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ABSTRACT OF THE DISSERTATION 

 
Oxygen, pH, and antibiotics drive changes in cystic fibrosis bacterial physiology 

 

by 

Tara Gallagher 

Doctor of Philosophy in Biological Sciences 

University of California, Irvine, 2020 

Assistant Professor Katrine Whiteson, Chair 

 

Cystic fibrosis (CF) is a genetic disease that results in the accumulation of dense, 

dehydrated mucus in the airways. Unclearable mucus contributes to the establishment of 

long-term microbial communities in the CF airways. Opportunistic pathogens damage the 

airways by inducing the host inflammatory response and generating toxic metabolites, 

contributing to decreased quality of life and lifespan (~40 years) for persons with CF. In 

order to improve treatment of lung infections, it is necessary to understand the role of 

microbes and microbial metabolism in triggering CF pulmonary exacerbations (CFPE), 

periods of worsening lung function. While antibiotics ease CFPE symptoms, infections are 

almost never fully eradicated. To elucidate antibiotic failure, we must first understand how 

relevant conditions in the airways, particularly around the time of CFPE, shape the 

microbiome and its antibiotic sensitivity.  

CFPE may be characterized by increases in acidity (1), fermentation metabolites (2), 

and anaerobic bacteria (3). We characterized CF polymicrobial metabolic interactions 

between the fermenting microbe, Rothia muciliganosa, and the opportunistic pathogen, 
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Pseudomonas aeruginosa (Chapter 1). Even in nutrient-rich medium designed to mimic 

sputum content, P. aeruginosa utilized Rothia-derived fermentation products to produce 

amino acids. As both host inflammation and microbial fermentation often result in drops in 

pH, we next determined that acidic pH is stressful for another CF opportunistic pathogen, 

Stenotrophomonas maltophilia, using transcriptomics and metabolomics (Chapter 2). S. 

maltophilia coped with low pH by expressing stress response genes and catabolizing amino 

acids to synthesize polyamines. Fermentation and subsequent drops in pH can be the result 

of hypoxia, which is a predominant condition in CF sputum (4). We used a combination of 

fluorescence lifetime imaging and spectral microscopy to study bacterial metabolism in 

oxygen gradients (Chapter 3).  

To tackle the question of how antibiotics impact the microbiome, we need objective 

information about which antibiotics are reaching the infection-site. Given the diverse 

properties of antibiotics, the type and concentration of each antibiotic should be 

incorporated. We developed an LC-MS method to detect 18 antibiotics in 171 sputum 

samples and assessed the specificity of our LC-MS assay relative to subject self-reported 

usage (Chapter 4). 
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INTRODUCTION 
 
 

Cystic fibrosis pulmonary exacerbations are complex, debilitating periods of lung 

decline  

 Cystic fibrosis (CF) is a genetic disease that affects 30,000 people in the U.S. (5). 

People with CF have a mutation in the CF transmembrane receptor (CFTR), resulting in 

reduced ion transport across epithelial cells and production of misfolded mucin protein (6, 

7). Dense, dehydrated mucus impairs mucociliary clearance, contributing to long-term 

bacterial colonization of the CF airways. The majority of individuals with CF die as a result 

of respiratory failure caused by chronic bacterial colonization and inflammation in the 

airways (8). CF lung microbial communities are individualized (9–13), and there remains 

little understanding of how microbes affect CF clinical status, especially during periods of 

lung decline known as cystic fibrosis pulmonary exacerbations (CFPE). The majority of adult 

patients experience CFPE annually, and the cost of a single CFPE was estimated to be $12,000 

in 2017 (14). Although most patients take additional antibiotics during exacerbations which 

ease symptoms, the damage of exacerbations can be irreversible. Up to 25% of patients fail 

to return to baseline lung function after an exacerbation event (15). Characterization of 

microbial structure and metabolism around exacerbations can be used to improve clinical 

decision-making for antibacterial treatment of CF lung infections and exacerbations.  
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Understanding in vivo bacterial physiology can improve antibiotic treatment of 

chronic infections and exacerbations   

_________________________________________________________________________________________________________ 

Excerpts from: “Getting Our Fingers on the Pulse of Slow-Growing Bacteria in Hard-

To-Reach Places” 

 Authors: Tara Gallagher, Joann Phan, Katrine Whiteson 

*Our full commentary, which reviews Nebeuer et al.’s “Refining the application of 

microbial lipids as tracers of Staphylococcus aureus growth rates in cystic fibrosis 

sputum” (16), can be found at: DOI: 10.1128/JB.00540-18 (17). 

 

Pulmonary exacerbations cause irreversible and life-shortening lung damage (15). 

Understanding whether and how microbes are involved in triggering exacerbations is a 

central mystery in the world of CF microbiology, and yet culturing, quantitative PCR (qPCR), 

and amplicon sequencing of sputum samples have so far largely failed to yield clear 

signatures associated with exacerbations (18). In fact, there is no measurable increase in 

abundance of bacteria in general or the common CF pathogen Pseudomonas spp. specifically, 

as measured by culturing or qPCR (19, 20). There are two clearly physiologically distinct 

populations of bacteria colonizing the airways of CF patients (21): the opportunistic 

pathogens, including Pseudomonas spp. and other Gram negatives that come to dominate the 

infections as the disease progresses, and the anaerobes that are likely derived from the oral 

cavity and may themselves be important indicators or even triggers of some exacerbations 

(3, 11, 22–25). Moving toward active measurements of bacterial metabolic output in the CF 
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airway environment is an exciting and important step toward understanding the conditions 

surrounding exacerbations, to enable earlier and more specific diagnosis and treatment. 

 

 The inability to discriminate between physiologically active and dead bacteria limits 

our understanding of the role of bacterial members in a polymicrobial community, including 

in airway infections (26). Measuring the growth rates of infecting bacteria has always been 

challenging. Standard clinical microbiology approaches are biased by nutrient-rich, aerobic 

culture conditions used to isolate bacteria from clinical samples, favoring the growth of 

bacteria suited to those conditions (27). Improvements were sought using culture 

independent DNA sequencing-based approaches (28), but many of these studies are stymied 

by misrepresentation of the community composition. For example, DNA sequencing 

approaches include the extracellular DNA that is produced by biofilm forming bacteria (29) 

and do not distinguish DNA from actively dividing microbes. Furthermore, physiologically 

active bacteria may not be actively dividing and would thus have abundances so low that 

DNA sequencing-based approaches would not be useful for determining their role in 

infection. Hence, the basic and central question goes unanswered: what is the growth rate of 

infecting bacteria in situ?  

  

STABLE ISOTOPES: FROM PROBING HUMAN HEALTH TO EXPLORING THE 

SPECTACULAR DIVERSITY OF MICROBIAL METABOLISM 

 

 Stable isotopes—nonradioactive forms of atoms with the same number of protons 

but a different number of neutrons—were first discovered in the early 20th century. Natural 
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abundances of stable isotopes vary geographically and biologically, and both natural and 

spiked isotope-enriched tracers have since been used to probe growth, nutrition, and 

metabolism in diverse contexts (30). The very early applications of isotope tracers followed 

the fate of a specific labeled substrate in animals in the 1930s (31, 31). 

 In microbial ecology, stable isotopes have been used to track the flow of a labeled 

metabolite through an ecosystem. For example, stable-isotope probing (SIP) involves 

administering an isotope-labeled substrate in situ and utilizing ultracentrifugation to 

separate and sequence light (nonlabeled) nucleic acids and heavy (labeled) nucleic acids 

(32). Radajewski et al. first used DNA-based SIP to identify soil bacteria that metabolize 

labeled methanol by sequencing the 16S rRNA amplicons from the heavy DNA fractions (32). 

Stable isotopes have since proven to be a powerful tool for exploring the central tenets of 

microbial ecology, that microbes are the most numerous and diverse entities on the planet 

and that most molecules can be used by microbes. 

 This idea is also especially important in the context of human health, where bacterial 

metabolites may play an underappreciated role in disease progression. McLean et al. used a 

combination of RNA- and DNA-based SIP to identify oral microbes that metabolize 

carbohydrates at a low pH, potentially important drivers of dental plaque formation (33). 

Another example, the urea breath test, tracks hydrolysis of 13C-labeled urea into 13C carbon 

dioxide to diagnose gut infections by Helicobacter pylori (34). 

 There are enormous numbers of microbial metabolites in the human body—as many 

as one-half of the many thousands of molecules in a drop of blood are thought to be produced 

or modified by microbial metabolism—leaving an immense and undiscovered frontier in 

terms of understanding the impact of microbial metabolism on human health (35–38). 
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Stable-isotope approaches for following active microbial metabolism can be designed to 

track specific compounds or to globally follow metabolism with mass spectroscopy and 

Raman spectroscopy (39). 

 

WHAT IS LIMITING MICROBIAL GROWTH? 

 

 The CF airway environment is rich in nutrients, including carbon and nitrogen 

sources (40). However, access to oxygen and other electron acceptors may be quite limiting 

(4, 41) and may be responsible for the low growth rates observed in this study and others, 

with doubling times averaging days to weeks. Furthermore, local gradients of pH (4) and 

toxic molecules of human immune (42) or microbial origin may also alter growth (43–46). 

Creating realistic culture conditions for clinical microbiology research—beyond 

recapitulating the nutrient composition in artificial sputum medium recipes that are based 

in part on metabolite analysis of sputum—should also involve representing the physiological 

conditions that result in realistic growth rates. Manipulating oxygen access or growing 

samples under conditions that enable the formation of pH and oxygen gradients is an 

important step forward (47, 48). 

 

CAVEATS IN THE CONTEXT OF CF MICROBIOLOGY 

 

 Sputum samples are local representatives of a heterogeneous airway environment, 

which is a continuous system with contributions from the upper and lower airways (49). Any 

individual sputum sample cannot globally represent the heterogeneous lung. In the future, 
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breath testing may allow for a more global sampling of the airways and the microbial 

metabolites being produced there (3, 50).  

 On the opposite end of the spectrum, any bulk method using a heterogeneous sputum 

sample will not yield spatial resolution at the smaller scales that microbes occupy, or at 

larger scales, in terms of where in the lung the microbes are located. Approaches for 

clarifying and imaging microbes from human samples (51) and then resolving the location 

of the different bacterial species with specific probes are also becoming more feasible (52). 

 Another layer of complexity is the heterogeneity in single-cellular metabolism that 

can arise from genomic variants or the complicated microenvironments found in CF sputum. 

In fact, Neubauer et al. noted that single-cell growth rate visualization methods could 

elucidate whether the observed low growth rates are arising from a subpopulation. In 

previous work, the authors showed that S. aureus replication varied at a single-cell level in a 

chemostat (29, 45). The oxygen, pH, and metabolite gradients found within CF sputum make 

it difficult to recapitulate all relevant conditions that dictate bacterial metabolism in an 

experiment. Sputum is characterized by steep oxygen gradients (53, 54), but the role of 

anaerobes in CF infection is an active area of debate (25). Nonetheless, the nutrient-rich, 

aerobic conditions used in research and clinical microbiology labs may select for an 

unrepresentative subset of the community. Using both anaerobic and aerobic conditions may 

help in identifying bacterial contributors of CF disease.  

 

EXPANDING OUR KNOWLEDGE OF IN VIVO BACTERIAL PHYSIOLOGY WILL IMPROVE 

TREATMENT STRATEGIES  
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 Insight into in vivo bacterial activity not only affects our clinical measurements but 

also translates to better representative in vitro model systems. The use of poorly 

representative lab models is particularly detrimental to the assessment of antibiotic 

susceptibility. In the case of CF and other infections, treatment often involves antibiotics that 

target replication processes. As a result, slower-replicating bacteria in infection are better 

able to tolerate antibiotic treatment.  

 Improved treatment strategies and in vitro model systems that are more 

representative of the low in vivo growth rates of cystic fibrosis bacteria are needed. As our 

knowledge of in vivo bacterial growth and metabolism expands, clinical decision-making can 

also evolve to tackle these slow-growing, hard-to-reach bacterial infections.  

 

ACKNOWLEDGMENTS: We thank Heather Maughan, Andrew Oliver, and Stephen Wandro for 

their assistance in editing and revising the commentary.  

_________________________________________________________________________________________________________ 

 

 

Exacerbation resolution requires studying antibiotic presence in the CF airways 

 Improving antibacterial treatment of exacerbations requires determining if 

antibiotics are reaching the CF airways. Most individuals with CF take maintenance 

antibiotics regularly and additional treatment antibiotics for exacerbations. Out of the 

dozens of studies describing the CF lung microbiome, ten included information about 

antibiotics (9, 15, 55–62) (Table i). Antibiotic usage was incorporated through medical 
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charts (56–61); self-reported usage information (9, 62, 63); or LC-MS detection of antibiotics 

in patient sera (64). Medical charts and self-reported usage are marginally unreliable (65), 

and the lack of objective antibiotic information may contribute to contradictory findings 

concerning shifts in the CF microbiome following antibacterial treatment (Table i).  

The levels of antibiotics in the airways are often unknown, as most pharmacokinetic 

studies measure antibiotics in serum (66–87) with a smaller number measuring antibiotics 

at the infection-site (74, 78, 88, 89). Bacterial survival and gene expression are affected by 

the type of antibiotic and the local concentration (90). Ideally, microbiome models will 

include information about the local concentration of each antibiotic.  

 

 

Goals and scope of this dissertation 

More knowledge on in vivo CF bacterial activity and local availability of antibiotics at 

the infection-site can be used to improve clinical decision-making about diagnosis and 

treatment of exacerbations. This dissertation characterizes CF bacterial physiology in 

exacerbation-relevant conditions (Aim 1) and determines which antibiotics are reaching 

the CF airways and their impact on the microbial community (Aim 2).  

 

Aim 1: Exacerbation-relevant environments affect CF pathogen physiology (Chapters 

1-3) 
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 Microbial colonization of the CF airways is the biggest contributor of mortality in CF 

patients, yet we have little understanding of the role of microbial community biogeography 

and activity on CFPE. It is likely that CF microbes contribute to, or are at least impacted by, 

exacerbations. CFPE are characterized by increased inflammation, acidity and fermentation 

(1–3). These conditions could be the result of microbial activity and also impact antibiotic 

efficacy.  

How do CF opportunistic pathogens respond to changes in pH, oxygen, and 

fermentation metabolites (Figure ii)? We first determined that Rothia-derived 

fermentation products are utilized by P. aeruginosa to synthesize amino acids, even in a 

nutrient-rich background (Chapter 1). The product of most fermentation pathways are 

acids with low pKa, reducing the local pH. The airways of persons with CF are more acidic 

than those of healthy individuals, and the pH drops further during CFPE (2). Most gram-

negative opportunistic pathogens grow optimally at neutral pH, and must survive acidic 

environments in the CF airways (91, 92). We found that CF isolates of Stenotrophomonas 

maltophilia, an understudied pathogen, were not better adapted to low pH than 

environmental or other human isolates. Rather, S. maltophilia responds to acidic pH by 

expression of stress pathways in vitro and in CF sputum (Chapter 2).  

 The CF airways are also characterized by steep drops in oxygen (4), which can drive 

fermentation from bacteria such as Rothia and Streptoccocus and limits the replication of 

aerobic opportunistic pathogens such as P. aeruginosa. We used fluorescence lifetime 

imaging microscopy (FLIM) and hyperspectral imaging to characterize P. aeruginosa redox 

activity throughout a biofilm, in aerobic and low oxygen environments (Chapter 3).  
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Aim 2: Antibiotic levels measured in CF sputum impact microbial communities 

(Chapter 4) 

 Accurate antibiotics information is important to determine the link between 

microbiome and disease. Most persons with CF take maintenance antibiotics throughout 

their lives. Additional antibiotics are prescribed if the patient experiences worsening 

symptoms. The majority of CF microbiome studies that included antibiotic information 

depended on medical charts (Table i) (57, 59, 62, 64, 93–98), which can be unreliable (65, 

99). We developed two LC-MS methods to detect 18 antibiotics in CF sputum and assessed the 

detection of these antibiotics relative to subject-reported use. We found that the detection of certain 

antibiotics did not agree with self-reported use, underlining the need for objective methods to 

account for antibiotics in microbiome studies (Chapter 4). 
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Fig. i. (A) Persons with CF periodically experience exacerbations, which can be 
characterized by increases in acidity (1), fermentation (2), inflammation (42), and 
anaerobes (25). Many exacerbation events result in irreversible lung damage (15). (B) The 
microbial contribution to exacerbations is not well-understood, even though the microbial 
composition of the CF lungs has been characterized. The CF microbial community consists 
of two populations: the fermenters, which can also be found in the oral cavities of healthy 
and diseased individuals, and a dominant opportunistic pathogen (11). The species 
composition of the microbial communities are personalized. Lung illustration by Bryan 
Ramirez, adapted from Whiteson et al. (21). Opp=opportunistic.  
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Figure ii. By expanding our knowledge of CF lung microbe activity, we can improve 
antibacterial treatment of chronic infections and acute pulmonary exacerbations. This 
involves understanding how bacteria survive and live in CF- and exacerbation-relevant 
conditions (Aim 1). Antibacterial resolution of exacerbations also requires determining if 
antibiotics are reaching the airways at adequate concentrations and their impact on the 
microbial community (Aim 2). Abx=antibiotics. Lung illustration by Bryan Ramirez, 
adapted from Whiteson et al. (21) 
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Table i: Summary of CF microbiome studies which included antibiotics data. The subject 
age, disease state, and method of antibiotics reported differed for every study. 
Contradicting trends are highlighted by different colors. Studies that report the 
microbiome community is not affected by antibiotics are shaded in purple, while studies 
that report drops in bacterial diversity following antibiotic treatment are shaded in orange.  
(57, 59, 62, 64, 93–98) 
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ABSTRACT 

 Due to a lack of effective immune clearance, the airways of cystic fibrosis patients 

are colonized by polymicrobial communities. One of the most widespread and destructive 

opportunistic pathogens is Pseudomonas aeruginosa; however, P. aeruginosa does not 

colonize the airways alone. Microbes that are common in the oral cavity, such as Rothia 

mucilaginosa, are also present in cystic fibrosis patient sputum and have metabolic 

capacities different from those of P. aeruginosa. Here we examine the metabolic 

interactions of P. aeruginosa and R. mucilaginosa using stable-isotope-assisted 

metabolomics. Glucose-derived 13C was incorporated into glycolysis metabolites, namely, 

lactate and acetate, and some amino acids in R. mucilaginosa grown aerobically and 

anaerobically. The amino acid glutamate was unlabeled in the R. mucilaginosa supernatant 

but incorporated the 13C label after P. aeruginosa was cross-fed the R. mucilaginosa 

supernatant in minimal medium and artificial-sputum medium. We provide evidence 
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that P. aeruginosa utilizes R. mucilaginosa-produced metabolites as precursors for 

generation of primary metabolites, including glutamate. 

IMPORTANCE 

  Pseudomonas aeruginosa is a dominant and persistent cystic fibrosis pathogen. 

Although P. aeruginosa is accompanied by other microbes in the airways of cystic fibrosis 

patients, few cystic fibrosis studies show how P. aeruginosa is affected by the metabolism 

of other bacteria. Here, we demonstrate that P. aeruginosa generates primary metabolites 

using substrates produced by another microbe that is prevalent in the airways of cystic 

fibrosis patients, Rothia mucilaginosa. These results indicate that P. aeruginosa may get a 

metabolic boost from its microbial neighbor, which might contribute to its pathogenesis in 

the airways of cystic fibrosis patients. 

 

OBSERVATION 

 Cystic fibrosis (CF) patients experience persistent polymicrobial colonization of 

their airways. Rothia mucilaginosa and Pseudomonas aeruginosa are microbes frequently 

detected in CF patient airways, and their co-occurrence has been observed in CF patient 

sputum (13, 60, 101, 102). Microbes within polymicrobial infections display complex 

interactions, such as metabolite cross-feeding (103). For example, P. 

aeruginosa inefficiently metabolizes host-derived mucins. Rather, P. aeruginosa utilizes 

mucin degradation products from oral anaerobes to support its growth (46, 104). Still, 

many studies of CF-associated microbes are conducted under artificial conditions that fail 

to take into account the nutrient and oxygen gradients found in CF patient airways (4, 105). 
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The lack of overlap between laboratory conditions and CF patient airways is reflected by 

the differences in growth rates, with estimates of bacterial doubling times being 100-fold 

times lower in sputum than in standard medium (53). Furthermore, most CF studies focus 

on single microbes. One primary reason for this is the lack of a robust model to examine the 

microbial interactions. Stable-isotope-assisted metabolomics analyzes the fate of heavy 

atoms from stable-isotope-labeled precursors to products, which makes it a suitable 

approach for monitoring metabolites produced by one microbe when cross-fed to a second 

microbe. In order to further explore cross-feeding interactions between two CF microbes in 

a relevant environment, we cross-fed labeled glycolysis products from R. mucilaginosa to P. 

aeruginosa. Both strains were isolated from the sputa of CF patients. We believe that our P. 

aeruginosa strain is representative of CF strains, as its core genome is similar to that of P. 

aeruginosa strain PA17 and other CF isolates (43). In an effort to mimic the CF airway 

environment, R. mucilaginosa was fed labeled glucose in anaerobic and aerobic artificial-

sputum media, and the R. mucilaginosa supernatant was fed to P. aeruginosa in nutrient-

rich (artificial-sputum medium) under low-nutrient (M9 minimal medium) conditions. 

As P. aeruginosa lacks some glucose utilization capacities, including a key enzyme involved 

in glycolysis, phosphofructokinase, we postulated that cross-feeding metabolites from R. 

mucilaginosa impacts the metabolism of P. aeruginosa (106). 

R. mucilaginosa metabolism under aerobic and anaerobic conditions.  

 R. mucilaginosa was grown aerobically and anaerobically in artificial-sputum 

medium (Text S1). Under both anaerobic and aerobic conditions, glucose-derived 13C was 

incorporated into glycolysis metabolites, namely, lactate and acetate, and some amino acid 
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biosynthesis pathways in R. mucilaginosa (Fig. 1.1; Table S1). The labeled glucose was not 

incorporated into the tricarboxylic acid (TCA) cycle, pentose phosphate pathway, or long-

chain fatty acid biosynthesis pathways. For most metabolites, 13C incorporation rates were 

different under different oxygen conditions. For pyruvate, alanine, valine, and acetate, 

greater label ratios were observed under anaerobic conditions at 24 h. In contrast, lactate, 

glycine, serine, and isoleucine had greater label ratios under aerobic conditions at 24 h. The 

incorporation of [U-13C6]glucose into leucine biosynthesis was not impacted by oxygen 

conditions. Carbon fate in R. mucilaginosa diverged after 3-phosphoglycerate. The 13C label 

was incorporated into serine and glycine, or into pyruvate, the precursor for lactate, 

acetate, and some amino acids. 

Cross-feeding interactions between R. mucilaginosa and P. aeruginosa. 

 In order to study the impact of R. mucilaginosa metabolites on P. aeruginosa, we 

cross-fed supernatant from an aerobic 48-h R. mucilaginosa culture to P. aeruginosa grown 

under low-nutrient conditions (M9 minimal medium) and nutrient-rich conditions 

(artificial-sputum medium). P. aeruginosa was grown for 120 h before the cells were 

harvested in order to recapitulate the low growth rates of bacteria in CF patient sputa (53). 

The R. mucilaginosa supernatant included labeled lactate, pyruvate, and alanine (Fig. 

1.2A; Fig. S1.1; Table S2). P. aeruginosa utilized R. mucilaginosa-derived metabolites to 

produce metabolites in M9 minimal medium and artificial-sputum medium. For example, 

although labeled lactate was found in the R. mucilaginosa supernatant, it was not detected 

in P. aeruginosa cultures, suggesting that P. aeruginosa consumed R. mucilaginosa-derived 

lactate (Fig. 1.2A; Fig. S1.1; Table S2). P. aeruginosa utilization of lactate and other 
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fermentation products has been observed in other studies (46, 107). Since lactate levels 

have been reported as an indicator of CF patient response to antibiotic therapy, the finding 

that P. aeruginosa consumes lactate derived from another CF microbe may have clinical 

implications (2). 

 Labeled metabolites detected in P. aeruginosa cells grown in minimal medium 

included pyruvate, alanine, valine, serine, glycine, leucine, and isoleucine (Fig. 1.2A; Fig. 

S1.1; Table S2). In addition, isotope enrichment for serine, glycine, leucine, and isoleucine 

was greater in P. aeruginosa cells than in the supernatant of R. mucilaginosa, indicating 

that P. aeruginosa biosynthesized those metabolites. In contrast, when P. aeruginosa was 

grown in artificial-sputum medium, P. aeruginosa had higher levels of a single isotope-

enriched amino acid (isoleucine) than occurred in the R. mucilaginosa supernatant (Fig. 

1.2A; Fig. S1.1; Table S2). Interestingly, although the R. mucilaginosa supernatant 

contained only unlabeled glutamate (Fig. 1.2B and C; Fig. S1.2; Table S3), labeled 

glutamate was detected in both P. aeruginosa cultures (Fig. 1.2B, D, and E; Fig. S1.2; Table 

S3). This suggests that P. aeruginosa biosynthesized glutamate from 13C sources in the R. 

mucilaginosa supernatant even in a nutrient-rich background with initially freely available 

glutamate (Text S1). 

 Glutamate provides a link between nitrogen and carbon metabolism by serving as a 

major amine group donor in transamination reactions for the synthesis of additional amino 

acids and nucleosides. In Escherichia coli, up to 88% of the total nitrogen that ends up in a 

biomass comes from glutamate, and the cellular glutamate pool needs to be kept high to 

drive the transamination reactions (108). In P. aeruginosa specifically, glutamate is a 
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component of the cell wall and may play a role in P. aeruginosa virulence (109). Glutamate 

enhanced the yield of a virulence factor, exotoxin A (109), and induced swarming motility 

in P. aeruginosa on semisolid surfaces (110). More recently, glutamate-induced dispersion 

via c-di-GMP signaling pathways has been suggested (111). Glutamate might be derived 

from glutamine or alpha-ketoglutarate (112). However, the abundance of these two 

compounds was below the limit of quantification in this study. Future studies are needed to 

examine the biosynthesis pathways of glutamate and its role in the metabolism and 

physiology of P. aeruginosa. In summary, this study provides evidence that metabolite 

cross-feeding exists between R. mucilaginosa and P. aeruginosa, two common 

microorganisms found in polymicrobial communities in CF patient airways. The results 

from our study provide evidence that the physiology of CF pathogens can be influenced by 

the metabolic capabilities of other nearby microorganisms, even in a nutrient-rich 

environment, which can be tracked with stable-isotope-labeled metabolomics. 

Culture conditions and metabolomics. 

 The bacterial strains chosen for this study were isolated from CF patients at the 

UCSD Adult CF Clinic: Pseudomonas aeruginosa PaFLR01 and Rothia 

mucilaginosa RmFLR01 (43, 113). First, we took time points from R. mucilaginosa cultures 

to examine the kinetics of metabolites in glycolysis, the TCA cycle, amino acid biosynthesis, 

short- and long-chain fatty acid biosynthesis, and the pentose phosphate pathway in R. 

mucilaginosa, which was grown in triplicate in artificial-sputum medium (48) spiked with 

100 mM [U-13C6]d-glucose (Sigma-Aldrich and Cambridge Isotope Laboratory) under 

anaerobic and aerobic oxygen conditions (5% CO2) at 37°C. R. mucilaginosa cells were 
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harvested at 4 h, 8 h, and 24 h. For the metabolite cross-feeding study, R. mucilaginosa was 

grown in the same medium aerobically for 48 h. The R. mucilaginosa supernatant was 

collected by filtering the culture, and the supernatant was diluted 10-fold in M9 minimal 

medium supplemented with succinate and in fresh artificial-sputum medium. P. 

aeruginosa was grown in triplicate aerobically, and the cells were harvested at 120 h. 

Metabolite extraction and data acquisition were carried out by following West Coast 

Metabolomics Center standard operating procedures (Text S1). Agilent MassHunter 

quantitative analysis software (v. B.07.00) was used for raw data processing. Natural 

abundance was corrected when isotope enrichment was calculated. 
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Text S1: Supplemental experimental details 

1. Bacterial Cultural Media        

1.1 Artificial sputum media recipes for Rothia mucilaginosa culture 

Pig mucin 2%  

KCl 0.22mg/mL  

NaCl 5mg/mL 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Egg Yolk Emulsion 0.25%  

Salmon sperm DNA 1.4mg/mL  

Ferritin 0.004mg/mL  

Essential amino acid mix 0.375x  

Non-essential amino acid mix 0.5x  

MgSO4 1mM  

BME vitamin stock 1x  

Trace metals stock 1x  

U-13C6 glucose 40mM  

 

Essential amino acid components: 

Ingredient and stock concentration (50x): 
 
L-Arginine HCl (6.32 g/l) 

L-Cystine • 2HCl (1.564 g/l) 

L-Histidine•HCl•H2O (2.1 g/l) 

L-Isoleucine (2.625 g/l) 

L-Leucine (2.62 g/l) 

L-Lysine•HCl (3.625 g/l) 

L-Methionine (0.755 g/l) 

L-Phenylalanine (1.65 g/l) 

L-Threonine (2.38 g/l) 

L-Tryptophan (0.51 g/l) 

L-Tyrosine (1.8 g/l) 

L-Valine  (2.34 g/l) 

 

Non-essential amino acid components: 

Ingredient and stock concentration (100x): 
 
L-Alanine (free base)  (0.89 g/l) 
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L-Asparagine•H2O  (1.5 g/l) 

L-Aspartic Acid (1.33 g/l) 

L-Glutamic Acid (1.47 g/l) 

Glycine (0.75 g/l) 

L-Proline (1.15 g/l) 

L-Serine (1.05 g/l) 

 

1.2 M9 minimal media recipes for Pseudomonas aeruginosa culture  

Na2HPO4 7H2O 64g/L  

KH2PO4 15g/L  

NaCl 2.5g/L  

NH4Cl 5g/L  

MgSO4 1mM  

CaCl2 0.1mM  

Succinate 40mM  

 

2. Sample Preparation and Data Acquisition        

2.1 Bacterial strains    Pseudomonas aeruginosa FLR19 and Rothia mucilaginosa RmFLR01 

were isolated from the sputum of an adult CF patient. The genomes from both of these 

strains are publicly available on the PATRIC database to anyone with a PATRIC account:  

https://www.patricbrc.org/workspace/tgallagh@patricbrc.org/Genomes/FLR01  

https://www.patricbrc.org/workspace/tgallagh@patricbrc.org/Genomes/Rm  

2.2 Glycolysis, TCA cycle metabolites and amino acids  

50 uL of bacterial cells or supernatant were used for extraction. Polar metabolites were 

extracted with 1mL acetonitrile, isopropanol and water (3:3:2) and dried down in the 
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speed vacuum concentration system, followed by methoximation and 

tert.butyldimethylsilylation. Agilent 5977A GC-quadrupole mass spectrometer was used for 

data acquisition in electron ionization mode.  

2.3 Pentose phosphate pathway metabolites        

50uL bacterial cells or media were used for extraction. Metabolites were extracted with 

1mL acetonitrile, isopropanol and water (3:3:2) and dried down in the speed vacuum 

concentration system, followed by methoximation and trimethylsilylation. Agilent 7200 

GC-accurate-mass QTOF was used for data acquisition in methane chemical ionization 

mode.  

2.4 Short Chain Fatty Acids  

50uL bacterial cells or media were used for short chain fatty acid analysis. Metabolites 

were extracted with 700uL of water, hydrochloric acid and methyl tert-butyl ether (5:1:1), 

followed by dehydration by anhydrous sodium sulfate and tert.butyldimethylsilylation. 

Agilent 5977A GC- quadrupole mass spectrometer was used for data acquisition in electron 

ionization mode.  

2.5 Long Chain Fatty Acids    50uL bacterial cells or media were used for lipidomics 

analysis. 225uL methanol, 750uL methyl tert-butyl ether and 188uL water were used as 

extraction buffers. Samples were dried down in the speed vacuum concentration system 

and re-suspended with 110uL of methanol and toluene (9:1) with 50ng/mL CUDA (N-

cyclohexyl-N'-dodecanoic acid urea). Data was acquired by Agilent 6550 Accurate-Mass 

QTOF LC/MS with CSH column in negative mode.  
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Figure 1.1: Glucose-derived 13C was incorporated into pyruvate, lactate, acetate, alanine, 
valine, serine, glycine, leucine, and isoleucine in R. mucilaginosa under both anaerobic and 
ambient-oxygen conditions. M+2, M+3, M+4, and M+5 indicate compounds that contained 
2, 3, 4, and 5 13C atoms, respectively. Isotope enrichment means an abundance of labeled 
ion/unlabeled ion (corrected for natural abundance). Isotope enrichment was greater at 24 
h than at 8 h or 4 h. For pyruvate, alanine, valine, and acetate, greater isotope enrichment 
was observed under anaerobic conditions at 24 h. For lactate, glycine, serine, and 
isoleucine, greater isotope enrichment was observed under ambient-oxygen conditions at 
24 h. The incorporation of glucose-derived 13C into leucine biosynthesis was not affected by 
oxygen conditions. Dashed lines and solid lines indicate multiple steps and one metabolic 
step(s) needed to obtain the metabolite, respectively. Error bars, means ± standard 
deviations (SD) (n = 3 bacterial cultures per group); TCA, citric acid cycle; PPP, pentose 
phosphate pathway. 
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Figure 1.2: Cross-feeding interactions between R. mucilaginosa and P. aeruginosa. M+1, 

M+2, M+3, M+4, and M+5 indicate compounds that contained 1, 2, 3, 4, and 5 13C atoms, 

respectively. Error bars, means ± SD (n = 3 bacterial cultures per group). (A) Labeled 

lactate was found in the R. mucilaginosa (Rm) supernatant but not in P. aeruginosa (Pa) 

cells. In M9 minimal medium, P. aeruginosa cells contained isotopically enriched pyruvate, 

alanine, valine, serine, glycine, leucine, and isoleucine. In artificial-sputum medium, P. 

aeruginosa cells contained isotopically enriched valine, glycine, and isoleucine. (B) 

Although the R. mucilaginosa supernatant contained only unlabeled glutamate, labeled 

glutamate was detected in the P. aeruginosa cells grown in artificial-sputum medium and 



 

28 

 

M9 minimal medium. (C to E) Glutamate spectrum for the R. mucilaginosa supernatant 

(C), P. aeruginosa grown in M9 minimal medium spiked with the R. mucilaginosa 

supernatant (D), and P. aeruginosa grown in artificial-sputum medium spiked with the R. 

mucilaginosa supernatant (E). 
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Figure S1.1: Abundances of isotope-enriched metabolites for R. mucilaginosa grown in 

artificial-sputum medium (Rm), P. aeruginosa grown in M9 minimal medium spiked with 

the R. mucilaginosa supernatant (Rm_Pa_M9), and P. aeruginosa grown in artificial-sputum 

medium spiked with the R. mucilaginosa supernatant (Rm_Pa_ASM) 
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Figure S1.2: Abundances of isotope-enriched glutamate ions for R. mucilaginosa grown in 

artificial-sputum medium (Rm), P. aeruginosa grown in M9 minimal medium spiked with 

the R. mucilaginosa supernatant (Rm_Pa_M9), and P. aeruginosa grown in artificial-sputum 

medium spiked with the R. mucilaginosa supernatant (Rm_Pa_ASM) 
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Adaptations and Responses to pH 

Authors: Tara Gallagher, Joann Phan, Andrew Oliver, Alexander B. Chase, Whitney E. 

England, Stephen Wandro, Clark Hendrickson, Stefan F. Riedel, Katrine Whiteson 
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ABSTRACT 

 The airway fluids of cystic fibrosis (CF) patients contain local pH gradients and are 

more acidic than those of healthy individuals. pH is a critical factor that is often overlooked 

in studies seeking to recapitulate the infection microenvironment. We sought to determine 

the impact of pH on the physiology of a ubiquitous yet understudied 

microbe, Stenotrophomonas maltophilia. Phylogenomics was first used to reconstruct 

evolutionary relationships between 74 strains of S. maltophilia (59 from CF patients). 

Neither the core genome (2,158 genes) nor the accessory genome (11,978 genes) 

distinguish the CF and non-CF isolates; however, strains from similar isolation sources 

grouped into the same subclades. We grew two human and six CF S. maltophilia isolates 

from different subclades at a range of pH values and observed impaired growth and altered 

antibiotic tolerances at pH 5. Transcriptomes revealed increased expression of both 

antibiotic resistance and DNA repair genes in acidic conditions. Although the gene 
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expression profiles of S. maltophilia in lab cultures and CF sputum were distinct, we found 

that the same genes associated with low pH were also expressed during infection, and the 

higher pH cultures were more similar to sputum metatranscriptomes. Our findings suggest 

that S. maltophilia is not well adapted to acidity and may cope with low pH by expressing 

stress response genes and colonizing less acidic microenvironments. As a whole, our study 

underlines the impact of microenvironments on bacterial colonization and adaptation in CF 

infections. 

IMPORTANCE  

 Understanding bacterial responses to physiological conditions is an important 

priority for combating opportunistic infections. The majority of CF patients succumb to 

inflammation and necrosis in the airways, arising from chronic infection due to ineffective 

mucociliary clearance. Steep pH gradients characterize the CF airways but are not often 

incorporated in standard microbiology culture conditions. Stenotrophomonas maltophilia is 

a prevalent CF opportunistic pathogen also found in many disparate environments, yet this 

bacterium’s contribution to CF lung damage and its response to changing environmental 

factors remain largely understudied. Here, we show that pH impacts the physiology and 

antibiotic susceptibility of S. maltophilia, with implications for the development of 

relevant in vitro models and assessment of antibiotic sensitivity. 

INTRODUCTION 

 The ability of a microbe to successfully colonize and persist in a new environment 

depends on its tolerance of various conditions (115–118). pH is a central environmental 

factor that imposes selective pressure on bacterial phyla and species , drives shifts in 
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microbial metabolism (117, 119), and affects microbial interactions (117, 120). pH 

response is considered a deeply conserved trait (118), where different bacteria have 

specific pH ranges at which they reach dense growth. For example, Gram-negative 

opportunistic pathogens, including Pseudomonas aeruginosa, grow optimally at neutral pH, 

yet must survive at growth-limiting pH in the environment and infections (91, 92). 

 One example of infection-relevant pH shifts concerns the airway secretions of cystic 

fibrosis (CF) patients, which are characterized by steep pH gradients that can suppress 

bacterial growth. The pH of CF sputum ranges from 2.9 to 6.5 (4), although transient 

microenvironments of alkaline pH likely exist, arising from bacterial metabolism of amino 

acids (121, 122). pH is decreased by the CFTR (cystic fibrosis transmembrane conductance 

regulator) bicarbonate channel defect (1), and the pH can be further reduced during 

periods of decline in CF lung function, known as pulmonary exacerbations (1–3), 

potentially due to both host and microbial production of acidic molecules, such as lactic 

acid (2). 

 Chronic bacterial colonization in the airways can result in up to a 95% mortality 

rate in CF patients (8); antibiotics are rarely capable of eradicating established bacterial 

infections. To better inform treatment, it is imperative to understand the mechanisms 

opportunistic pathogens use to persist in the airways. The effect of pH on CF bacteria is 

vastly understudied despite its importance as a major environmental factor in microbial 

communities. One such CF microbe is Stenotrophomonas maltophilia, which is estimated to 

infect 10% to 18% of patients (123, 124) and is intrinsically resistant to multiple antibiotic 

classes. S. maltophilia is unable to use nitrate as an alternative electron acceptor (125), a 
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trait that likely impacts its growth and colonization location in the airways (126). One 

recent retrospective study found that baseline chronic S. maltophilia infection is associated 

with a 3-fold increased risk of mortality or lung transplant in CF patients (127). Two recent 

studies found that CF-associated S. maltophilia has a wide pangenome (128), and human-

associated S. maltophilia forms core genome clades that are distinct from environmental 

strains (129). In both studies, there was little correlation between genetic potential and 

observed phenotypes in S. maltophilia (128, 129), including antibiotic susceptibility, which 

further emphasizes a need to improve the link between genetic information and bacterial 

physiology in the CF airways. Our knowledge of how opportunistic pathogens behave in CF 

sputum is limited. To date, only a few studies have looked at changes in CF bacterial gene 

expression in vivo (12, 130, 131). The lack of overlap between experimental conditions and 

CF sputum is an important factor in the observed differences in bacterial physiology in 

vitro versus in vivo (130). 

 Here, we used a combination of core genome phylogenetics, pangenome analyses, 

and CF sputum metatranscriptomics, along with transcriptomics, growth curves, and 

antibiotic assays in a range of pH. We hypothesized that S. maltophilia responds to acidic 

conditions in the CF airways by acquiring and expressing stress response genes. Our 

phylogenomics analyses did not support that S. maltophilia CF strains acquire a specific 

universal adaptation to acidic pH. Rather, our combined phylogenomic and transcriptomic 

analyses indicate S. maltophilia utilizes both conserved and strain-specific stress responses 

in lower pH. Furthermore, higher pH cultures had more similar transcriptomes to those of 

sputum than those of acidic pH cultures, suggesting that S. maltophilia may avoid or have 

limited growth in the lower-pH microenvironments in CF sputum. Our study highlights a 
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need for better in vitro systems, as well as showing the impact of pH on the localization and 

adaptation of CF bacteria. 

S. maltophilia cystic fibrosis accessory genes.  

 In order to identify genes unique to S. maltophilia FLR19 and/or other CF isolates, 

we analyzed the pangenome, genes that make up the core and accessory genomes (Data Set 

S2). S. maltophilia has an open pangenome consisting of 14,136 genes (Fig. 2.1B). The 

average number of genes in each S. maltophilia genome was 4,285 (minimum = 3,908 genes 

in strain UBA905, maximum = 4,733 genes in strain GC 2009) (Fig. S2.1). The CF accessory 

genome (genes found only in the 59 CF strains) consisted of 4,457 genes, although no gene 

was found across all 59 CF genomes. Only five of the CF-specific genes, which had no 

known function, were shared in at least half of the CF isolates (Data Set S2; Fig. 2.1C). Our 

analyses suggest that the genes comprising the CF accessory genome are strain specific, 

with nearly half (n = 2,157 CF-specific accessory genes) being unique to one strain (Fig. 

2.1C). Accessory genome content was better explained by patient identifier (R2 = 37%) 

than CF status (R2 = 5.5%) (nested permutational multivariate analysis of variance 

[PERMANOVA]; P < 0.001). In accordance with this, the accessory gene content (n = 11,978 

genes) moderately separated strains into CF and non-CF groups (analysis of similarity 

[ANOSIM]; R = 0.55, P < 0.05) (Fig. 2.1D). 

 We next examined whether the overall functional potential of CF strains differed 

from that of non-CF strains. In particular, we hypothesized that CF strains of S. 

maltophilia would be enriched for stress response genes to cope with acidic pH in the CF 

airways. We grouped total (core and accessory) gene content into 26 functional categories 
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based on the combined Rapid Annotation using Subsystem Technology (RAST) SEED 

annotations of a non-CF type strain (K279a) and a CF isolate (FLR19) (132) (Data Set S3). 

CF strains did not contain significantly more genes in the “stress response” category but did 

have greater proportions of genes in the “virulence” and “cofactors” categories (Fig. S2.1B; 

Data Set S4) (two-sample t test; P < 0.05). The annotated functions of genes in the virulence 

category included metal and antibiotic resistance (Data Set S3). 

S. maltophilia growth in acidic, neutral, and basic pH with antibiotics. 

 Because the pH of CF airways is acidic and further reduced during pulmonary 

exacerbations, we wanted to determine how S. maltophilia responds to changes in pH. We 

grew six CF isolates (from San Diego, CA, and from Italy) (128) and two non-CF strains in 

phosphate-buffered pH 5, 7, and 9 Todd-Hewitt broth. All eight strains had impaired 

growth in acidic pH relative to that in neutral pH (analysis of variance [ANOVA] with post 

hoc pairwise comparisons; P < 0.05) (Fig. 2.2A). Similar results were obtained in 

nonbuffered acidic media spiked with citric, lactic, or sulfuric acid (Fig. S2.2A). Cells 

recovered from a medium at a specific pH were not more tolerant to growth at that pH, 

suggesting that their growth was due to a physiological response rather than to mutational 

adaptation to acidic tolerance (Fig. S2.2B). In addition, strain FLR19 increased its local pH 

in the pH 5 buffered Todd-Hewitt broth over a 24-h growth period (Fig. S2.2C). The growth 

of strain FLR19 growth was also impaired in acidic artificial sputum media (ASM) (Fig. 

S2.2D). 

S. maltophilia cystic fibrosis accessory genes. 
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 In order to identify genes unique to S. maltophilia FLR19 and/or other CF isolates, 

we analyzed the pangenome, genes that make up the core and accessory genomes (Data Set 

S2). S. maltophilia has an open pangenome consisting of 14,136 genes (Fig. S2.1b). The 

average number of genes in each S. maltophilia genome was 4,285 (minimum = 3,908 genes 

in strain UBA905, maximum = 4,733 genes in strain GC 2009) (Fig. S2.1). The CF accessory 

genome (genes found only in the 59 CF strains) consisted of 4,457 genes, although no gene 

was found across all 59 CF genomes. Only five of the CF-specific genes, which had no 

known function, were shared in at least half of the CF isolates (Data Set S2; Fig. 2.1C). Our 

analyses suggest that the genes comprising the CF accessory genome are strain specific, 

with nearly half (n = 2,157 CF-specific accessory genes) being unique to one strain (Fig. 

2.1C). Accessory genome content was better explained by patient identifier (R2 = 37%) 

than CF status (R2 = 5.5%) (nested permutational multivariate analysis of variance 

[PERMANOVA]; P < 0.001). In accordance with this, the accessory gene content (n = 11,978 

genes) moderately separated strains into CF and non-CF groups (analysis of similarity 

[ANOSIM]; R = 0.55, P < 0.05) (Fig. 2.1D). 

 We next examined whether the overall functional potential of CF strains differed 

from that of non-CF strains. In particular, we hypothesized that CF strains of S. 

maltophilia would be enriched for stress response genes to cope with acidic pH in the CF 

airways. We grouped total (core and accessory) gene content into 26 functional categories 

based on the combined Rapid Annotation using Subsystem Technology (RAST) SEED 

annotations of a non-CF type strain (K279a) and a CF isolate (FLR19) (132) (Data Set S3). 

CF strains did not contain significantly more genes in the “stress response” category but did 

have greater proportions of genes in the “virulence” and “cofactors” categories (Fig. S2.1B; 
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Data Set S4) (two-sample t test; P < 0.05). The annotated functions of genes in the virulence 

category included metal and antibiotic resistance (Data Set S3). 

S. maltophilia growth in acidic, neutral, and basic pH with antibiotics.  

 Because the pH of CF airways is acidic and further reduced during pulmonary 

exacerbations, we wanted to determine how S. maltophilia responds to changes in pH. We 

grew six CF isolates (from San Diego, CA, and from Italy) (128) and two non-CF strains in 

phosphate-buffered pH 5, 7, and 9 Todd-Hewitt broth. All eight strains had impaired 

growth in acidic pH relative to that in neutral pH (analysis of variance [ANOVA] with post 

hoc pairwise comparisons; P < 0.05) (Fig. 2.2A). Similar results were obtained in non-

buffered acidic media spiked with citric, lactic, or sulfuric acid (Fig. S2.2A). Cells recovered 

from a medium at a specific pH were not more tolerant to growth at that pH, suggesting 

that their growth was due to a physiological response rather than to mutational adaptation 

to acidic tolerance (Fig. S2.2B). In addition, strain FLR19 increased its local pH in the pH 5 

buffered Todd-Hewitt broth over a 24-h growth period (Fig. S2.2C). The growth of strain 

FLR19 growth was also impaired in acidic artificial sputum media (ASM) (Fig. S2.2D). 

 Beyond observing pH-driven changes in growth, we assayed tolerance to antibiotics 

prescribed to CF patients (gentamicin, tobramycin, and meropenem) across the pH 

gradient (Fig. 2.2B). The bacterial susceptibility to meropenem and gentamicin in different 

pH varied at the strain level (ANOVA with post hoc comparisons and Bonferroni 

correction; P < 0.05, n = 6 to 9). Five of the CF strains (FLR19, FMa 2012, CV 2008, GC 2011, 

and ZC 2006) were more susceptible to meropenem in acidic pH than in neutral pH (Fig. 

2.2C) (t test with Bonferroni correction; P < 0.05, n = 6 to 9). The reverse pH effect was 
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observed with gentamicin for four strains (FLR19, GC 2011, ZC 2005, and K279a), which 

were more susceptible in basic pH than in to neutral pH. Strain NCTC 10257 had 

significantly increased tolerance of gentamicin, and strain FLR19 trended toward increased 

tolerance of gentamicin in acidic conditions. These findings align with those of previous 

antibiotic assays, which showed that β-lactams (meropenem) have increased activity at 

lower pH, while aminoglycosides (gentamicin) show decreased activity (133). 

S. maltophilia FLR19 metabolome under acidic, neutral, and basic pH conditions. 

 We next wanted to determine how S. maltophilia responds metabolically and 

transcriptionally to changes in pH. We chose FLR19 for the metabolomics and 

transcriptomics because it is a CF strain not yet characterized but is still closely related 

evolutionarily to 27 other CF strains from our core genome phylogenetics (Fig. 2.1A). 

Metabolites that were produced or consumed in different conditions were identified using 

untargeted metabolomics. The metabolomes had little separation based on pH but had 

distinct metabolic profiles from uninoculated media (Fig. 2.3A). S. maltophilia FLR19 

produced 226 metabolites in at least one of the experimental conditions; 40 metabolites 

were produced in all three conditions (Data Set S4). 

 S. maltophilia FLR19 produced 28 metabolites in acidic medium only. These 

included hydroxyglutaric acid, a by-product of glutamate catabolism (134), and 

hydroquinone and acetophenone, weak acids with high pKa. Notably, metabolites involved 

in polyamine synthesis, N-acetylglutamate, putrescine, and spermidine, were consumed by 

FLR19 in acidic conditions (Data Set S4). The acidic metabolome had significantly less 

putrescine and more of a nonannotated metabolite (X129225) compared to the neutral 
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metabolome (Kruskal-Wallis ANOVA with post hoc Dunn comparisons; n = 3, P < 0.05, 

log2 fold change [log2FC] > 1 or < −1) (Fig. 2.3b; Fig. S2.4). The production of polyamines 

via decarboxylation of amino acids is a well-documented acidic stress response in bacteria 

(135). The FLR19 strain’s consumption of N-acetylglutamate, spermidine, and putrescine in 

acidic pH could be indicative of higher turnover of those intermediates in this polyamine 

pathway. 

 Metabolites produced by S. maltophilia FLR19 in alkaline pH included weak acids, 

such as ribonic acid, salicylic acid, urea, glycolic acid, glyceric acid, and isothreonic acid. 

The basic metabolome had significantly less methionine and more organic acids (Kruskal-

Wallis ANOVA with post hoc Dunn comparisons; P < 0.05, n = 3, log2FC > 1 or < −1) (Fig. 

2.3C, Fig. S2.4). 

S. maltophilia FLR19 transcriptome in acidic, neutral, and basic pH. 

 In order to determine how our CF isolate responds transcriptionally to changes in 

pH, we sequenced ribosome-depleted RNA from FLR19 cultures grown in acidic (n = 2), 

neutral (n = 3), or basic pH (n = 2). The numbers of quality-filtered reads that aligned to the 

FLR19 genome were 2.2 to 5.1 million, with mean genome-wide coverages ranging from 

27× to 67× (Fig. 2.4A, Data Set S6). The transcriptomes separated based on pH, and the 

acidic transcriptomes are more distinct from the neutral than the basic transcriptomes 

(axis 1) (Fig. 2.4B). The acidic transcriptome had 86 upregulated genes and 84 

downregulated genes (negative binomial test; false-discovery rate [FDR] < 0.05, log2FC > 1 

or < −1) (Fig. 2.4C; Data Set S6). The basic transcriptome only had five upregulated genes 

and two downregulated genes (Fig. 2.4D; Data Set S6). These results suggest that S. 
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maltophilia FLR19 is better suited to grow in basic pH than in acidic pH, which is consistent 

with the growth curve data. 

Comparison of S. maltophilia gene expression profiles in vitro and in CF sputum. 

 In order to identify genes actively transcribed by S. maltophilia in CF airways, we 

mapped metatranscriptome reads from sputum (taken from 7 CF patients infected with P. 

aeruginosa (130)) to the S. maltophilia pangenome (all coding sequences from 74 strains). 

Before aligning the metatranscriptome reads to the S. maltophilia pangenome, the reads 

were mapped to a custom-made CF database consisting of 1,812 non-Stenotrophomonas CF 

bacterial genomes from the Pathosystems Resource Integration Center (PATRIC) (136). 

While this approach reduced the number of false-positive hits to the S. 

maltophilia pangenome from other bacterial RNAs, it also omitted multispecies genes. Two 

of the sputum samples (E and F) had reads that aligned to S. maltophilia genes (3,403 and 

28,992 reads, respectively) (Data Set S5). 

 To compare transcription of S. maltophilia FLR19 grown in vitro to that of S. 

maltophilia in sputum, we first processed the in vitro RNA sequencing reads through the 

same pipeline as the metatranscriptome reads. Fewer genes were detected in the CF 

metatranscriptomes than in the in vitro transcriptomes (Fig. 2.5A; Data Set S6). Since the 

CF airways are primarily acidic (4), we hypothesized a priori that the acidic transcriptomes 

would be similar to the sputum metatranscriptomes. However, the gene expression profiles 

of the acidic transcriptomes were least similar to the CF sputum metatranscriptomes (Fig 

2.5B). The source of the RNA (in vitro versus in vivo) explained more variance in the gene 
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expression profiles (R2 = 0.79) than did the experimental pH (R2 = 0.14) (nested 

PERMANOVA; P < 0.05). 

 Determining the proportion of metatranscriptome and transcriptome reads that 

aligned to functional categories (132) showed that “protein metabolism” was the most 

abundant category across all samples (Fig. 2.6A). Overall, there were few changes in the 

rankings of the categories except for minor differences (Data Set S3; Fig. 2.6A). Notably, 

the sputum metatranscriptomes had a higher proportion of reads that aligned to genes 

involved in iron acquisition (sputum E = 1.2%, sputum F = 0.5%) than did the in 

vitro transcriptomes (0.02% to 0.08%) (Data Set S3). Hierarchical clustering of the 

enriched categories indicated that the sputum samples were functionally more similar to 

the alkaline and neutral cultures than to the acidic cultures (Fig. 2.6B). 

 

Identification of pH response genes expressed in vitro and in CF sputum. 

 By combining our pangenome analyses and transcriptomics, we identified a DNA 

glycosylase that was unique to FLR19 and upregulated in acidic pH (Fig. 2.7A), suggesting 

that the expression of this DNA glycosylase may be a strain-specific response to low pH. 

This gene was in a region containing additional genes that were also expressed at higher 

levels in acidic pH than in neutral pH, but not at statistically significant levels. This included 

a hypothetical protein and sulfoxide reductase (Fig. 2.7A). 

 Two additional accessory genes were upregulated by FLR19 in acidic conditions 

(relative to neutral pH conditions). The first gene, which was also expressed in sputum F 

(Fig. 2.7B, left), encodes a radical S-adenosyl-L-methoniine (SAM) domain protein. A 



 

43 

 

SmartBLAST search of the amino acid sequence indicated that this protein is closely related 

to bacterial photolyases involved in DNA repair. The second gene, also expressed in CF 

sputum samples, was a multidrug efflux pump gene, cmeB (Fig. 2.7B, right). The gene for 

the RND CmeB efflux pump was also found in S. maltophilia environmental strains. 

 Twenty core genes were upregulated by strain FLR19 at low pH and expressed in 

sputum, including the coding sequences for alkyl hydroperoxide reductases (AhpF and 

AhpC), the SOS response regulator LexA, and the tripartite multidrug resistance system 

(Fig. 2.7C, 2.7D; Data Set S7). In a similar study, the same stress response genes were also 

expressed by P. aeruginosa at high levels in CF sputum (130). None of the seven 

differentially expressed genes from when FLR19 was grown at basic pH were found to be 

expressed by S. maltophilia in sputum. 

DISCUSSION 

 In order to improve treatment strategies, we need to better understand how 

opportunistic pathogens are capable of living in the dynamic, stressful environments found 

in the CF airways. The pH of CF sputum ranges from 2.9 to 6.5 (4), and further drops during 

periods of pulmonary exacerbation (1). Interestingly, many of the common Gram-negative 

opportunistic pathogens that persist in CF infections have impaired growth at lower pH 

(91, 92), which motivated us to determine how S. maltophilia copes in nonoptimal, acidic 

pH. We hypothesized that because the pH of the CF airways is largely acidic, S. 

maltophilia copes by acquiring and prioritizing expression of stress response genes. 

CF strains of S. maltophilia adapt to patient-specific factors and are not better 

adapted to low pH. 
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 We first analyzed all publicly available S. maltophilia genomes, along with a 

clinically relevant isolate unique to this study. For the phylogenomics analysis, we used a 

95% AAI cutoff, which allowed us to look at finer-scale relationships between closely 

related strains but which also potentially overestimated the number of genes in the 

pangenome. Most of the S. maltophilia CF strains were part of four tight subclades on the 

phylogenetic tree. Steinmann et al. found that core single-nucleotide polymorphism (SNP) 

phylogenomics separated Stenotrophomonas spp. into human-associated and 

environmental clades (129). However, we cannot confirm this trend due to the limited 

number of environmental genomes that made it through our initial genome-filtering step. 

The open pangenome of S. maltophilia suggests that this species has diverse capabilities. 

This is in accordance with results of another study, which looked at the longitudinal 

phenotypic and genotypic heterogeneity of 91 S. maltophilia isolates from 10 CF patients, 

where the CF strains had a narrow core genome that made up a fraction of a large 

pangenome (1,911 core genes out of a total 16,486 genes) (128). 

 We hypothesized a priori one mechanism that S. maltophilia uses to survive low pH 

is acquiring stress response genes in the CF airways. However, we were unable to identify a 

CF-specific signal of adaptation to low pH. Our phylogenomics analyses suggest that S. 

maltophilia adapts to specific niches within a patient’s airways. As such, a single strain 

cannot be considered representative of the entire CF population for a species. The lack of 

clonal epidemiology in isolates among CF patients is also seen in P. aeruginosa (137, 138). 

CF opportunistic pathogens are thought to be acquired from the environment and to 

colonize the airways of a patient throughout the patient’s life, driving patient-specific 

adaptation (137–140). Only when analyzing the accessory genome at the functional level 
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(achieved by binning genes into cellular categories) were we able to find that nonessential 

genes, including those canonically defined as virulence genes, were enriched in CF strains. 

Furthermore, there was no significant increase in stress response genes in CF isolates. 

While we did not find a universal genomic adaptation to acidic pH stress in CF strains, the 

data from the in vitro growth experiments suggest that acidic conditions are stressful for S. 

maltophilia. All eight strains, including six CF isolates and two human strains, had impaired 

growth at lower pH. 

S. maltophilia can cope with low pH by expressing both strain-specific and conserved 

stress response genes. 

 Based on our transcriptomics and metatranscriptomics analyses, S. 

maltophilia copes with acidic pH by utilizing both universal responses (expression of core 

genes) and strain-specific responses. One possible mechanism is by increasing 

transcription of DNA repair genes, as we observed from our transcriptomics analysis. 

Strain FLR19 contained both strain-specific and core repair genes. The expression of DNA 

repair genes has been previously identified in sputum metatranscriptomes and likely 

reflects bacterial response to stressful conditions in the cystic fibrosis airways that can 

damage DNA, including the presence of reactive oxygen species and antibiotics (119). 

Consistent with this was FLR19’s increased transcription of alkyl hydroperoxide reductase 

genes and the stress response gene lexA. In a similar study, these stress response genes 

were upregulated by P. aeruginosa in sputum and conferred resistance to antibiotics that 

included gentamicin (130). Taken together, the findings of Cornforth et al. and our own 
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findings suggest that CF strains survive in CF-relevant conditions, including acidic pH, with 

both conserved and adaptive traits. 

Transcriptomics suggest that S. maltophilia may avoid lower pH. 

 We used a conservative approach to align the sputum metatranscriptomes to the 

pangenome to ensure that we only included S. maltophilia RNA in our study, which may 

have resulted in the loss of multispecies signals. We also recognize that the differences in 

sequencing depth between the in vitro transcriptomes and sputum metatranscriptomes 

bias the identification and quantification of gene expression, and we sought to reduce this 

bias by calculating the proportion of reads that mapped to functional annotation categories. 

Overall, the gene expression profiles of the in vitro FLR19 cultures were distinct from the S. 

maltophilia transcriptomes in CF sputum. 

 In contrast to our gene level analysis, the functional profiles of S. maltophilia in 

sputum and under the different pH conditions were similar. A couple of categories were 

more enriched in the sputum transcriptomes than in the in vitro transcriptomes, including 

iron acquistion. While ferritin is abundant in CF sputum, free iron may be scarce, and 

bacteria utilize scavengers to obtain iron (141, 142). Although expression of iron uptake 

genes appears to be a priority for S. maltophilia in sputum, we did not see significant 

enrichment of iron genes from our pangenome analyses in the CF strains, suggesting that S. 

maltophilia utilizes core genes to acquire iron. The acidic transcriptomes had expressed 

more stress response genes, indicating that the experimental acidic conditions were 

stressful for FLR19. Perhaps the pH 5 buffered medium was more stressful for strain 
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FLR19 than sputum, in which S. maltophilia may be capable of increasing local pH and 

colonizing the higher-pH regions (reported to be as high as 6.5 in pediatric sputum) (4). 

 We originally hypothesized that the acidic transcriptome would be more similar 

than the neutral and alkaline transcriptomes to that of S. maltophilia in sputum, because 

the pH of CF sputum is acidic (with gradients of 2.9 to 6.5) (4). However, clustering the 

samples by their functional categories indicated that the basic and neutral transcriptomes 

were more closely related than the acidic transcriptome to that of sputum. The lack of 

similarities in functional activity between the acidic and sputum transcriptomes, in 

addition to dissimilar gene expression profile in sputum compared to all in vitro conditions, 

emphasizes our need to better understand how the local environment impacts S. 

maltophilia colonization. Perhaps the neutral and alkaline transcriptomes were more 

similar to CF metatranscriptomes because S. maltophilia avoids lower pH 

microenvironments in CF sputum. In accordance with this, we did not find a strong signal 

of CF-specific or low-pH adaptations from our phylogenomics analysis. As S. maltophilia is 

unable to undergo nitrate respiration (125), oxygen is another factor that can determine 

the success and location of S. maltophilia colonization in the CF airways. In anaerobic 

environments, bacterial and host cells undergo fermentation, further decreasing the local 

pH. Cowley et al. reported drops in oxygen and pH with sputum plug depth (4). A recent 

study finding that Gram-negative opportunistic pathogens prefer regions with higher pH 

and oxygen levels in sputum mesocosm supports our idea that S. maltophilia colonizes 

microenviornments that are less acidic and more aerobic (92). 
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 Another possibility for the differences in gene expression in sputum compared to 

that in vitro is the lack of overlap in bacterial behavioral studies in vitro versus in sputum. 

Cornforth et al. highlighted this need, finding a discordance in the expression of gene 

classes when P. aeruginosa is grown in vitro in comparison to that of P. aeruginosa found in 

human samples, including the same CF sputum samples used in this study (130). 

pH affects S. maltophilia antibiotic tolerances. 

 One of very few studies that have looked at the effect of pH on cystic fibrosis strains 

showed that reductions in the pH of airway secretions inhibited its antibacterial function 

(143). We saw changes in expression of antibiotic resistance genes by strain FLR19 and in 

antibiotic susceptibility depending on the strain, antibiotic used, and pH. Both CF and non-

CF strains were more sensitive to meropenem in acidic conditions. One non-CF strain 

(NCTC 10257) and on CF strain (FLR19) had higher tolerance of gentamicin at low pH. We 

also saw increased expression of antibiotic resistance genes (both core and accessory) 

when FLR19 was grown at low pH. The same antibiotic resistance genes were expressed 

by S. maltophilia in CF sputum. As CF patients take antibiotics throughout their lives, it is 

not surprising that a CF isolate expresses antibiotic resistance genes in sputum. While it is 

known that pH affects antibacterial activity (133), our findings have clinical implications 

for the treatment of CF infections, especially during pulmonary exacerbations, when the pH 

of CF airways becomes more acidified (1). 

Conclusion.  

 Our results suggest that S. maltophilia is not well-adapted to low pH and uses stress 

response mechanisms and location to cope with pH gradients characteristic of the CF 
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airways (Fig. 2.8). Tools that spatially resolve bacteria in vivo will be indispensable in 

understanding where and how bacteria adapt to clinical infections (51). 

 

MATERIALS AND METHODS 

S. maltophilia FLR19 genome. 

 S. maltophilia FLR19 was isolated from the sputum of an adult CF patient. The 

genome was sequenced on an Illumina MiSeq instrument and assembled using A5 (06-04-

2016 version) with default parameters. Short scaffolds (<5,000 bp) containing repeated 

nucleic acid sequences were removed from the genome for downstream analyses. 

Phylogenetic analyses. 

 To examine the phylogenetic relatedness of our isolate, we constructed an initial S. 

maltophilia phylogeny using 21 conserved single-copy marker genes. Specifically, we 

downloaded 153 strains designated S. maltophilia from the PATRIC genome database that 

contained corresponding metadata (see Data Set S1 in the supplemental material) (136). 

Next, we screened each downloaded genome for the presence of 21 marker genes with 

HMMER (144) and built the initial phylogenetic tree with FastTree2 (the Interactive Tree 

Of Life [iTOL] input for which can be downloaded from the following GitHub 

repository: https://github.com/tgallagh/Stenotrophomonas) (145). Based on the 

robustness of the resulting phylogeny, we calculated whole-genome pairwise comparisons 

(both nucleotide and amino acid identity [AAI]) across all genomes and selected a subset of 

strains (n = 74) that were closely related to our strain (>97% AAI) for downstream 
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analysis. Coding regions from the resulting 74 genomes were translated using Prodigal 

(146) with predicted functional annotation assigned by Prokka (147). We assigned 

orthologous protein groups (orthologs) based on a reciprocal protein BLAST search using 

Roary and clustered orthologs at 95% AAI (148). Single-copy orthologs conserved across 

all isolates (n = 2,158) were used to build a core genome phylogeny. Specifically, each core 

ortholog was independently aligned using Clustal Omega v1.2.0 (149) and used to create a 

concatenated core genome alignment (714,427 amino acids). Finally, we constructed a 

maximum likelihood phylogenetic tree using RAxML v8.0.0 (150) under the 

“PROTGAMMWAG” model for 100 replicates. We mapped all isolation source data retrieved 

from the PATRIC metadata onto the tree using iTOL (151). To identify genes unique to S. 

maltophilia FLR19 and other CF isolates, we compared total gene profiles across the 74 

closely related genomes. Geneparser was used to determine the presence or absence of 

genes within the pangenome for each genome. These pangenome data were visualized 

using a script developed for the Roary pipeline (148). A cumulative gene plot was made 

using the “specaccum” function from the R package “vegan.” To determine if accessory gene 

content is a strong predictor of a strain’s isolation environment, a Jaccard dissimilarity 

matrix of the accessory genome presence-absence matrix was calculated with the “vegdist” 

function from the R package “vegan.” The dissimilarity matrix was visualized with a 

nonmetric multidimensional scaling (NMDS) plot constructed with the “metaMDS” function 

from “vegan.” An ANOSIM and nested PERMANOVA of the Jaccard dissimilatory matrix 

were conducted using the “anosim” and “adonis” functions from “vegan.” 

S. maltophilia culture conditions. 
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 Strain FLR19 was isolated from the sputum of an adult CF patient in San Diego, CA. 

Strains CV 2008, FMa 2012, GC 2011, ZC 2005, and ZC 2006 were isolated from the sputum 

of four adult CF patients in Italy (128). Strains K279a and NCTC 10257 were also included 

to represent non-CF human isolates. For the growth curves, all eight strains of S. 

maltophilia were grown in pH 5, 7, and 9 phosphate-buffered Todd-Hewitt broth (THB). 

The strains were also grown in pH 5 THB spiked with citric acid, lactic acid, or sulfuric acid. 

In order to determine how pH affects antibiotic resistance, we also grew S. 

maltophilia cultures under the same conditions but with a concentration gradient of 

gentamicin (200, 400, or 800 mg/liter), meropenem (64, 128, or 256 mg/liter), and 

tobramycin (16, 32, or 64 mg/liter) for 24 h. An ANOVA with post hoc pairwise 

comparisons and Bonferroni corrections was conducted in R to compare growth in pH 5 or 

pH 9 to that in pH 7 medium with and without antibiotics. The fold change in S. 

maltophilia growth with antibiotics compared to growth without antibiotics was calculated, 

and a two-sample t test with Bonferroni corrections was used to identify significant 

changes in the fold change values of acidic and basic pH relative to neutral pH. Growth 

curves were collected using a SpectraMax 190 spectrometer from Molecular Devices. All 

three antibiotics were purchased from Fisher Scientific. For the transcriptomics and 

metabolomics experiments, S. maltophilia FLR19 was grown in pH 5, pH 7, or pH 9 

phosphate-buffered THB for 24 h. For the FLR19 experiments, culture pH was measured 

with colorPhast pH strips from EMD Millipore. FLR19 was also grown in phosphate-

buffered pH 5, 7, and 9 artificial sputum media (ASM) based on a recipe from Palmer et al. 

(40, 100). For the ASM growth curves, colony counts of spot dilution plates were used to 

calculate FLR19 concentration. 
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Preparation of S. maltophilia FLR19 transcriptomes and metabolomes. 

 The cells were centrifuged and pellets were stored in TRIzol at −80˚C for RNA 

sequencing. RNA was extracted using the Zymo Direct-zol miniprep kit and concentrated 

with the Zymo RNA Clean and Concentrate kit. An Illumina Ribo-Zero rRNA removal kit was 

used to remove rRNA. The RNA libraries were prepared for sequencing with the TruSeq 

RNA sample preparation kit. Paired-end reads (250 bp) were sequenced on an Illumina 

HiSeq instrument. For metabolomics analysis, the supernatant was stored at −80˚C (152). 

Triplicates of the uninoculated media and supernatants of acidic, neutral, and basic FLR19 

cultures were sent to the West Coast Metabolomics Center for untargeted metabolomics 

analysis performed with gas chromatography-time of flight mass spectrometry (GC-TOF-

MS). Metabolites were extracted from the bacterial supernatants with a 3:3:2 mixture of 

isopropanol, acetonitrile, and water. The GC-MS analysis followed Fiehn lab standard 

operating procedures (153). 

S. maltophilia FLR19 metabolomics analysis. 

 The Bray-Curtis distances of the metabolite intensities for all samples were 

calculated using the “vegdist” function from the R package vegan and visualized with a 

principal coordinate analysis (PCoA) plot using the “pcoa” function from the R package 

“ape.” In order to identify metabolites that were shared among or unique to the S. 

maltophilia FLR19 acidic, neutral, and basic metabolomes, the average normalized intensity 

for the metabolites in the three uninoculated replicates was calculated. The uninoculated 

media averages were subtracted from the metabolite intensities from the acidic, neutral, 

and basic metabolomes. A metabolite was considered to be produced in a certain condition 
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if the blank-subtracted metabolite intensity was positive for all three replicates and 

consumed if the blank-subtracted metabolite intensity was negative for all three replicates. 

Metabolites with significantly different levels in the acidic or basic metabolomes, compared 

to the neutral metabolome, were identified with a Kruskal-Wallis ANOVA and post 

hoc Dunn comparisons in R. Volcano plots were made in R to depict the fold change in 

metabolite abundances and P values of the post hoc Dunn comparisons of the metabolites 

considered to be significant from the Kruskal-Wallis ANOVA. 

Transcriptomic analysis. 

 All RNA sequencing preprocessing was performed on the UC Irvine High 

Performance Computer Cluster in a Linux environment. Reads were quality-filtered using 

Trimmomatic version 0.35. (154). Specifically, adaptors were trimmed from the ends of 

reads, and the parameters used for filtering were as follows: minimum read length of 50 bp 

and a 4-bp sliding window average Phred quality score of 20. Overlapping reads were 

combined using Paired-End reAd mergeR (PEAR) and processed as single-end reads, 

separate from the remaining paired-end reads (155). The preprocessed reads were then 

aligned to the S. maltophilia FLR19 genome using Bowtie 2 in single-end or paired-end 

mode (156). In order to identify differentially expressed genes in the acidic versus basic 

transcriptomes (using the neutral transcriptome as a reference), HTSeq-Count (157) and 

the R package edgeR (158) were used to count the number of reads aligned to a gene. The 

sum counts of the overlapping reads processed as single-end reads and paired-end reads 

were calculated for each gene. Genes with log2 fold changes greater than 1 or less than −1 

and FDR values of <0.05 were considered to be differentially expressed. 
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S. maltophilia metatranscriptome and transcriptome comparison. 

 In order to identify genes that were expressed by S. maltophilia in cystic fibrosis 

sputum, seven cystic fibrosis metatranscriptomes (130) were quality filtered using 

Trimmomatic version 0.35 with the following parameters: minimum read length of 35 and 

a 4-bp sliding window with an average Phred score of 20 (154). The metatranscriptome 

reads were then dereplicated with Prinseq-lite version 0.20.4 (159). To ensure that 

stringent alignment parameters were used, the quality filtered metatranscriptome reads 

were first aligned using Bowtie 2 (156) to a custom-made database consisting of all non-S. 

maltophilia bacterial genomes associated with cystic fibrosis patients from PATRIC (1,812 

genomes) (136). Reads that did not align to the CF bacterial database were then mapped to 

the S. maltophilia pangenome consisting of all the coding sequences from the 74 strains 

from our phylogenomics with Bowtie 1. 

 In order to compare gene expression of the in vitro S. maltophilia FLR19 

transcriptomes to that of the metatranscriptomes, we processed the in vitro reads using a 

similar pipeline as that for the metatranscriptomes. Briefly, overlapping paired-end reads 

from the transcriptomes were aligned to the pangenome as a single read. The number of 

reads that aligned to a gene was then counted in R and the RPKM (reads per kilobase of 

transcript per million mapped reads) values were calculated. Reads that mapped to 

multiple genes were included in the quantification, since the same read often mapped to 

core genes across multiple genomes. The RPKM values from genes expressed in all nine 

samples were used to build a Euclidean distance matrix with the “vegdist” function from 

the R package vegan. The distance matrix coordinates were plotted on a principal-
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coordinate analysis (PCoA) plot. A nested PERMANOVA was used to compare the gene 

RPKM values using the “adonis” function in vegan. For the PERMANOVA, the design 

structure nested experimental condition (acidic, basic, or neutral pH or sputum) in the 

source of the sample (in vitro versus in vivo). The proportion of CF database-filtered reads 

that aligned to a functional category was determined by counting the reads that mapped to 

genes found in the RAST SEED cellular categories (132). The in vitro FLR19 transcriptome 

reads were filtered using the same pipeline to compare the proportion of reads that 

mapped to the SEED categories in vitro to CF sputum. 

Data availability. 

 The assembled FLR19 genome is publicly available on the PATRIC website under 

accession number 40324.190 (136). The metabolomics data are available in Data Set S4. 

The RNA sequencing reads are deposited in the NCBI GEO database under accession 

number GSE121347, and the analyses can be found in Data Sets S5 to S7. The 

metatranscriptome reads can be found in the Sequence Read Archive under accession 

number SRP135669 (130). 
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Fig. 2.1. S. maltophilia core and pangenome analyses. (a) Phylogenetic tree for 74 S. 

maltophilia strains constructed using 2,158 genes conserved across all strains. Information 
about the strains’ isolation source is represented by the colored blocks in the four columns 
next to the tree. The last column highlights clonal strains isolated from the sputum of ten 
CF patients from Esposito et al.’s 2017 study (24), where each patient is designated by a 
different color and by the first portion of the genome name. (b) S. maltophilia pangenome 
accumulation plot (14,136 gene clusters, n = 100 permutations). (c) The distribution of 
genes found only in CF genomes (4,457 genes). No CF-specific genes were shared in all 59 
CF isolates. In accordance with this, the accessory gene content (n = 11,978 genes) did not 
strongly separate strains into CF and non-CF groups. (d) NMDS of Jaccard dissimilarity 
matrix of accessory genome content (n = 11,978 genes, stress = 0.16), where the color 
indicates if strains were isolated from CF patients (n = 59) or were non-CF strains (n = 15). 
The shape indicates if a strain came from a human (n = 70) or was environmental (n = 4) 
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sample. An ANOSIM of the Jaccard dissimilarity matrix suggested that the accessory 
genome is not a strong indicator of whether a strain is CF or non-CF (R = 0.55, P < 0.05). A 
nested PERMANOVA of the Jaccard dissimilarity matrix indicated that the patient from 
whom a strain originates explains more of the variation (R2 = 37%) in accessory genome 
content than whether the strain originated from a CF patient (R2 = 5.5%) (P < 0.001). 
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Fig. 2.2: Growth curves of eight S. maltophilia strains, consisting of six CF isolates (FLR19, 
CV 2008, FMa 2012, GC 2011, ZC 2005, and ZC 2006) and two non-CF human strains 
(K279a and NCTC 10257). Orange asterisks indicate a significant pairwise comparison in 
acidic to neutral pH, while purple asterisks indicate a significant comparison in basic to 
neutral pH. (a) The strains were cultured in acidic (initial pH 5), neutral (initial pH 7), and 
basic (initial pH 9) buffered media (n = 6 to 9 replicates; the line represents averages of 
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replicates). As a comparison, the strains were also cultured in unbuffered media (initial pH, 
7.8). Asterisks indicate significant results with an ANOVA and post hoc pairwise 
comparisons, (P < 0.05). (b) Growth of S. maltophilia strains in pH-buffered media with 
different concentrations of gentamicin, tobramycin, and meropenem after 24 h of 
incubation. The line represents averages from replicates (n = 6 to9 replicates). Asterisks 
represent P < 0.05 from ANOVA with post hoc comparisons and Bonferroni correction. (c) 
Fold change in the growth of each strain with antibiotics compared to growth without 
antibiotics. Asterisks represent P < 0.05 from two-sample t tests with Bonferroni 
corrections of the fold change values for acidic and basic pH compared to neutral pH.  
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Fig. 2.3: Metabolomics of strain FLR19 under different pH conditions. (a) Principal coordinate 
ordination analysis (PCoA) of Bray-Curtis distances of the metabolite abundances for the 
uninoculated medium blank and S. maltophilia FLR19 grown in acidic pH, neutral pH, and basic 
pH (n = 3 replicates). (b and c) Volcano plots of the log2 fold change (log2FC) difference in 
metabolite abundance for the acidic metabolome (b) and basic metabolome (c) relative to the 
neutral metabolome. Negative log10(p) is the P value from the post hoc Dunn analysis, where 
a P value of < 0.05 and a log2FC value of >1 or <−1 were considered to be signihicant. 
Metabolites with an “X” prefix were nonannotated. 
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Fig. 2.4: Differential gene expression analyses of FLR19 grown under a range of pH 
conditions. (a) Coverage of transcriptome reads (counts per million) across the S. 

maltophilia FLR19 genome. (b) Principal-coordinate analysis (PCoA) of the Bray-Curtis 
distance matrix of the in vitro S. maltophilia transcriptomes (n = 2 for acidic and basic 
transcriptomes and n = 3 for neutral transcriptomes). (c and d) Smear plots of genes in the 
acidic transcriptome compared to the neutral transcriptome (c) and basic transcriptome 
compared to the neutral transcriptome (d). Each dot represents the log2 counts per million 
(log2CPM) average from both the replicates (x axis) and the average log2FC of the acidic or 
basic CPM divided by neutral CPM (y axis). Colored dots indicate a log2FC of >1 or <−1 and 
an FDR of <0.05. 
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Fig. 2.5: Gene expression in vitro and in CF sputum. (a) Heat map of the log2 reads per 
kilobase of transcript per million mapped reads (RPKM) values of the transcriptome and 
metatranscriptome reads aligned to the S. maltophilia pangenome. Each row is one gene 
(95% AAI clusters from pangenome analyses). The number of S. maltophilia genomes 
which have that gene is indicated on the right. Any gene above the black horizontal line in 
both plots was part of the core genome (found in all 74 strains). (b) PCoA plot of the 
Euclidean distance matrix of RPKM values of 918 genes expressed in all samples. 
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Fig. 2.6: Functional activities of FLR19 under a range of pH conditions and of S. 

maltophilia in CF sputum. (a) Relative proportion of RNA sequencing reads that aligned to 
26 functional categories from the sputum transcriptomes (n = 2) and the in vitro acidic 
(n = 2), neutral (n = 3), and basic pH transcriptomes (n = 2). (b) Hierarchical clustering by 
sample of the Euclidean distance matrix of proportion of reads that aligned to a functional 
category. 
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Fig. 2.7: Examples of genes expressed in acidic pH and CF sputum. The black bars in the 
plots depict the lengths of genes. CPM, counts per million. (a) Coverage of S. 

maltophilia FLR19 transcriptome reads across a 58,000-bp region which contained some 
genes unique to our strain. The labels indicate genes with higher expression in acidic pH. 
The DNA glycosylase was significantly upregulated in acidic pH compared to neutral pH. 
(b) FLR19 transcriptome reads and sputum metatranscriptome reads across a radical SAM 
domain protein (left panel) closely related to a DNA lyase and found in six S. maltophilia CF 
isolates and across the RND efflux pump CmeB (right panel). (c) FLR19 transcriptome 
reads and sputum metatranscriptome reads aligned to the genes for alkyl hydroperoxide 
reductases (AhpF and AhpC) and the SOS response repressor LexA, genes that were 
conserved across all 74 S. maltophilia strains. (d) FLR19 transcriptomes and sputum 
metatranscriptomes across three components of the tripartite multidrug efflux system.  
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Fig. 2.8: Conceptual overview of study. S. maltophilia is a ubiquitous organism, found in 

aquatic and soil environments and in cystic fibrosis (CF) infections. Because CF sputum is 

characterized by gradients of pH (reported to range from 2.9 to 6.5) and oxygen (9), we 

wanted to determine how S. maltophilia survives under low-pH conditions. Growth assays 

indicate that low pH is stressful for both CF and non-CF strains. While S. maltophilia can 

cope with low pH by expressing conserved and adapted stress response genes, our in 

vitro and in vivo transcriptomics analyses suggest that S. maltophilia may survive in the 

airways by avoiding lower-pH microenvironments. Taken together, the results of our study 

highlight that pH can drive S. maltophilia physiology by inducing stress response 

mechanisms and controlling the physical colonization of S. maltophilia. 
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surface of biofilms 
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Abstract: 

Understanding bacterial physiology in real-world environments is a challenging, yet 

necessary endeavor to effectively treat infection. The environments of many chronic 

infections are characterized by steep chemical gradients, yet the effect of hypoxia on 

opportunistic pathogens can be disregarded in clinical settings. Pseudomonas aeruginosa is 

a ubiquitous organism that infects wounds and the airways of persons with cystic fibrosis. 

P. aeruginosa produces pyocyanin, which has been traditionally classified as a toxin due to 

its redox-active properties, but can also facilitate anaerobic respiration. P. aeruginosa 

survival in low oxygen is dependent on pyocyanin electron cycling, but the utilization of 

pyocyanin throughout biofilms is not well-understood. To track pyocyanin reduction 

throughout a biofilm, we developed a fluorescence lifetime imaging microscopy (FLIM) 

unmixing approach that was compared to hyperspectral imaging microscopy (HIM). 

Pyocyanin fractional contribution predictions were similar with both approaches. Deep 
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imaging of colony biofilms was performed on a custom-made FLIM instrument designed for 

tissue imaging, called the DIVER. P. aeruginosa rapidly reduces pyocyanin at the surface of 

biofilms, where there is dense growth and possibly high oxygen consumption. Our FLIM 

unmixing approach paired with the DIVER acquisition can be used to track pyocyanin 

dynamics throughout biofilms and has promise as an application for assessing redox state 

in relevant chemical gradients.  

 

Introduction 

 To persist in any environment, bacteria adapt to chemical and nutrient gradients. 

Understanding in vivo bacterial activity can improve treatment of infections. Chronic lung 

and wound infections consist of steep oxygen gradients that arise from low penetration and 

cellular consumption of oxygen (4, 160). These anaerobic conditions can reduce antibiotic 

efficacy, especially against organisms inactive in low oxygen (161).  

 

 Pseudomonas aeruginosa, an opportunistic pathogen that causes chronic wound and 

cystic fibrosis lung infections, is incapable of anaerobic growth via fermentation and 

employs alternative methods to survive in low oxygen. P. aeruginosa can  respire 

anaerobically via denitrification (162, 163) and secrete phenazines (26, 164, 

165)6/4/2020 1:54:00 PM. Phenazines are colorful, redox-active molecules that recycle 

electrons. Pyocyanin, the final product in the phenazine synthesis pathway, has the highest 

affinity for oxygen out of the phenazine family (166). In the oxidized form, pyocyanin has a 

blue pigment and is toxic to other cells (167, 168). P. aeruginosa uses oxidized pyocyanin to 
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metabolize glucose into acetate, thereby generating more energy and reducing pyocyanin 

in the process. The reduced form of pyocyanin is fluorescent, but the emission spectrum of 

pyocyanin overlaps with other fluorescent metabolites, including NADH and apo-

pyoverdine (169).  

 

 Hyperspectral imaging microscopy (HIM) can unmix pyocyanin fluorescence from 

other fluorophores and has been used to study dynamics of reduced pyocyanin in liquid 

cultures (169). The spatial production and reduction of pyocyanin has not been 

characterized, due to limits in the imaging depths of commercial microscopes. The DIVER 

(170, 171) is a custom-made fluorescence microscope designed for deep tissue imaging 

that can measure fluorescence lifetime with single-cell resolution. Fluorescence lifetime 

imaging microscopy (FLIM) can be used to determine the composition of multiple 

fluorophores contributing to a fluorescent signal. For example, FLIM is often used to image 

the relative amounts of enzyme-bound NADH to free NADH, which can indicate the 

respiratory state of a single cell (172–176).  

 

FLIM and HIM data can be transformed and represented on phasors, a powerful 

approach to analyze fluorescence data (177, 178) (Fig. 3.1). For lifetime images, the 

response of the fluorophore to the excitation source is determined by Fourier 

transformation of exponential decay traces to obtain the modulation (M) and phase (φ) at 

different harmonics (177). The sine and cosine coefficients of the transform make up the y 

and x-axes of the lifetime phasor. Pure species (with single exponential decays) are located 
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on the universal semi-circle (Fig. 3.1A). For hyperspectral data, the modulation and phase 

are related to the width and mean wavelength of the spectrum (Fig. 3.1B) (178). Both the 

fluorescence lifetime and spectral phasor follow the same rule: samples containing a 

combination of the species fall on a line connecting the sample signal to the pure 

components. The distance from the signal to the pure component is proportional to the 

fractional contribution. The phasor is commonly used to unmix two or three fluorescent 

species using linear algebra (Fig. 3.1), but additional fluorescent species can be unmixed if 

additional harmonics are incorporated into the phasor analyses. The orthogonality of the 

Fourier transform guarantees that G and S components for each harmonic can be used as 

independent observations. This allows unmixing of a fluorescent signal into its constituent 

components using linear algebra (179) or least-squares optimization if the system is 

overdetermined. If the bandpass filter used for fluorescence lifetime imaging is the same as 

the hyperspectral acquisition window, the fractional contributions to the total signal will 

be same. This insight allows unmixing of fluorescent species present in each pixel in the 

image simultaneously using both spectral and lifetime data. 

 

 Redox state varies throughout biofilms, and understanding spatial changes in 

pyocyanin reduction can be used to assess bacterial activity, treatment susceptibility, and 

infection progression. We developed and compared our FLIM phasor unmixing approach to 

HIM phasor unmixing. DIVER FLIM acquisition and lifetime phasor unmixing can be used to 

track pyocyanin redox states throughout P. aeruginosa biofilms. 
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Results: 

HIM and FLIM phasor characterization of P. aeruginosa fluorophores. 

  The two-photon fluorescence emission spectra of P. aeruginosa fluorophores were 

characterized (NADH, enzyme-bound NADH, FAD, pyoverdine, pyocyanin, 1-hydroxy-

phenazine, copoprophoryin) (Fig. S3.1) and agreed overall with previously published 

spectra (169). Different reduction methods of pyocyanin changed the fluorescence spectra 

and lifetime phasor results. The resulting pyocyanin population likely consisted of a mix of 

the radical and reduced form, but the FLIM phasor analysis suggests our FLIM setup 

primarily acquires the reduced form (Fig. S3.2).  

 Four of the seven species were captured by the FLIM DIVER acquisition parameters, 

which included an emission filter targeted towards NADH (400-500 nm): NADH, enzyme-

bound NADH, and reduced pyocyanin, and apo-pyoverdine (Fig. S3.1). The FLIM and HIM 

phasor components for the pure fluorescent species were determined, and pyocyanin had a 

distinct FLIM and HIM phasor signature (Fig. 3.2). To compare the detected fluorescent 

species across both methods, the HIM spectral window was truncated to 410-500 nm to 

exclude measurements of species not captured with our FLIM acquisition settings (Fig. S1).  

 

Comparison of HIM and FLIM unmixing results.  

 The spectral and fluorescence fractional contributions of NADH, enzyme-bound 

NADH, reduced pyocyanin, and apo-pyoverdine were determined at the surface of five-day 

old biofilms of WT P. aeruginosa PA14 and a phenazine knockout of the same strain (∆phz), 
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which does not synthesize any phenazines including pyocyanin (Fig. 3.3). To assess the 

robustness of the unmixing approaches across different systems, the P. aeruginosa strains 

were grown in two conditions, M9 succinate and artificial sputum medium. After imaging 

the aerobic cultures, the cultures were placed in an oxygen-limited environment for 2h, 

because we hypothesized that low oxygen would result in reduction of pyocyanin. WT P. 

aeruginosa PA14 shifted towards the reduced pyocyanin FLIM and HIM signal in hypoxic 

conditions,. This pyocyanin shift was not observed in the phenazine mutant cultures (Fig. 

3.4). The FLIM and HIM phasor visualizations indicate reduced pyocyanin contributed to a 

higher proportion of the fluorescent signal when WT PA14 was grown in ASM and 

incubated in low oxygen conditions.  

The HIM and FLIM data were unmixed to determine the fractional contribution of 

reduced pyocyanin, apo pyoverdine, NADH, and enzyme-bound NADH. The fluorescence 

lifetime of enzyme-bound NADH depends on local factors, including enzyme type and pH 

(180), and is not well-characterized in bacterial systems. The FLIM NADH phasor trajectory 

of P. aeruginosa cultures shifts in different media backgrounds and suggested NADH bound 

to certain enzymes may have a lifetime shorter than 3.4 ns (Fig. S3.5). We used 2.8 ns as 

the fluorescence lifetime representation for enzyme-bound NADH in P. aeruginosa (Fig. 

S3.3). Although ∆phz does not produce pyocyanin, both the FLIM and HIM unmixing 

methods still detected low fractional contributions from pyocyanin (Fig. 3.5).  

 Overall, HIM and FLIM unmixing did not correlate for the M9 succinate cultures and 

moderately correlated for ASM cultures (Fig. 3.5). Pyoverdine and enzyme-bound NADH 

have similar spectra and lifetimes, and our unmixing method could not accurately 
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distinguish these two fluorophores with the narrow spectral band of acquisition (Fig. 3.2, 

S3.1). The HIM and FLIM fractional contributions predictions of pyocyanin were similar in 

cultures with high pyocyanin production (WT PA14 in ASM) (Fig. 3.5B).  

 

Fluorescence lifetime and pyocyanin measurements throughout P. aeruginosa 

biofilms with the DIVER microscope. 

 The fluorescence intensity and lifetime were acquired throughout different depths 

of five-day old P. aeruginosa biofilms grown in artificial sputum medium using the DIVER 

(170, 171). Laser power was increased with deeper imaging in the sample to compensate 

for signal attenuation from scattering and absorption. The measured total fluorescence 

intensity was similar throughout the biofilm depths, suggesting effective excitation delivery 

(Fig. 3.6). Cell density decreased with biofilm depth, indicating more growth at the biofilm 

surface (Fig. 3.6). The FLIM phasor signal of masked cells or aggregates shifted with 

biofilm depth (Fig. 3.6, 3.7A). The biofilm surface FLIM signal was dominated by a longer 

lifetime species, and the sample phasor coordinates were near the coordinates of reduced 

pyocyanin. Worth nothing, this long lifetime signal was observed when a coverslip was 

placed on top of the biofilm sample. FLIM of the biofilm surface without a cover slip was 

acquired with an air objective, and indicated oxygen limitation was driving the formation of 

the long lifetime species believed to be reduced pyocyanin (data not shown). Lifetime 

unmixing of the biofilm samples (imaged with a coverslip) indicated higher contributions 

from reduced pyocyanin at the biofilm surface (Fig. 3.6, 3.7).  
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Discussion  

Oxygen is scarce in many environments, and in the context of chronic infections, 

hypoxia drives microbes to produce redox-active metabolites that can act as alternative 

electron acceptors but are also toxic and may contribute to disease progression. Bacterial 

biofilms have little oxygen beneath the surface. P. aeruginosa synthesizes and secretes 

redox-active pyocyanin to recycle electrons in low-oxygen (165). We sought to determine 

the redox state of P. aeruginosa-produced pyocyanin throughout biofilms, and developed a 

fluorescence imaging unmixing approach to calculate  reduced pyocyanin fluorescence 

contributions relative to other fluorescent metabolites.  

 

FLIM and HIM unmixing results varied for fluorophores.  

 FLIM phasor unmixing of the first harmonic was used to determine the contribution 

of four species - reduced pyocyanin, apo-pyoverdine, NADH, and enzyme-bound NADH - to 

fluorescent signals in P. aeruginosa biofilms (Fig. 3.2).  To validate the FLIM unmixing 

results which is an underdetermined system for four fluorophores, we implemented an 

orthogonal method with HIM phasor-based unmixing of two harmonics. By incorporating 

additional harmonics, the system is sufficiently constrained and can theoretically be solved 

with HIM unmixing. However, there was very little modulation of intensity in the emission 

acquisition window (410-500 nm). The HIM data was truncated for two reasons: (1) to 

directly compare predictions from the HIM and FLIM approaches and (2) to avoid 

introducing additional fluorescent species, such as FAD and other phenazines (169), and 

potentially confounding the HIM analyses (Fig. S3.1).  
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 The HIM and FLIM-predicted fractional contributions did not correlate overall (Fig. 

3.4-3.5). Pyoverdine and NADH FLIM predictions contradicted with that of HIM. FLIM 

predicted large contributions from pyoverdine, while HIM predicted larger contributions 

from NADH in the same samples. The spectral phasor positions of pyoverdine and free 

NADH are close, likely contributing to the discordance between HIM and FLIM predictions. 

In addition, the fluorescence lifetime of pyoverdine (4 ns) and enzyme-bound NADH 

(reported to range from 1.7-9 ns (176, 180)) could overlap depending on local conditions. 

In contrast, reduced pyocyanin had a distinct HIM spectral phasor position and FLIM 

phasor fingerprint with a long fluorescence lifetime (>10 ns) (Fig. 3.2). We proceeded with 

the FLIM unmixing method to determine if pyocyanin fractional contributions shift 

throughout P. aeruginosa biofilms. 

 

Reduced pyocyanin was localized at the biofilm surface in our system. 

 To recapitulate slower bacterial growth observed in infections (16, 181), colony 

biofilms were radially grown for five days in artificial sputum medium with soft agar. The 

radial center of the colony was imaged axially to capture the different depths in the oldest 

population of the biofilm. Reasoning that natural gradients would form with less oxygen 

exposure deeper in the biofilm, we initially hypothesized that P. aeruginosa would produce 

more pyocyanin in the hypoxic core of the biofilm (164, 165, 182). However, in our system, 

reduced pyocyanin dominated the FLIM signal at the surface of the biofilm (Fig. 3.6, 3.7), 

and the pyocyanin-dominant signal was only observed when imaging with a coverslip 

placed on top of the sample.  
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The highest density of P. aeruginosa growth was at the surface and was associated 

with the reduced pyocyanin FLIM signal (Fig. 3.6). After oxygen was limited by the 

introduction of a coverslip at the surface, it is likely dense bacterial populations utilized a 

pool of pyocyanin for electron recycling. Our biofilm pyocyanin model agrees with previous 

studies showing that population density controls phenazine biosynthesis (183, 184) and 

oxygen is required for pyocyanin biosynthesis (185). Although it may seem 

counterintuitive that oxygen is necessary to synthesize an alternative electron acceptor, 

pyocyanin has the highest affinity for oxygen out of other studied phenazines (166). In 

locally anoxic conditions, P. aeruginosa couples pyocyanin reduction with oxidation of 

glucose and pyruvate, which generates ATP and increases anaerobic survival (165, 186, 

187). The reduced pyocyanin is secreted and oxidized extracellularly (165, 182). A portion 

of the pyocyanin can be retained in the biofilms by P. aeruginosa-derived extracellular DNA 

that binds to phenazines (188, 189), distributing pyocyanin both inside and outside of the 

biofilm and enabling electron cycling. 

 

Limitations and future directions. 

The phasor approach has several benefits, including a clear visualization of the data 

and reliable deconvolution of the instrument response function (190). The phasor 

transform effectively applies a bandpass filter to the data, compressing the complete time-

domain (or wavelength-domain) signal into two numbers, the G and S components. The 

first harmonic contains the low frequency components of the signal, representing an 

approximation to the shape of the lifetime (or spectrum) trace with a single sine or cosine 
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function. The addition of higher harmonics further refines the shape of the signal. The 

approach decreases the influence of high-frequency noise, giving an advantage over direct 

least-squares unmixing approaches. 

 A consideration in the application of the simultaneous spectral-lifetime unmixing 

method is that the spectral range of acquisition must be nearly identical for the two 

measurements. For accurate unmixing, the spectral ranges need to have broad enough 

modulation in the pure species. If the spectral range is too narrow (as in our 

measurements), the difference in the shape between pure species is negligible.  

One of the challenges in unmixing the FLIM and HIM images using spectrum and 

lifetime simultaneously is that each pixel in the FLIM image must be aligned with the HIM 

image. With our instrument, the Zeiss LSM 880, acquisition of FLIM images was delayed by 

a couple minutes relative to spectral acquisition due to the need to switch to a different 

data acquisition software. During this time, bacteria in the sample can produce new 

metabolites.  

The unmixing method yields the fractional contributions of fluorophores in each 

pixel in an image, and its accuracy is dependent on the fluorophores used as the references. 

While several studies on bacterial FLIM have been conducted, the lifetime of NADH when 

bound to bacteria enzymes has not been well-characterized. We used 2.8 ns to represent all 

enzyme-bound NADH in our unmixing program, but the lifetime of NADH changes in 

different enzymes and local environments and poses a challenge to NADH FLIM studies 

(176, 180, 191).  
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Finally, the fractional contributions are proportional to the relative concentrations 

of various metabolites. With appropriate instrumentation and characterization of 

fluorophores, it is possible measure the absolute concentration of molecules (192). 

 

Conclusions. 

Here, we compared two orthogonal measurements to determine the presence and 

relative amount of reduced pyocyanin in P. aeruginosa biofilms. Although our 

implementation is far from perfect, it puts forward a framework to combine hyperspectral 

imaging and lifetime imaging and map out the concentrations of different fluorophores in a 

sample with high molecular specificity.   

 

Methods and Materials 

 

Chemicals and bacterial media.  

HPLC-grade pyocyanin was ordered from Sigma-Aldrich (P0046). 10 mM stocks 

were dissolved in 20% ethanol and stored at -20˚C. Artificial sputum and M9 minimal 

media with 40 mM succinate soft agar were used to grow P. aeruginosa biofilms. The 

recipes for both media types were modified from Gao et al. (100) to include 0.28% final 

agar concentration. To visualize biofilm colony growth over time, the agar was prepared in 

large petri dishes (150x15 mm).  
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Bacterial strains and growth.  

P. aeruginosa PA14 and the phenazine knockout phzA1-G1/A2-G2 were obtained 

from Dianne Newman’s lab at California Institute of Technology. For biofilm imaging, the 

bacteria were grown overnight on Todd-Hewitt agar, and individual colonies were 

inoculated into the center of the artificial sputum or M9 succinate soft agar plates. The 

biofilm colonies were grown aerobically at 37˚C for 5 days.  

 

Chemical reduction of 1-hydroxyphenazine and pyocyanin and electrochemical 

reduction of pyocyanin. 

 Five hundred micromolar stocks of pyocyanin were diluted in 1X MOPS buffer with 

concentration gradients of TCEP ranging from 0.1 mM to 125 mM (pH 7). A fresh stock of 

821 µM of pyocyanin was prepared in ammonium acetate 0.1M KCl MOPS buffered solution 

in and electrochemically reduced following the protocol developed by Wang and Newman 

(166). The electrochemical cell consisted of a glassy carbon working electrode, platinum 

wire counter electrode, and Ag/AgCl2 reference electrode. The voltage was set to -0.345V, 

and the reaction proceeded in an anaerobic chamber overnight until the current reached 

zero. For 1-hydroxyphenazine, 500 micromolar stocks were prepared and diluted in 

1XMOPS buffer with pH 7-buffered DTT as the reducing agent (193).  

 

Hyperspectral and fluorescence lifetime imaging on Zeiss LSM-880. 



 

82 

 

To characterize the emission spectra and fluorescence lifetime of NADH, FAD, 

pyoverdine, reduced pyocyanin, and reduced 1-hydroxyphenazine, solutions were 

transferred to a clean slide. The reduced pyocyanin and 1-hydroxyphenazine were 

prepared in a Coy anaerobic chamber and sealed with iSpacers to avoid oxygen exposure 

(https://www.sunjinlab.com/).  

WT PA14 and ∆phz biofilms grown in the artificial sputum and M9 succinate soft 

agar were cut with a sterile razor and placed onto a MATTEK dish (Part No: P35G-1.5-14-C) 

with the surface of the biofilm on the coverslip. To compare the impact of oxygen on the 

spectral and lifetime signal, the biofilm samples were (1) placed in a dish open to air and 

immediately imaged or (2) were placed in between two coverslips and sealed in the dish 

with tape for 2h at RT to promote oxygen consumption.  

The pure fluorophore solutions and biofilm surfaces were imaged on an inverted 

Zeiss LSM-880 with an ISS Spartan3 FLIMbox, BH HPM-100-40-Hybrid detector, and a 

Spectra Physics Mai Tai titanium sapphire laser. The fluorophores were excited with 2-

photon excitation at 740 nm and laser power ranging from 1-10 mW. For the hyperspectral 

imaging, emission ranging from 410-695 nm was collected with 9 nm step resolution over 

32 channels. One frame was collected per sample with a pixel dwell time of 4 µs. The 

spectra were analyzed on Zeiss Zen software, and .lsm files were exported for downstream 

unmixing steps. After collecting the spectra, fluorescence lifetime of the same sample was 

obtained by switching the light path to the FLIMbox detectors. The sample was excited with 

the same wavelength and laser power as the spectral images. The emission was filtered 

with a 495 nm LP dichroic and Semrock 442/46 nm BrightLine single-band bandpass filter 
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(CFW-BP01-Clin-25). The fluorescence lifetime data was acquired using simFCS software 

v4. To obtain enough fluorescence lifetime signal for the downstream analysis, 10-30 

frames were collected per sample, with a frame size of 256x256 pixels and pixel dwell time 

of 32 µs.  

 

Z-stack fluorescence lifetime of WT PA14 biofilms on the DIVER microscope.  

Intact WT P. aeruginosa PA14 biofilms were grown in ASM for five days and 

prepared for z-stack imaging by adding a large coverslip on top of the surface of the biofilm, 

and then imaged with a 0.8 NA 40x Water objective. Z-stacks were obtained on a custom-

made microscope at the Laboratory for Fluorescence Dynamics, the DIVER (Deep Imaging 

Via Enhanced Recovery) (170, 171, 194). The DIVER is a Nikon Eclipse TE2000-U 

microscope equipped with a wide-area 18x18 mm photomultiplier tube (PMT) 

(Hamamatsu R7600P-300) which enhances photon collection. Samples were excited with 

2-photon excitation at 740 nm using a Tsunami Spectra-Physics Ti:Sapphire laser (80 

MHz). The emission was filtered with a Schott BG-39 filter and NADH-targeted optical 

bandpass filter (400-500 nm). The fluorescence lifetime data was collected with SimFCS v4 

software. Z-stacks were automatically acquired every 100 µm from the surface of the 

biofilm to 1 mm deep. The laser power was increased with an exponential function for 

deeper sample imaging, with the power ranging from 1-58 mM. 

 

Fluorescence lifetime analysis and visualization.  
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The fluorescence lifetime data was analyzed in SimFCS v4 software using the phasor 

approach (174). The phasor approach uses a cosine-sine discrete fast Fourier transform to 

transform raw fluorescence lifetime traces onto a two-coordinate polar phasor plot. The 

resulting G and S coordinates are the cosine and sine components of the transform for a 

given frequency (80 MHz). For the FLIM phasor analyses, images were processed following 

Ranjit et al (190). The images were first masked using fluorescence intensity thresholds to 

exclude pixels with background signal. The resulting images contain the fluorescence 

lifetime phasor coordinates for each pixel. For the single cell or cluster analyses, individual 

cells or group of cells were selected as regions of interest, and the average g and s values 

were calculated.  

Unmixing of fluorescence lifetime and hyperspectral data. 

To represent the fluorescence lifetime data in phasor space, the intensity trace is 

Fourier transformed to obtain the s and g coordinates at a harmonic n, 
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Similarly, the spectrum is transformed with the equations 
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The pure fluorophores predicted to be present in the sample are characterized by spectral 

and lifetime imaging, creating a basis set of k - pure components in the lifetime and spectral 

phasor space, at each harmonic n:  

 (�), G(�) = {(���, ���), . . . (��% , ��&), (���, ���), . . . (��&, ��&)}( 

The measured signal in each pixel of the image is given by  

 signal (�), )signal(�) = {(��signal, ��signal), (��signal, ��signal)}( 

In the absence of FRET or other non-linear effects, and if the spectral window for FLIM 

acquisition is the same as the spectral window for hyperspectral acquisition, the measured 

signal is modeled as the sum of the each of the components of the basis set, multiplied by 

the fractional contribution  fj , (193),  

 *+,-.(/, �) = ∑  1,(/1&12�  =  /���� + ⋯ /&��& + /���� + ⋯ /&��& 

)*+,-.(/, �) = ∑ )1,(/1&12� = /���� + ⋯ /&��& + /���� + ⋯ /&��& 

The fractional contributions best describing the signal are found by least squares global 

optimization: 

 /5 = 67�89�:   ; ∑ < *+,-.(/, �) −  signal(�)=�
( + ∑ <)*+,-.(/, �) − )signal(�)=�

( > 

With the constraint that the sum of all fractions f is 1, 
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= 1 

The optimization routine used in this work is simplicial homology global optimization 

(196). The number of harmonics that can be used in the unmixing algorithm is determined 

by the resolution of the spectral or lifetime instrument. If too many harmonics are used, the 

data becomes too noisy and the model breaks down. The maximum number of harmonics 

that can be used is limited by the Nyquist frequency of the instrument as well as the signal 

modulation. If there is no modulation in the signal, the phasor coordinates become smaller 

than the variance introduced by the noise, and unmixing becomes impossible. 

The unmixing program is open-source and available at: 

https://github.com/tgallagh/PhaseUnmix. 
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Figure 3.1: The phasor families are a powerful approach for analyzing and 
visualizing fluorescence data and facilitate calculations of relative abundances of 
fluorescent species in samples. (A) A simplified representation of the transformation of 
fluorescence exponential decays (left) into the fluorescence lifetime phasor (right). A 
Fourier transform is used to calculate the modulation (M) and phase shift (A) relative to 
the laser pulse excitation source. M and A are represented graphically for two pure 
fluorophores (orange dash line, blue dash-dot line) and a sample containing a mix of the 
two species (green solid line). The phasor G and S coordinates are the cosine and sine 
components of the Fourier transforms. Species closer to the origin of the phasor have long 
lifetimes, whereas species on the right corner of the phasor have short lifetimes. The 
fractional contribution of fluorescent species 1 (orange square) and species 2 (blue circle) 
to a sample (green diamond) can be determined if the lifetime of the pure species is known. 
(B) Example emission spectra from three fluorescent samples, including pure species and a 
sample with a mix of the two species (middle spectrum). A Fourier transform of the spectra 
gives A, which represents the spectrum width, and M, which represents the spectral shift 
relative to the first wavelength measurement (�). Species closer to the inner circle have 
broader emission spectra. 
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Figure 3.2: (A) Fluorescence lifetime and (B) spectral phasor of pure fluorescent species 
(first harmonics). For the fluorescence lifetime phasor, the S and G components were 
calculated for a lifetime of 2.8 ns and used as the reference for enzyme-bound NADH (Fig. 
S3.2).  For the spectral phasor, the emission spectra were obtained over 9 channels from 
410-486 nm.  
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Figure 3.3: Fluorescence lifetime and spectral phasor of WT P. aeruginosa PA14 and the 
null phenazine mutant (∆phz) incubated in aerobic and or 2h hypoxic conditions in M9 
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succinate and artificial sputum medium. The displayed data is from one replicate 
representative of the biological replicates (N=2-3). Images were acquired on the Zeiss LSM 
880 with a 2-photon excitation of 740 nm. HIM emission window: 410-500 nm with 9 nm 
steps. FLIM emission filter window: 410-470 nm.  
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Figure 3.4. WT P. aeruginosa and null phenazine mutant (∆phz) grown in aerobic and low 
oxygen conditions in M9 succinate and artificial sputum medium. The fluorescence 
intensity of the images are depicted in the 1st columns. The next four columns represent the 
predicted fractional contributions of four fluorophores (free NADH, enzyme-bound NADH, 
reduced pyocyanin, and apo-pyoverdine) from lifetime and spectral phasor data. Scale 
bar=20 µm. The displayed data is from one replicate representative of the biological 
replicates (N=2-3). Images were acquired on the Zeiss LSM 880 with a 2-photon excitation 
of 740 nm. HIM emission window: 410-500 nm with 9 nm steps. FLIM emission filter 
window: 410-470 nm. ASM= artificial sputum medium. f-NADH = free NADH. b-NADH = 
bound NADH.  

  



 

92 

 

 

 

Figure 3.5. (A) The spectral and fluorescence lifetime fractional contribution predictions 

do not correlate for M9 succinate cultures (r=-0.22, df = 30, p-value = 0.2) and moderately 

correlate (r=0.6, df = 30, p-value < 0.05) for artificial sputum medium cultures. (B) In 

cultures with high pyocyanin production (WT and WT hypoxic in ASM), the lifetime and 

spectral predicted fractional contributions of pyocyanin were similar. 
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Figure 3.6. Example of WT PA14 biofilms grown in ASM. Fluorescence intensity of the 

biofilm at different depths - surface or 0 µm to 500 µm deep (column 1). The fluorescence 

lifetime color map projections, where cooler colors are indicative of longer lifetimes 

(column 2). The predicted fractional contributions of the four fluorophores indicates high 

abundance of reduced pyocyanin at the surface relative to the other species. Scale bar = 20 

µM. Z-stacks acquired on the DIVER with two-photon excitation of 740 nm. Emission filter: 

400-500 nm. 
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Figure 3.7. (A) Fluorescence lifetime phasor of WT PA14 biofilms grown in ASM at 

different depths (0=surface). The individual points represent the mean G and S coordinates 

for a single cell or cluster, where the background intensity is masked out. All of the biofilms 

had bacterial growth up to 500 µM deep, with one replicate imaged down to 1 mm. (B) 

Pyocyanin fractional contributions at different depths in the biofilm. N=5 biofilm plates.  
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Fig. S3.1 (A) Two-photon emission spectra, normalized by the max peak intensity, of some 

of the fluorescent metabolites produced by P. aeruginosa. The Zeiss LSM-880 FLIM 

emission filter is shaded in gray. The DIVER FLIM emission filter is wider: 400-500 nm. (B) 

Emission spectrum of chemically reduced 1-hydroxy-phenazine and pyocyanin (0.5 mM of 

phenazine with 5 mM of reducing agent). (C) Emission spectra of reduced pyocyanin (0.5 

mM pyocyanin with 0.5 mM TCEP), oxidized pyocyanin (0.5 mM), and background from 

buffer (TCEP). Oxidized pyocyanin had negligible fluorescent with two-photon excitation at 

740 nm. 
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Fig. S3.2 (A) The emission spectra of pyocyanin shifts to the right with higher 

concentrations of reducing agent (TCEP). The samples were prepared in a 96-well plate 

with 0.5 mM of pyocyanin and titrations of TCEP in an anaerobic chamber. The spectra 

were acquired using 1-photon fluorescence excitation (370 nm) on a fluorometer. (B) The 

FLIM phasor position of pyocyanin (0.5 mM) varies with different concentrations of TCEP 

reducing agent. (C) FLIM phasor positions of electrochemically-reduced pyocyanin (0.821 

mM) compared to 1 mM TCEP reduced pyocyanin (0.5 mM). FLIM data in B and C were 
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acquired with 2-photon fluorescence excitation at 740 nm and an emission filter of 442/46 

nm on the LSM 880. 
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Fig. S3.3. The fluorescence lifetime of P. aeruginosa grown in aerobic M9 glucose for 24h, 
acquired on the DIVER with two-photon fluoresce excitation at 740 nm and an emission 
filter of 400-500 nm. 
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Supplemental Materials: FLIM of oxygen and cross-feeding experiments 

*** The below materials are modified from presentations given at Pacific AAAS (2018), Lake 

Arrowhead Microbial Genomics (2018), and American Society for Microbiology Microbe 2019! 

The complete experimental design and stable isotope metabolomics results are described in 

Chapter 1 (100).  

 

Abstract: 

The airways of people with Cystic Fibrosis become chronically infected with slow-

growing, antibiotic-resistant opportunistic pathogens such as Pseudomonas aeruginosa. At the 

same time, anaerobes associated with the oral cavities have been identified in patients’ airway 

secretions, yet these bacteria can be overlooked in a clinical setting. While oral anaerobes are 

rarely destructive in healthy individuals with effective airway clearance, they can become 

dangerous in airway infections. For example, oral microbes produce volatile fermentation 

products that are both toxic to the patient and affect the physiology of opportunistic pathogens. 

One major environmental factor that drives bacterial fermentation and respiration is oxygen. 

Although CF sputum contains steep oxygen gradients, most CF microbiology studies disregard 

the effect of hypoxia on microbial interactions and physiology. We hypothesized that oxygen 

impacts the metabolic interactions between two CF isolates with different metabolic capabilities: 

P. aeruginosa and the oral facultative anaerobe, Rothia mucilaginosa. Using stable-isotope 

metabolomics, we found that P. aeruginosa utilized labeled substrates derived from R. 

mucilaginosa to generate different primary metabolites in low oxygen. Furthermore, 

fluorescence lifetime imaging of NADH was used to track changes in sub-cellular metabolism of 
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P. aeruginosa and indicated a shift in bacterial central metabolism in different oxygen levels and 

during cross-feeding interactions. Taken together, our results indicated oxygen was the biggest 

driver of P. aeruginosa physiology and affects how P. aeruginosa utilizes R. mucilaginosa-

derived metabolites. This work was supported as a pilot project from the UC Davis West Coast 

Metabolomics Center funded by NIH DK097154, and T.G. is supported through the BEST 

IGERT program funded by the National Science Foundation DGE-1144901. 

Main: 

In order to determine the impact of oxygen on cross-feeding interactions, we grew a 

cystic fibrosis isolate P. aeruginosa FLR01 (43) in different liquid media types (M9 glucose, 

pyruvate, and succinate and ASM) with or without Rothia-derived supernatant in hypoxic or 

aerobic conditions. After 24, 72, or 120h incubation, bacteria were transferred to a slide and 

suspended in 1% warm agar. FLIM was acquired with the DIVER using two-photon 

fluorescence excitation and an NADH-targeted emission filter (400-500 nm), and the mean 

FLIM phasor G and S coordinates were calculated for single, masked cells (Fig. S3.4-S3.5). We 

found that for the earliest timepoint, most of the variation the FLIM signals arose from oxygen 

(Table S3.1). Over time, more of the variation was explained by single cells, and not the 

experimental conditions (Fig. S3.6, Table S3.1). In other experiments, our group later 

determined that the hypoxic chamber itself was affecting bacterial physiology (based on 

phenotypic assays performed in our chamber set to ambient oxygen). These chamber effects 

motivated us to start studying the oxygen gradients that naturally form in P. aeruginosa biofilms 

in Chapter 3! While the oxygen comparisons are imperfect, our results demonstrated that FLIM 

is a powerful tool for assessing metabolic heterogeneity.  
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Figure S3.4. Examples of Pseudomonas lifetime images. (a) Fluorescence intensity of NADH 

and other endogenous fluorophores (2-Photon Excitation = 740 nm) from a CF strain (FLR01). 

(b) Color map of lifetime g and s coordinates onto the cells from phasor in panel c.  

(c) Distribution of lifetimes in both cells. Each dot represents 1 pixel. 
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Fig. S3.5. Fluorescence lifetime of NADH and other endogenous fluorophores in Pseudomonas 

grown in ASM or minimal media (2-Photon Excitation = 740 nm). Each dot represents the mean 

lifetime coordinates of one cell. 
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Fig. S3.6. Boxplot of fluorescence lifetime g-coordinate indicates increasing population 
heterogeneity for hypoxic and older cultures. 
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Table S3.1: PerMANOVA of lifetime data (g and s coordinates) suggests oxygen drives 
changes in lifetime in earlier cultures. In biofilms (120h), most of the variation is likely 
explained by cellular heterogeneity. 

 

 

 

24h: DF F R2 p 

Media 3 1.6 0.02 0.15 

Oxygen 1 74.8 0.05 0.001 

Sup 1 9.9 0.38 0.001 

 

 

120h: 
DF F R2 p 

Media 3 2.7 0.07 0.027 

Oxygen 1 12 0.10 0.001 

Sup 1 1.2 0.01 0.254 
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Chapter 4: 

 

LC-MS detection of antibiotic agents in sputum from persons with cystic 

fibrosis 

 

Authors: Tara Gallagher, Stefan Riedel, Joseph Kapcia, Lindsay J. Caverly, Lisa Carmody, 

Linda M. Kalikin, Junnan Lu, Joann Phan, Matthew Gargus, Miki Kagawa, Simon W. Leemans, 

Jason A. Rothman, Felix Grun, John J. LiPuma, Katrine L. Whiteson 

 

ABSTRACT 

Antibiotic therapy is expected to impact host microbial communities considerably, 

yet many studies focused on microbiome and health are often confounded by limited 

information about antibiotic exposure. Given that antibiotics have diverse pharmacokinetic 

and antimicrobial properties, investigating the type and concentration of these agents in 

specific host specimens would provide much needed insight into their impact on the 

microbes therein. Here, we developed liquid chromatography mass spectrometry (LC-MS) 

methods to detect 18 antibiotic agents in sputum from persons with cystic fibrosis. 

Antibiotic spike-in control samples were used to compare three liquid extraction methods 

on the Waters Acquity Quattro Premier XE. Extraction with dithiothreitol captured the 

most antibiotics and was used to detect antibiotics in sputum samples from 11 people with 

cystic fibrosis, with results being compared to the individuals’ self-reported antibiotic use. 

For the sputum samples, two LC-MS assays were used; the Quattro Premier detected 

nanomolar or micromolar concentrations of 16 antibiotics, whereas the Xevo TQ-XS 
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detected all 18 antibiotics, most at sub-nanomolar levels. In 71 of the 158 tested sputum 

samples, at least one antibiotic that was not reported by the subject was detected by both 

LC-MS methods, a discordance largely explained by the thrice weekly administration and 

long half-life of azithromycin. For ~37% of samples, antibiotics reported as being taken by 

the individual were not detected by either instrument. Our results provide an approach for 

detecting a variety of antibiotics at the site of infection, thereby providing a means to 

include antibiotic usage data into microbiome studies. 

 

INTRODUCTION 

Antibiotic usage is expected to alter host microbial composition in the treatment of 

infectious diseases (62, 197). It is, however, challenging to account for the impact of 

antibiotics on microbial community composition during the course of therapy without 

determining which antibiotics microbes encounter at the site of infection or elsewhere in 

the host. Obtaining reliable information to account for antibiotic use is particularly 

challenging in persons with chronic infections where antibiotic therapy is often 

intermittent and adherence to treatment recommendations is uncertain (65, 99). The levels 

of antibiotics at the actual infection-site are often unknown, as most pharmacokinetic 

studies measure antibiotics in serum (Table S4.1) (66–87) with a very few assessing 

antibiotic levels at the infection site (74, 78, 88, 89). 

 

Insofar as bacterial survival and gene expression are affected by antibiotic type and 

the local antibiotic concentration (90), there is a need for quantitative and objective 
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methods to account for antibiotics in assessing the dynamics of microbial communities in 

infectious diseases. To quantify antibiotics in clinical samples, we developed two low-cost, 

high throughput Ultra Performance Liquid Chromatography tandem Mass Spectrometry 

(UPLC-MS/MS) methods. We investigated the utility of these methods by examining 

sputum samples from persons with cystic fibrosis (CF), a condition where incomplete 

antibiotic use data contributes to confounding assessment of treatment outcomes (57, 59, 

62, 64, 93, 95–98, 198). Individuals with CF experience chronic polymicrobial airway 

infections (59, 62, 94–96, 98, 199–203), and intensive antibiotic use is often poorly 

documented in the medical record. We assessed our results in the context of self-reporting 

of antibiotic use by these individuals. 

 

RESULTS 

Detection of antibiotics on the Waters Quattro Premier XE and Xevo TQ-XS UPLC-

MS/MS. We compared two UPLC-MS/MS instruments for their ability to separate and 

quantitate 18 antibiotics commonly prescribed to individuals with CF (Table 4.1). Run 

conditions were first optimized on a pool of 18 pharmaceutical-grade antibiotics on the 

Waters Quattro Premier XE UPLC-MS/MS at the University of California, Irvine Mass 

Spectrometry Facility. Using a water:methanol gradient with 2 mM ammonium acetate and 

0.1% acetic acid as the mobile phase (204), 16 of 18 antibiotics separated 

chromatographically with peak areas at least 100 times higher than background (Figure 

4.1). Water:methanol with 2 mM ammonium acetate and 0.1% acetic acid produced a more 

robust signal for the majority of antibiotics compared to a water:acetonitrile gradient with 
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0.2 % acetic acid, another common mobile phase for hydrophilic compounds (Table S4.2). 

However, neither vancomycin nor colistin were consistently detected with either mobile 

phase solvent on the Quattro Premier due to low response from the protonated molecular 

ion (M+H). The lower limits of detection (LODs) of the external standards ranged from 5 

nM (levofloxacin) to 29 µM (cefepime) (Table S4.3).  

 

Antibiotic standards were also optimized on the Xevo TQ-XS at the Waters 

Corporation Demo Laboratory (Beverly, MA). Colistin and vancomycin parameters were 

manually optimized on the Xevo by scanning and identifying multiple protonated forms 

(M+2H).While the Xevo parameters were different than the Quattro Premier and 

comparisons in the LODs between the two instruments are imperfect, the Xevo LODs were 

on average 10,000 fold lower than the Quattro Premier. The Xevo LODs ranged from 5 pM 

(amoxicillin, ampicillin, azithromycin, piperacillin, sulfamethoxazole) to 5 nM (colistin) 

(Table S3). Multiple reaction monitoring (MRM) parameters for both instruments are listed 

in Table 4.1. 

 

Comparison of antibiotic extraction protocols for detection on the Quattro Premier.  

We next compared three extraction solvents for efficiency in recovering antibiotics 

from sputum. Artificial sputum medium (ASM) was used as the matrix because antibiotic-

free sputum was unavailable. Most individuals who expectorate sputum regularly take 

antibiotics. ASM was spiked with a pool of 16 antibiotics (excluding colistin and 

vancomycin). Using a water:methanol gradient mobile phase on the Quattro Premier, 1% 
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dithiothreitol (DTT) as the extraction solvent (204) yielded the most accurate recovered 

concentrations for the majority of the 16 antibiotics compared to methanol or 

acetonitrile/acetic acid mix solvents (Figure 4.3A). Coefficients of variation (COVs) were < 

30% for 11 of 16 antibiotics spiked-in at 10 µM or less (amoxicillin, ampicillin, 

azithromycin, ceftazidime, ciprofloxacin, levofloxacin, linezolid, piperacillin, 

sulfamethoxazole, tobramycin, trimethoprim) (Figure 4.3B, Table 4.2). All of the 

antibiotics tested, except for amikacin, aztreonam, cefepime, ceftriaxone, and meropenem, 

were reproducibly measured with the Quattro Premier method (Figure 4.3B, Table 4.2). 

The apparent limit of detection (ALOD) values from the ASM recovery experiments were 

calculated (Table S4.4) and used as the lower threshold for the Quattro Premier detection 

of antibiotics from sputum samples to mitigate detection of false positives. 

 

Detection of antibiotics in sputum samples. Optimized antibiotic extraction and 

chromatography conditions were initially tested on three replicate aliquots from each of 

three CF sputum samples on the Quattro Premier (Figure 4.4). Azithromycin, 

trimethoprim-sulfamethoxazole and tobramycin were reported as taken by the source 

subject on the days these samples were collected. The COVs for azithromycin and 

trimethoprim were at or below 30% for the tested samples. Similar to the ASM 

experiments, the COV for trimethoprim (30%) was lower than that of sulfamethoxazole 

(48%), suggesting trimethoprim quantification is more accurate than sulfamethoxazole. 

Tobramycin was detected by the Quattro Premier in one of three aliquots. The detected 

concentration (0.091 µM) was near the Quattro Premier ALOD (0.064 µM) (Table S4.4). In 
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addition, ceftriaxone was detected in two replicate aliquots from two samples. Although 

ceftriaxone was not provided as an option on the daily self-reporting survey, it may be 

prescribed to individuals with CF.  

 

The optimized LC-MS antibiotic assays were then tested on 171 sputum samples 

from 11 subjects with CF. Antibiotic use was reported by subjects on the same day as 

sample collection for 158 of the sputum samples. Subjects took 11 of 18 antibiotics 

detected by the LC-MS assays by oral, inhaled or intravenous (IV) routes (azithromycin, 

aztreonam, ceftazidime, ciprofloxacin, colistin, levofloxacin, linezolid, trimethoprim-

sulfamethoxazole, tobramycin, and vancomycin) (Figure 4.5, Table 4.2). Oral 

azithromycin was the most common antibiotic reported as taken (10 subjects, 75 samples), 

followed by inhaled aztreonam (8 subjects, 53 samples) and oral ciprofloxacin (5 subjects, 

23 samples) (Figure 4.5). The most common combination taken on the same day was oral 

azithromycin and inhaled aztreonam (7 subjects, 22 samples) (Figure S1). Of the remaining 

seven antibiotics in the LC-MS assay, ampicillin and ceftriaxone were not a survey option 

but were included because these antibiotics could be prescribed to individuals with CF.  

 

To reduce technical variability in our extraction method, all 171 samples were 

processed and run in one batch (total run time of 23.5 hours, including washes). As a 

technical quality control (QC), a pool of the 18 antibiotics was run every 57 samples. The 

intensity of the QC pools declined 50% on average by the end of the Quattro Premier run, 

and the intensity of the internal standards in samples also trended downwards (Figure 



 

111 

 

S4.2). The reduction in intensity could be explained by contamination of the column with 

protein, even though a centrifugation step was used to partially remove protein prior to 

running samples. In order to increase assay throughput, a more thorough protein-removal 

step, such as size-exclusion filtration, was excluded. The levels of protein post-extraction 

were high (mean=0.50 mg/mL, N=5 sputum samples) (Figure S4.2B). After completing the 

sample run on the Quattro Premier at the University of California, Irvine Mass 

Spectrometry Facility, the leftover material was shipped to Waters Corporation (Beverly, 

MA) to detect antibiotics on the Xevo TQ-XS. The Xevo run did not have a drop in the 

internal standard response over time, likely due to lower injection volume and less protein 

input on the column (0.25 mg versus 5 mg per sample) (Figure S4.2C).  

 

LC-MS concordance with subject self-reported usage.  

To assess the performance of the LC-MS platforms, we compared the results of the 

sputum assays with source subjects’ self-reported antibiotic usage. For each antibiotic, we 

calculated sensitivity, specificity, positive predictive value and negative predictive value 

(using self-report as the gold standard) for both platforms (Table 4.3). Among the 10 

antibiotic treatments reported as taken by the subjects, we analyzed trimethoprim and 

sulfamethoxazole separately, in addition to inhaled and IV tobramycin and aztreonam.  

 

For both the Quattro Premier and Xevo, inhaled tobramycin had the lowest sensitivity 

(detected in 0/20 samples). Intravenous aztreonam and oral levofloxacin had the highest 

sensitivity (100%) but the sensitivity is likely inflated due to low number of samples 
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(Table 4.3). The Quattro Premier and Xevo had similar sensitivities for azithromycin, 

ciprofloxacin, levofloxacin, sulfamethoxazole, IV tobramycin, and trimethoprim. The Xevo 

was able to detect colistin (1/2) and vancomycin (6/6), whereas both of these antibiotics 

were not detectable with the Quattro Premier method. The Xevo also had higher sensitivity 

rates than the Quattro Premier for ceftazidime and linezolid, although both of these 

antibiotics were reported in only 6 and 2 samples, respectively. In contrast, the Quattro 

Premier had higher sensitivity for IV aztreonam than the Xevo. The Quattro Premier and 

Xevo specificities for nine of the antibiotics were 100%, the exception being azithromycin, 

which had specificities of 16% and 13%, respectively.  

 

The Xevo detection of antibiotic concentrations were overall lower than that of the Quattro 

Premier, likely due to declining stability of the antibiotics while shipping the extracted 

material to the Xevo lab (Figure 4.6). Specifically, azithromycin and ciprofloxacin had 

statistically significant lower concentrations when the sample was run on the Xevo (paired 

Wilcoxon rank sum test P<0.05; azithromycin Quattro Premier mean=288 µM, 

azithromycin Xevo mean=43 µM, V = 9591; ciprofloxacin Quattro Premier mean=6.3 µM, 

ciprofloxacin Xevo mean= 4.8 µM, V=197). In addition, the Quattro Premier method 

detected aztreonam and tobramycin in more samples than the Xevo (N=9, 2). Antibiotics in 

several samples were detected only by the Xevo, including azithromycin (N=2), ceftazidime 

(N=1), and trimethoprim (N=1). In addition, the Xevo detected colistin (N=1) and 

vancomycin (N=1), antibiotics that were not measured with the Quattro Premier method 

(Tables 4.3, S4.4). 
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Detection of antibiotics on days without self-reported usage. 

The Quattro Premier and Xevo both detected antibiotics reported as not taken on the day of 

sample collection. The percent of samples containing at least one unreported antibiotic was 

approximately 46% (72/158) for both LC-MS approaches. The top antibiotics detected with 

LC-MS but reported as not taken on that specific sampling day were: azithromycin (Quattro 

Premier N=70; Xevo N=72) and levofloxacin (Quattro Premier N=1; Xevo N=1) (Figure 6; 

Table 3). In all of the samples where azithromycin was detected, the subjects reported 

taking azithromycin in the last 8 days prior to sample collection. Levofloxacin was detected 

by both methods in one sample (Figure 4.6, Table 4.3).  

 

The Quattro Premier alone also detected piperacillin in one sample (Figures 4.6, 

S4.3); ceftriaxone in five sputum samples; and ampicillin in one sample (Figures 4.4, 4.6). 

Ceftriaxone and ampicillin were not included as an option on the antibiotic usage survey. 

Electronic medical records indicate the subjects were not prescribed ceftriaxone or 

ampicillin around the time of sample collection and suggests these antibiotics were false-

positives. 

 

We wanted to determine if detection of unreported antibiotics correlated with 

subject symptom score, with the reasoning that subjects may take additional antibiotics 

during periods of worsening symptoms. However, samples with detected antibiotics did 
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not correlate with symptom score (Figure S4.3A) (Pearson correlation. Quattro Premier: 

t=0.78, df=205, P=0.44, r=0.05. Xevo: t =-0.19, df =210, P=0.85, r=-0.01).  

 

Impact of antibiotic half-life, storage condition, and route of delivery. 

The antibiotics with the lowest incidence of detection were inhaled tobramycin and 

inhaled aztreonam which had sensitivities of 0-36% (Table 4.3). It is unlikely that 

instrument limitation reduced the detection rate for most of the antibiotics. The LODs from 

the Xevo (0.005-5 nM) did not significantly correlate with the agreement rate, and the 

Quattro Premier LODs were weakly, but not significantly, negatively correlated with 

agreement rate (Figure S4.3B) (Pearson correlation. Xevo: t=0.75, df=9, P=0.47, r=0.24. 

Quattro Premier: t=-1.6, df=7, P=0.14, r=-0.53.). The one antibiotic potentially impacted by 

instrumentation limits is tobramycin, which had the worst detection rate for the Quattro 

Premier (90 nM) and second worst for the Xevo (0.1 nM) (Table S4.3). In addition, 

instances of antibiotics being undetected by the LC-MS method were not due to the number 

of days sputum samples were stored at 4˚C at subjects’ homes (Figure S4.3C) (Pearson 

correlation. Acquity: t=1.6, df=284,  P=0.1. Xevo: t=0.95, df=285, P=0.343).  

 

Undetected antibiotics could be due to inadequate delivery to the airways or 

clearing of the antibiotic by the time of sampling as subjects reported usage within a 24h 

window of collection. In support of this antibiotics with shorter half-lives, as determined 

from cystic fibrosis pharmacokinetic studies of serum (Table S1), were less likely to be 

detected (Figure S3D) (Pearson’s correlation. Quattro Premier: t =-9.8, df =262, P<0.05, r=-
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0.51. Xevo: t =-13.6, df = 263, P< 0.05, r=-0.64). Aztreonam was the second most undetected 

antibiotic and has a short half-life (70, 71) (Table 4.3).  

 

Two of the 11 antibiotics were taken by subjects through inhaled or IV routes. IV-

administered tobramycin was detected more often by the LC-MS than inhaled tobramycin 

(Table 4.3). A similar trend was seen with aztreonam, although there were not enough IV-

administered samples to confirm this statistically.  

 

DISCUSSION 

 

Although antibiotics are expected to be drivers for shaping the human microbiome, 

studies of human microbial ecology rarely account for the effect of antibiotics on changes in 

microbial community composition. An obstacle to a better understanding of the impact of 

antibiotics in this regard is the difficulty inherent in reliably ascertaining antibiotic usage, 

particularly in the context of prolonged or chronic therapy, and determining antibiotic 

presence in human tissues of interest. With respect to  studies of the airway microbiome in 

persons with CF, antibiotic therapy is often not taken into account at all or is derived from 

prescribing information gleaned from the medical record  (57, 59, 62, 64, 93–98), which is 

recognized as marginally reliable (65, 99). We therefore sought to investigate the utility of 

LC-MS to objectively determine the presence of antibiotics, which could, in turn, be taken 
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into account in analyses of microbial community dynamics in studies of the CF airway 

microbiome.   

 

LC-MS performance and extraction efficiencies are antibiotic-dependent.  

We explored the utility of two LC-MS methods and observed that these differed in 

terms of reliability in detecting the antibiotics included in our study. The Quattro Premier 

method detected levofloxacin and meropenem with the highest signals, while the Xevo 

assay performed best in the detection of ampicillin and sulfamethoxazole. Both 

instruments performed poorly in the detection of cefepime and ceftazidime, likely due to 

low-binding of these hydrophilic cephalosporins to the reverse-phase column (Table S4.3). 

The extraction efficiencies from ASM (represented by the ALOD) correlated with the LOD of 

the external standards. However, some of the antibiotics with low external standard 

detection limits had poor extraction efficiencies, including meropenem (Table S4.4, Figure 

4.3A). This may have been due to the use of ASM which contains major sputum 

components, including extracellular DNA, ferritin, chloride ions, sugars, and mucin sourced 

from porcine stomach. Our extraction protocol did not precipitate total protein content out 

of the sample, which could have reduced the extraction of antibiotics that interact with 

mucin or other proteins. On the other hand, the use of ASM over sputum could have inflated 

extraction efficiency for certain antibiotics, since ASM does not contain immune cells. 

Azithromycin is known to accumulate in polymorphonuclear leukocytes, which likely 

impacts its delivery to the airways and decreases extraction efficiency from  sputum (205). 
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Persistence of antibiotics with long half-lives.  

We a priori hypothesized that antibiotics detected in sputum but reported as not 

taken would be associated with subject symptom scores, because persons with CF may take 

non-prescribed antibiotics when experiencing worsening symptoms (65, 206). However, 

the LC-MS data did not support this hypothesis, as unreported antibiotics were not 

correlated with subject symptom scores (Figure S4.3A). Oral antibiotics taken by subjects, 

including levofloxacin, trimethoprim-sulfamethoxazole, ciprofloxacin, and azithromycin, 

were detected in sputum around the time of reported usage except for a few examples. 

Indeed, discordance between self-reporting surveys and LC-MS data was primarily due to 

azithromycin detected in a sample collected one or two days after the subject reported 

taking oral azithromycin. The common dosage for azithromycin for people with CF is an 

oral tablet three times a week (207, 208). While most instances of discordance were due to 

persistence of azithromycin a couple of days after taking the antibiotic, some samples 

contained azithromycin 7-8 days after a subject last reported taking it. Azithromycin has 

the longest reported half-life of the 18 antibiotics (Table S4.1) and has been reported to 

persist in CF sputum days after administration (209). The persistence of azithromycin can 

be attributed to its high tissue penetration, accumulation in phagocytes, and lack of 

metabolism by the liver (205, 210).  

 

Undetected antibiotics could reflect ineffective concentrations throughout the 

infection-site.  
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A high proportion of antibiotics, particularly inhaled aztreonam and tobramycin, 

were reported as taken by the subject but not detected by either method (Table 4.3). We 

first wanted to determine if sample storage conditions impacted the detection rate, because 

the stability of antibiotics decreases (211), and the metabolite profiles in CF sputum change 

significantly, from storage at 4˚C (152). However, the number of days a sample was stored 

at 4˚C was not correlated with lack of detection, suggesting adequate sample storage 

conditions (Figure S4.3A). Instead, undetected antibiotics were inversely correlated with 

the antibiotic pharmacokinetic half-lives. In support of this, aztreonam has a short half-life 

in serum of 2h for inhaled and 1.5h for IV (70, 71); however, tobramycin has a longer half-

life of 13h for inhaled and 2.2h for IV (85, 86, 212) (Table S4.1, Figure S4.3D).  

 

Inhaled tobramycin was not detected by either LC-MS method, even during periods 

of repeated usage, likely due to heterogeneous delivery throughout the CF airways (213). 

Sputum samples are not a global representation of the entire airway, and secretions from 

different physical locations in the lungs vary in metabolite, antibiotic, and microbial 

composition (4, 105, 214). The undetected antibiotics might also be explained by subject 

non-adherence, which was as high as 20% in one cohort of adult CF patients (206). 

Reported reasons for skipping antibiotics included forgetting or for social reasons (206). It 

is also possible that undetected antibiotics were degraded by the time of sputum collection 

in our study, as the enrolled subjects were asked to report antibiotics taken anytime on the 

same day of sample collection. 
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Discordance between LC-MS and usage data is not due to instrument limitation, 

because the undetected antibiotics (tobramycin, aztreonam and azithromycin) had sub-

micromolar or sub-nanomolar limits of detection (Table S4.4). Antibiotic concentrations 

that fall below our limits of detection need to be further studied to determine their effect (if 

any) on microbial physiology. There is no exact threshold that determines if an antibiotic 

concentration impacts microbes in vivo; however, our sub-nanomolar thresholds are still 

below sub-inhibitory concentrations reported to impact bacterial physiology (215). For 

instance, the Quattro Premier ALOD for tobramycin after extraction from artificial sputum 

was 0.06 µM (Table S4.3), and the Xevo LOD of the tobramycin standard was 0.1 nM. Both 

of these thresholds are lower than sub-inhibitory concentrations reported to affect 

Pseudomonas aeruginosa physiology (4 µM) (216) and the CLSI minimum inhibitory 

concentration break-points (217) (Table S4.3). The impact of physiologically-relevant 

concentrations of antibiotics on the microbiome is poorly understood, and future efforts 

will determine if sub-inhibitory concentrations of antibiotics measured in sputum drive 

changes in bacterial composition.  

 

Study limitations & recommendations.  

The subjects in this study agreed to participate in the antibiotics survey, and their 

adherence to antibiotic-usage and accurate completion of the self-reported antibiotic 

surveys is likely not representative of all individuals. It is also possible that the subjects 

inflated antibiotic-usage in the surveys. In addition, the subjects provided survey responses 
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within a 24h window of expectorating. Antibiotics not detected by either LC-MS could have 

degraded by the time of sampling. 

 

Certain antibiotics were taken more frequently than others, which likely impact the 

LC-MS sensitivities and specificities. While we optimized the LC-MS method for 18 

antibiotics, only 11 antibiotics were reported as taken by the subjects in this cohort. 

Notably, azithromycin was the most common antibiotic reported as taken in this study 

period. Oral azithromycin is typically taken by persons with cystic fibrosis three times a 

week, which contributed to the high discordance between the LC-MS data and daily self-

reported usage. 

 

The Quattro Premier and Xevo methods were optimized in different facilities and 

are imperfect comparisons for antibiotic LODs. The ASM antibiotic spike-in extraction 

experiments were only performed on the Quattro Premier, and we also have more 

information about the Quattro Premier parameters since it is our in-house instrument. We 

also reiterate that the Quattro Premier method was unable to detect vancomycin and 

colistin and could only detect cefepime and ceftazidime at high concentrations (Table S1). 

However, the newer instrument, the Xevo, could detect all four of these antibiotics at 

nanomolar levels. In addition, the lower injection volume for the Xevo contributed to 

cleaner chromatography. Excluding these examples, the detection profiles of the Quattro 

Premier aligned with the Xevo for frequently-taken antibiotics. Given that the Quattro 

Premier platform at the UC Irvine Mass Spec Facility is accessible to the authors, one future 
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direction is to improve the sensitivity of this approach, with improved chromatography and 

cleaner extraction methods. 

 

The data for antibiotic half-lives came from pharmacokinetic studies in serum 

(Table S1). While we acknowledge that the half-lives in serum are likely different than in 

sputum, there are few studies characterizing antibiotic pharmacokinetics in sputum.  

 

Conclusion 

We aimed to develop a high-throughput method that would allow for detection of 

antibiotics present at the infection site such as sputum from the CF airways. Direct 

observations of antibiotics are needed to be related to microbial composition measures 

along with other clinical data. Incorporating antibiotic data into microbial community 

composition models is challenging in the context of CF due to many factors, including the 

lack of a standardized antibacterial treatment regimen, the impact of individual subject 

factors on antibiotic efficacy, and the diverse properties of CF antibiotics. Our LC-MS 

approach has inherent limitations but is the first step towards including objective 

antibiotic data in CF studies. Future endeavors will determine how the local presence of 

antibiotics impacts the microbial community with paired quantitative LC-MS and 

microbiome data. 

 

METHODS AND MATERIALS 
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Chemicals. Pharmaceutical-grade or HPLC-grade antibiotics were dissolved in water, 

methanol, or an acetonitrile/acetic acid solution to make 1 mM or 10 mM stocks (see Table 

S4.1). Stocks of the external standards were made directly before each run due to reported 

low stability of some antibiotics at -20˚C and -80˚C (204, 211). The antibiotics were then 

diluted with water and pooled to make a 10 µM stock. For the external standard curve, a 

three-fold dilution series was used: 10 µM, 3.3 µM, 1.1 µM, 0.37 µM, 0.123 µM, 0.041 µM, 

0.014 µM. Internal standards linezolid-d3 and levofloxacin-d8 (Toronto Research Chemicals 

Inc., Ontario Canada) were dissolved in water and methanol, respectively. Aliquots of the 

internal standards were stored at -80˚C. 

 

Quattro Premier XE optimization. Standards, optimization samples, and sputum 

samples were first run on the Quattro Premier XE UPLC-MS/MS (Waters Corp., Milford, 

MA) at the University of California, Irvine’s Mass Spectrometry Facility. An Acquity UPLC 

BEH C18 column (2.1 x 50 mm, 1.7 µM particle size) and Waters Quattro Premier XE MS 

were used to separate and analyze the compounds. The MS was operated in positive ion 

mode using electrospray ionization (ESI). Waters MassLynx 4.1 and QuanLynx 4.1 software 

were used for data acquisition and analysis. The mobile phases consisted of 0.1% v/v 

formic acid and 2 mM ammonium acetate in water (solvent A) and 0.1% v/v formic acid 

and 2 mM ammonium acetate in methanol (solvent B). The flow rate was 0.3 mL/min. The 

mobile phase gradient started at 90% solvent A and 10% solvent B. The mobile phase was 

then changed to 90% solvent B in 3 min with the following power-law function (curve 9 in 

Waters MassLynx software): 
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 C(t) = Ci + [ (Cf – Ci) * (XN) ]  (equation 1) 

  Where X = (t-Ti) / (Tf – Ti)  

  N=5 (for curve 9) 

 C(t) is the instantaneous composition at time “t” 

  Ci is the composition of B at the beginning of the segment 

  Cf is the composition at the end of the segment  

  T is time 

Finally, the mobile phase was abruptly switched to 90% A and 10% B for 1.5 min. 

The column temperature was 50˚C, and the auto-sampler temperature was 10˚C. For all 

samples, the injection volume was 10 µL. For the MS/MS, the detector capillary voltage was 

3.3kV, and the extractor voltage was 3V. The source and desolvation temperatures were 

125˚C and 400 ˚C, respectively. Nitrogen was used as the cone and desolvation gas and set 

at flow rates of 150 L/h and 800 L/h, respectively. The retention times (RT) and MS/MS 

parameters for reach antibiotic were determined using the QuanOpt function in the Waters 

Masslynx software (Table 1). The limits of detection (LOD) and limit of quantification 

(LOQ) of the external standards was calculated as:  LOD or LOQ = Xσ/S (equation 2) 

  Where X=3 for the LOD or X=10 for the LOQ 

σ=the standard deviation of the response from three independent LC-MS 

runs 

   S=the slope of the calibration curve 
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Xevo TQ-XS optimization. Standards were shipped overnight on wet ice to the Waters 

Demo Laboratory (Beverly, MA) to optimize on the Acquity UPLC Xevo TQ-XS. The Xevo 

column was the same (Acquity UPLC BEH C18,1.7 μm; 2.1 mm x 50 mm), but the mobile 

phase consisted of 0.3% formic acid in water (solvent A) and 0.3% formic acid in 

acetonitrile (solvent B). The mobile phase gradient started at 98% solvent and 2% solvent 

B. The mobile phase was then switched to 10% solvent A and 90% solvent B in 3 minutes 

with curve 6 in Waters MassLynx (N=1 in equation 1). The mobile phase was abruptly 

switched to 98% A and 2% B for the last 1.5 min. The injection volume was 0.5 µL and the 

detector gain was set to 0.1. The positive ion capillary was 0.5 kV, and the cone voltage was 

50V. The desolvation gas and cone gas (nitrogen) flow rates were 1000 L/h and 150 L/h. 

The desolvation temperature was 600˚C, and the source temperature was 150˚C. The LC-

MS parameters of all the antibiotics, except for colistin and vancomyin, were determined 

with IntelliStart optimization with Waters MassLynx software. The MS methods for colistin 

and vancomycin were determined by manually adjusting the cone voltage and capillary 

voltage and scanning the product ion spectra. The M+2H ions were used for MRM of colistin 

and vancomycin (Table 1).  

 

Comparison of extraction solvents in artificial sputum media. To compare the 

extraction efficiency of three solvents, antibiotics were spiked into ASM (100) at 

concentrations of 0, 0.14, 0.41, 0.123, 0.370, 1.1, 3.3, and 10 µM. The three extraction 

solvents were 1% DTT, methanol, or 16/84 acetonitrile/2% acetic acid. Each solvent was 
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spiked with 1.33 µM of both internal standards, linezolid-d3 and levofloxacin-d8. Solvent 

(150 µL) was added to 50 µL of ASM. The samples were vortexed for 30 seconds, shaken at 

4˚C on a shaking platform with moderate agitation for 15 minutes, and centrifuged at 

13,200 RCF for 10 minutes at 4˚C. The supernatant was pipetted into amber glass vials and 

injected directly into the LC-MS.  

 

The apparent limit of detection (ALOD) was calculated for each antibiotic with each 

extraction solvent. The ALOD was calculated similarly as the LOD (equation 2), where σ is 

the standard deviation of the response from the spiked-in antibiotics, and S is the slope of 

the linear fit for the antibiotic spike-in response versus spiked-in concentration. To 

visualize the relationship between the recovered antibiotic concentration and the known 

spiked-in concentration, a linear model was fitted to the recovery data from three 

independent experiments for each extraction solvent. The coefficient of variation (COV) for 

three experiments was calculated as the standard deviation of the recovered 

concentrations divided by the mean of the recovered concentrations. A COV threshold of 

30% was used to identify antibiotics that were reproducibly measured (218).  

 

Sputum collection and extraction.  Sputum samples from 11 subjects with CF were 

selected from a larger airway microbiome study that was approved by the University of 

Michigan Medical School Institutional Review Board (HUM00037056). Subjects were 6 

males and 5 females, age 21 to 56 years (median 37). Sputum samples were collected by 

subjects at home and stored at 4˚C for up to 23 days. Subjects also completed a daily survey 
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reporting symptoms and antibiotic-use of both chronic use maintenance antibiotics and 

episodic treatment antibiotics prescribed to treat pulmonary exacerbations (10). Samples 

and surveys were regularly shipped in batches to the University of Michigan. Sputum 

samples were shipped on ice packs for subsequent aliquoting and storage at -80˚C. Sputum 

aliquots were shipped from the University of Michigan to the University of California, Irvine 

on dry ice, thawed on ice, partitioned into 50 µl aliquots, and refrozen at -80oC. Fifty 

microliter aliquots of sputum were thawed on ice and extracted using the same method 

described for the artificial sputum medium spike-in experiments and 1% DTT for 

extraction solvent. Symptom scores were calculated from the daily surveys as previously 

described (10). 

 

UPLC-MS/MS data filtering. Peaks acquired on the Quattro Premier were 

automatically picked and filtered using QuanLynx software. Data were imported into R and 

the following criteria for filtering were applied: minimum peak area under the curve of 20 

and signal to noise ratio of 10. Because several of the antibiotics had high carry-over rates 

(including ciprofloxacin, levofloxacin, and trimethoprim), sample peaks were also filtered 

out when the AUC was lower than the wash ran before the sample. Scripts can be found at 

the following: https://github.com/tgallagh/LCMS_Antibiotics. The Xevo TQ-XS peaks were 

manually picked and filtered using TargetLynx software.  

 

Data Analysis. Contingency tables were constructed to compare the LC-MS and survey 

data. The surveys were treated as the standard, and sensitivity, specificity, PPV, and NPV 
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were calculated for each antibiotic. Specifically, the sensitivity is the number of samples 

where the antibiotic was detected and reported divided by total number of reported 

samples. Specificity is the number of samples where the antibiotic was undetected and 

unreported divided by the total number of unreported samples. PPV is the number of 

samples where the antibiotic was detected and reported divided by the number of times an 

antibiotic was detected; and NPV is the number of samples where an antibiotic was 

unreported and undetected divided by the number of undetected instances. To determine if 

the means of detected antibiotic concentrations were significantly different between the 

two instruments, paired Wilcoxon rank sums tests were performed on azithromycin, 

aztreonam, ceftazidime, ciprofloxacin, sulfamethoxazole, tobramycin, and trimethoprim 

using the “wilcox.test” function in R. Pearson’s correlations between negatives or positives 

with subject and sample data were completed using the “cor.test” function.  

Data Availability. The raw Quattro Premier LC-MS data files can be found on 

Metabolomics Workbench: ST001365. Intermediate data files for the Quattro Premier and 

Xevo are available at this github link: https://github.com/tgallagh/LCMS_Antibiotics. 
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Fig. 4.1. Quattro Premier XE extracted ion chromatograms (XIC) of each antibiotic from the 
10 µM pool of external standards (black line) and from the artificial sputum medium spike-
in experiments (red line) using water:methanol gradient + 2 mM ammonium acetate and 
0.1% acetic acid mobile phase method. XICs are ordered by retention time. No Quattro 
Premier XICs are shown for vancomycin and colistin due to inconsistent detection. 
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Fig. 4.2. Comparison of the log-transformed limits of detection (LOD) for antibiotic 
standards on the Quattro Premier XE and the Xevo TQ-XS. On average, the Xevo TQ-XS LOD 
was 9,500-fold lower than that of the Quattro Premier.   
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Fig. 4.3. Comparison of three solvents in the extraction of 16 antibiotics spiked into 
artificial sputum medium and analyzed on the Quattro Premiere. Vancomycin and colistin 
were excluded due to low response from the Quattro Premier method. (A) Dose response 
curve of antibiotics spiked into artificial sputum media, extracted with MeOH (methanol), 
DTT (1% DTT in water), or ACN/AA (16:84 acetonitrile:2% acetic acid). Each point 
represents the detected concentration from three independent experiments that were 
conducted on separate weeks. The solid lines represent the linear fit of the averages at each 
concentration. The dashed lines indicate the apparent lower limit of detection (ALOD) 
calculated for each antibiotic with each extraction solvent. (B) Coefficient of variation 
(COV) was used as a measure of reproducibility for quantifying antibiotic concentrations 
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from the dose response experiments. Eleven antibiotics had a COV below 30% 
(represented by dotted line) for concentrations less than 10 µM: amoxicillin, ampicillin, 
azithromycin, ceftazidime, ciprofloxacin, levofloxacin, linezolid, piperacillin, 
sulfamethoxazole, tobramycin, and trimethoprim. 
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Fig. 4.4. Antibiotics detected by the Quattro Premier method in three aliquots from the 
same three sputum samples (9292, 9293, 9296). The concentration (µM) of detected 
antibiotics are on the left. Antibiotics were reported as taken (orange circle), not taken 
(purple square), or not provided as a survey option (ceftriaxone, white diamond). The 
apparent limit of detection (ALOD) from the artificial sputum experiments are indicated by 
black dashes. The coefficient of variation (COV) of the detected concentrations for each 
sample is represented on the right. The COV threshold (30%) is indicated with a red dotted 
line. 
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Fig. 4.5. Daily self-reported antibiotic usage by ten subjects with cystic fibrosis on the same 
day that sputum samples were collected. (A) Cells are shaded on the grayscale heat map 
based on: number of times a subject reported taking the specified antibiotic divided by the 
total number times a subject reported taking any antibiotics (Per subject columns); and 
across the entire cohort (All column). N=the number of times an antibiotic was reported as 
taken on the sampling day (207 total reports of antibiotic usage for 128 sputum samples). 
Trim=trimethoprim, Sulfa=sulfamethoxazole. Subject 11 reported taking none of the 
antibiotics in this study set. (B) The number of sampling days where a subject reported 
taking 1-4 antibiotics on the same day. 
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Fig.  4.6. Concentration (µM) of detected antibiotics reported as taken or not taken by a 
subject in 158 sputum samples. Subjects did not provide any antibiotics usage data for 13 
samples. Ampicillin and ceftriaxone were not included as an option in the antibiotic usage 
survey. Points are concentrations of the individual samples for the Quattro Premier (black 
circle) and the Xevo (turquoise square). Samples containing antibiotics detected by both 
instruments are connected by a dashed gray line. A Wilcoxon rank sum test was used to 
determine if the Quattro Premier and Xevo detected concentrations were significantly 
different for seven antibiotics (with n>3 paired samples). Azithromycin and ciprofloxacin 
had significantly different mean detected concentrations detected by the two instruments 
(paired Wilcoxon rank sum test; azithromycin Quattro Premier mean=288 µM, 
azithromycin Xevo mean=43 µM, V = 9591, P<0.05; ciprofloxacin Quattro Premier 
mean=6.3 µM, ciprofloxacin Xevo mean= 4.8 µM, V=197, P<0.05).  
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Table 4.1: Multiple reaction monitoring (MRM) parameters for the Acquity Quattro 
Premier XE and Xevo TQ-XS. CV = cone voltage, CE = collision energy, RT = retention time, * 
indicates low response from the M+H ions for vancomycin and colistin on the Quattro 
Premier. Levofloxacin-d8 and linezolid-d3 are the internal standards. 

 

 

 

 

  

Analyte MS/MS: CV (V) CE (V) RT (min) MS/MS: RT (min)

Amikacin 585.98 > 163.36 30 30 0.39 585.1 > 163 0.19

Amoxicillin 365.98 > 349.25 20 10 1.08 366.1 > 208 1.05

Ampicillin 350.00 > 106.36 20 20 3.14 350.1 > 106 1.34

Azithromycin 749.25 > 591.75 50 30 3.44 749.5 > 591.2 1.57

Aztreonam 435.94 > 313.27 20 20 2.61 436.1 > 313 1.23

Cefepime 480.99 > 123.35 20 50 0.81 481.1 > 167 1.01

Ceftazidime 546.91 > 468.22 30 20 2.08 547.1 > 396 1.19

Ceftriaxone 554.85 > 167.39 20 30 2.95 555.1 > 167 1.31

Ciprofloxacin 332.08 > 231.25 30 40 3.04 332.1 > 288 1.37

Colistin 1155.41 > 729.34 * 80 40 2.1 587.72 > 456.4 1.4

Levofloxacin 362.07 > 318.33 30 20 2.93 362.1 > 318 1.35

Linezolid 338.10 > 296.29 40 20 3.34 338.1 > 296 1.65

Meropenem 384.07 > 68.54 30 40 2.34 384.1 > 141 1.22

Piperacillin 518.04 > 143.37 30 20 3.46 518.1 > 160 1.93

Sulfamethoxazole 254.03 > 92.39 30 30 3.04 254.1 > 156 1.6

Tobramycin 467.96 > 167.22 40 20 2.08 468.1 > 167 1.19

Trimethoprim 291.11 > 230.24 40 20 2.89 291.1 > 230 1.34

Vancomycin 448.38 > 1305.91 * 40 20 1.63 725.63 > 1307.23 1.17

Levofloxacin-d8 371.10 > 326.38 40 20 2.93 370.1 > 326.1 1.35

Linezolid-d3 341.10 > 297.29 40 20 3.34 341.1 > 297.1 1.65

Xevo TQ-XSQuattro Premier XE TQ
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Table 4.2: Survey options for the 18 antibiotics optimized for LC-MS detection. Ampicillin and 

ceftriaxone were not provided as an option on the survey. Out of the 16 remaining antibiotics, 11 

antibiotics were reported as taken. Fourteen antibiotics were detected in sputum on one or both 

of the LC-MS platforms. Antibiotics reproducibly measured on the Quattro Premier with 

COV<30% from the artificial sputum medium recovery experiments are indicated (see Figure 

4.3). Trim=trimethoprim, Sulfa=sulfamethoxazole. 

 

  

  

Antibiotic Class Survey Option
Reported by 

subjects

Detected 

by LC-MS

COV 

<30%?

Amikacin Aminoglycoside Amikacin Inhaled

Amoxicillin B-lactam Amoxicillin Clavulanate Oral Yes

Ampicillin B-lactam *Not provided *Not provided Yes Yes

Azithromycin Macrolide Azithromycin IV or Oral Oral Yes Yes

Aztreonam B-lactam Aztreonam IV or Inhaled IV, Inhaled Yes

Cefepime Cephalosporin Cefepime IV

Ceftazidime Cephalosporin Ceftazidime IV IV Yes Yes

Ceftriaxone Cephalosporin *Not provided *Not provided Yes

Ciprofloxacin Fluoroquinolone Ciprofloxacin IV or Oral Oral Yes Yes

Colistin Polymyxin Colistin Inhaled or IV Inhaled Yes

Levofloxacin Fluoroquinolone Levofloxacin Oral Oral Yes Yes

Linezolid Oxazolidinone Linezolid Oral Oral Yes Yes

Meropenem B-lactam Meropenem Inhaled

Piperacillin B-lactam
Piperacillin IV  or Pipericillin 

Tazobactam IV 
Yes Yes

Sulfamethoxazole Sulfonamide Trim/Sulfa Oral Oral Yes Yes

Tobramycin Aminoglycoside Tobramycin IV or inhaled IV, Inhaled Yes Yes

Trimethoprim Trimethoprim Trim/Sulfa Oral Oral Yes Yes

Vancomycin Glycopeptide Vancomycin Inhaled or IV IV Yes



 

137 

 

 

Table 4.3: Contingency tables comparing LC-MS data to subject self-reported surveys for 
each antibiotic reported as taken by at least one subject. Aztreonam and Tobramycin were 
reported as taken inhaled or intravenously (IV). Sens=sensitivity. Spec=Specificity. 
PPV=Positive predictive value. NPV= Negative predictive value.  

 

Azithromycin Aztreonam (Inhaled) Aztreonam (IV)

SURVEY: Sens=92% SURVEY: Sens=36% SURVEY: Sens=100%

Yes No Spec=16% Yes No Spec=100% Yes No Spec=100%

Yes 69 70 PPV=50% Yes 19 0 PPV=100% Yes 2 0 PPV=100%

No 6 13 NPV=68% No 34 97 NPV=74% No 0 6 NPV=100%

SURVEY: Sens=99% SURVEY: Sens=19% SURVEY: Sens=100%

Yes No Spec=13% Yes No Spec=100% Yes No Spec=100%

Yes 74 72 PPV=51% Yes 10 0 PPV=100% Yes 2 0 PPV=100%

No 1 11 NPV=92% No 43 97 NPV=69% No 0 6 NPV=100%

Ceftazidime Ciprofloxacin Colistin

SURVEY: Sens=67% SURVEY: Sens=96% SURVEY: Sens=0%

Yes No Spec=100% Yes No Spec=100% Yes No Spec=100%

Yes 4 0 PPV=100% Yes 22 0 PPV=100% Yes 0 0 PPV=100%

No 2 152 NPV=99% No 1 135 NPV=99% No 6 152 NPV=96%

SURVEY: Sens=83% SURVEY: Sens=91% SURVEY: Sens=100%

Yes No Spec=100% Yes No Spec=100% Yes No Spec=100%

Yes 5 0 PPV=100% Yes 21 0 PPV=100% Yes 6 0 PPV=100%

No 1 152 NPV=99% No 2 35 NPV=99% No 0 152 NPV=100%

Levofloxacin Linezolid Sulfamethoxazole

SURVEY: Sens=100% SURVEY: Sens=50% SURVEY: Sens=86%

Yes No Spec=100% Yes No Spec=100% Yes No Spec=100%

Yes 3 1 PPV=75% Yes 1 0 PPV=100% Yes 6 0 PPV=100%

No 0 154 NPV=99% No 1 156 NPV=99% No 1 151 NPV=99%

SURVEY: Sens=100% SURVEY: Sens=100% SURVEY: Sens=86%

Yes No Spec=100% Yes No Spec=100% Yes No Spec=100%

Yes 3 1 PPV=75% Yes 2 0 PPV=100% Yes 6 0 PPV=100%

No 0 154 NPV=99% No 0 156 NPV=100% No 1 151 NPV=99%

Tobramycin (Inhaled) Tobramycin (IV) Trimethoprim

SURVEY: Sens=0% SURVEY: Sens=50% SURVEY: Sens=71%

Yes No Spec=100% Yes No Spec=100% Yes No Spec=100%

Yes 0 0 PPV=0% Yes 4 0 PPV=100% Yes 5 0 PPV=100%

No 20 104 NPV=80% No 4 26 NPV=87% No 2 151 NPV=99%

SURVEY: Sens=0% SURVEY: Sens=40% SURVEY: Sens=86%

Yes No Spec=100% Yes No Spec=100% Yes No Spec=100%

Yes 0 0 PPV=0% Yes 3 0 PPV=100% Yes 6 0 PPV=100%

No 20 104 NPV=80% No 5 26 NPV=84% No 1 151 NPV=99%

Vancomycin

SURVEY: Sens=0%

Yes No Spec=100%

Yes 0 0 PPV=0%

No 2 156 NPV=99%

SURVEY: Sens=50%

Yes No Spec=100%

Yes 1 0 PPV=100%

No 1 156 NPV=99%
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Figure S4.1. Number of samples where a subject marked taking an antibiotic (N=158 
samples from 10 subjects with antibiotic usage reported) categorized by the number of 
marked antibiotics per day (1-4 antibiotics). Tob=Tobramycin. Levo=Levofloxacin. 
Cipro=Ciprofloxacin. Azithro=Azithromycin. Trim=Trimethoprim. Sulfa=Sulfamethoxazole. 
Ceft=Ceftazidime. Vanco=Vancomycin. Subject 11 did not record taking any antibiotics of 
interest on the days sputum samples were collected. 
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Figure S4.2. (A) The area of the external QC antibiotic pool dropped during the  Quattro 
Premier XE run. (B) The protein levels before and after the DTT liquid-liquid extraction for 
five sputum samples. (C) The Quattro Premier internal standard intensity in CF sputum 
samples dropped during the LC-MS run, while the Xevo internal standard intensity did not 
have a decreasing trend.  
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Figure S4.3: (A) Symptom score was not correlated with taking additional antibiotics 
(detected & not marked). (B) The Acquity Quattro Premier LC-MS LOD (limit of detection) 
was slightly negatively correlated with agreement rate, while the Xevo was not LOD was not 
correlated with agreement rate. (C) Days that samples were stored at 4˚C did not impact the 
agreement rate with the subject surveys. (D) Antibiotics with longer half-lives (azithromycin, 
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green square) had higher detection rates than antibiotics with shorter half-lives 
(tobramycin, pink square).  
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Figure S4.4. Antibiotics and sample data for all subjects (subjects 1-10 represented in 
panels A-J), except for subject 11 who reported taking no antibiotics during the study 
period. Antibiotics were detected and quantified with the Acquity Quattro Premier LC-MS 
method for each sputum sample. The subject symptom scores, days stored at 4˚C, subject 
antibiotic survey marks, and clinical stage (baseline, exacerbation, or treatment) are also 
depicted. Antibiotics detected by the LC-MS but not marked by the subject are indicated 
with a red outline and larger shape size in all grids. 
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Table S4.1: Antibiotic preparation and properties. Pharmaceutical-grade or HPLC-grade 
antibiotics were dissolved in the specific solvent to make concentrated stocks of 10 mM or 
1 mM. The included biological half-lives were determined primarily from short-term 
dosage (1-3 doses) pharmacokinetic studies in CF subjects, with a few exceptions noted 
below. IV= intravenous. 

 

  

Antibiotic Catalogue #
Solvent for suspension of 

concentrated stocks

Reported mean biological half-lives (h) in 

serum

Amikacin Sigma-Aldrich PHR1654 Water 1.1 for IV* (Autret et al.)

Amoxicillin Sigma-Aldrich PHR1127 Water 1.7 for IV (Lovering et al.)

Ampicillin Sigma-Aldrich PHR1424 Water 1.5 for IV (Lovering et al.)

Azithromycin Sigma-Aldrich PZ0007 Water
65.2 for IV* (Jacobs et al. ); 40 for oral** (Foulds 

et al.)

Aztreonam Sigma-Aldrich PHR1785 Water
1.54 for IV (Vinks, et al.) ; 2.1 for inhalation  

(Gibson, et al )

Cefepime Sigma-Aldrich PHR1763 Water 1.59 (Arguesadas, et al. )

Ceftazidime Sigma-Aldrich PHR1847 Water
1.74  for IV (Kercsmar et al ), 1.57 for oral (Turner 

et al. )

Ceftriaxone Sigma-Aldrich PHR1382 Water 7.09 for IV* (Michalson et al. )

Ciprofloxacin Sigma-Aldrich 17850-5G-F Acetonitrile, acetic acid mix 4.8h for IV, 5h for oral (Davis et al.)

Colistin Sigma-Aldrich PHR1605 Water 4.5 for IV (Li et al. )

Levofloxacin Sigma-Aldrich PHR1697 Methanol
6.44 for oral after steady state(Lee et al. ); 7.4 for 

IV** (Chien et al. )

Linezolid  Sigma-Aldrich PZ0014 Water 4.4 (Bosso et al. )

Mereopenem Fisher Scientific AK161987 Water 0.74 (Christensson et al. )

Piperacillin Sigma-Aldrich PHR1805 Methanol 0.75* (Hoogkamp-Korstanje et al. )

Sulfamethoxazole Sigma-Aldrich PHR1126 Methanol 6 (Reed et al. )

Tobramycin Fisher Scientific AC455430050 Water
2.2 for IV (Beringer et al. ); 13h for inhaled (Touw 

et al. )

Trimethoprim Sigma-Aldrich T7883 Methanol 5.7 (Reed et al. )

Vancomycin Sigma-Aldrich PHR1732 Water 0.6 (Albrecht et al. )

** healthy individuals

* pediatric patients
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Table S4.2: Comparison of two mobile phases to detect 16 antibiotics on the Quattro Premier XE.  

 

 

Method 1: 
Water:Acetonitrile 

gradient phase area 
(10 µM standards 

Area) 

 Method 2: 
Water:methanol 
gradient (formic 

acid, 2 mM 
ammonium acetate) 
(10 µM standards 

Area) 

Meropenem 5.01E+01 4.60E+04 

Levofloxacin 5.43E+05 4.74E+05 

Linezolid 4.06E+06 1.85E+05 

Ampicillin 7.36E+04 6.60E+05 

Piperacillin 1.76E+05 4.89E+04 

Ciprofloxacin 2.27E+05 6.60E+05 

Tobramycin 5.12E+03 1.84E+04 

Ceftazidime 1.33E+04 5.38E+04 

Amoxicillin 2.61E+04 2.37E+04 

Amikacin 3.76E+01 9.68E+03 

Azithromycin 3.93E+02 8.51E+05 

Aztreonam 4.56E+02 4.99E+04 

Ceftriaxone 6.59E+03 2.20E+04 

Colistin 1.26E+04 3.54E+03 

Cefepime 3.29E+04 3.11E+04 

Vancomycin 5.20E+00 7.84E+03 
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Table S4.3: The Acquity and Xevo LOD (lower limits of detection) for the pooled external 
standards, compared to the MIC (minimum inhibitory concentration) break points for common 
cystic fibrosis opportunistic pathogens. 

 

  

Example organism

CLSI MIC for 

susceptibility [ref. 

61]

LOD (µM)
Fold change in 

MIC/LOD
LOD (nM)

Fold change in 

MIC/LOD

Amikacin Pseudomonas 27 µM (16 µg/ml) 0.104 260 0.050 5.40E+05

Amoxicillin Staphylococcus      5.5 µM (2 µg/ml) 0.082 67 0.005 1.10E+06

Ampicillin Staphylococcus      6 µM (2 µg/ml) 0.016 375 0.005 1.20E+06

Azithromycin Staphylococcus 3 µM (2 µg/ml) 0.107 28 0.005 6.00E+05

Aztreonam  Pseudomonas 9 µM (4 µg/ml) 0.213 42 0.050 1.80E+05

Cefepime Pseudomnas 16 µM (8 µg/ml) 28.908 0.6 0.100 1.60E+05

Ceftazidime Pseudomonas 15 µM (8 µg/ml) 0.070 214 0.100 1.50E+05

Ceftriaxone Haemophilus 3.6 µM (2 µg/ml) 7.579 0.5 0.050 7.20E+04

Ciprofloxacin Pseudomonas 3 µM (1 µg/ml) 0.030 100 0.050 6.00E+04

Colistin Pseudomonas 2 µM (2 µg/ml) 13.325 0.15 5.000 4.00E+02

Levofloxacin Pseudomonas 6.5 µM (2 µg/ml) 0.005 1300 0.010 6.50E+05

Linezolid Staphylococcus 12 µM (4 µg/ml) 0.007 1700 0.050 2.40E+05

Meropenem Pseudomonas 5 µM (2 µg/ml) 0.003 1670 0.010 5.00E+05

Piperacillin Pseudomonas 31 µM (16 µg/ml) 0.027 1150 0.005 6.20E+06

Sulfamethoxazole
Staphylococcus

0.1 µM (0.05 µg/ml) 

with trimethoprim
0.022 4.5 0.005 2.00E+04

Tobramycin Pseudomonas 9 µM (4 µg/ml) 0.057 158 0.100 9.00E+04

Trimethoprim Staphylococcus 28 µM (8 µg/ml) 0.032 875 0.010 2.80E+06

Vancomycin Staphyloccous 1.4 µM (2 µg/ml) NA NA 0.010 1.40E+05

MIC break points Quattro Premier Xevo
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Table S4.4: The Quattro Premier LOD (limit of detections) and LLOQ (lower limits of 
quantification) for the pooled external standards and apparent LOD (ALOD) and LLOQ (ALLOQ) for 
antibiotics spiked into artificial sputum media and extracted with three solvents: DTT (1% 
dithiothreitol), ACN/AA (16% acetonitrile:84% of 2% acetic acid), and MeOH (methanol). The 
antibiotics are ordered by increasing external standard LODs. NA=not available due to poor 
detection.  
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SUMMARY & FUTURE DIRECTIONS 

 

Assessing the physiology of bacteria in their natural environment is essential for 

understanding natural microbial interactions and antibiotic efficacy. In the context of cystic 

fibrosis, steep chemical gradients drive bacterial physiology and antibiotic tolerance (4, 

92). Reductionist experiments are powerful for assessing the impact of relevant conditions 

on microbes in a controlled setting. With in vitro methods, we were able to identify relevant 

cross-feeding interactions between Rothia and P. aeruginosa that would be impossible to 

track in an in vivo setting. We also determined that acidic pH is stressful for S. maltophilia 

and utilized fluorescence lifetime imaging microscopy (FLIM) to visualize changes in 

pyocyanin reduction throughout P. aeruginosa biofilms. We know there is a lack of overlap 

between laboratory conditions and CF sputum. This is evidenced by differences in bacterial 

growth rates, with estimates of bacterial doubling times being 100-fold times lower in 

sputum than in laboratory cultures (53). The question still remains: How are fermentation 

and chemical gradients impacting the physiology of opportunistic pathogens in vivo? 

 

Future directions in fluorescence  

 

The depth limits of fluorescence imaging are continuously advanced with the 

introduction of new technologies, like the DIVER (170, 194) and adaptive optics (219). FLIM, 

especially when combined with deep imaging technologies, shows promise as a method to 

assess bacterial metabolism in sputum and eventually directly in the airways (220). We 
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sought to visualize P. aeruginosa utilization of pyocyanin, a redox active molecule that can 

be used as an alternative electron accepter in low oxygen (165). We took the first step in 

developing a tool that can unmix multiple fluorescent metabolites from FLIM and 

hyperspectral images. The unmixing process can measure reduced pyocyanin, which has a 

fluorescence lifetime and spectral modulation unique from NADH and pyoverdine. Future 

directions will be to expand this approach to unmix NADH, pyoverdine, and other 

phenazines. In the next few paragraphs, I discuss future directions for improving our FLIM 

unmixing approach. 

 

1: A priori identification of fluorescence lifetime species  

 FLIM has been extensively used in eukaryotes to measure relative abundances of 

fluorescent metabolites (174, 192, 192, 195, 221, 222) but there have been few published 

applications in microbes (172, 173). To calculate the contribution or shift in the 

fluorescence lifetime of one species in a complex system, all pure components potentially 

contributing to that signal must be characterized. A perfect model of the system will 

incorporate all fluorescent species, including variations in the lifetime that may arise from 

local conditions. Accounting for changes in the lifetime of NADH alone is complicated. The 

fluorescence lifetime of NADH varies depending on the enzyme it is bound to and other 

local factors such as pH (180). We, along with others (172, 173), found that bacteria do not 

always fall on the phasor trajectory connecting free NADH to enzyme-bound NADH 

observed in many eukaryotic FLIM studies. The shift from the classical NADH trajectory is 

likely due to the different and diverse enzymes produced by bacteria but may also arise 
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from the presence of other fluorophores in the sample, as was the case with our P. 

aeruginosa cultures. Blind unmixing approaches can guide the search for the number of 

contributing fluorophores. Further characterization of the individual molecular 

components contributing to the fluorescence in sample is necessary to answer biological 

questions about the dynamics of those fluorescent compounds in a system.  

 

2: Incorporation of wider spectral ranges and characterization of additional 

fluorophores, including phenazine-1-carboxylic acid and phenazine-1-carboxamide 

 We did not obtain fluorescence spectra of other P. aeruginosa phenazines, such as 

phenazine-1-carboxylic acid (PCA) and phenazine-1-carboxamide (PCN). The one and two-

photon excitation fluorescence spectra of these phenazines were described by Sullivan et 

al. (169) and suggested we were not capturing the emission of these phenazines with our 

DIVER FLIM emission filter (400-500 nm). The resolution and accuracy of the 

hyperspectral imaging unmixing routine can be improved by incorporating a wider 

spectral window. Although the hyperspectral microscope we used is capable of detecting 

emission ranges from ~400-700 nm, we decided to incorporate a narrower window 

consistent with the DIVER and LSM-880 FLIM acquisition settings. It is possible to acquire 

FLIM on the DIVER with a bandpass filter for visible light (meaning a broad range of light 

~350-650 nm can pass through to the detector). However, acquiring a broader emission 

window with either spectral or FLIM systems will require characterization of additional 

compounds fluorescing at those ranges, including additional phenazines.  
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3. Incorporation of additional harmonics in the unmixing process 

 Sampling additional frequencies increases the accuracy of the Fourier series 

approximation from the FLIM and hyperspectral data, which can improve specificity for 

unmixing fluorophores (179). However, addition of harmonics also increase noise, and 

implementation of higher harmonics into unmixing processes will require higher 

resolution instruments.  

 

4: Deep hyperspectral imaging on the DIVER  

 Dvornikov and Gratton (223) implemented cosine-sine shaped optical filters that act 

as single-harmonic spectral phasor transforms into the DIVER and can be used to resolve 

spectra in a highly-scattering matrix and collagen in mouse bone (170). The cosine-sine 

filters could be used to acquire time-resolved spectral information throughout biofilms and 

sputum, and when paired with FLIM analysis will be a powerful approach for resolving 

bacterial community structure and activity.  

 

5: Incorporation of quantum yields into the model  

 The FLIM phasor transformation provides a fit-free method to visualize the 

fluorescence lifetime of the pixels in an image. The position of a signal in the phasor plot 

depends on the fluorescence intensity of contributing components, which means the 

predicted fractional contributions are proportional to the fluorophore concentration. 

However, each fluorophore species can have a different quantum yield. In order to 
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calculate the fluorophore concentration, the quantum yields of each fluorophore must be 

determined and incorporated into the interpretation of the unmixing model results.   

 

Future directions in CF microbiome studies 

 We measured antibiotics in 171 longitudinal sputum samples from 11 individuals 

with CF using two LC-MS assays and found that the detection rates did not align with 

subject reported usage, likely due to antibiotic pharmacokinetics. Notably, azithromycin, 

which has a long half-life (68, 205), was detected in samples up to 8 days after a subject 

stopped usage. In preliminary analyses, the concentrations of orally-administered 

azithromycin correlated with the individual and with microbiome diversity (data not 

shown). In addition, individuals with higher concentrations of azithromycin repeatedly 

measured also had lower levels of anaerobes in their sputum. There are many factors that 

could explain why sputum concentrations of azithromycin were subject-specific, including 

differences in in vivo drug delivery and disease severity among subjects in the study cohort. 

The next goal is to unravel this complex relationship between patient health, the 

microbiome, and antibacterial efficacy. Are higher levels of antibiotics in sputum actually 

driving changes in microbiome, or is this observed correlation arising from the 

individualistic nature of CF and drug delivery? 
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Appendix A: DNA Extraction Method 

 

Method: DNA extraction from human saliva and sputum 
 
Purpose: to lyse human cells with hypotonic lysis (water) and remove human DNA and 
extracellular DNA (such as from biofilms) 
 

This method was adapted from Nelson et al. (224) 

https://www.sciencedirect.com/science/article/pii/S2211124719301287  

 

Modified version of “benzonase 2” extraction protocol 
 
Materials: 

• Benzonase (Sigma E-1014), endonuclease enzyme in aqueous glycerol, stored in -20 
freezer. KEEP ON ICE OR IN ICE BLOCK AT ALL TIMES 

 

All other materials should be stored in BSL-2 room shelves: 
 

• Sterile (filtered) 10X Benzonase buffer (200 mM Tris-HCl, 10 mM MgCl2) 
o How to make 150 mL of 10X Buffer:  

Pipette 60 mL of 500 mM Tris-HCl stock, 88.5 mL of UPW, and 1.5 mL 
of 1M MgCl2 stock into bottle 
Filter sterilize 

• Sterile (filtered) 100 mM EDTA 
• Sterile (filtered or autoclaved) 1X PBS 
• 1M NaCl (filtered) 
• 1X TE  

 

Steps (~4h total) 
1. Thaw sputum at room temp for a few minutes 
2. Transfer 200 µL of the sputum into 2 mL tubes (if not aliquoted already) 
3. Add 1 mL of DI Water. Incubate at room temp for 1h with “gentle agitation” (use 

shaking platform, low speed; platform has “DNA” written in Sharpie on speed 
meter). 

4. Add 0.12 mL of 10X Benzonase Buffer and 1 uL of Benzonase stock (final 
concentration of 250U Benzonase; can make a M.M. here!). KEEP Benzonase enzyme 
on ICE BLOCK. Avoid taking it out of freezer prematurely. 

5. Incubate sample at 37 C for 2h with gentle agitation (in warm room, use shaking 
platform, put box over) 

6. Pellet the bacteria by centrifuging at 8,000 g for 10 minutes in BSL-2 room 
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7. Remove and discard supernatant (or save for virome) 
8. Pipette ~1.5 mL of 1x PBS for wash. 
9. Pellet again by centrifuging at 8,000 g for 10 minutes in BSL-2 room 
10. Remove and discard supernatant 

** Safe step to stop, and store pellet in -20 freezer** 
 

11. Suspend the pellet in 250 µL of TE 
12. Add 12.5 uL of 100 mM EDTA and and 40 uL of 1M NaC (can make a M.M. here!)l, 
Vortex. (inactivates endonuclease) 
13. Proceed to standard DNA extraction (Hoffman did phenol chloroform extraction), 
but we use zymo microbiome kits if high enough yield 
 

Purpose of zymo DNA extraction kit: to lyse bacteria, fungi, and phage, and extract the 
intracellular DNA 
 

The protocol steps are below. Here is a link to the full product info: 

https://files.zymoresearch.com/protocols/_d4301_d4305_zymobiomics_dna_microprep_ki

t.pdf 

 

  Results:  

 
 

With saliva from a healthy human, the percent of DNA sequencing reads that aligned to the 

human genome decreased from 30% using standard methods (ZYMO kit) to 8% with the 

benzoate two approach (N=3 saliva samples). 
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Appendix B:  A tutorial on using UCI HPC to assemble and analyze genomes from 

wound isolates 

 

Contributors: Josh Fong, Christina Kim, many others in the Whiteson Lab  

*This is a work in progress. We update the tutorial and include example datasets here: 

https://github.com/tgallagh/UndergradStuff 

 

 

Resources 

• Google 

• In person classes offered by UCI Data Science Initiative: 

http://datascience.uci.edu/education/short-courses/  

• Forum and discussion boards: https://stackoverflow.com/  

• Dr. Rob Edwards metagenomics workshop manual: 

https://edwards.sdsu.edu/SDSU2017/WorkshopManual.pdf 

• Edwards lab blog: https://edwards.sdsu.edu/research/category/lab-blog/ 

• Beginners guide to comparative bacterial genome analysis: 

https://microbialinformaticsj.biomedcentral.com/articles/10.1186/2042-5783-3-2 

• Dr. Kevin Thornton github for advanced informatics class: 

https://github.com/ThorntonLab/AdvancedInformatics2017 

 

Requesting an HPC Account 

Instructions here: http://hpc-trac.oit.uci.edu/wiki/HowTo/Signup 

Make sure to indicate you are part of Dr. Katrine Whiteson’s group and a biological sciences 
student.  

HPC Tutorial 

Read through and follow tutorial here: https://hpc.oit.uci.edu/HPC_USER_HOWTO.html 

How to connect  

Working on the HPC 
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Read through: https://github.com/ThorntonLab/biocluster 

After reading through all the dense stuff, check out Prof. Thornton’s HPC “cheat sheet”: 
https://github.com/ThorntonLab/AdvancedInformatics2017/blob/master/materials/HPC
.md  

Starting the P. aeruginosa Bacterial Genomes Analysis  

• Bioinformatics Tip 1: Keep your notes and data organized!  

There are multiple electronic notebooks you can use to save notes and scripts you write for 
bioinformatics project. I like github. You don’t need to worry about learning github for now, 
but if you continue doing bioinformatics analyses, I would recommend learning it. Here is a 
great tutorial on using github from Prof. Kevin Thornton: 
https://github.com/ThorntonLab/intro2github  

In addition to documenting what you are doing with an electronic notebook, you want to 
make sure you are well-organized for a number of reasons: 

 (1) In this day and age, bioinformatics data is becoming mainstream in biology 
journals. If you publish a bioinformatics project, the journal will most likely ask for 
scripts or code you used for your project. Having a well-organized project directory 
will make it much easier to find and share these scripts.  

(2) To make redoing an analysis or reusing scripts from a project easier! 

(3) so that your collaborator won’t get lost in a sea of messy data and scripts if you 
end up doing a collaborative bioinformatics project 

So before we even get started on the P. aeruginosa project, we are going to make a nice 
parent directory for your project filled with empty subdirectories.  

• Make an empty, well-organized project directory using a pre-
written bash script  

From here on out, I am assuming you read through the linux tutorial and are somewhat 
familiar with unix commands. If you have no idea what is going on, reread the linux 
chapter. 

When you initially log into the HPC, you are connected to a “login node”. The function of 
these nodes are to let people into the HPC, so avoid doing any computationally intensive 
work in them. Request a “compute” node with the command: 

 qrsh  

Then, do the following:  
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1. cd into my directory: /dfs3/bio/tgallagh/GenomicsTutorial/code/scripts 
2. ls to see what files are there 
3. copy (scp) the “create_project.sh” file into your /dfs3/bio/<USERNAME> directory     

*Note, anytime you see “< >” this signifies user input  

Next, we are going to run the “create_project.sh” script. This script was written by Prof. JJ 
Emerson, it basically sets up an empty shell of nicely named directories for the user.  

After cd-ing into your /dfs3/bio/<USERNAME> directory, if you enter “bash 
create_project.sh” into the commandline, the usage of this script should appear: 

[tgallagh@compute-1-13 scripts]$ bash create_project.sh  

usage: create_project.sh name path 

We need to give the bash script a directory name and path to where you want the directory 
to be located. For example, if I want to make a new project directory named “Cheetos” in 
my /bio/tgallagh folder: 

[tgallagh@compute-1-13 scripts]$ bash create_project.sh Cheetos /dfs5/bio/tgallagh 

Project Cheetos created at /dfs3/bio/tgallagh. 

As you look throughout your new project directory and subdirectories, you’ll notice each 
subdirectory has an empty “README.md” files. These files are great for putting notes for 
yourself or potentially other users.  

There are a couple of different linux text editors you can use to make edits to text files. I 
like using “vim” but it takes some getting used to… definitely not as intuitive as microsoft 
word, and you can only use your keyboard to edit and save! 
http://www.vim.org/about.php. 

• Copy the raw sequencing data into your directory 

Background information on the sequencing data: 

This sequencing data you will be working with in this tutorial consists of DNA from 4 
Pseudomonas aeruginosa strains. Specifically, the names of the strains are P. aeruginosa 

FLR01 (sometimes nicknamed “P1” in our lab) and 3 “substrains” of P. aeruginosa PA14 (all 
derived from different labs: Dorrestein, Siryaporn, Hochbaum). FLR01 was isolated from 
cystic fibrosis sputum. The other 3 substrains are basically the same lab strain of P. 

aeruginosa that have been passaged in other labs, and we want to see if there are any 
noticeable genome changes as these 3 substrains adapted to different lab environments.  

To see the data, first “cd” into my directory: 
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cd /dfs3/bio/tgallagh/GenomicsTutorial/data/raw 

And then “ls” to see what is in there: 

[tgallagh@compute-1-13 raw]$ ls 

PA14_Dorrestein.read1.fastq.gz   
PA14_Hochbaum.read2.fastq.gz    
PAnmFLR01_S10_L001_R1_001.fastq 
PA14_Dorrestein.read2.fastq.gz   
PA14_Siryaporn.read1.fastq.gz   
PAnmFLR01_S10_L001_R2_001.fastq 
PA14_Hochbaum.read1.fastq.gz    
PA14_Siryaporn.read2.fastq.gz   
README.md 
 

The most common sequencing file formats you will probably encounter are “.fastq” or 
“.fastq.gz” (compressed fastq) and “.fasta.”  Sometimes this file extensions are shortened to 
“.fq”, “.fa”, “.fna”, etc.  To read about fastq files: 
https://en.wikipedia.org/wiki/FASTQ_format  

Use the scp command to copy all 8 fastq files from my directory into your new project 
directory. I would recommend copying these new files into your “raw” data directory, e.g. 
/bio/<USER>/<PROJECTNAME>/data/raw 

Some bioinformatics programs do not allow you to use compressed (.gz or .zip) files as 
input, so you can unzip the 6 “PA14” files: 

gunzip PA14* 

Note: that asterisk is a wildcard. It basically tells linux to replace the asterisk with 
any character, number, whitespace, etc. So it lets us unzip all 6 files that begin with 
“PA14” at once. Be careful when you are using wildcards! You can easily make 
mistakes, like unintentionally delete certain files. 

This sequencing data is illumina paired end sequencing data, so we have two reads per 
sequenced DNA fragment. Let’s look at the first ten lines of one of the uncompressed files: 

[tgallagh@compute-1-13 raw]$ head -10 PAnmFLR01_S10_L001_R1_001.fastq  

@M00285:18:000000000-A611E:1:1101:9210:1117 1:N:0:10 

CCACGAAGAACAGCATCGAGCCNAAGGTCTTGGCCAGGATGAATATATTGATGGAGCTGATGTGGAG 
+ 
CCCCCGGGGGGFGGGGGCGGGG#:CFGFGGGGGGGGGGGGGGGGAFGFGGGGGGGGGGGGGGGGGGG 
@M00285:18:000000000-A611E:1:1101:19487:1117 1:N:0:10 
GTACAAGGCGGTGCCCGACGCGCTGGTCTACATGCACCCGGAGGATGCGCGCCAGCTCAAGCTGCGCCGCGGCAGCGA
GGTCAAGGNGNNNNNNNNNNNNNNNGANNNNCGCGCGCGGGTCGAGACCCGCGGGCGCAACAAGCCGCCCCAGGG
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GCTGGTGTTCGTGCCGTTCTTCGACGCCAACAAGCTGATCACCAAGTACACCCTGGACGCCACCGACCCGATTTCCAA
GCAGACCGACTACAAGAAGTTCGCCGTTCGCCACGAACTGCTCAACCTGGCCTGAAGAG 
+ 
CCCCCGDGGGC@FEDFD@F@FCFEEGDGGFGGGDGCDFGGCFECCGGG7FFGGGGGFFEGGGGFG@FGGGGGEGGGG
>FFGGGGGF#:###############++####::@<7C@B1><FGGDGCCFFFECCB88>EE*;65CEE58?E8E58C*A>F
EC5@EGCEGDCGEGGGF*;=8CEG58CCFFGGC9C*AFGF++0<?C*:*7CFDGG<DFDDDECD)05.?:4>*<5>?D7>>D5B
F6=*7<6**1.>D5471).)(,)40,(.6)).5(4(.).3581).60 
 

@M00285:18:000000000-A611E:1:1101:9237:1117 1:N:0:10 
GCCGAGGCCCAGGCCGAAGGTTNGGAGGCGCTGCACCGGCAACTCGCCGAGGTCGACCCGGAATCGGCTGCGCGTATC
CACCNCAANNNNNNNNNNNNNNNNNGGCNNNCGCTCGAGGTGTATCGCCTCGGCGGGGTGTCGATGAGCGACCTG
CGTCGCCGGCAAAGCGCTGAAAAGGCGGATTTTGCTGCGTCAGGCGGGAATCAATTGCCGTATACTGTCGCGCAGCTG
GCGATTGGTCCCGAGCGGCGCCAAGATTTGCAGACGCGGATTGCGCAGCGTTTTCGCCACGTGCCGGAA 
 

• Quality filtering the reads and assembling the filtered data 
into genomes 

We will first quality filer the sequencing data using a program called “trimmomatic”. Then, 
we will assemble the filtered reads into the genomes of the 4 strains using a bioinformatics 
tool called “spades.” You can either run the “trimmomatic” and “spades” programs in an 
Interactive node, which allows you to watch any output from the programs in real time in 
your shell. Or, a safer and typically more efficient option, is to write a batch of code and 
submit it to the HPC task scheduler to run on a compute node. 
 

Before getting started, review the rules for running jobs on the HPC here: 
https://hpc.oit.uci.edu/running-jobs  
 

We already have a skeleton script which contains most of the code needed to run the 
sequencing files through trimmomatic and then spades.  
 

• First, copy the script into your own scripts directory. You already learned how to 
copy files. Here is the full file path to the script: w  

 

• After copying the scripts file into your own directory, look at the contents of the file 
using “cat” to print it to your screen or the text editor “vim”. 

 

$ vim filter_spades.sh  
 

And you’ll see the script: 
 

!/bin/bash 
#$ -N filterspadesPA14 
#$ -q free64,pub64,bio 
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#$ -m e 
#$ -ckpt restart 

 

  
############################################################ 
#### USER MUST PROVIDE THEIR INPUT HERE: 
BASE_DIR=<FULL PATH TO THE DIRECTORY WITH YOUR SEQ READS> 
# e.g: BASE_DIR=/dfs3/bio/tgallagh/GenomicsTutorial/data/raw/ 
  
  
############################################################## 
  
cd $BASE_DIR 
## Use trimmomatic to quality filter sequencing reads 
#make a new directory to put all the quality filtered reads 
mkdir qualityfiltered 
  
# make variable with path to output directory 
TRIMMED=${BASE_DIR}/qualityfiltered/ 
  
  
# load modules 
module load trimmomatic/0.35 
module load SPAdes/3.8.2 
  
java -jar /data/apps/trimmomatic/0.35/trimmomatic-0.35.jar PE -phred33 
PA14_Dorrestein.read1.fastq 
PA14_Dorrestein.read2.fastq  $TRIMMED\PA14_Dorrestein.paired.read1.fastq 
$TRIMMED\PA14_Dorrestein.unpaired.read1.fastq 
$TRIMMED\PA14_Dorrestein.paired.read2.fastq 
$TRIMMED\PA14_Dorrestein.read2.fastq  ILLUMINACLIP:/dfs3/bio/tgallagh/alladaptors.fa:
2:30:10 LEADING:25 TRAILING:25 SLIDINGWINDOW:4:20 MINLEN:50 
  
java -jar /data/apps/trimmomatic/0.35/trimmomatic-0.35.jar PE -
phred33  PA14_Hochbaum.read1.fastq   PA14_Hochbaum.read2.fastq  $TRIMMED\PA14_Hoc
hbaum.paired.read1.fastq $TRIMMED\PA14_Hochbaum.unpaired.read1.fastq 
$TRIMMED\PA14_Hochbaum.paired.read2.fastq 
$TRIMMED\PA14_Hochbaum.unpaired.read2.fastq  ILLUMINACLIP:/dfs3/bio/tgallagh/alla
daptors.fa:2:30:10 LEADING:25 TRAILING:25 SLIDINGWINDOW:4:20 MINLEN:50 
  
java -jar /data/apps/trimmomatic/0.35/trimmomatic-0.35.jar PE -phred33 
PA14_Siryaporn.read1.fastq PA14_Siryaporn.read2.fastq 
$TRIMMED\PA14_Siryaporn.paired.read1.fastq 
$TRIMMED\PA14_Siryaporn.unpaired.read1.fastq 
$TRIMMED\PA14_Siryaporn.paired.read2.fastq 
$TRIMMED\PA14_Siryaporn.unpaired.read2.fastq  ILLUMINACLIP:/dfs3/bio/tgallagh/allad
aptors.fa:2:30:10 LEADING:25 TRAILING:25 SLIDINGWINDOW:4:20 MINLEN:50 
  
java -jar /data/apps/trimmomatic/0.35/trimmomatic-0.35.jar PE -phred33 
PAnmFLR01_S10_L001_R1_001.fastq PAnmFLR01_S10_L001_R2_001.fastq 
$TRIMMED\PAnmFLR01.paired.read1.fastq $TRIMMED\PAnmFLR01.unpaired.read1.fastq 
$TRIMMED\PAnmFLR01.paired.read2.fastq 
$TRIMMED\$TRIMMED\PAnmFLR01.unpaired.read2.fastq  ILLUMINACLIP:/dfs3/bio/tgalla
gh/alladaptors.fa:2:30:10 LEADING:25 TRAILING:25 SLIDINGWINDOW:4:20 MINLEN:50 
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# assemble the quality filtered reads with SPAdes 
mkdir spades 
SPADES=${BASE_DIR}/spades/ 
spades.py --pe1-1  $TRIMMED\PA14_Dorrestein.paired.read1.fastq --pe1-2 
$TRIMMED\PA14_Dorrestein.paired.read2.fastq -o $SPADES\PA14_Dorrestein 
spades.py --pe1-1  $TRIMMED\PA14_Hochbaum.paired.read1.fastq --pe1-2 
$TRIMMED\PA14_Hochbaum.paired.read2.fastq -o $SPADES\PA14_Hochbaum 
spades.py --pe1-1  $TRIMMED\PA14_Siryaporn.paired.read1.fastq --pe1-2 
$TRIMMED\PA14_Siryaporn.paired.read2.fastq -o $SPADES\PA14_Siryaporn 
spades.py --pe1-1  $TRIMMED\PAnmFLR01.paired.read1.fastq --pe1-2 
$TRIMMED\PAnmFLR01.paired.read2.fastq  -o $SPADES\PAnmFLR01 

 

   
Note at the top, the script has a bunch of comments (lines starting with “#”, meaning the 
computer won’t run it). 
 

In order to get the script to run and work with the data in your directory, you need to copy 
the full path of your directory. There is an example right below (with a comment so the 
computer doesn’t run it). To edit the file, use “vim” and type in “i” to go into “insert” mode. 
You can now use your keyboard to edit the file. When you are done editing, hit escape and 
type in “wq” to save the edits and quit vim. 
 

You can now submit the script to the HPC task scheduler to run on a compute node. You do 
this with the “qsub” command. For example: 
 

$ qsub filter_spades.sh  
 

You can check the status of your run by typing: 
 

qstat -u <INPUT your username> 
 

for example, to see all of my current running jobs: 
 

$ qstat -u tgallagh 
 

  
job-ID  prior   name    user      state submit/start at  queue                       slots ja-task-ID 
----------------------------------------------------------------------------------------------------------------- 
1493082 0.50010 QRLOGIN tgallagh     r  01/29/2020 12:31:04 interactive@hpc-interactive-1-  1      
1493094 0.50007 filterspad tgallagh  r     01/29/2020 12:48:14 pub64@compute-7-6.local         1         
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which prints information about the running jobs, including the job ID (first number) and 
the job start time. The ‘r’ indicates the job is currently running. If the job has been 
submitted and is in the queue to run, you will see a ‘qw’ 
 

If it takes only a minute or less to “run” your job, it’s likely there is an error in your script!  
In which case, you will need to fix the bug in your script. You can start by going to the 
directory where your script is saved and typing ‘ls’. You should see two new files: 

• <your job name>.e<your job ID> 
• <your job name>.o<your job ID> 

 

For example, in my project directory: 
  
$ cd /dfs3/bio/tgallagh/GenomicsTutorial/code/scripts/ 
$ ls -l 

-rwxr-xr-x 1 tgallagh bio    1766 Jul 17  2017 create_project.sh 
-rw-r--r-- 1 tgallagh tgallagh  5616 Jan 29 12:54 filterspadesPA14.e1493094 
-rw-r--r-- 1 tgallagh tgallagh 12526 Jan 29 13:31 filterspadesPA14.o1493094 
-rw-r--r-- 1 tgallagh bio    2944 Jan 29 13:31 filter_spades.sh 
-rw-r--r-- 1 tgallagh bio       0 Jul 17  2017 README.md 

 

To read any “errors” from my job, I will use cat or vim to look at the error output file. 
 

$ cat filterspadesPA14.e1493094 
 

Another way to determine if your script ran properly is to simply look in the directories 
where you expect to see your output and check to see if the files are OK. The script tells 
spades to save the output in BASE_DIR/spades. So check the files in your project directory 
to see if they’re there and not empty (can use ls -l to check file size).  
 

/dfs3/bio/tgallagh/genomes_wound/filenames.txt 
 

Running job arrays: 
 

Job arrays: 
https://github.com/tgallagh/UndergradStuff/blob/master/Linux/PE_jobarrray.md 

-make change to t line--->tells how many files there are  
-input--->assigns task ID 1-39 for the job, specifically going to make a file a list of all 
the files--->orders 1-39--->assigns task ID number to each file  
-make a file name with with only the prefix for 39 files  
-to escape a file---->Vim [file name] 
-$SPADES$input--->to create new directory  
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• PATRIC to annotate genomes and compare genomes 

URL to PATRIC :https://www.patricbrc.org/   
Make an account and upload your assembled genomes  
 
Annotating a genome: https://www.patricbrc.org/public/pdfs/Workshop-Genome-
Annotation.pdf  
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