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ABSTRACT 

In an earlier publication we demonstrated that the reduced 

two particle density matrix of simple quantum liquids could profitably 

be re-expressed in terms of a Taylor expansion of its logarithm 

about the diagonal. In the present publication we examine the 

Taylor coefficients which arise when the dilute gas two particle 

density matrix is expanded in this way. In particular, we evaluate 

4 the leading coefficients of p-H2 and He exactly and extend the 

Wigner-Kirkwood approximation to provide .approximate expressions 

for them. We demonstrate how these approximate expressions may be,,: 

applied to yield results superior to those yielded by the ordinary 

Wigner-Kirkwood approximation. In an appendix we demonstrate how 

the Block equation for the dilute gas two particle density matrix 

may be reduced to an equivalent closed set of equations for the 

leading Taylor coefficients·. 
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I. INTRODUCTION 

/ 

In another publicationl (henceforth referred to as I) we 

examined the functional form and symmetries of the reduced two 

particle density matrix in simple quantum liquids. In the limit of 

the dilute gas, this form is simplified by the fact that the density 

matrix clearly factors into center of mass and relative coordinate 

dependent portions; The center of mass factor is simply the density 

matrix of a free particle of mass 2m .. From the results of I we 

determine that the relative coordinate dependent portion may be 

written as 

'" '" I '" '" p(r)r;B) = p(y,z;B) (1.1) 

'" 2~ '" . ~ "'2 4~ '" fA\ "'4 = A exp [fo(Y;B) + f(Y;S)0 z + f(Y;B)~z + •.. J 

where 

B = (kB T)-l 

'" 1 t\., ",I 

Y - 2(r+r ) 

'" 1 '" ",I 
Z - -(r-r) 2 

and A is a normalization factor which is most conveniently chosen 

so that f+O as IYI+oo. With, this convention, f is simply the 
00· 

2~ 
·logarithm of the ordinary radial distribution function g. f and 

4~ 
f are cartesian tensors of second and fourth rank which are composed 

of the Taylor coefficients of second and fourth order of the expansion 
",. 

of logp about z=O. The physical significance of these tensors 

2~ 4~ 
has been discussed in I. f has two independent elements and f, 

three. Setting y=ly, we find these elements to be 
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1 32 
kll = 2" az---:2 logp 

I 

kl 
I a2 

Iogp I a2 
Iogp = 2"az2 = 2"az2 , 

/ 2 3 

. hI 
I d4 

Iogp = 24 dzl4 

h2 
1 ;)4 

Iogp 1 34 
Iogp 1 34 

Iogp = 24 4 = 24 4 = "8 2 2 
(\Z2 dZ

3 oZ2 dZ 3 

h3 
I d4 

Iogp 1 a4 
logp = = 24 2 2 2"4 2 2 dZ l dz 2 dz

l
3z3 

where zi' z2 and z3 are 
tV 

the components of z. 

II. THE EXACT CALCULATION 

We evaluate these functions exactly by simply differentiating 

the sum over states expression for the density matrix in respect to 

?ltV = ?ltV - ?:ltV'. Slightly modifying and extending the derivation of z r r 

Poll and Miller2, we write the sum over states for the case of 

para-hydrogen as 

tV "" AT') 12 
p(r,r;a) = - 2 

1T 
A 3 1 

+ T z.~O (2.z.+1)'¥~(r)'¥~(r')p (a)exp(-SE~) 
.1Tff. 

tV tV 

where r - Irl,r' :: Ir'l 
tV tV 
r.r' 
rr' 

I 
AT·:: h(21Tmk

B 
T)-Z 

S :: (kBT)-I 

(2.1) 

-. 
i 
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apd P Z. is the Legendre polynomial of order Z. • The first term is a 

sum over continuum states. The continuUm state radial w~vefunctions 

/'¥.KZ. are defined to be normalized in such a way that in the limit of 

large r 

'l'dCr) = K[Jz.CKr)cos nz.CK) + Yz.CKr)sin nz.CK)] 

where j Z. and yz. are the spherical Bessel functions of order z., and 

nz.CK) is the phase shift. The second term is the sum over bound 

states and is written in the form proper for p-H2, which has only 

two bound states ,one for z.=0 and one for z.=l. The bound state 

radial wavefunctions are normalized in such a way that 
00 

f 
2 b 2 

r ['l'z.Cr)] dr = 1 
o 

b ' " 
The Et are the bound state energy eigenvalues. He4 has no bound 

states, and the second term is to be ignored. (2.1) is correct 

for distiguishable particles. If the particles are indistinguishable, 

(2.1) must be multiplied by two, and the summation restricted to 

odd or even values of z., according to whether the particles obey 

Fermi or Bose statistics. Setting ~'=~ in (2.1) makes the Legendre 

polynomials equal to one and yields an expression for the radial 

distribution function. 

We employed the usual Lennard-Jones potential· 

o 12 0 6 
V (r) = 4£ [(r) - (r) ] 

The use of this spherically symmetrical potential for p-H2 

is justified by the fact that nearly all of the molecules are in the 

rigorously s'pherically symmet:i:-ical rotational ground state at the 

low temperatures with which we deal in this paper. The values of E: 
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and (j which we employed for the two gases are presented in Table 1. 

We will not describe the calculation except for mentioning 
. 3 

that we used the taylor expansion algorithm and that .in no case 

-did our calculated values for the radial distribution function (rdf) 

differ from the published p-H2 values of Poll and Hil~er2 or the 

. He4 values of Larsen, Witte and Kilpatrick4 by more than one percent. 

Ca1cu1at"ing the rdf's from the values of the various tensor elements 

by means of certain equations which will be described further on 

indicated that the inconsistency between the various calculated 

functions is also. no more than about 1%. 

Eb = - 'O.0990e: 
o 

E~ - - 0 . .o387e: 

which differ by a few tenths of a percent from the values given by 

Poll artd Miller. 

A major reason for undertaking these calculations was to 

provide the necessary input data for the liquid state calculations 

in I. 

III. THE APPROXIMATE EXPRESSIONS 

We begin our derivation by following that ofter Haar and 

Boyd, Larsen and Kilpatrick
S 

First we formally expand the logarithm 

df the density matrix iIi. powers of B: 

'" "', p(r,r ,8) 

m where 11 is the reduced mass and equal to 2. 

co 

"''''m + L a (r,r')8 ] 
m=l m 

(3.1) 
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If all the am are set to zero, we obtain an exact 

expression for the corresponding ideal gas density matrix. Thus 

the power series in B is simply a formal expansion of the effect 

/'of a non-zero potential upon the logarithm of the density matrix. 

Inserting (3.1) into the appropriate Bloch equation6 and 

separating powers of B yields a coupled hierarchy of equations 

which may be soived sequentially. We solve the first two equations 

to obtain a l and a2. Changing variables from ~, ~, to y, i' we 

obtain 

where 

'V'U 
, al(y,z) = 

A 
n 

B == n 

n 
L: 

p=O 

n 
L: 

p=O 

00 

L: 
n=O 

(_l) n+ 1 A 'Vn
V( ) £::\ 'Un 

n 'V~ y\.& z 

00 . 2 n 
L: (_l)n+l ~ B ~'VL(y) @i'n 

n=O 2~ n y 

(n'-p) r (p+l) I 

(-2)P(p+l) 
(n-p) I (p+3) I 

(3.2) 

These coefficients vanish for all odd values of nand, 

'V 
as anticipated, only even powers of z app~ar. Inserting the expressions 

(3.2) into (3.1) and replacing B wherever it appears by (t-t')/i11 

yields an expression for the corresponding quantum mechanical 

propagator which is correct up to and including terms in the square 

of the time difference t_t,7. We wish to emphasize that our results 

tip to this point are generally applicable to any system which does 
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not involve velocity dependent forces. One need only insert the 

proper variables and potential function. 

We do not bother to solve for a3, as this function is 

non-linear in the potential and, thereby, rather difficult to work 

with. 

At this point we change notation to so-called lireducedil 

or "dimensionless" variables. From now on we express all energies 

in units of e, all lengths in units of a and masses in units of m. 

In this system of units (which is specific to each gas individaually) 

Planck's constant is replaced by 

A = h 

the so-called DeBoer wavelength. In these units the second order 

approximate expressions for the first three tensors are 

f 
o 

2~ 2 2 
2~ = - _0 __ !. '~;2v _ ~2L + 2~(t3,A2) 

f A2t 6 60 

t '\14 t 2A2 '\14 4~3 2 41 = - 120 IJ V - 1680 IJ L + o(t,A) 

(3.3a) 

(3.3b) 

(3.3c) 

2~ 
where t:e8 and 0 is the second rank tensor identity. We note that 

. 2 n~ 

expressions good to t for all higher· f tensors may also be extracted 

from (3.2). We also note that thes.e expressions do not contain all 

t '. 1 A2 . erms proport1ona to Traditionally, the derivation of the 

Wigner-Kirkwood approximation ends with a regrouping of terms by 

powers of A and a clean truncation with some power of A. ThiS 

,-
\ 
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strikes us as an arbitrary procedure and, therefore, we choose to 

accept (3.3) as the final form for our results. This decision 

saves us the trouble of deriving and dealing with terms which are 

non-linear in the potential. (More on~this in Section 6.) 

THE RESULTS 'FOR' '-H - P 2 

We have calculated these results under the assumptions 

of both Bose and Fermi statistics. However, the magnitude of the 

statistical e·ffects is insignificantly small for T>SoK and, therefore, 

we present only the results (correctly) calculated under the assump-

tion of Bose statistics. 

Instead of presenting the actual values of the elements of 

2~ 
f, we converted them into functions. with the dimension of temperature 

which are defined by 

1 - T or 

where Tis the thermodynamic temperature. These functions vanish 

in the classical limit and are thus indicative of the magnitude of 

the quantum effects. 
4~ . 

We leave the elements of f in the natural 

uni t 0-
4 (i. e., in reduced form). They also vanish- in ,the classical 

limit. 

We present these re'sul ts for 10 and 40 0 K in Tables 2 and 

3 .. It is seen that only g is strongly temperature dependent. 

The various tensor elements, and especially 8TII and hI' are seen to 

be only weakly temperature dependent. 

In Table 3 we also present values of the various tensor 
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~lements calculated from (3.3b and c). As it turned out, discarding 

the terms in t 2 from these expressions yielded significantly better 

results than including them, and, therefore, we present the tensor 

elements evaluated from (3.3b and c) with the quadratic terms struck 

out. 
2 . 

The improvement resulting from striking out the t terms under-

lines the dubious convergence of the Wigner-Kirkwood approximation. 

Such dubious convergence is only to be expected since, as we have 

4~ 
seen, lITII , lITl and the elements of f are only weakly temperature 

dependent. This, of course, is excellent grounds for doubting the 

validity of any .approximate expressions for them which are of the 

form of expansions in powers of 13. Still, we see that the approxi-

mate values in Table 3 are quite good, although they rapidly worsen 

wi th decreasing temp~ratur.e. 

V.THE CALCULATED RESULTS FOR He4 

We present these results for 1 and 2°K in Tables 4 and 

5, calculated under both the assumption of Bose statistics and the 

assumption of Fermi statistics. At 2°K the effects of statistics 

are evident, but small. At and above 5°K they are insignificant. 

lITIi . and hI' are only weakly influenced by the assumption of either 

sort of statistics. As in the case of p-H2, only the rdf is 

strongly temperature dependent and lITIi and hI are only very weakly 

temperature dependent. 

In I we noted that we have employed dilute gas He4 tensors 
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which were slightly in error. The results· p·resented here have, 

however, been corrected. 

/ 

VI.'" A POSSIBLE USE FOR THE APPROXIMATE EXPRESSIONS 

In I we derived equa,tions which relate f 
0' 

2::::: 
f and 

4::::: 
f of the reduced equilibrium two particle density matrix of a 

simple quantum liquid. Setting the density equal to zero in these 

equations gives an exact set of equations which relate f and the o 
2::::: 4::::: 

independent elements of f and f of the dilute gas two particle 

,density matrix. (We sketch an alternate derivation of these 

equations in the Appendix.) In terms of reduced variables these 

equations are 

(6.1a) 

I A 4 [G +f I h ] _ 1 A 2vIII K K I 0 
2'~ I 0 I 2"4"~ + II II = (6.lb} 

(6.1c) 

where 

-fi2 

KII - -k 4]lE: . II 

Kl 
li2 

- .-. k 
4]l£ 1 

I 2h 6h3 
GI hI 

+ _._1 _ 
-

Y Y 

G2 
= h I 4 h2 4h3 

- -- + - 3 3 Y Y 
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In the classical limit and the limit y -+ 00 

1 kBT 
KII = Kl = 2t = 2£ 

Using (3.3c) to provide approximate values of hI' h2 

and h3' we can integrate these equations to obtain f (and, hence, g), 
. 0 

KII and IS.. Alternatively, we can use (3.3b) to provide approximate 

values of KII and IS. , and integr.ate (6.la) alone to obtain foe 

These options are , respectively, analogous to the "three equation" . 

and "one equation" approaches of I. We also have the option of 

2 . 
employing (3.3b) and (3.3c) either with the t terms excluded. or 

included. We may label these options as "one term" and "two term", 

respectively. Therefore, we have a total of four possible options. 

The relative quality of the calculated rdf's yielded by each of 

these options when applied to p-H2 is roughly 

3 eq., I term>3 eq., 2 term"'l eq. 2 term>l eq., I-term 

In order to be consistent with :the approximate values 

presented in Section 4, we present only the one-term results, both 

one equation and three equation. These calculated rdf's are 

presented for p-H2 at 40 0 K in the Figure and compared wi,th exactly 

calculated values. It is evident that the three equation approach 

gives, quite good results except for the divergence at y;:0.75. This 

divergence is due to the fact that the Wigner-Kirkwood approximation 

is, after all, an expansion in the derivatives of the potential 

and, therefore, of dubious validity in the core region. Fortunately, 

this divergenceis,in practice, easily dealt with by simply setting 

the rdf equal to zero in this region. For comparison, we also pre- . 

sent the rdfcalculated di;rectly from the usual form of the Wigner-

Kirkwood ~pproximation: 

f -
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" 3 

tV+A2 {-it2 (2~ + VII)+ ~'2(V' )2} 

which we quote from Larsen, Witte, and Kilpatrick
4 

(6.2) 

Although this 

expression is much more complicated than our expressions (3.3b and c), 

it yields clearly inferior results. (It may be objected that this 

expression is a correctly truncated expansion in powers of A rather 

than in powers of t as are (3.3b and c). However, converting it 

to an expansion correctly truncated in powers of t by discarding 

the terms in t 4 and t 5 has no significant effect on the results. 

This is another reason for doubting the validity of the final 

regrouping into powers of A.) 

The moral of all this is that the number of terms in a Wigner-

Kirkwood expansion which one chooses to employ matters much less than 

the level at which orie chooses to approximate. Even the very simple 

first term of (3.3c) gives excellent results at 40 0 K when inserted 

into the three equation approach. This is because here the approxi-

mate. expression (3.3c) enters the calculation of g so indirectly 

that its fundamental shortcomings are largely supressed at this 

reasonably high temperature. (3.3b) inserted into the one equation 

approach effects the calculated values of g rather more directly 

and, therefore, the one equation approach yieldsnotice~bly worse 

resul ts. Finally, (6.2) yields g completely directly and, thereby, 

produces the worst results. 
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In reality, the rdf which we calcul"ated approximately 

in this section can also be, and was, calculated exactly. However, 

/the exact calculation requires that the wavefunctions of the system 

be calculable .. This is usually simply not the case, and, very 

often, the Wigner-Kirkwood approximation is all that is available 

in the ca~e of more complex systems. We hope that our extension. 

of the Wigner-Kirkwood approximation and the new way which we have 

developed for applying it will prove useful in the study of such 

complex systems. 
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APPENDIX: SOME ADDITIONAL RELATIONS 

A derivation of the Eqns.(6.I} which is analagous to the 

arguments of I begins by inserting the two particle density matrix 

written in the form (1.1) into the equilibrium equation 

(AI) 

However, beginning with the Bloch equation 

d 
H2P = - as P (A2) 

instead gives the Eqns. (6.1) and more. Inserting the proper form 

of the Hamiltonian 
-lo.2 2· 
-11 V ('Vr ) H = - - 'iJ'V + 2 2].1r 

-il2 2' ~ ~ 2' 'V 'V = - -8 ['iJ'V+2v'V·v'V+'iJ'V ]+V(y+z) 
].I y Y z z 

and (1.1) into (A2) results in an equation both sides of which are 

power expansions in ~. Separating the powers of ~ we obtain a 

heirarchy of tensor equations,' the first four of which are 

2 11 2 'V ~ 'V 2 2~ 2~ 'V 
- -8 ['iJ'Vf (y; B) + 1 v'Vf (y; 13)1 +2 <5 G) fey; B)] 

].I y 0 yo.. (A3a) 

'V 
+ V(y) 

2 ~ . .f1' ~ 'V. 'V 2~ 'V . 2~ 4~ 'V 
- -8 ['iJ f(Y;B~+2?j'V f (Y;B)·?j'V f(Y;B)+I2 <5®2f(Y,B) 

].I y ~. y 0 y . 

2~ 'V 2~ 'V 1 ~ 2 'V d 2~ 'V 
+ 4 f(y;B)· f{y;B)]+, I(V):) V(y) .= ~ as f{y;B) (A 3c) 
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. 2 . . ' . . 
11 ~ 4;:::,; 'V 4;:::'; 'V ~ 'V 2;:::,; 'V 'V 2;:::'; 'V 

- --2 [2V'V· f(y;S)+2 f(y;S)·v'V f (y;S)+ f(y;S)·V'V f(y;S)] 
IlY yo Y 

1 ~. 3 'V 
+ 6 (Vy) V(y) = 0 

. (Ao3d) 

(As they stand, these equations are, again, not restricted 

to the dilute gas two particle density matrix.) 
2;:::,; 4;:::,; 

We recall that f, f and f have a total of six independent 
o 

elements between them. It is also possible to determine (cf. Section 

3 of I) that the equations (A3) also .have a total of six independent 

elements among them. Thus we come to the happy realization that 

Eqns. (Ao3) are' equivalent to "a closed set of six scalar equations for 

six scalar unknowns. 

Inserting (l.l)into (AI),on the other hand, results in a. 

heirarchy which consists of odd rank tensor equations only. These 

equations are," in fact," just the odd rank members of the heirarchy 

(A3). Eqns. (6.1) are simply the three independent elements of 

Eqns. (Ao3 b and d). They do not, of course, constitute a closed 

set and it is easy to determine that no finite subset of the odd 

rank heirarchy alone can be closed. 

Unfortunately, simultaneously integrating the six scalar 

equations equivalent to Eqns. (A3) is quite impractical. However, 

the same situation occurs in the one dimensional case, except that 

here the closed set consists of merely two scalar equations: 
, 
: . 
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if2 a2 a 2 
- {- f (y; 6)+ [~ f (.y; 6)] +2 f2 (y; 6) ]+V(y) 
8m ay2 0 oy 0 . . 

= 

(All quantities in these equations are scalars) 

Integrating just these two equations does seem easier 

than evaluating a sum over states, especially at high temperatures. 

If desired,. higher order f functions may be calculated from the higher 

order odd "rank" equations, the first of which is 

.112 a . a . a 
- 2m [2 ay f4 (y;6)+f2(y;6) ay f 2(Y;8)+2 f 4(y;6)ay f o (y;6)] 

+ ~ V", (y) = 0 

We note that these are ordinary first order differential 

equations which may easily be. integrated in succession . 

. . 
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TABLE 1 

. . -.24 
~ (g x 10· ) A 

2.556 10.22 3.'322 0.4259 

2.928 37.0 1.673 0.2753 
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,. . 

TABLE 2 

p-I"L." 
t.. 

T=lOoK 

y g Til TJ. hI h2 h3 

* 0.82 0.01 4.88(2) -6.72(1) -1. 22 (3) -6.90(1) 1.99(2) 

0.9 0.17 2.51(2) -3'~ 10 (1) -5.27(2) -2.82(1) 8.51(1) 

1.0 1.00 1.16(2) -1.17 (1) -2.05(2) -9.74 3.20(1) 

1.1 2.31 5.55(1) . -3.87 -8.74(1) -3.44 1. 29 (1) 

1.2 3.29 2.65(1) -0.71 -4.01(1) -1.17 5.38 

1.3 3.62 1.19 (1) 0.51 -1. 95(1) -0.33 2.25 

1.4 3.44 4.41 0.88 -9.76 -0.03 0.89 

1.5 3.03 0.56 "0.90 -4.91 0.06 0.29 

1.6 2.57 -1.26 0.78 -2.34 0.08 0.04 

2.0 1.41 -1."35 0.23 0.18" 0.02 -0.05 

2".5 1.08 -0.24 0.04 0.04 -0.00 -0.01 

* 2 (n) indicates the order of magnitude; i. e. , 4.88 (2) = 4.88 x 10 . 
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0.82 

0.9 

1.0 

1.1 ' 

1. 2 . 

1.3 

1.4 

1.5 

1.6 

2.0 

0- 1'''' :,1 10-:li ",), 0: U ~,I' ~ ~ , 

y g Til 

0.82 0.01 4.62(2) 

0.9 0.11 2.27(2) 

1.0 0.61 9.51(1) 

1.1 1.29 3.84 (1) 

1.2 1.67 1.34(1) 

1.3 1. 69 2.95 

1.4 1. 54 -0.73 

1.5 1. 38 -1.49 

1.6 . 1.26 -1. 29 

2.0 1.06 -0.28 

hI hI (app) 

-1.22(3) -2.35(4) 

-5.28(2) -5.18(3) 

-2.04(2) -9.17(2) 

-8.39(1) -1.84(2) 

-3.50(1) -3.96(1) 

-1.36(1) -8.42 

·4.48 -1. 41 

-1. 02 0.08 

0.01 0.30 

0.08 0.08 

2 7 2 5 
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TABLE 3 

Til (app) '1'1 

3.99(3) -5.40 (1) 

1. 01 (3) -2.27(1) 

1. 97 (2) -7.28 

3.72 (1) -1.80 

4.13 -0.00 

-2.06 0.45 

-2.50 0.45 

-1.91 0.34 

-1.32 0.22 

-0.27 0.05 

h2 h2 (app) 

-5.84(1) -3.40(2) 

-2.18(1) -7.11(1) 

-6.46 -1.11(1) 

-1. 81 -1.67 

-0.41 -0.12 

-0.02 0.09 

0.06 0.08 

0.06 0.05 

0.04 0.03 

0.01 0.00 

T1 (app) 

-2.84(2) 

-6.67 (1) , 

h3 

-1. 04 (1) 

-0.63 

0.80 

0.75 

0.52 

0.33 

0.21 

0.04 

1.89(2) 

'7.74(1) 

2.67(1) 

9.27 

3.02 

0.82 

0.12 

-0.05 

-0.07 

~0.01 

h3 (app) 

1. 76(3) 

3.81(2) 

6.44(1) 

1.18(1) 

2.05 

'0.20 

-0.10 

-0.11 

-0.08 

-0.01 
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TABLE 4 

4 He , T=l°K 

Bose (B) and Fermi (F) Statistics 

y g(B) g(F) ~TII (B) ~TII (F) ~Tl (B) ~Tl (F) 
, .. , .. 

0.82 0.03 0.02 213.19 212.84 ~34. 94 -30.73 

0.9 0.19 0.13 . 111. 73 111. 36 -18.02 -14.60 ~ l-

1.0 0.70 0.48 53.70 53.34 - 8.40 - 5.71 

1.1 1. 37 0.95 27.52 27.18 4.12 1. 99 

1.2 1. 94 1. 38 14.77 14.47 - 2.08 - 0.37 

1.3 2.31 1. 69 8.16 7.91 - 1. 06 0.31 

1.4 2.49 1.87 4.56 4.36 .,. 0.53 0.58 

.1. 5 2.53 1. 95 2.52 2.37 - 0.25 0.65 

1.6 2.48 1. 97 1.33 1. 22 - 0.10 0.63 

1.7 2.38 1. 94 0.62 0.55 - 0.02 0.58 

1.8 2.25 1. 89 0.19 0.15 0.02 0.51 

2.0 1. 98 1. 74 -0.20 -0.21 0.06 0.37 

2.2 1. 74 1. 59 -0.32 -0.31 0.06 0.25 

2.5 1.45 . 1. 39 -0.29 -0.28 0.04 0.13 

3.0 1.18 1.17 -0.15 -0.15 0.02 0.04 

3.5 1. 06 1. 07 -0.05 -0.06 0.01 0.01 
Y hI (B) h

1
(F) h2 (B) h2 CF) h3 (B) h3 (F) 

0.82 -7.87(2) ~7.87(2) -4.83 (1) -4.98(1) 1. 32 (2) 1. 31 (2) 
" 0.9 -3.41(2) -3.41 (2) -2.06(1) -2.16(1) 5.72(1) 5.65(1) 

1.0 -1.33 (2) -1. 33(2) -7.73 -8.3.8 2.23(1) 2.18 (1) 

1.1 -5.68(1) -5.68(1) -3.10 -3.54 9.46 9.13 

1.2 -2.62 (1) -2.63(1) -1.29 -1. 59 4.30 4'.08 

1.·3 -1.29(1) -1.29(1) .,.0.53 -0.76 2.06 1.90 

1.4 -6.71 -6.72 -0.21 -0,37 1.03 0.91 l 1.5 -3.65 -3.64 -0,06 -0.19 0,52 0.44 
~ I ~ 
. ~ 
F, 

1.6 -2.06 -2.04 0.00 ~0.10 0.27 0.21 

1.7 -1.19 -1.17 0.03 -0.05 0.14 0.09 ; 

1.8 -0.70 -0.68 0.03 -0.03 0.07 0.03 

2.0 -0.25 -0.23 0.03 -0.01 0.01 -0.01 

2.2 -0.08 ':'0.07 0.02 -0.00 -0.01 -0.02 

2.5 0.00 0.00 0.01 0.00 -0.01 -0.01 

3.0 0.01 0.01 0.00 0.00 -0.00 -0.00 

3.5 0.01 0.01 -0.00 0.00 -0.00 -0.00 
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TABLE 5 

4 He , T=2°K 

Bose (B) and Fermi (F) Statistics 

.... ~ y g(B) g(F) llT11 (B) llT" (F) llTl (B) llTl (F) 

0.82 / 0.02 0.02 212.08 211. 94 -32,85 -30,89 
-,) 

0.9 0.14 0.13 110.66 110.52 -16.40 -14,85 

1.0 0.50 0.47 52.69 52.56 - 7.20 ~ 6 .. 03 

1.1 0.98 0.92 26 .. 59 26.48 -3.22 - 2.34 

1.2 1. 39 1. 33 13.93 13.84 - 1.40 - 0.74 

1.3 1.67 1. 61 7.41 7.35 - 0.54 - 0.04 

1.4 1.82 1. 76 3.91 3.86 - 0.13 0.24 

1.5 1. 86 1. 81 1. 96 .1.93 0.06 0.33 

1.6 1.83 1.80 0.86 0.84 0.14 0.34 

1.7 1.77 1. 75 0.24 0.23 0.17 . 0.31 

1.8 1.69 1.67 -0.11 -0.11 0.17 0.26 

1.9 1.60 1. 59 -0.2~ -0.29 0.15 0.22 

2.1 1.42 1.42 -0.38 -0.38 0.11 0.14 

2.3 1.28 1.29 -0.33 -0.33 0.08 0.08 

2.5 1.18 1.19 -0.23 -0.24 0.05 0.04 

3.0 1. 05 1.06 -0.07 -0.08 0.02 0.01 

Y hI (B) . hI (F) h2 (B) h2 (F) h3 (B} h3 (F) 

0.82 -7.87(2) -7.87(2) -4.58(1) -4.87(1) 1.31(2) 1. 30(2) 

0.9 -3.41(2) -3.41(2) -1,90(1) -2.09(1) 5.65(1) 5.62(1) 

1.0 -1.33(2) -1. 33(2) -6;74 -7.94 2.17(1) 2.16(1) 

1.1 -5.68(1) -5.68 (1) ... 2.49 -3.25 9.08 8.98 

i.2 -2.62(1) -2.62(1) -0.90 -1.40 4.02 3.96 

1..3 -1.28 (1) -1. 28 (1) -0.29 -0.63 1.86 1. 82 

1.4 -6.62 -6.62 -0.06 -0.28 0.87 0.85 

1.5 -3.54 -3.54 0.03 -0.12 0.41 0.39 

1.6 -1. 95 -1.94 0.05 -0.05 0.18 0.17 

1.7 -1.08 -1.08 0.05 -0.02 0.07 0.06 

1.8 -0.59 -0.59 0.04 _0.00' 0.02 0.01 

1.9 -0.32 -0.31 0.03 0.01 -0.00 -0.-01 

2.1 -0.06 ':0.06 0.02 0.01 -0.02 -0.02 

2.3 0.01 0.02 0.01 0.01 -0.02 . -0.02 

2.5 0.03 0.03 0.00 0.00 -0.01 -0.01 

3.0 0.01 0.01 -0.00 0.00 -0.00 -0.00 
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FIGURE 'CAPTION 

Calculated rdf's, forp-H2 at 40 o K. Heavy solid line, 

exact. Light solid line, (6.2). Long dashes, 1 eq., I-term. 

Short dashes, 3-eq., I-term. (6.2) curve diverges explosively 

~ ~ 

at y=l.l, 3-eq. curv~ diverges at y=0.75. 
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r------------------LEGALNOTICE--------------------~ 

This report was prepared as an accoun t of work sponsored by the 
United States Government. Neither the United States nor the United 
States Atomic Energy Commission, nor any of their employees, nor 
any of their contractors, subcontractors, or their employees, makes 
any warranty, express or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness or usefulness of any 
information, apparatus, product or process disclosed, or represents 
that its use would not infringe privately owned rights. 
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