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ABSTRACT"

In an'earlief publication we'demonstrated that the'reduced
two particle density matrix bf'simﬁle quantum liquids could profitably
be re-éxpressed in terms of'é Taylor expanéiqn of its logarithm |
about the diagonal. 1In the present publicaﬁion we examine the
Taylor coefficients which arise when the dilute gas ‘two particle
density matfix is expanded iﬂ this way. 1In paiticular, we evaluate
thé 1eading coefficignts“of p—H2 and He4 exactly and extend the
Wigner-Kirkwodd approximation to provide approximate expreséiohs
for them. We demonstrate‘hbw these approximaté expressions may be.

applied to yield results supefior to those»yieldéd by the ordinary

Wigner-Kirkwood approximation. In an appendix we demonstrate how

the Block equation for the dilute gas two particle density matrix
may be reduced to an equivalent closed set of equations for the

leading Taylor coefficients.’
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.~ INTRODUCTION

In another p’ub.lic‘ét-ioh1 (henceforth referred.tb-as 1) we
examined fhe functional form and symmetfies of the.redUQed two
/;articlé density matrix in s%mple quantum liqdids. In the limitiof
the dilute gas, this form is simplified by the fact thaf the density
matrix clearly factors into center of mass and relative‘coordinate
dependent portiéns; The center of mass factor is simply the density
matrix of-a free particle of mass 2m. From the,results of 1 we . |
determine that fhe relative coordinate dependent portion may be

written as _ s

pcr ¥ie) = o(hEie) )
- n e 5,350 + G s)@ NRHGDIOTAR: ]
where _
' -1
B = (k T)
yel@yy
7 = l{% %’)

and A is a normalization factor whicﬁ’ié most anveﬁiently choéén

.so thatqfo+0 as |§|+w. With this conveﬁtion;'fo.is>simply the
‘logarithm of the ordinary radial distributioﬁ function‘g. 2? and

4? are cartesian tensors of second and foﬁrth rénk which are composed
- of the Taylor coefficients of,second and fourth order of the expansion
of logp about %¥0' The phy31ca1 51gn1f1cance of these tensors

has been dlscussed in I. f has two 1ndependent elements and 4f,

three. Settlng y=1y, we find these elements to be.
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h3 i EZ-322822 roge = 24 822822 roge
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where Zys Zg and Zq are the components of z.

II. THE EXACT CALCULATION

We evaluate these functionS'exactly by simply differentiating
the sum over states expression for the density matrix in respect to
$Q’= 3¥ - 3%'. Slightly.modifying and extending the derivation of

Poll and Millerz, we write the sum over states for the case of

para-hydrogen as

. p(r,r ;B) = _12__ hX (21+1)IO\PKZ(I-)1{’KZ(I-')pl(’a)exp( 5= )dK:
. T Z:O . .
221 o - |
g L b 2.1
"o 15 (11 (¥ (rIP (exp(-BEy) |
where r = |r|,r' = |r'|
LAV VR
- _or.y!
o = 0
: rr
. 1
AT = h(zwkaT) 2
= -1
B —,(kBT)




and PZ is the Legendre polynomial of order Z. The first term is a

sum over continuum states. The continuum state radial wavefunctions

%kZ are defined to be normalized in such a way that in the limit of

“large r

YKZ(r) = K[jZ(Kr)éog anK) + yZ(Kf)sin nZ(K)]

where iz and y, are the spherical’Bessél functions of order 7, and

nZ(K) is the phase shift. ' The second term is the sum over bound
states and is Written in the form proper for p—Hz, which has only
two bound states, one for =0 and one for l=1. The bound state

radial wavefunctions are normalized in such a way that
i rz[W?(r)]zdr =1
o

The E? are the bound state ehergy eigenvalues. He4 has no bound

states, and the second term is to be ignored. (2.1) is correct

~ for distiguiéhable particles. If the particles are indistinguishable,

(2.1) must be multiplied by two, aﬁd the summation restricted to
odd or even values of ., according to whether the particles obey
Fermi or Bose statistics. Setting ¥'=¥ in (2.1) makes the Legendre

polynomials equal to one and yields an expression for the radial

distribution function.

We employed the usual Lennard—JoneS potentialﬂ

12 6
V) =4 [ - D]

The use of this spherically symmetrical potential for p-H2

is justified by_the fact thatbneariy'all of the molecules are in.the

rigorously -spherically symmetrical rotational ground state at the

low temperatures With which we deal in this paper. The values of ¢
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and ¢ which we employed for the two gases are preéented in Table 1.
We will not describe the calculation except fdr mentioning

that we used the Taylor expansionvalgorithm3 and that in no case

-did our calculated valuéS»for the radial distribution function (rdf)

differ from the published p—H2 values of Poll and Miller2 or the.

V'He-4 values of Larsen, Witte and Kilpatrick4 by more than one percent.

‘Calculating the rdf's from the values of the various tensor elements

by means of certain equations which will be described further on

indicated that the inconsistency between the various calculated

S

functions is also no more than about 1%.
b .

E_ = -0.0990¢

)
ED = - 0.0387¢
which differ by a few tenths of a percent from the values given by
Poll and Miller.

A major reason for undertaking these calculations was to

provide fhe_necessary inpﬁt data for the liquid state calculations

in I.

THE APPROXIMATE EXPRESSIONS

We beginﬁour deriVation by following that of ter Haar and
Béyd,'Larsen and Kilpatricks. First we formélly expand the lbgarithﬁ
of the denéity matrixlin'powers of B:-

o ®,T,8) : ‘
oz " o

(5972 exp[- —b— [T-71] + I a (¥,F)8" (3.1)
2mh°B 2h°B =1

where 1 is the reduced mass and equal tolmg




If all the'.am are sef to zero, we'obtain én exact
‘ ekpression for the corresponding ideal gés:density mafrix. Thus
thé power series in B is simply a formal exbansion of the effest
‘,/gf a non-zero potential upon the logarithm of the density matiix.
~ " o _ Inserting (3.1) inEo the appropriate.Bloch equation6 and
seﬁarating powers of B yields a coupled hierarchy of equations |

which may be solved sequentially. We solve the first two equations

to bbtain a, and a,. Changing variables from_%, %"toly, 7 we
obtain |

a, %% = 1 (DM A BVH@T (3.2)

= ny
. n=0-

a,(y,2) = I 1“*1‘5— %nL(»")@?“

2()’:2) = =0( ) 21 Bn'}\; Y.
where

L = V2V

n v

A= I (-2)°

mT L, @]

sz oy LDPee

n p=0 (n"Pﬂ.(P*'S).I oo

.These coeffiéients'vanishvfor all_oddvvélues'of n aﬁd,
as anticipated, only sven'powers of z appear. Insefting the expressions
(3.2) into (3.1) and replacing B wherever it appears by (t- t')/rﬁ
'ylelds an expre351on for the correspondlng quantum mechanlcal
propagator which is correct up tovand including terms in the squére
: ; :

of the time difference t-t! We wish to emphasize that our results

up‘to this point are generally applicable to any systeh which‘does
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not involve velocity depéndent forces. Oqe hééd only insert the
propef‘variables aﬁd potential function. |
| We do not bbther.tovsolve for a5 as this function:is

non-linear in the potential and, thereby, rather difficulf to. work
with. | |

At this point we change notation t0'$o—ca11ed‘”reduced"
or '""dimensionless" vériables. From now on we éxpress all energies
in units of e, all lengths in units of o and masses in unitswof m.
_In this system of units (which is specific t6 each gas indiVidauallyj

Planck's constant is replaced by
. .t
oY 2ue

the sQ¥ca11ed.DeBOer wavelength. In these units the second order

» approximate expressions for the first three tensors are

2 . .

£= - w-t? LoLeo(e’ 0% | -  (3.3)
Vi .22 -

~ § - ta2 t A2 > 3 2

%= - > - giv vV - —65—9 L+ “o(t™,A%) | (3.3b)
ATt :

O Y VI S TN 3.3

£ 7120 1680 o(t™,A) | - (3.39)
where -tZeB and'2§’is the second rank tensor identity. We note that

expressions good to‘t2 for ail higher'n? tensors mayiaiso be'éitracted
from (3;2). We also note that these expreégions.do not contain gll
'terms>proportionai to.Az. Traditionally, the derivation of the
Wigner;Kirkwood'approximationvendsvwith a regrouping of térms By

powers of A and a clean truncation with some powef of A. This

[
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IV.

‘strikes us as an arbitrary procedure and, therefore, we choose to

accept (3.3) as the final form for our results. This decision

saves us the‘trouble of deriving and dealing with terms which are

" non-linear in the potential. (More on-this in Section 6.)

THE RESULTS FOR p-H,
We have calculéted thesé results under the assﬁmptions
of bothiBoée and Fermi stafistics. Hdwever; the magnitude of the
statistical effects is iﬁéignificantly_smail for T>S°K énd, therefore,
we preéent only the results (correctly) caiculafed under the aésump-
tion of Bose statistics. | |
Insteéd of préseﬁting the actuai Qaiugs of the‘elements of
2?1 we converted them into fﬁnctions.with thé dimension of temperature
which are defined by - _ | |
- - (l—ig)_l\z K or L = T

A or L

where T is thé'thermodynamic_température} These functions vanish
in thé classical limit and are thﬁs indicative of the magnitude of
the quantum.effects; We leafélthe'elements of 4? in fheAnéturai
unit 0_4 ti.e., in reduced form); They also vanigh'in the ciassical
limit. | ﬂ |

We present these reSults‘forFIO"énd 40°K in Tables 2 and

3. It is seen that only g is strongly temperature dependent.

‘The various tensor elements, and especially AT” and hl’ are seen to

be only weakly temperature dependent.

In Table 3 we also present values of the various tensor
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elements éalculated from (3.3b and ¢). As it turned out, discarding
the terms in t2 from these expressions yielded significantly better
- results than including them; and, therefore, we present the tensor

elements evaluated from (3.3b and c) with the quadratic terms struck

out. The improvement resulting from striking out the tz terms'underQ

fines the dubious convergence of the Wigneerirkwood approximation.
Such dubious convergence is only fo be expected since, as we have
seén, AT“, ATl aﬁd the elements of 4? are only weakly,temperatﬁre
dependent. This, of coﬁrse,'is exc¢11ent grounds for doubting the
validity of any,approkimate expressions for fhem which.are of the
form of expansions in powers of B. 'Still, we sée that the approxi-
mate values in Table 3 are qﬁite'godd, although they rapidly worsen

with decreasing temperature.-’

" THE CALCULATED RESULTS FOR He*

Wé presenf these:resultg féi 1 éﬁd 2°K iﬂ Téb1e§ 4 and
5, calculated under both the assumption of Bose statistics and the
assumptioﬁ‘of Fermi statistics. At 2°K the effecfs of statistics
are‘evidént, but small. At and above 5°K they are insignificant.
: AT”_and_hl‘are only weakly influenced by the'éssumptibn of either
sort of statistics. As in the case.gf p-Hz, only the rdf is
sfrongly temperature dependent and AT" andvhl'are only very weékly
temperature dependent.

In T we noted ‘that we have employed dilute gas He4 tensors

. |
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which were slightly in error. The results presented here have,
hoWever, been corrected.

e

“ A _POSSIBLE USE FOR THE APPROXIMATE EXPRESSIONS

In I we derlved equatlons Wthh relate f 2f and

>

‘4? of the reduced equ111br1um two particle density matrix of a

simple quanfum liquid. Setting the density equal to zero in these

equations gives an exact set of equations which relate fo and the

independent elements of 2?'and 4? of the dilute gas two particle

-density matrix. (We sketch an alternate derivation of these

equations in the Appendix.) In terms of reduced variables these

equations are

.2 I

SR R T A (6.1a)
1,4, | 12||| | - ; .
—A 16,45, 1 - 4 Z(ﬂ—-i)+Kl('
3 8 y 2 It L
’KL
+ 2= (Ry-K) = 0 (6.1¢c)
"wheré
. _,ﬁz :
I~ " 4ue
K = _f_
L= 4ue 7L
2h_ - 6h
_ | 1 '3
G =hy +5 -5
G :h‘ _i&*‘ﬁ
273 3 vy y
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In the classical limit and the limit y +

G =K =

Using (3.3c) to provide apprOximéte*vaiues of hl’ h2

and h3, we can integrate these equations to_obtain fo (and, hence, g),

K” and X . Alternatively, we can use (3.3b) to proviﬂe approximate
values of K” and Kl, and integrate (6.1a) alone to obtain fo.

These options are, respectively, analogoué to the "threé equétion"”
and ''‘one equation” approachés of 1. ‘We also_have the option of
employing (3.3b) and (3.30) either with the t2 terms éxcluded‘dr
included. We may 1abe1'thése options as "one term" and "two term",

respectively. Therefore, we have a total of four possible options.

The relative quality of the calculated rdf's yielded by each of

these dptions when applied to p-Hé is roughly

3 eq., 1 term>3 eq., 2 termvl eq. 2 term>1 eq., l-term
In order to be consistent with the approximate values
presented in Section 4, we present only the one-term results, both

one equation and three equation. These calculated rdf's are

- pfesented for p—H2 at 40°K in the Figure and compared with exactly

calculated values. It is evident that the three equation approach

gives quite good results except-fof,the divergence at y30.75. This

divergence is due to the fact that the Wigﬁér-Kirkwood approximation

'is, after all, an expansion in the derivatives of the potential

and, therefore, of dubious validity in the core region. . Fortunately,
this divergence‘is,'in practice, easily dealt with by simply setting

the rdf equal to zero in this region. For comp3ri$on, we also pre-

'éent the rdf calculated directly from the usual form of the Wigner- .

- Kirkwood approximation:
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i I 3

o 2,2V Pyt 0.2
£, ="~ v A {- (——— + V)+ (Vv ) }
3 Lo 4 , - |
. : VvV v
NS %5-[4Y§—-+ ViVl %5[(V”)2+3v'v”'+6 5 - 4{ y) ]
. ’.5 L
- 6_V )ZV”} + Okt A ) R ' (6.2)

- which we quote from Larsen, Witte, and Kilpatrick4. Although this

expression is much more complicated than our expressions (3.3b and c),
it yields clearly inferior results. (It may be objected that this

expression is a correctly truncated expansion in powers of A rather

- than in powers of t as are (3.3b and c). However, converting it

to an expansion correctly truncated in powers of t by discarding
the terms in t4 and t5 has ﬁoisignificant effect on the results.
This is another reason for doubting the validity of the finél
regrOuping.inté powefs of A.) |

The moral of all this is tﬁat fhe nuﬁbgr of terms in a Wigner-

Kirkwood expansion which one chooses to employ matters much less than

the level at which one chooses to approximate. Even the very -simple

- first term of (3. 3c) givesvexcellent results at 40°K when inserted

into the three equation approach. ‘This is because here the approxi-

mate expression (3.3c) enters the calculation of g so indirectly

that its fundamental shortcomings are 1arge1y»supressed at this

‘reasonably high temperature. (3.3b) inserted into the one equation

approach éffects thé calculated values of g rather more directly
and, thérefore; the one equation approach.yields.noticeably worse
results. Flnally, (6 2) y1e1ds g omgletel d1rect1y and thereby,

produces the worst results
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In reality, the rdf which we éalcgléted approximately
in this section can also be, and was, calculated exactly. However,
,/the exact calculation requires that the wavefuncfions of fhe system
| ~be calculable. . This is usually simply not the case, and, very
often, the Wigner-Kirkwood approximatioh is all that is available
" in the case of more complex sYstems, We hOpeithat our extension
of the Wigner-Kirkwood approximation and the new way which we have
- developed for applying it will prove useful in the study of such

complex systems.
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o APPENDIX: SOME ADDITIONAt RELATIONS

A derivation of thé'Eqns.(6.1} which is analagous to the
arguments éf I begins by inéeyting the two particle density matrix
written in the form (1.1) into the equilibfium equation

[Hy,0] = 0 | | (A

’Herver, beginﬁing with thé'Bloch equation

3
Hyp = -5z ¢ ‘ : N

instead gives the Eqns. (6.1) and more. Inserting fhe proper form

of the Hamiltonian
. 2 2.

__h v

Hz = -ﬁ??'ﬁ\,(l‘)l

2 . s ’
A 2 ) 2 Ny
- gi-[V;+23; §?+V% 1+V(y+2z)

and>(1.1) into (AZ) results in an equation both sides of ‘which are
. N . ' n, R : n . / .
power expansions in z. Separating the powers of z we obtain a

heirarchy of tensor equations, the first four of which are

A 2. 2, 2% = 2%
- gy N, G+ Wt i) |2 @ TEGER] (asa)

+ V) = - 55 £,058)

2

W2 o o ~ P A |
XU GOEH DR o ¥:8)1+W () = 0 (A3b)

L2 : ‘ .
R B e £ Giey e B T
- & TREGs8)2Yy £, Gio ¥y FGie 12 @ FG )

2

‘2 2?(3\?;6)-2?(9;331“%(%)2"('}\;) "=' - g—s- ?G;B) (A 3¢)
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';ﬁz '29w°4? m.' +2 4? v; ;é& fv &- +2? Vs -%mz?,m'

+ 5 B = 0 (Asd)

(As they stand, these equations are, again, not restricted-
‘to the dilute gas two particle density matrix:)

We recall that fo, 2? and 4§%have a totaliof six independent
elements between them. It is also possiblé to determine (cf. Section
3 of I) that the equations (A3) also have a total of six independent
elements among them. Thus we come to the happy realization that
Eqns. (A3) are equivalent to a closed set of six scalar equations for
six scalar unknowns. |

Inserting (1.1)into (A1),on the other hand, results in a .
heirarchy Which consists ofvodd rank tensor equationsbonly. These
equations are, in fgct,jjust the odd fank members of the heirarchy
(AS}. 'Eqﬁs; (6.1) ére simply the thfeg independent elements of
Eqns. (A3 b and d). They do not, of course, constitute a close&
set aﬁd it is easy to_detérminévtﬁat'no finite subset of the odd
rank héirarchy'alone can be closed. . |

Unfortunately, simultanéously integrating the six scalar
equations equivalent to Eqns. (A3) is quite impractical. However,
‘the same situation occurs in the one dimensional case, except that

here thé closed set consists of merely two scalar equations:
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2 .2 . : .
-2;5{2;1 £, (738)* [gy £,03 81542 £,(y;8) 1V ()

8 .
- 58 038

U

) :
- gm 5y £,0r38)+ £,(y:8) ay fo(y,B)}+Vl(y) =0

’.(All quantities,in these equations are scalars)
Integrating just'these two.equaﬁions does seem easier
than evaluating a sum over states, especially at high temperatures.
If desired, higher order f functions mAy bé calcﬁlatéd from the higher -
order odd "rank" equations, the first of which is '
52
+%w(ﬂ=0

We note that these are ordinary first order differential

equations which may easily be.integrated in succession.
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TABLE 1
_ : , o
o) —=Cn u(g x 1072 A
| kg o S
2.556 10.22 . 3,322 | 0.4259
2.928

37.0 1.673 | 0.2753



0.82
0.9
1.0
1.1
1.2

1.3

1.4

1.5

1.6

2.0

2.5

* . ’ ’ .
(n) indicates the order of magnitude; i.e., 4.88(2) = 4.88 x 102.

0.01

0.17

1.00

2.31

3.29

3.62

3.44

3.03
2.57

1.41

-1.08

Ty
4.88(2)"
2.51(2)
1.16(2)
5.55(1)
2.65(1)
1.19(1)
4.41
0.56

126
-1.35

—Oo 24
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© TABLE 2

p-H,, T=10°K

T

-6.72(1)

.—3}10(1)

-1.17(1)

-3.87

-0.71

0.51
0.88
A0.90_
0.78
0.23

0.04

| hy
—1.22(3)
-5.27(2)
~2.05(2)

-8.74(1)

- =4,01(1)

-1.95(1)

-9.76
-4,91
-2.34
0.18"

0.04

-6.90(1)
-2.82(1)
-9.74
-3.44

-1.17

=0.33 -

- =0.03

0.06
0.08
0.02

-0.00

1.99(2)
8.51(1)

3.20(1)

1.29(1).

0.89.
| 0.29
0.04
~0.05

-0.01

. -
/!
)
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.28(2)

B N i o = I~ B -
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.39(1)
.50(1)
.36(1)
.48
.02
.01
.08
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TABLE 3
p—HZ 5 T=40°K

.01 4.62(2) 3.99(3) -5.40(1)
11 2.27(2) 1.01(3) -2.27(1)
.61 9.51(1) 1.97(2) -7.28 "
.29 3.84(1) 3.72(1) ~1.80
.67 1.34(1) 4.13 -0.00
.69 2.95 -2.06 0.45
.54 ~0.73 -2.50 0.45
38 <149 -1.91 0.34
.26 -1.29 -1.32 0.22
.06 -0.28 . -0.27 0.05

h, (app) hy h, (app)

-2.35(4) -5.84(1)  -3.40(2)

-5.18(3) -2.18(1) -7.11(1)

-9.17(2)  -6.46 -1.11(1)

-1.84(2) -1.81 -1.67

-3.96(1) -0.41 -0.12

-8.42 -0.02 0.09

-1.41 0.06 0.08

0.08 0.06 1 0.05

0. 30 0.04 10.03

0.08 0.01 0.00

TL(aPP)

-2.

84 (2)

-6.67(1) .

-1.
-0.

o o o o o o

.89(2)
.74(1)
L67(1)
.27
.02
.82
.12
.05
.07
.01

04(1)
63

.80
.75
.52
.33
.21
.04

h. (app)

.76(3)
.81(2)
.44 (1)
.18(1)
.05
.20
.10
.11
.08
.01
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TABLE 4 '

He', T=1°K

Bose (B) and Fermi (F)‘Statistics

y Tg(B  g(® - ATy (B) 'AT”(F)' AT, (B) AT} (F) o
0.82 0.03 0.02 213.19 212.84  -34.94 -30.73 |
0.9 0.19 0.13 . 111.73 111.36 -18.02 -14.60 L
1.0 0.70  0.48 53.70 53.34 - 8.40 - 5.71 |
1.1 1.37 0.95 . 27.52 ©27.18 - 4.12 - 1.99 |
1.2 1.94 1.38 | 14.77 14.47 - 2.08 - 0.37 |
1.3 2.31 1.69 8.16 7.91 - 1.06 0.31
1.4 2.49 1.87 4.56 4.36 - 0.53 - 0.58
1.5 2.53  1.95 2.52 2.37 - 0.25 0.65
1.6 = 2.48 1.97 1.33 1.22 . - 0.10 0.63
1.7 2.38  1.94 0.62 0.55 . - 0.02 0.58
1.8 2.25 1.89 0.19 0.15 0.02 0.51
2.0 1.98 1.74 -0.20 - -0.21 1 0.06 0.37
2.2 1.74 1.59 -0.32 -0.31 0.06 0.25
2.5 1.45  1.39 | -0.29 -0.28 - 0.04 ©0.13
3.0 1.18  1.17 -0.15 -0.15 1 0.02 0.04
3.5 1,06 1.07 - _0.05 -0.06 ~0.01 .0.01
y h, (B) h, (F) h,(B) - h, (F) h,(B) h,(F) -

0.82 -7.87(2) - -7.87(2) -4.83(1) -4.98(1) 1.32(2)  1.31(2) 4
0.9 -3.41(2)  -3.41(2)  -2.06(1)  -2.16(1) 5.72(1) 5.65(1) §
1.0 -1.33(2)  -1.33(2) -7.73 -8.38 2.23(1) 2.18(1) |
1.1 -5.68(1) -5.68(1) -3.10 3.54 9.46 9.13 |
1.2 -2.62(1) -2.63(1) -1.29 -1.59 4.30 4.08 |
1.3 -1.29(1)  -1.29(1)  -0.53 -0.76 2.06 1.90 |
1.4 -6.71 . -6.72 -0.21 -0,37 - 1.03 0.91

1.5 -3.65  -3.64 . -0.06 -0.19 0.52 0.44

1.6 ~2.06 -2.04  0.00 20.10 0.27 0.21

1.7 -1.19 -1.17 - 0.03 ~-0.05 0.14 0.09 g
1.8 ~0.70 -0.68 0.03 ~0.03 0.07. ~  0.03 |
2.0  -0.25 -0.23 0.03 -0.01 0.01 -0.01 |
2.2 -0.08 - 20.07 0.02 -0.00  -0.01 -0.02 ;
2.5  0.00 0.00 0.01  0.00 - -0.01 -0.01 !
3.0 0.01 0.01 0.00 0.00 -0.00 -0.00

3.5 0.01 0.01 -0.00 0.00 -0.00 -0.00 |
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TABLE 5
net, T=2°k

Bose (B) and Fermi (F) Statistics

<

[o0]
N

AT) (B)

AT, (B)

RN N N o e e e b R e e OO
< TN, B F T = - S - IR B N S < S S = ]

. <
o]
N

S I S N e T R T R = N =
[T, B P I L I LN B~ SR 7 B~ L S N S = B Ve

bd e ek e e e e b e b b = O OO O

g(B) g(F) ATy (F) AT (F)
.02 0.02 212.08  211.94 -32.85 -30.89
.14 0.13 110.66°  110.52 -16.40 . -14.85
.50 0.47 52.69 52.56 - - 7.20 -~ 6.03
.98 0.92 26.59 26.48 - 3.22 - 2.34
.39 1.33 13.93 . 13.84 - 1.40 - 0.74
.67 1.61 7.41 7.35 - 0.54 - 0.04
.82 1.76 3.91 3.86 -~ 0.13 0.24
.86 1.81 1.96 1.93 0.06 ©0.33
.83 1.80 0.86 0.84 0.14 0.34
77 1.75 0.24 0.23 0.17 0.31
.69 1.67 - -0.11 C-0.11 0.17 . 0.26
.60 1.59 -0.29 -0.29 0.15 0.22
.42 1.42 -0.38 -0.38 0.11 0.14
.28 1.29 -0.33 © -0.33 0.08 - 0.08
.18 1.19 -0.23 -0.24 0.05 0.04
.05 1.06 -0.07 -0.08 0.02 0.01
hi(B)  h(B)  hy(B) h, (F) hy()  hg(P)

-7.87(2) - -7.87(2) = -4.58(1) -4.87(1)  1.31(2) 1.30(2)

-3.41(2)  -3.41(2) -1.90(1)  ~2.09(1) 5.65(1) . 5.62(11

-1.33(2) -1.33(2) -6.74 ~7.94 o 2.17(1) 2.16(1)

-5.68(1) -5.68(1) =-2.49  -3.25 9.08  8.98

-2.62(1) -2.62(1) -0.90 -1.40 4.02 3.96

-1.28(1) -1.28(1) -0.29 -0.63 1.86 1.82

-6.62 -6.62  -0.06 -0.28 0.87 0.85

-3.54 -3.54  0.03 20.12 . 0.41 0.39

-1.95 -1.94 0.05 -0.05 0.18 0.17

-1.08  -1,08 - 0.05 -0.02 0.07 0.06

-0.59 ~0.59 ~0.04 ' _0.00 0.02 . 0.01

-0.32  -0.31  0.03 0.01 -0.00 ~ _0.01

-0.06 -~ -0.06 0.02 - 0.01 . -0.02 - -0.02
0.00  0.02 0.0 © 0.01 -0.02 $-0.02
0.03 . 0.03 0.00 . 0.00° -0.01 - -0.01
0.01 0.01 -0.00 0.00 -0.00 -0.00
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- FIGURE CAPTION

Calculated rdf's,for(p—f—l2 at 40°K. Heavy solid line,
exact. Light solid line, (6.2). Long dashes, 1 eq.,‘i-term.
Short dashes, 3-eq., l-term. (6.2) curve diverges explosively

at ygl,l, 3-eq. curve diverges at‘y20.75.
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LEGAL NOTICE

This report was prepared as an account of work sponsored by the
United States Government. Neither the United States nor the United
States Atomic Energy Commission, nor any of their employees, nor
any of their contractors, subcontractors, or their employees, makes
any warranty, express or implied, or assumes any legal liability or
responsibility for the a¢curacy, completeness or usefulness of any
information, apparatus, product or process disclosed, or represents
that its use would not infringe privately owned rights.
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