. Lachenmann, P. J. Marrón, D. Minder, and K. Rothermel. Meeting Lifetime Goals
with Energy Levels. In Proceedings of the International Conference on Embedded
Networked Sensor Systems (SenSys), 2007. (Cited on page 63).

[84] M. A. Laurenzano, P. Hill, M. Samadi, S. Mahlke, J. Mars, and L. Tang. Input
Responsiveness: Using Canary Inputs to Dynamically Steer Approximation. In
Proceedings of the ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI), 2016. (Cited on page 124).

[85] D. Lee, S. K. Gupta, and K. Roy. High-performance Low-energy STT MRAM Based on
Balanced Write Scheme. In Proceedings of the ACM/IEEE International Symposium
on Low Power Electronics and Design (ISLPED), 2012. (Cited on page 109).

[86] K. Lee, A. Shrivastava, I. Issenin, N. Dutt, and N. Venkatasubramanian. Mitigating Soft
Error Failures for Multimedia Applications by Selective Data Protection. In Proceedings
of the International Conference on Compilers, Architecture and Synthesis for Embedded
Systems (CASES), 2006. (Cited on pages 65, 66, 67, 68, and 70).

[87] L. Leem, H. Cho, J. Bau, Q. A. Jacobson, and S. Mitra. ERSA: Error Resilient System
Architecture for Probabilistic Applications. In Proceedings of the Conference on Design,
Automation and Test in Europe (DATE), 2010. (Cited on page 63).

[88] H. Li, X. Wang, Z. L. Ong, W. F. Wong, Y. Zhang, P. Wang, and Y. Chen. Performance,
Power, and Reliability Tradeoffs of STT-RAM Cell Subject to Architecture-Level
Requirement. IEEE Transactions on Magnetics, 2011. (Cited on page 104).

147

[89] L. Li, L. Gao, and J. Xue. Memory Coloring: A Compiler Approach for Scratchpad
Memory Management. In Proceedings of the International Conference on Parallel
Architectures and Compilation Techniques (PACT), 2005. (Cited on page 14).

[90] C. H. Lin and I. C. Lin. High Accuracy Approximate Multiplier with Error Correction.
In Proceedings of the IEEE International Conference on Computer Design (ICCD),
2013. (Cited on page 63).

[91] C. Liu, J. Han, and F. Lombardi. A Low-power, High-performance Approximate
Multiplier with Configurable Partial Error Recovery. In Proceedings of the Conference
on Design, Automation & Test in Europe (DATE), 2014. (Cited on page 63).

[92] S. Liu, K. Pattabiraman, T. Moscibroda, and B. G. Zorn. Flikker: Saving DRAM
Refresh-power Through Critical Data Partitioning. In Proceedings of the International
Conference on Architectural Support for Programming Languages and Operating Systems
(ASPLOS), 2011. (Cited on pages 63, 65, 66, 67, 68, 70, 71, 80, 81, 83, and 123).

[93] L. Ljung. System Identification: Theory for the User. Prentice-Hall, Inc., 1999. (Cited
on page 128).

[94] L. Ljung. Black-box Models from Input-output Measurements. In Proceedings of the
IEEE Instrumentation and Measurement Technology Conference (IMTC), 2001. (Cited
on page 128).

[95] J. Lu, K. Bai, and A. Shrivastava. SSDM: Smart Stack Data Management for Software
Managed Multicores (SMMs). In Proceedings of the Design Automation Conference
(DAC), 2013. (Cited on pages 11 and 15).

[96] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J. Reddi,
and K. Hazelwood. Pin: Building Customized Program Analysis Tools with Dynamic
Instrumentation. In Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), 2005. (Cited on page 132).

[97] M. Marins de Castro, R. C. Sousa, S. Bandiera, C. Ducruet, A. Chavent, S. Auffret,
C. Papusoi, I. L. Prejbeanu, C. Portemont, L. Vila, U. Ebels, B. Rodmacq, and B. Dieny.
Precessional Spin-transfer Switching in a Magnetic Tnnel Junction with a Synthetic
Antiferromagnetic Perpendicular Polarizer. Journal of Applied Physics, 2012. (Cited
on page 104).

[98] A. Marongiu and L. Benini. An OpenMP Compiler for Efficient Use of Distributed
Scratchpad Memory in MPSoCs. IEEE Transactions on Computers (TC), 2012. (Cited
on page 15).

[99] MathWorks. System Identification Toolbox. https://www.mathworks.com/products/
sysid.html. (Cited on page 130).

[100] T. G. Mattson, M. Riepen, T. Lehnig, P. Brett, W. Haas, P. Kennedy, J. Howard,
S. Vangal, N. Borkar, G. Ruhl, and S. Dighe. The 48-core SCC Processor: The

148

https://www.mathworks.com/products/sysid.html
https://www.mathworks.com/products/sysid.html

Programmer’s View. In Proceedings of the ACM/IEEE International Conference for
High Performance Computing, Networking, Storage and Analysis (SC), 2010. (Cited
on pages 2 and 4).

[101] J. Miao, K. He, A. Gerstlauer, and M. Orshansky. Modeling and Synthesis of
Quality-energy Optimal Approximate Adders. In Proceedings of the International
Conference on Computer-Aided Design (ICCAD), 2012. (Cited on page 63).

[102] J. S. Miguel, J. Albericio, N. E. Jerger, and A. Jaleel. The Bunker Cache for Spatio-value
Approximation. In Proceedings of the IEEE/ACM International Symposium on
Microarchitecture (MICRO), 2016. (Cited on pages 65, 66, 67, 68, and 78).

[103] J. S. Miguel, J. Albericio, A. Moshovos, and N. E. Jerger. DoppelgÄNger: A Cache
for Approximate Computing. In Proceedings of the International Symposium on
Microarchitecture (MICRO), 2015. (Cited on pages 65, 66, 67, 68, and 78).

[104] J. S. Miguel, M. Badr, and N. E. Jerger. Load Value Approximation. In Proceedings of
the IEEE/ACM International Symposium on Microarchitecture (MICRO), 2014. (Cited
on pages 65, 66, 67, 68, 78, and 79).

[105] S. Misailovic, D. Kim, and M. Rinard. Parallelizing Sequential Programs with Statistical
Accuracy Tests. ACM Transactions on Embedded Computing Systems (TECS), 2013.
(Cited on page 63).

[106] S. Misailovic, D. M. Roy, and M. C. Rinard. Probabilistically Accurate Program
Transformations. In Proceedings of the International Conference on Static Analysis
(SAS), 2011. (Cited on page 63).

[107] S. Misailovic, S. Sidiroglou, H. Hoffmann, and M. Rinard. Quality of Service Profiling.
In Proceedings of the ACM/IEEE International Conference on Software Engineering
(ICSE), ICSE, 2010. (Cited on page 63).

[108] S. Misailovic, S. Sidiroglou, and M. C. Rinard. Dancing with Uncertainty. In
Proceedings of the ACM Workshop on Relaxing Synchronization for Multicore and
Manycore Scalability (RACES), RACES, 2012. (Cited on page 63).

[109] A.-M. Monazzah, M. Shoushtari, A. Rahmani, and N. Dutt. QuARK:
Quality-configurable Approximate STT-MRAM Cache by Fine-grained Tuning of
Reliability-Energy Knobs. In Proceedings of the IEEE/ACM International Symposium
on Low Power Electronics and Design (ISLPED), 2017. (Cited on pages 63, 65, 66, 67,
68, 69, 123, and 129).

[110] K. Munira, W. H. Butler, and A. W. Ghosh. A Quasi-Analytical Model for
Energy-Delay-Reliability Tradeoff Studies During Write Operations in a Perpendicular
STT-RAM Cell. IEEE Transactions on Electron Devices, 2012. (Cited on page 104).

[111] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi. CACTI 6.5: A Tool to
Model Large Caches. Technical report, HP Laboratories, 2009. (Cited on pages 37
and 96).

149

[112] S. R. Nassif, N. Mehta, and Y. Cao. A Resilience Roadmap. In Proceedings of the
Design, Automation Test in Europe Conference Exhibition (DATE), 2010. (Cited on
page 5).

[113] N. Nguyen, A. Dominguez, and R. Barua. Memory Allocation for Embedded Systems
with a Compile-time-unknown Scratch-pad Size. In Proceedings of the International
Conference on Compilers, Architecture, and Synthesis for Embedded Systems (CASES),
2005. (Cited on page 14).

[114] F. Oboril, A. Shirvanian, and M. Tahoori. Fault Tolerant Approximate Computing
using Emerging Non-volatile Spintronic Memories. In Proceedings of the IEEE VLSI
Test Symposium (VTS), 2016. (Cited on pages 65, 66, 67, 68, and 69).

[115] A. Pabalkar, A. Shrivastava, A. Kannan, and J. Lee. SDRM: Simultaneous
Determination of Regions and Function-to-region Mapping for Scratchpad Memories. In
Proceedings of the International Conference on High Performance Computing (HiPC),
2008. (Cited on page 11).

[116] P. R. Panda, N. D. Dutt, and A. Nicolau. Efficient Utilization of Scratch-Pad Memory
in Embedded Processor Applications. In Proceedings of the European Conference on
Design and Test (EDTC), 1997. (Cited on page 14).

[117] J. Park. Memory Optimizations of Embedded Applications for Energy Efficiency. PhD
thesis, Dept. Elect. Eng., Stanford, 2011. (Cited on page 37).

[118] C. Pinto and L. Benini. A Highly Efficient, Thread-safe Software Cache Implementation
for Tightly-coupled Multicore Clusters. In Proceedings of the International Conference
on Application-Specific Systems, Architectures and Processors (ASAP), 2013. (Cited
on page 41).

[119] A. Raha, S. Sutar, H. Jayakumar, and V. Raghunathan. Quality Configurable
Approximate DRAM. IEEE Transactions on Computers (TC), 2017. (Cited on pages 65,
66, 67, 68, and 70).

[120] B. Raj, A. K. Saxena, and S. Dasgupta. Nanoscale FinFET Based SRAM Cell
Design: Analysis of Performance Metric, Process Variation, Underlapped FinFET, and
Temperature Effect. IEEE Circuits and Systems Magazine (CAS), 2011. (Cited on
page 101).

[121] A. Ranjan, A. Raha, V. Raghunathan, and A. Raghunathan. Approximate Memory
Compression for Energy-efficiency. In Proceedings of the IEEE/ACM International
Symposium on Low Power Electronics and Design (ISLPED), 2017. (Cited on pages 65,
66, 67, 68, and 73).

[122] A. Ranjan, S. Venkataramani, X. Fong, K. Roy, and A. Raghunathan. Approximate
Storage for Energy Efficient Spintronic Memories. In Proceedings of the IEEE/ACM
Design Automation Conference (DAC), 2015. (Cited on pages 65, 66, 67, 68, 69, 104,
109, 111, and 129).

150

[123] V. J. Reddi, D. Z. Pan, S. R. Nassif, and K. A. Bowman. Robust and Resilient Designs
from the Bottom-up: Technology, CAD, Circuit, and System Issues. In Proceedings of
the Asia and South Pacific Design Automation Conference (ASP-DAC), 2012. (Cited
on page 83).

[124] M. Rinard. Parallel Synchronization-Free Approximate Data Structure Construction.
In Proceedings of the 5th USENIX Workshop on Hot Topics in Parallelism, 2013. (Cited
on pages 63, 65, 66, and 73).

[125] A. Ros, M. E. Acacio, and J. M. Garcia. Cache Coherence Protocols for Many-core
CMPs. In Parallel and Distributed Computing. InTech, 2010. (Cited on page 3).

[126] C. Rubio-González, C. Nguyen, H. D. Nguyen, J. Demmel, W. Kahan, K. Sen, D. H.
Bailey, C. Iancu, and D. Hough. Precimonious: Tuning assistant for floating-point
precision. In Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis (SC), 2013. (Cited on page 63).

[127] F. Sampaio, M. Shafique, B. Zatt, S. Bampi, and J. Henkel. Approximation-aware
Multi-Level Cells STT-RAM Cache Architecture. In International Conference on
Compilers, Architecture and Synthesis for Embedded Systems (CASES), 2015. (Cited
on pages 65, 66, 67, 68, and 69).

[128] A. Sampson, A. Baixo, B. Ransford, T. Moreau, J. Yip, L. Ceze, and M. Oskin. ACCEPT:
A Programmer-Guided Compiler Framework for Practical Approximate Computing.
Technical Report UW-CSE-15-01-01, University of Washington, 2015. (Cited on pages 63
and 92).

[129] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze, and D. Grossman.
EnerJ: Approximate Data Types for Safe and General Low-power Computation. In
Proceedings of the ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), 2011. (Cited on pages 63 and 80).

[130] A. Sampson, J. Nelson, K. Strauss, and L. Ceze. Approximate Storage in
Solid-state Memories. In Proceedings of the IEEE/ACM International Symposium
on Microarchitecture (MICRO), 2013. (Cited on pages 63, 65, 66, 67, 68, 71, 81, 83,
and 129).

[131] N. Sayed, F. Oboril, A. Shirvanian, R. Bishnoi, and M. B. Tahoori. Exploiting
STT-MRAM for Approximate Computing. In Proceedings of the IEEE European Test
Symposium (ETS), 2017. (Cited on pages 65, 66, 67, 68, and 69).

[132] M. Shoushtari, A. BanaiyanMofrad, and N. Dutt. Exploiting Partially-Forgetful
Memories for Approximate Computing. IEEE Embedded Systems Letters (ESL), 2015.
(Cited on pages 63, 65, 66, 67, 68, and 123).

[133] A. Shrivastava, N. Dutt, J. Cai, M. Shoushtari, B. Donyanavard, and H. Tajik.
Automatic Management of Software Programmable Memories in Many-core
Architectures. IET Computers Digital Techniques, 2016. (Cited on page 14).

151

[134] S. Sidiroglou-Douskos, S. Misailovic, H. Hoffmann, and M. Rinard. Managing
performance vs. accuracy trade-offs with loop perforation. In Proceedings of the
ACM SIGSOFT Symposium and the European Conference on Foundations of Software
Engineering, 2011. (Cited on page 63).

[135] J. Sjödin and C. von Platen. Storage Allocation for Embedded Processors. In
Proceedings of the International Conference on Compilers, Architecture, and Synthesis
for Embedded Systems (CASES), 2001. (Cited on page 14).

[136] S. Steinke, L. Wehmeyer, B. Lee, and P. Marwedel. Assigning Program and Data
Objects to Scratchpad for Energy Reduction. In Proceedings of the Design, Automation
Test in Europe Conference Exhibition (DATE), 2002. (Cited on page 14).

[137] V. Suhendra, C. Raghavan, and T. Mitra. Integrated Scratchpad Memory Optimization
and Task Scheduling for MPSoC Architectures. In Proceedings of the International
Conference on Compilers, Architecture and Synthesis for Embedded Systems (CASES),
2006. (Cited on pages 11 and 15).

[138] V. Suhendra, A. Roychoudhury, and T. Mitra. Scratchpad Allocation for Concurrent
Embedded Software. ACM Transactions on Programming Languages and Systems
(TOPLAS), 2010. (Cited on page 15).

[139] X. Sui, A. Lenharth, D. S. Fussell, and K. Pingali. Proactive Control of Approximate
Programs. In Proceedings of the International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), 2016. (Cited on pages 63
and 124).

[140] H. Sun, C. Liu, N. Zheng, T. Min, and T. Zhang. Design Techniques to Improve the
Device Write Margin for MRAM-based Cache Memory. In Proceedings of the Great
Lakes Symposium on Great Lakes Symposium on VLSI (GLSVLSI), 2011. (Cited on
page 102).

[141] M. Taassori, N. Chatterjee, A. Shafiee, and R. Balasubramonian. Exploring a
Brink-of-Failure Memory Controller to Design an Approximate Memory System. In
Proceedings of the Workshop on Approximate Computing Across the System Stack
(WACAS), 2014. (Cited on page 81).

[142] H. Tajik, B. Donyanavard, and N. Dutt. On Detecting and Using Memory Phases
in Multimedia Systems. In Proceedings of the ACM/IEEE Symposium on Embedded
Systems for Real-Time Multimedia (ESTIMedia), 2016. (Cited on pages 6 and 23).

[143] H. Tajik, B. Donyanavard, N. Dutt, J. Jahn, and J. Henkel. SPMPool: Runtime SPM
Management for Memory-Intensive Applications in Embedded Many-Cores. ACM
Transactions on Embedded Computing Systems (TECS), 2016. (Cited on page 6).

[144] R. Takemura, T. Kawahara, K. Miura, H. Yamamoto, J. Hayakawa, N. Matsuzaki,
K. Ono, M. Yamanouchi, K. Ito, H. Takahashi, S. Ikeda, H. Hasegawa, H. Matsuoka,
and H. Ohno. A 32-Mb SPRAM With 2T1R Memory Cell, Localized Bi-Directional

152

Write Driver and ‘1’/‘0’ Dual-Array Equalized Reference Scheme. IEEE Journal of
Solid-State Circuits (JSSC), 2010. (Cited on page 104).

[145] B. Thwaites, G. Pekhimenko, H. Esmaeilzadeh, A. Yazdanbakhsh, O. Mutlu, J. Park,
G. Mururu, and T. Mowry. Rollback-free Value Prediction with Approximate Loads. In
Proceedings of the International Conference on Parallel Architectures and Compilation
(PACT), 2014. (Cited on pages 65, 66, 68, and 79).

[146] Y. Tian, Q. Zhang, T. Wang, F. Yuan, and Q. Xu. ApproxMA: Approximate Memory
Access for Dynamic Precision Scaling. In Proceedings of the Great Lakes Symposium
on VLSI (GLSVLSI), 2015. (Cited on pages 65, 66, 68, and 73).

[147] M. Verma, S. Steinke, and P. Marwedel. Data Partitioning for Maximal Scratchpad
Usage. In Proceedings of the Asia and South Pacific Design Automation Conference
(ASP-DAC), 2003. (Cited on page 14).

[148] J. Wang and B. H. Calhoun. Standby Supply Voltage Minimization for Reliable
Nanoscale SRAMs, chapter 6. INTECH, 2010. (Cited on page 82).

[149] J. Wang and B. H. Calhoun. Minimum Supply Voltage and Yield Estimation for
Large SRAMs Under Parametric Variations. IEEE Transactions on Very Large Scale
Integration Systems (TVLSI), 2011. (Cited on pages ix, 85, and 96).

[150] L. Wanner and M. Srivastava. ViRUS: Virtual Function Replacement Under Stress.
In Proceedings of the USENIX Conference on Power-Aware Computing and Systems,
2014. (Cited on page 63).

[151] C. Wilkerson, A. R. Alameldeen, Z. Chishti, W. Wu, D. Somasekhar, and S.-l. Lu.
Reducing Cache Power with Low-cost, Multi-bit Error-correcting Codes. In Proceedings
of the International Symposium on Computer Architecture (ISCA), 2010. (Cited on
page 82).

[152] C. Wilkerson, H. Gao, A. R. Alameldeen, Z. Chishti, M. Khellah, and S.-L. Lu. Trading
off Cache Capacity for Reliability to Enable Low Voltage Operation. In Proceedings
of the International Symposium on Computer Architecture (ISCA), 2008. (Cited on
page 82).

[153] X. Xu and H. H. Huang. Exploring Data-Level Error Tolerance in High-Performance
Solid-State Drives. IEEE Transactions on Reliability, 2015. (Cited on pages 65, 66, 67,
68, and 72).

[154] A. Yazdanbakhsh, G. Pekhimenko, B. Thwaites, H. Esmaeilzadeh, O. Mutlu, and T. C.
Mowry. RFVP: Rollback-Free Value Prediction with Safe-to-Approximate Loads. ACM
Transactions on Architecture and Code Optimization (TACO), 2016. (Cited on pages 65,
66, 68, and 79).

[155] X. Zhang, Y. Zhang, B. Childers, and J. Yang. DrMP: Mixed Precision-aware DRAM
for High Performance Approximate and Precise Computing. In Proceedings of the

153

International Conference on Parallel Architectures and Compilation (PACT), 2017.
(Cited on pages 65, 66, 67, 68, and 71).

[156] H. Zhao, L. Xue, P. Chi, and J. Zhao. Approximate Image Storage with Multi-level
Cell STT-MRAM Main Memory. In Proceedings of the International Conference On
Computer Aided Design (ICCAD), 2017. (Cited on pages 65, 66, 67, 68, and 77).

[157] Q. Zhao, D. Koh, S. Raza, D. Bruening, W.-F. Wong, and S. Amarasinghe. Dynamic
Cache Contention Detection in Multi-threaded Applications. In Proceedings of the
ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environments
(VEE), 2011. (Cited on page 21).

[158] P. Zhou, B. Zhao, J. Yang, and Y. Zhang. A Durable and Energy Efficient Main
Memory Using Phase Change Memory Technology. In Proceedings of the International
Symposium on Computer Architecture (ISCA), 2009. (Cited on page 116).

[159] P. Zhou, B. Zhao, J. Yang, and Y. Zhang. Energy Reduction for STT-RAM Using
Early Write Termination. In Proceedings of the International Conference On Computer
Aided Design (ICCAD), 2009. (Cited on page 117).

[160] Z. A. Zhu, S. Misailovic, J. A. Kelner, and M. Rinard. Randomized Accuracy-aware
Program Transformations for Efficient Approximate Computations. In Proceedings of
the ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL), 2012. (Cited on page 63).

154

	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGMENTS
	CURRICULUM VITAE
	ABSTRACT OF THE DISSERTATION
	Introduction
	Technology Implications
	Emerging Manycore Architectures
	Memory Subsystem of Manycores

	Workload Implications
	Data-intensive Workloads and Variation in their Memory Requirements
	Error-Resilient Workloads

	Thesis Contributions and Organization

	Software-Programmable On-chip Memory Hierarchy
	Introduction
	Prior Work on SPMs in Multicores and Manycores
	Target System Architecture Template
	SPM Programming Model
	Architecture Model
	Execution Model
	Coherence Issues
	OS/Runtime Support

	Motivational Example
	ShaVe-ICE Details
	SPM Allocator
	Allocation Policies
	Non-preemptive Allocation Heuristics
	Local Allocator(LA)
	Random Remote Allocator (RRA)
	Closest Neighborhood Allocator (CNA)

	Preemptive Allocation Heuristics
	Closest Neighborhood with Guaranteed Local Share Allocator (CNGLSA)

	Hardware Support
	Distributed Memory Management Units
	Network Protocol

	Data Movements in ShaVe-ICE
	Allocations/Deallocations
	Accesses
	Data Migration

	SPM Sharing Evaluations
	Experimental Setup
	Remote vs. Off-chip Access Latencies
	Memory Microbenchmark
	Performance Comparisons: ShaVe-ICE vs. Software Cache
	Performance Comparisons: ShaVe-ICE Policies
	Scenario 1: Core Underutilization
	Scenario 2: Variation in Memory Working Set Size
	Scenario 3: Reducing Network Traffic
	Scenario 4: Guaranteeing SPM Share for Locally-pinned Thread

	Energy Comparisons: ShaVe-ICE Policies
	Experiments with Real Workload Mixes

	Discussion on Overheads
	Cache+SPM and Shared Data Support Evaluations
	Experiment 1: Coherence Overhead Due to False Sharing
	Experiment 2: Coherence Overhead Due to Shared Data
	Experiment 3: Dynamic Partitioning of Local Memory
	Experiment 4: Sharing SPMs Between Cores

	Approximate On-chip Data Storage
	Introduction
	Prior Work on Memory Approximation
	Taxonomy of Prior Research on Approximate Memory Management
	Overview of Prior Research and Practices

	Partially-Forgetful Memories
	Relaxed Cache
	Introduction
	Motivation
	Hardware Support
	Tuning Relaxed Ways Based on Architectural Knobs
	Defect Map Generation and Storage
	Non-Criticality Table
	Making Cache Controller Aware of Block's Tag

	Software Support
	Programmer-Driven Application Modifications
	Data Criticality Declaration
	Cache Configuration

	Runtime System

	Evaluations
	Experimental Setup
	Benchmarks
	Experimental Results
	Leakage Energy Savings
	Fidelity Analysis
	Performance Analysis

	QuARK Cache
	Introduction
	STT-MRAM Reliability/Energy Trade-off Knobs
	STT-MRAM Basics
	Reliability-Energy Knobs

	The QuARK Approach
	Software Support
	Hardware Support
	QuARK Cache Approximation Table
	QuARK Cache Controller
	Support for Cache Fillings and Write-backs

	Evaluations
	Experimental Setup
	Benchmarks
	Experimental Results

	Write-Skip SPM
	Introduction
	The Write-Skip Approach
	Read-Before-Write
	Approximate Equality

	Evaluations
	Approximate Value Locality
	Output Fidelities
	Energy Consumption in On-chip Memory

	Controlled Memory Approximation
	Introduction
	Problem Modeling
	Application Class
	Monitoring Quality at Runtime
	Memory Approximation Knob(s)

	Quality Control with Feedback Control Theory
	Case Study: Video Edge Detection
	Application Description and Error Metric
	Memory Approximation Knob

	System Identification
	Controller
	Fault Injection Mechanism
	Input Dependency
	QoS Tracking
	Comparison

	Conclusions and Future Directions
	Technical Contributions
	Future Directions

	Bibliography

