
UC Irvine
ICS Technical Reports

Title
PolyView : an object-oriented data model for supporting multiple user views

Permalink
https://escholarship.org/uc/item/8c00d2tp

Author
Gilbert, Jonathan Paul

Publication Date
1990

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8c00d2tp
https://escholarship.org
http://www.cdlib.org/

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

UNIVERSITY OF CALIFORNIA

IRVINE

PolyView: An Object-Oriented Data Model - -
.For Supporting Multiple User Views

Technical Report #90-05

DISSERTATION

submitted in partial satisfaction of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in Information and Computer Science

by

Jonathan Paul Gilbert

Dissertation Committee:

Professor Lubomir Bic, Chair

Professor Dennis Kibler

Professor Alexandru Nicolau

~

1990

(I . " ') , . '

•f, li-.. j'
\ "', .

I .

•1 I

' li'Jt t·
r, -

) I I ,

\
I

\
\

© 1990

Jonathan Paul Gilbert

ALL RIGHTS RESERVED

I l
f

@ 1990

Jonathan Paul Gilbert

ALL RIGHTS RESERVED

\

The dissertation of Jonathan Paul Gilbert is approved,

and is acceptable in quality and form for

publication on microfilm:

~~-
;

Committee Chair

University of California, Irvine

1990

. I

\

Dedication

This work is dedicated to my wife,

Darlene,

who has always encouraged and supported me,

and to our families,

in both England and the U.S.

List of Figures

Acknowledgements

Curriculum Vitae

Abstract

Chapter 1: Preliminary Remarks ..

Motivation ..

Contributions

Road Map ...

Contents

Chapter 2: The Evolution of Data Modeling ..

Organizing Data ...

Higher Level Models

Learning From Other Areas . .

Supporting Relativism

Chapter 3: The PolyView Data Model

The Basics

Derived Data and Groupings .

The Object Structure

Summary - A Unique Framework for Supporting Relativism.

Chapter 4: Asynchronous Message-Driven Processing ..

PolyView Structures: Objects, Views and Queries.

Message-Driven Processing

Updating PolyView Databases through View Templates ..

Chapter 5: Supporting Semantic Relativism ...

Motivation

Basic View Transformations ..

xi

1

1

3

4

6

6

11

18

24

30

31

39

44

52

53

53

57

71

85

85

88

Applying Sequences of Transformations

Chapter 6: Concluding Remarks .

Summary

Directions for Future Work .

References

Appendix 1: Object and Message Structures ..

Appendix 2: Generic Methods

v

109

125

125

126

128

134

141

List of Figures

Figure

1. An Entity-Relationship Diagram

2. Integration by Alternative Generalization .. .

3. The Basic PolyView Class Hierarchy

4. The Global Symbol Table Structure

Page

13

26

33

37

5. Single Branch "Modes-of-Transportation" 40

6. An Example of Derived Data. 45

7. Derived Classes: Internal Representations ...

8. The Global Symbol Table Including Derived Classes .

9. A Class Object

10. The Generic Message Processing Strategy

11. Object Structure Including Semi-Public Interfaces (Views)

12. The User Support System Architecture

13. The Four Retrieval Message Types

14. External Schemas

15. Internal Object Descriptions

16. A Sample Query (part 1) '•

17. A Sample Query (part 2)

18. Find Insert Target Set

19. Partially Expanded External Schemas ..

20. Partially Expanded Internal Object Descriptions ..

21. A Sample Insert Operation

46

47

48

49

55

59

66

68

69

70

71

74

77

78

79

22. Deleting an Instance from a PolyView Database 82

23. Applying the Name Method ... (An Internal Representation). 91

24. Applying the Name Method ... (An External Representation) . . . 92

vi

25. Applying the Color Transformation 93

26. The Clone Method is Applied by the Ca.rs Class ... (Internal .. .) .. 94

27. The Clone Method is Applied by the Ca.rs Class ... (External .. .) 95

28. The Clone Method is Applied by the Ca.rs ... (Global Symbol Table) 96

29. The Attach Method Applied by the Cars and Chevys (Internal) .. 97

30. The Attach Method Applied by the Boats and Chevys (External) . 98

31. The Hide Method Applied by the Cars Class (An Internal Snapshot) 100

32. The Hide Method Applied by the Cars Class (An External Snapshot) 101

33. The Effect of Sending a Hide Message ... on the Global Symbol Table 101

34. The A-Name Method (Applied by Employees ... Internal) .. 102

35. The A-Name Method (Applied by Employees ... External) 103

36. The A-Remove Method (Applied by Employees ... Internal) 103

37. The A-Remove Method (Applied by Employees ... External) 104

38. The A-Restrict Method (Applied by Employees .. . Internal) 105

39. The A-Restrict Method (Applied by Employees ... External) 106

40. The A-Insert Method (Applied by Employees and Cars - Internal) 108

41. The A-Insert Method (Applied by Employees and Cars - External) 109

42. The A-Move Method(... Internal) 110

43. The A-Move Method(... External) 111

44. The Global Symbol Table for the Simple Animal Taxonomy 113

45. The Internal Structure (Before Creation of the New Views) 114

46. The External Structure (the Simple Animal Taxonomy) 115

47. The Three Year Old's Point of View 115

48. The Zoo Keeper's Point of View. I I I I I t I I I I I I I I I I I I I • 116

49. The Global Symbol Table (After Creation of the New Views) ... 117

50. The Internal Structure (After Creation of the New Views) 119

51. The Collapse Abstraction (A Global Symbol Table) 120

vii

52. The Collapse Abstraction (The "After" Internal View).

53. The Collapse Abstraction (An External View)

54. A More Detailed Look at Tom and Kitty . . .

viii

121

122

123

Acknowledgements

Serious work on any complex subject cannot be accomplished without help.
I owe a debt of gratitude to many members of the ICS community.

I have benefited from a particularly supportive group of faculty and graduate
students. Among the most significant were Dan Easterlin, Doug Fisher, Rogers
Hall, Dennis Kibler, Craig Lee, George Lueker, Alex Nicolau, Rami Razouk, and
Karen Wiekert. I am particularly grateful to my officemates, Elke Rundensteiner,
Wang-chan Wong and Meng-lai Yin, for their encouragement and for listening
patiently to long explanations about my research.

The staff at the !CS department has been an invaluable asset. I would
particularly like to thank Rose Allen, Mary Day, Pat Harris, Susan Hyatt, Candy
Mamer, Fran Paz and Phyllis Siegel.

Finally, I would like to express my appreciation to my advisor, Lubomir Bic,
for his initial suggestions and for helping to fine tune my ideas.

ix

March 30, 1954
1979

1979-1984

1979-1982

1982

1984-1988

1987

1988-present

1990

Curriculum Vitae
Jonathan Paul Gilbert

Born London, England
B.S. in Computer Science, University of
California, Irvine
Teaching Assistant, Dept. of Information and
Computer Science, University of California,
Irvine
Visiting Lecturer (summer sessions), Dept. of
Information and Computer Science, University
of California, Irvine
M.S. in Computer Science, University of
California, Irvine
Research Assistant, Dept. of Information and
Computer Science, University of California,
Irvine
Consultant, Nadek Computer Systems, Tustin,
California
Engineer/Scientist, McDonnell Douglas
Space Systems Company, Huntington Beach,
California
Ph.D. in Computer Science, University of
California, Irvine

Publications

Learning from AI: New Trends in Database Technology, IEEE Computer,
Vol. 19,3, March 1986, (with L. Bic)

Asynchronous Data Retrieval from an Object-Oriented Database, Proc.
European Conference on Object Oriented Programming, Springer-Verlag,
August 1988, (with L. Bic)

Set-Related Restrictions for Semantic Groupings, Technical Report 89-07,
Dept. of Information and Computer Science, University of California, Irvine,
January 1989, (with E. Rundensteiner, L. Bic and M. Yin)

Abstract of the Dissertation

PolyView: An Object-Oriented Data Model

For Supporting Multiple User Views

by

Jonathan Paul Gilbert

Doctor of Philosophy in Information and Computer Science

University of California, Irvine, 1990

Professor Lubomir Bic, Chair

In a typical database application, there are many different users with a great
variety of skills, needs and perceptions. The problem of supporting this plethora of
u3er view3 in a dynamic, data intensive environment is the topic of this dissertation.

In traditional record-based systems, all information is represented by an ide
alized data structure and a set of operations on that structure. User views are
defined by simple variations in this structure, such as permuting field names, se
lecting a subset of the data, or creating links between records. Semantic database
models support more complex, "natural" structures. It is often claimed that rel
ativism is supported because semantic schemas can be correctly interpreted (by
users) in different ways. The object-oriented paradigm, with its simple and elegant
structural semantics, provides both simplicity and richness. Unfortunately, current
object-oriented systems only provide a single object interface (or protocol). This
dissertation presents PolyView; an object-oriented data model capable of simul
taneously supporting many points of view. In PolyView, objects encapsulate a
single structure and any number of object interfaces (view in3tance description3).
Poly View, therefore, supports di3tributed mappings from user views to the under
lying database structure.

Algorithms are presented for generic methods which retrieve and update
information through user views. Poly View "colors" queries (messages) by attaching
a view identity to them. As messages are propagated through the schema, each
receiving object uses the color to determine how the message is to be processed.
The color is used to select the user's protocol and allows different user's queries to
be processed through apparently different database structures. Because objects act
independently, Poly View is a data-driven system; messages are processed without
any centralized control or shared memory.

XS

Finally, Poly View provides a set of view transformations which allow view
administrators to build object interfaces. Since views are supported by both global
and localized mechanisms, there are transformations which operate at each of these
levels. There are three major categories of transformations presented in this thesis:
those which customize the schema as a whole, transformations for changing the
structure of the IS - A hierarchy and transformations for customizing attributes.

Motivation

CHAPTER 1

Preliminary Remarks

The study of modeling and organizing large data intensive applications is

a relatively new and rapidly expanding field. During the last two decades, sev

eral data models were developed to facilitate the efficient organization of highly

structured data on magnetic disk. As computer technology has become more ac

cessible, more information has become available to more people than ever before.

This proliferation of computer based information systems has caused an increasing

need for user-oriented systems and new priorities have become apparent which are

beyond the scope of traditional data models. A great deal .of effort is now being

concentrated on the development of:

1. Models which incorporate higher level abstractions for capturing the seman

tics of traditional database applications.

2. Models that are suitable for non-traditional data intensive applications (like

office automation and computer aided design and manufacturing).

3. Better "user-oriented" environments which include, for example, menu

driven and graphic interfaces.

4. Systems which support many different, perhaps conflicting, perspectives of

the information content and organization of the data.

1

CHAPTER 2

The Evolution of Data Modeling

Organizing Data

Traditionally, little interaction has existed between researchers in the areas

of database, artificial intelligence and programming languages. Formalisms were

developed independently in each of these areas as solutions to apparently quite

different problems. Recent trends have shown that techniques developed in one

of these areas may also be applicable to problems in the other two. The major

interest in this work is the evolution of database modeling formalisms and the

development of enhanced database management systems. It is from this perspective

that the overlap between these three major areas of computer science research will

be examined.

Database management systems evolved in response to the need for efficiently

maintaining increasingly large amounts of data. The relatively slow speed of

secondary storage devices which hold the data is one of the main limitations to

database design. Hence, the internal organization and structuring of databases has

been the primary focus of research in the past. Another major influence of database

research was the need to share information among a variety of users. In such an

environment, strict rules governing the manipulation of data had to be imposed to

preserve the integrity of the database and to guarantee privacy for each user.

The need to organize data in some well defined, rigorous manner led to the

development of a number of classical data models (DATE81, ULLMAN82]. These first

models, the best known of which are the relational data model (Cooo70, KIM79,

6

7

Bn.oDIE81] the hierarchical data model (McGEE77, Ts1ca77] and the network data

model [TAYLOR76, TsICH78], are variations of the record model [KENT78]. Data

are arranged in fixed linear sequences of field values; they are machine oriented

(organized for efficiency of storage and retrieval operations) and each model is based

on some idealized data structure. The record model, which was easily adapted

to the computer environment, is often awkward to the inexperienced user and is

frequently semantically inadequate for modeling the application environment.

The Relational Model

In a relational database, information is organized in tables. Each table has

a unique name and is a special case of the set-theoretic relation. The rows of a

relation table are called tuple3; columns are called attribute". Each column within

a relation has a unique name. The set of values from which actual values in

a column are selected is called the domain of the attribute and may be shared

among different columns. A relation name and its set of attribute names is called

a relational 3chema and a collection of relational schemas is a relational databa3e.

One of the most important features, and perhaps the biggest drawback of the

relational approach, is that associations between tuples are exclusively represented

by attribute values drawn from a common domain.

The main attraction of the relational model is its mathematical clarity which

facilitates the formulation of non-procedural, high level queries and thus separates

the user from the internal organization of data. Among the three classical database

models, the relational model is, therefore, considered the most user oriented. It

is, however, far from able to satisfy the needs and requirements of an increasingly

diversified user community.

10

2 In order to support more user oriented interfaces, the database must pro

vide a mechanism for storing meta-knowledge. This meta-knowledge would

include information about the database itself and the ways in which it is

used.

3. Most database models have only two levels: the database schema, which

describes the data types constituting the database, and the actual collection

of records, which a.re instances of the existing types. There are no provisions

to extend the two levels into a more general hierarchy of types, meta-types,

subtypes, and instances, even though this extension would increase the

model's expressive power and provide a mechanism which supports the reuse

of common properties.

4. Another problem is the inability to distinguish between a type and a set -

records which form the schema usually implicitly represent both. Consider,

for example, an employee database. The schema will describe the form of an .

employee record by listing the names of possible attributes each employee

might have. The actual attribute values are kept with each employee record.

From this point of view, the schema contains the description of a "typical

employee". Alternately, the schema could be interpreted as representing the

"set of all employees" constituting the database. Taking the latter point of

view, it should be possible to include attributes that apply to the set as a

whole but not to each individual element (e.g. the set cardinality or the

average salary of an employee). Unfortunately, most conventional database

models have no facilities for capturing this information.

5. When modeling an enterprise, elements and concepts representing it may

be viewed from different perspectives depending on the application. In

particular, the concepts of entity, relationship, and attribute may be inter

changeable. Similarly, what is considered a type from one user's point of

11

'view may be seen as an instance in another. The ability to model such

phenomena, referred to as relativiJm, is missing in conventional database

models.

6. The distinction between data and program in a database system was always

clear in the past but is disappearing. New models are needed which capture

the behavioral aspects of the database enterprise as well as its structure.

Higher Level Models

In the field of database research there have been two basic approaches to

solving (some or all of) these problems. Attempts have been made to extend the

classical models by building higher level conceptual models on top of a conventional

database. New more powerful semantic data models have also been developed to

capture database concepts at a more user oriented level.

To better facilitate the design of large database systems, many data mod

els and techniques have been developed to enhance the classical models. These

modeling tools include: normalization techniques for relational schemas [DATE81,

KENT83], introducing the concept of the database abstraction [SMITH77], cate

gorizing database entities [CHEN76, Cooo79], and introducing new data models

[HAMMER81, SHIPMAN81]. The systems cited are neither all inclusive nor mutually

exclusive. For example, the concepts of generalization and (Cartesian) aggregation

can be found in most models that have been developed since they were introduced

in [SMITH77] by J. Smith and D. Smith.

The Entity-Relationship Model

One of the first steps taken toward developing a higher level data model was

the Entity-Relationship (ER-)model, introduced by Chen [CHEN76]. It was aimed

primarily at the first deficiency listed above - .an increased orientation toward the

user needs and expectations rather than machine efficiency. The ER-model may

12

be viewed as a generalization of the three classical data models. Chen presented it

as " ... a basis for unification of different views of data ... " - in other words, it

emphasizes the similarities and not the differences in the classical models.

The basic components of the ER-model a.re entity sets and relationship "et,,,

where each entity set and each relationship set represents a generic classification of

entities and relationships, respectively. The membership of entities in entity sets is

determined by a predicate. Hence, each entity may be a member of more than one

set. For example, a person could be a student as well as an employee of a given

university.

Relationships a.re associations among entities and a.re defined as mathematical

n-ary relations of the form R = {[r1/ei, ... , rn/en] where ei E Ei, ... , en E En}·

The terms Ti represent role" played by the corresponding entity ei in the relationship

R. For example, if "marriage" is represented as a relationship between a man and

a woman, then the roles "husband" and "wife" may be associated with the two

participating entities, "man" and "woman", respectively.

Both entity and relationship sets may have properties called attributes asso

ciated with them, where each attribute is defined as a mapping between the entity

or relationship set and a value set. Multivalued attributes a.re permitted in the

ER-model.

The ER-model is used primarily as a database design tool; the actual database

is then implemented with some other data model. The key step in designing a

database enterprise is determining the point of view from which the real world is

to be modeled. When the ER-model is used, the entity sets and the relationships

among them a.re chosen by the designer. The procedure for this selection cannot

be precisely defined - it is a rather subjective process. Once the entity and

relationship sets have been selected, the next crucial (and subjective) step is

the selection of the relevant attributes. The design process is facilitated by a

SUPPLIED-BY UP PLIER >-- ----- s
n

PARTS-SUPPLIED is a many-to-many relationship between PARTS
and SUPPLIERS. Each SUPPLIER supplies m PARTs and each part

is SUPPLIED-BY n suppliers.

Figure 1

An Entity-Relationship Diagram.

13

pictorial design tool called entity-relation3hip diagram3, in which rectangular nodes

represent entity sets, circular nodes represent attributes and diamond shaped nodes

represent relationships. The arcs in an entity-relationship diagram are undirected

and may be labeled with appropriate role names. The numbers on these arcs

indicate the possible relationship type, that is, l-to-1, 1-to-many, or many-to-many.

Figure 1 is an illustrative example of a simple ER-diagram.

In summary, the ER-model is a significant improvement over the classi

cal database models. In particular, the explicit distinction between entities and

relationships and the introduction of distinct types of arcs (i.e. role arcs) has sig

nificantly increased its expressive power. Unfortunately, it is not always easy to

categorize things as either entities or relationships. This difficulty can be illustrated

with the concept of marriage which, from one point of view, can be categorized as

a relationship between a man and a woman, and from another, as a legal entity,

in which the man and the woman participate as attributes. The ER-model does

not allow any specific "thing" to be both an entity and a relationship. Hence,

14

a decision in favor of one or the other must be made by the database designer.

Furthermore, the model does not allow for the fact that some information cannot

be categorized as either an entity or a relationship. A Iharriage, for example, may

be interpreted as an event or a contract, with which a certain time interval is to be

associated. To resolve such problems, models with considerably greater expressive

power must be introduced.

The Hierarchical Semantic Model

Numerous attempts have been made recently to extend the usefulness and

the expressive power of the relational model. Most of these have their roots in

the work of D. Smith and J. Smith, who introduced two important concepts to

database modeling: aggregation and generalization [SMITH77]. The first of these

permits a relationship between data elements to be viewed as a single aggregate

object; at the same time, properties of the individual records may be ignored,

implying that aggregation is a form of abstraction. For example, an "employee"

could be viewed as the aggregation of lower level data, such as "name", "address",

"salary", "dependents", et cetera.

The second concept - generalization - is aimed at modeling a hierarchical

ordering of information constituting an enterprise. It is an abstraction which

permits a class of data to be viewed as a typical (generic) object of that class. It

allows attributes with a common value for all members of the class to be recorded

with the generic object, rather than being replicated many times at lower levels.

For example, the fact that all secretaries have typing skills may be kept with

the generic object "secretary" and inherited by each individual belonging to that

class. The generalization concept, however, does not distinguish between attributes

which are inheritable by individuals and those which apply to the set as a whole.

Thus, the model would, for example, permit the recording of .the average age of

all employees as a value attached to the generic object "employee" even though it

15

applies only to the set as a whole; i.e., it may not be inherited by any individual

in that set.

The aggregation and generalization abstractions form the basis for what

became known as Smith and Smith's Hierarchical Semantic Model (HS-model).

This system comprises a methodology for database modeling. Schemas are built

by stepwise decomposition of initial entities into smaller components along the

aggregation and generalization hierarchies. A set of semantic and syntactic rules

is provided which guarantee that the decomposition process yields a collection of

valid relations in Codd's relational model. Thus the HS-model may be viewed as a

significant extension of the classical relational model toward a more accurate and

more powerful modeling tool for database applications.

The Tasmania Relational Model

Codd (Cooo79] describes another extension of the relational data model,

named after the conference site at which it was originally presented. Like the HS

model, the objective is to capture more meaning in data to facilitate the process

of database design and to permit the system itself to respond in a more intelligent

manner. It encompasses many forms of abstraction (including aggregation and

generalization); the approach, however, is much more theoretically oriented than

in the HS-Model.

As a first step, two kinds of data semantics are identified: atomic seman

tics, representing the basic building blocks of the model, and molecular semantics

which permit clusters of atoms, constituting meaningful units of information, to

be formed. Any n-ary relation is interpreted as an atomic fact. These may be

combined according to the following four rules of the molecular semantics:

1. Carte3ian aggregation is the type of aggregation described by Smith and

Smith.

2. Generalization (also defined by Smith and Smith).

16

3. Cover aggregation extensionally describes a subset of entities - a convoy of

ships is often used as an example of this type of aggregation.

4. Event precedence - entities of type event have a start time and an end

time. For some applications, ordering events is important. This is facilitated

by alternative and unconditional 3tt.cces3or and precedence relation3 which,

respectively, define what may and mu3t follow and precede a given event.

For example, suppose we have an inventory database that includes two event

entities called ORDERS and SHIPMENTS. It is desirable to ensure that

only those goods ORDERed are received in SHIPMENTS. An unconditional

precedence relation would be used to specify that all shipments must be

preceded by an order for the goods delivered.

These enhancements allow the relational model to represent situations that

can be represented by any semantic data model. Unfortunately, incorporating the

additional semantics, together with the corresponding operators, has made this .

model extremely complicated. For this reason, no claim regarding the ease of use

is made for the extended relational model. In fact, it is " ... intended primarily for

database designers and sophisticated users ... " [Cooo79].

Although the extended relational model is more data structure than user

oriented, it does provide four different types of user interface: tables that are

used for extensional information, a set-theoretic interface which can be used to

specify searches without including navigational information, an interface based on

inferential predicate logic for stringwise expression of intensional information, and

a graph-theoretic interface which provides a pictorial medium to aid in the design

and maintenance of the database.

The Semantic Data Model (SOM)

The Semantic Data Model (SDM) [HAMMER81] was developed as an alterna

tive to the classical data models, which were considered to be " ... too low level and

17

machine oriented, requiring the users to think in terms of representation rather than

in terms of meaning .. . ". SDM was the first of many semantic database models

(see, for example, [HULL87] for a survey of semantic models) and was designed to be

a high level user oriented model for database application environments. Contrary

to knowledge representation systems in AI, the objective of SDM is not to model

the "real" world; rather, it is a model of a database enterprise which is quite

different.

An SDM database is a collection of cla.Jses which represent "relevant abstrac

tions" in a particular application environment. There are two types of class - base

and nonbase classes. The former are defined independently of other classes while

nonbase classes are defined in terms of other classes. Classes are logically linked to

other classes via interclass connections and are composed of entities called mem·

bers. There are five types of entity: the concrete object (e.g. Cars, Students), point

and duration events (actions and activities), abstractions (e.g. the generalizations

described previously) and names which are identifiers for objects and events. Both

classes and entities have attributes, which may fall into three categories: member

attributes (in which each member of a cl~s has this property), class-determined

attributes (in which all members of a class have the same value associated with this

property) and class attributes (which are properties of the class as a whole).

SDM has a structured user interface that provides facilities for three different

classes of users: naive nonprogrammers, routine users and experienced program

mers. For naive nonprogrammers, SDM provides an interactive query system that

can make suggestions, offer advice, and generally help the user to formulate queries.

Routine users are those executing predictable, repetitive tasks. This class of user

performs the "busy work" associated with database maintenance, i.e. database

editing, which involves simple updates requiring only minor changes to the data

base contents, but not to its struct4re, and periodic report generation. Finally, for

18

the experienced programmer, it is suggested that the SDM formalism could be inte

grated into a conventional general purpose programming language (like COBOL)

- a non-trivial, and for the most part unexplored area.

When comparing the higher-level models presented above it is clear that all

of them present methodologies for supporting more designer oriented database

environments. The ER-model presents a unifying view of data, which permits the

designer to organize information in terms of his own perception of the enterprise,

rather than in response to artificial constraints imposed by a hardware/data model

architecture. While the HS-model and the Tasmania relational model are exten

sions of the classical relational data model, the ER-model is meant to aid in the

design of databases that will be implemented with a classical data model (usually

relational). Finally, SDM provides higher level modeling constructs which aid

the designer and, with its built-in structured user interface, is more user oriented

than either of the other models. SDM is, therefore, both an alternative and an

improvement to these models. Although all these approaches fulfill many of the

requirements and expectations of information management systems, the desire to

include more flexibility (by explicitly supporting mechanisms for retrieving inferred

information, derived data, and multiple user views) still persists. The higher-level

models described above are representative of research done by database researchers

on "semantic data models"; however, recently, database enhancements have come

from adapting ideas from other areas as well.

Learning From Other Areas

There has been a shift in database research away from the traditional record

oriented data model towards models which support design oriented semantic con

structs. In this context, database researchers have begun to recognize the value

of research in both artificial intelligence (particularly in knowledge representation)

19

and programming languages (particularly in the areas of data abstraction and

object-orientation) [BR.ODIE80, REITER83, KING83, BRODIE84, B1c86, BRODIE87'

MYLOP88j.

Traditionally, there have been a number of significant differences between the

type of information that database researchers are concerned with and the type

of information studied in artificial intelligence (AI). In the former, representations

tend to be biased toward a large number of instances of a small number of formatted

data types. Knowledge representations in AI, on the other hand, are designed to

deal with a relatively small number of instances of a much larger variety of types.

This implies that knowledge bases tend to be comparatively amorphous while

databases are highly structured. In addition, knowledge bases have usually been

designed to support a single user while databases have had to provide mechanisms

which allow information to be shared. Database management strategies must be

able to deal with many users attempting to read and write the same piece of

information at the same time. Another significant difference is in the amount of

implicit information. Knowledge base queries must often use inferential information

inherent in the structure of the data to produce a result. In databases, such

capabilities either have a very rudimentary form or, more typically, are not present

at all. Finally, knowledge bases are usually special-purpose systems, aimed at a

particular application, while databases are often constructed to facilitate the needs

of a community of users whose requirements may be quite diverse.

One area which is of particular interest in the programming language research

from the database point of view is the development of languages which support

data abstraction [L1sKov74]. Data abstraction mechanisms are found, to some

degree, in SIMULA [DAHL66, DAHL 70], CLU [LISKOV77], ADA [LEDGARD81] and

later in all object-oriented languages (for example, Smalltalk-801 [GoLDBERG83],

1 Smalltalk-SO is a registered trademark of ParcPlace Systems.

20

c++ [STROU86] and BETA [KRISTEN87]). Because of its simplicity, object-oriented

programming has become widely used in the design and implementation of data in

tensive systems. Unfortunately, programming environments lack several important

capabilities which are essential database applications. Programming languages do

not allow users to (easily) share data and they do not provide mechanisms for

supporting data (or object) persistence.

Recently, researchers have been looking at the design and implementation

of persistent data intensive systems which must deal with information which is

less regularly structured than would be found in traditional data.base applications.

These areas include office automation, computer-aided design, computer-aided

manufacturing and hypermedia systems. All of these areas require a model which

can support complex (perhaps irregular) structures (similar to those which have

been prevalent in knowledge representations and object-oriented programming lan

guages) coupled with the capabilities (such as fast secondary storage management .

and concurrency control) which database management systems provide. For this

reason, database researchers have recently begun to apply knowledge representation

and programming language techniques to database problems.

The new conceptual database models which have emerged are entity rather

than record-oriented. The basic building blocks are entities which have fixed

properties associated with them and can be created and destroyed for the duration

of the application. Information is organized along many dimensions - there may

be aggregation, generalization and classification hierarchies, or the information

may be partitioned into spaces corresponding to particular user views. Conceptual

models are usually built on top of an existing (classical) database management

system. Thus, knowledge must be organized, structured and represented so that

the translation from conceptual model to data model is easy.

21

To illustrate how database research has been influenced by other research

efforts, conceptual models that have applied one or more techniques developed

as knowledge representations (particularly semantic networks an<;i/or as aids or

alternatives to program development (particularly object-oriented and functional

programming) will be presented. The following discussion is not an exhaustive

survey of existing conceptual models; the goal is to demonstrate the approaches

which have been influenced this dissertation. These models have been grouped

according to the AI/programming technique which was most prominent in its

evolution; however, most of the models combine several of these techniques.

Using Semantic Networks

Semantic networks [QUILLIAN68, FINDLER79, BRACH83] were originally devel

oped as a psychological model of the human mind. They have since been used by

computer scientists to model knowledge in various intelligent systems. Semantic

networks are a knowledge representation formalism that have labeled nodes and

labeled arcs. Nodes usually represent entities, concepts or situations in the domain

being modeled while arcs represent relationships between nodes.

Mylopoulos et al [MYLOP80] developed a system called TAXIS. TAXIS com

bines semantic networks with the SIMULA-67 programming language [DAHL66,

DAHL 70]. It is characterized as " ... a language for the design of interactive infor

mation systems . .. ". A database is designed using the semantic network formalism,

then translated into a relational database schema. The latter is extended to include

classes (of entity) and a generalization relationship, which can be used to implement

an IS-A hierarchy.

Following the principles of data abstraction, TAXIS uses appropriate proce

dures td integrate the database. In addition to exploiting knowledge representation

techniques from AI, it combines ideas from programming language research with

the basic principles of the relational data model. This cross-fertilization process

22

simplifies use of the system. Applications a.re described at a higher level than

the underlying relational database and the application description can itself be

manipulated by programming language commands.

Using Functions

The fundamental concepts in the functional data model are entitieJ and

function" which represent conceptual objects and their properties. It was first

introduced by Sibley and Kershberg [SIBLEY77] for modeling data structures rep

resentable in the classical data models. FUnctions describe both entity types and

properties of an entity. They map a given entity into a Jet of entities. From

Sibley and Kershberg's foundation Buneman and Frankel [BUNEMAN82] developed

a functional notation for data description based on Backus' functional program

ming (FP) notation [BACKUS78]. Unfortunately, FP notation is not suitable as

a user interface language. In the DAPLEX language [SHIPMAN81] the functional

data model is expanded; facilities for defining (limited) UJer viewJ using derived

function" a.re introduced. A DAPLEX schema forms a semantic network.

An entity may be associated with several types so that the particular function

or functions applicable to an entity at an given time may depend on its role 2. For

example, an individual might be both a "student" and an "instructor". Both

"students" and "instructors" have a function called courJeJ associated with them.

Courses(Instructor) returns the set of classes taught by a particular instructor while

Courses(Student) returns the set of classes that the student is enrolled in. For the

individual for whom both "courses" are defined, deciding which is applicable is

determined by looking at the functions' internal name which depends on the role

that the entity is fulfilling at the time.

2 This term is used by Shipman in much the same way as "type" is used in other
data models.

23

Using An Object-Oriented Approach

The object-oriented paradigm has become increasingly popular in database,

programming language and artificial intelligence research. Many object-oriented

systems have been proposed and there have been significant differences in the

features which have been supported. An excellent description of these variations

can be found in [STEFIK86]. Only the basics will be discussed here.

In object-oriented systems, all conceptual entities are objectJ. Objects en

cap8ulate a private memory (its state) and methodJ (its behavior). An object

responds to me88age8 (sent by other objects) by executing a method. Methods

may retrieve or change information about the object's state and/or cause mes

sages to be spawned which are sent to itself or other objects. Similar objects are

grouped together into cla88e8 - each object is said to be an in8tance of one or

more class. Classes are arranged in an IS-A hierarchy which is either a tree (like

in Smalltalk [GoLDBERG81]) or a lattice (found in CommonLoops [Boaaow85]).

The basic object-oriented paradigm evolved as a model for program development.

Recently, much database research has focused on adding persistence and sharability

to object-oriented applications.

The ORION data model [BANERJEE87 A] is a prototype database system un

der development at the Microelectronics and Computer Technology Corporation

(MCC). The goal was to provide a persistent back end for non-traditional data

intensive multimedia applications. ORION includes mechanisms for supporting

schema evolution [BANERJEE87B] (dynamic changes to class ~efinitions and the

hierarchy), composite objects [KIM89] and versions (variations of the same object).

Servio Logic's GemStone3 [MAIER85] is the only commercially available multi

user ob~ect-oriented database system. Much of the original effort was centered

around making Smalltalk into a database system [CoPE84]. A new language, called

3 GemStone is a registered trademark of Servio Logic Development Corporation.

24

OPAL4, was developed for describing GemStone applications. OPAL was derived

from Smalltalk and provides interfaces between the GemStone database and several

high-level general purpose programming languages [PUR.DY87].

Supporting Relativism

The support of multiple u3er view3 has long been a topic of interest in the

database community. Unfortunately, the term, user view, is used to describe many

different kinds of database mapping [KLUG78]. User views may be considered to be

mappings between various levels of abstraction, like in the DBTG model [KLUG77,

TsrcH78]. They may be viewed as a protection mechanism [CHAM75, RowE79) or

as a mapping between different data models or languages. Lastly, the term view

(or database) intergration [MoTR.o83, DAYAL84, ScHR.EFL88] is used to describe the

problem of merging existing databases into a single 3uper database. While these are

all valid perspectives none are equivalent to the definition of relativi3m. Relativism

is the philosophy that all truth is relative to the individual and the time and place in

which he acts. In a database environment this means supporting multiple, perhaps

conflicting, perceptions of the organization and information content of the data.

Relativism in Database Models

In order to support this variety of user expectations, an integrated database

must support multiple user views of the data. Most research concerned with

user views in the classical data models focused on the relational model, although

m·any of the ideas can be found in (or applied to) the HS-model, the Tasmania

relational model, SDM and the functional model. Relational views are usually

simple variations of base relations [CHAM75, RowE79, ABIDA81, WoNG83] such as

renaming or permuting columns, converting units or representation of a column,

selecting a subset which satisfies some predicate, projecting out some columns

4 OPAL is a registered trademark of Servio Logic Development Corporation.

25

of a relation, and linking relations together into joins. In particular, virtual

relations, representing a type of derived data, are defined in terms of existing

relations. A user view of the database is then the collection of base and virtual

relations. Virtual relations may be defined using data abstraction techniques

[RowE79], which hide the original underlying base relations. This means that

a user cannot, in general, tell which relations are base and which are virtual.

Internally, however, just the virtual schema is stored with the database and not

the relation itself. One of the major problems with defining views in this way is the

difficulty of performing update operations via a user view. It is not always possible

to translate an update request on derived relations onto an unambiguou" request

on base relations. Therefore, in order to maintain data integrity, it may not be

permissible to perform unrestricted modifications on derived relations; Rowe and

Shoens [RowE79] describe several strategies for dealing with this problem. The

facility for defining and maintaining user views is often embedded in the language

of the user interface. In this case, the interface must automatically handle the

translation of a query from virtual to base relations and then translate the result

back to the form expected by the user.

In addition to facilitating user views, virtual relations have several other

potential uses. They can be employed, for example, to predefine certain informa

tion retrieval operations which are complicated to specify yet frequently executed.

Virtual relations may also be used to produce snapshots (ABIDA81], i.e. materializa

tions of a view at some point in time. Snapshot relations are read-only relations and

can be useful when applications require access to earlier versions of the database.

In a distributed environment, local snapshots may be used to approximate remote

data, thus avoiding the expensive maintenance of a local replica.

26

Name

Id number

Address Major

Figure 2

Integration by Alternative Generalization

The functional data model has a richer environment for supporting relativism.

In Shipman's DAPLEX [SHIPMAN81], derived data are supported by derived func

tion definition3 - new properties which are based on the values of other properties.

Simple renaming and projection operations are supported and set operations, like

union and intersection are used to create new types. Updating is made possible by

explicitly defined updating procedures.

In a more recent article [DAYAL84], Dayal and Hwang are concerned with

the problem of database integration. They use the functional data model as the

common model for unification and extend DAPLEX to include a generalization or

IS-A hierarchy. The major difference between this IS-A hierarchy and most others

is that it is possible to create a unified view of a single entity which has different

properties in different databases. For example, suppose STUDENTS in DB1 have a

name, student identification number and an address, and in DB2 STUDENTS have

a name, student identification number and a major; figure 2 shows the unified

view of STUDENTS. Note that STUDENTS1 and STUDENTS2 represent alternative

definitions of the student type. This structure does not imply anything about the

structure or organization of the data. It simply states that the STUDENTS record

27

depends on the student identification number. Similar schemes can be found in the

Tasmania relational model [Cooo79] where static alternative generalizations are

supported by graph relations and in [FLINT84] where alternative entity descriptions

are supported by embedding executable database description derivations (a type

of case statement) within other definitions. Flint refers to this kind of construct as

(an example of) the non-procedural thu.nlc principle.

Hammer and McLeod claim that multiple perspectives are supported by

SDM's schemata [HAMMER81]. A single association can be interpreted by different

users in different ways. While this does seem to capture the spirit of relativism, it is

up to individual users to interpret a single schema. The schema is sufficiently gen

eral to allow for multiple interpretations but it does not directly support different

views.

Most database models do not support multiple user views; those that do

provide very rudimentary customization facilities. Typically, these are limited to

making certain portions of the database invisible to a given user and, in more so

phisticated systems, to permit new derived objects and relationships to be included.

An ideal system would, in addition, permit the same fragment of information to

be represented in different ways depending on a particular user's point of view.

Such versatility requires a polymorphic model, which goes beyond the capability

of present-day systems. Some advocates of the relational model (and SDM) argue

that the versatility of the relation allows the user to view an object in any way

desired. While this is partially true, the problem of supporting true relativism is

not solved. A model using relations (or any single schema) to model a database

environment is too amorphous; it captures little of the application's semantics and,

therefore,. offers little guidance for interpreting the data.

In [TANAKA88], a degree of semantic relativism is added to an object-oriented

model. Virtual classes are represented by objects which contain predicates on

28

properties of base classes. They are, therefore, equivalent to simple predefined

queries on relational schemas. Virtual schemata are implemented .!eparately from

the global schema; consequently, the database is not represented by a single poly

morphic schema.

AI provides a number of techniques for supporting different points of view,

as well as contexts and beliefs. Among these are modal logic (where beliefs are

treated as static objects), frame based representations and partitioned semantic

networks. The latter, because of their similarity to user views, show a strong

potential for use in the realm of database modeling. Although these techniques

seem promising as enhancements to database modeling, they do not help solve

the view update problem [RowE79]. AI research has traditionally concentrated on

designing knowledge representations which, for example, facilitate natural language

processing. In this kind of environment, new data may be added to the knowledge

base .but old data is not removed. Because data and contextual information usually

share the same data structures, new information may be added to a local context

without having any global side effects.

Partitioned semantic networks, or K-Nets, are a knowledge representation

scheme developed by Fikes and Hendrix [FIKEs77, HENDRIX79] to enhance the

expressive power of conventional semantic networks. K-Nets incorporate the ca

pabilities of first order predicate calculus, facilitate linkage to external procedural

knowledge, and, most significantly, provide a mechanism that allows subnetworks

to be grouped together and referred to as single objects. This grouping of subnet

works is accomplished by introducing the concepts of 8pace8 and vi8ta8. All nodes

and arcs of a K-Net are element" of at least one space (also called a partition).

Because each space can be referred to as a 8ingle unit, it is possible to specify

relationships between spaces. Vi8ta8 are lists of spaces; they are intended to give

users a manageable perspective of the information. Any access to the knowledge

29

base is performed through one (or more) of these vistas. The similarity between the

concepts of vistas in partitioned semantic networks and the idea of customized user

views is obvious. By applying this powerful modeling technique to the database

interface, significant gains towards the support of individualized user environments

should be realized.

In Poly View, a truly polymorphic representation is supported. A Poly View

application is capable of presenting a different structure for each object (and the

application itself) to each user or group of users. This dissertation describes

the PolyView model. It presents an asynchronous message-driven data retrieval

and manipulation strategy and shows how true 3tructural polymorphi3m can be

supported in this environment.

CHAPTER 3

The PolyView Data Model

The main purpose of this research is to extend the semantics of an object

oriented data model in several ways. Firstly, the message passing paradigm

naturally lends itself to asynchronous parallel processing [DENNis73, ARVIND78,

GILBERT88]. A strategy and algorithms will be presented which allow queries to be

processed in a concurrent way. A second extension is necessary in order to support

relativi8m in database schemas and individual objects. Thirdly, it will be shown

that the object-oriented paradigm can be extended in order to incorporate seman

tic groupings (see, for example, [Cooo79, HAMMER81, GILBERT88, RUNDENST89]).

Semantic groupings are mechanisms for organizing data in meaningful ways, for

example, Cartesian aggregation [SMITH77], is an abstraction which allows the con

struction of compound (aggregate) entities from other entities in the database

environment. Most data modeling systems have evolved, over a period of many

years, in an intuitive and random fashion. Models were often proposed, criticized

and enhanced and then re-criticized and re-enhanced and so on. No two models

have the same features; in other words, there is not a definitive set of features

which characterize a "good" data model.

The basic Poly View model is not the solution to all data modeling problems;

it provides a solid yet flexible foundation upon which many database applications

can be constructed in a fairly straightforward manner. These applications can

be char~cterized by: static properties (database objects) and dynamic properties

(operations on objects). In this chapter the fundamental features of the Poly View

data model are presented.

30

31

The Basics

Philosophy

In Poly View we adopt the philosophy found in many sophisticated data

models (see, for example, [Cooo79, HAMMER81, FLINT84, MAIER85, ABITEBOUL87,

BANERJEE87A, PURDY87]): that compound (or molecular) objects are recursively

constructed from other simpler database objects (the simplest (atomic) objects are

valued-based). PolyView supports two basic kinds of association among objects:

the IS-A relationship and the ATTRIBUTE relationship. The first is used to con

struct an inheritance lattice (see, for example, [DAYAL84]) while the second is the

functional "glue" that binds together molecular structures.

Components

Since there are no standards for the describing concepts and constructs which

are included in a semantic database model, it is necessary to identify and define

the terms used for that purpose in this dissertation. Poly View (classified as a

semantic object-oriented data modeQ is a semantic extension of the functional data

model [SIBLEY77, BUNEMAN79, SHIPMAN81, DAYAL84). All conceptual entities in a

Poly View application domain are represented by independent and persistent objects.

These objects actively participate in query and update processing by sending and

receiving messages and changing their local internal state. Each object has a

unique, time invariant, identity which remains with it until it ceases to be part of

any application (i.e. until it is deleted).

The Class Lattice

Similar (instance) objects are organized into classes (which are also objects)

which represent both a generic object (or type description) and a set of similar

entities. Classes are arranged in one or more (IS-A) lattice such that class objects

near the top of a lattice contain a more general type description than classes

32

lower in the lattice. This allows common in3tance attributes (like color, size and

shape) to be inherited by all descendents of a class and cla"" attributes (like set

cardinality and mean) to be inherited by subclasses. It also guarantees that the

IS-A relationship will hold between a class and all of its descendents. Instances are

said to belong to a class if there is a path containing only IS-A arcs between the

instance and the class. Finally, we say that an instance is owned by a class if it is

directly connected to that class by a single IS-A arc. An instance object is owned

by exactly one base class.

Derived class objects (also called groupings) contain rules which modify

queries so that they can be applied to other (ba3e) classes when the derived class is

queried. These classes do not have any direct instances; they share instance objects

with the base classes from which they are derived.

Figure 3 shows part of the Poly View class hierarchy. The most basic classes

(which are shown as shaded nodes)are present in all PolyView hierarchies, a com

plete hierarchy would depend on a particular application. Two kinds of node and

two kinds of arc are shown in figure 3. Boxes represent molecular decomposable

objects while ellipses represent atomic or non-decomposable valued-based objects

and all arcs represent IS-A relationships.

Notice that PolyView's open object-oriented architecture allows new object

types to be inserted at any level in the IS-A hierarchy making the model highly

structured and extremely flexible.

The last significant feature of the PolyView IS-A hierarchy is its support of

multiple inheritance. Classes are arranged in a lattice and inherit attributes from all

parents. In most systems this can cause problems because there may be conflicts

among the attribute definitions of various parents. To remedy this the concept

of identity [KHosH86] has been extended to include attributes as well as objects.

Attribute identities are system generated, time invariant and unique. This allows

33

Figure 3

The Basic Poly View Class Hierarchy

name conflicts to be resolved easily and causes no additional problems with query

processing because messages always refer to the internal names (identities) which

are guaranteed to be unique. There are two other possible conflicts, both of which

are only slightly more complex than name conflicts, which are described below.

The first of these conflicts occurs when two or more parents have a common

ancestor. When this happens the intersection of the domain of each common

attribute becomes the domain of that attribute within the new class. H the inter

section is empty there are two subcases which must be considered: (i) the attribute

is not mandatory (key) in every instance description then it just "disappears" (it

is actually kept but its domain is empty) or (ii) the attribute is key then class

description is invalid (as a ba3 e class) and cannot be created.

34

A second kind of attribute mismatch occurs when the new object inherits the

"same" attribute independently from two or more sources. In this case Poly View

creates a pair of function3 (called idf and idf) for each source of the inherited

attribute. These functions are used to convert the identity of an inherited attribute

to its locally defined equivalent and back to the original. An idf is applied to

inherited attributes with multiple origins when they are referenced in a message

received from a parent. idf functions take the original attribute identity as an

argument and return the new attribute identity and the identity of the parent from

which the message was received. idfs are applied to these same (multiply inherited)

attributes' identities before they are returned to a parent. These functions have

two arguments, the local attribute indentity and the parent class identity (both

of which were returned by the idf) and return the parent's attribute identity. For

example, imagine a taxonomy of modes of transportation which includes both land

based and water-based vehicles. A common subclass of both classes is amphibious

vehicles. Suppose both land- and water-based vehicles have a color attribute (which

is not inherited from a common ancestor); there would then be three separate

color attributes after the amphibious vehicles class was added to the environment.

Let (1-color), (w-color) and (a-color) be the identities of the color attributes of

land, water and amphibious vehicles respectively. Similarly, let (land), (water)

and (amphibious) represent the class object identities. The identity conversion

function (idf) and its inverse (idf) are defined in the amphibious vehicles class by

the following:

idf((l-color))-+ (a-color), (land)

idf((w-color)) -+ (a-color), (water)

idf((a-color), (land)) -+ (I-color)

idf((a-color), (water)) -+ (w-color).

35

Attributes

Attributes capture other important ways in which objects may be interrelated.

An attribute may represent the fact that an object has a number of component

parts (which may include other objects - for instance, an engine is part of a

car). Attributes also represent more symmetrical relationships. For example, the

fact that a man and a woman are married can be represented by a bidirectional

spouse attribute. Both these relationships are captured by a single concept - the

ATTRIBUTE relationship.

In the Poly View model there are two distinct types of attribute called claJJ

attribute" which are properties of an entire class of objects (and do not apply

to individual instances) and inJtance attributeJ which are properties of individual

instance objects. Both are further subdivided into three subtypes called compound,

local and method attributes. Compound attributes are references to complex

structures. This means that in order to retrieve (or change) information from

compound attributes, it is necessary to send messages to other objects in the

database. Local attributes, on the other hand, represent simple locally stored

objects which may be accessed directly. Finally, methods (a form of derived

data) may be localized or distributed but the information which they "retrieve"

is calculated or conJtructed rather than retrieved from the database. There is one

more special type of instance attribute called a category attribute. Each category

attribute is a special system maintained Boolean value which determines whether

an instance belongs to a particular category. 5

The siz bruiic classifications of attribute have other properties associated with

them. They may be mandatory (key) or not (non-key), single or multi-valued, and

changeable or not-changeable. Note that category attributes are always single

valued and changeable. Finally, all user controlled attributes have inverses. This

5 A category is a particular kind of derived class which is described later in this
chapter.

36

means that attributes can be thought of as bidirectional arcs which connect objects

in a Poly View schema.

Organization of the Database

Some useful definitions:

• A schema is a collection of classes and the attribute associations among

them.

• Data is the collection of instance objects which are associated with the

schema.

• A view is a schema and its associated data.

• A database is the combination of all of the views.

A database usually includes several views. An important relationship between

a database and its views can be characterized by the following observation: the set

of classes in any view is a subset of the set of classes contained in the database.

Within a given database environment a list of current views (and classes) in kept

in a global symbol table.

The Global Symbol Table

In order to allow each user to access the database through his own view,

PolyView maintains a two-tiered global symbol table structure. Appendix 1 in

cludes a description of the global symbol table's data structures. It is composed

of two kinds of tables. There is a single global symbol table and one or more view

model object tables. Although there are usually several view model object tables,

there is exactly one for each view. Because users may share a view, there may

Global Symbol Table: View Model Object Tables:

Name1

Name2

Name3

Name4

Names

(View1)

(View1)

(View1)

(View2)

(View3)

Figure 4

Cars (C1)

People (C2)

Autos (C1)

Owners (C2)

An Empty
Dictionary

The Global Symbol Table Structure

including View Model Object Tables

37

} A Dictionary

be several entries in the global symbol table which point to the same view model

object table.

Figure 4 shows a global symbol table and its associated view model object

tables. This particular table contains three views. The first column of the global

symbol table contains identifiers which are used by users to specify their view of the

database. The second and third columns contain (internal) system maintained view

identities and pointers to view model object tables respectively. Each view model

object is associated with a single view. It's first column contains a view sensitive

external name which is associated with the internal name of a class in the database

schema . . In figure 4, (View1) and (View2) are fully instantiated user views. Their

global symbol table entries both point to particular view model objects. (Viewa),

on the other hand, is in the process of being created - its symbol table entry

I
I

38

currently refers to a default view model object table. Notice that this generic

model object contains a "place marker" for a structure called a dictionary. This

concept is not new; it is borrowed from Smalltalk-80 [GoLDBERG83]. A dictionary

is a table which allows a33ociative (key word) lookup. Further note that , the global

symbol table is also a dictionary and the external view names are the associative

keys to its contents.

Schemas

Associated with each user (or group of users) there is a high level description

of the world of the database application. This description is called a 3Chema. It

presents the entire user's view of the database as a single connected graph. Even

though instances are not included in the global schema, it is usually quite large;

therefore, the global schema is usually visualized as several graphs rather than a

single one.

Many objects and arcs in a schema are not ba3e but derived (which will be

shown as dashed boxes and arrows in all subsequent figures). Base objects have

a concrete representation 3fored in the database while derived (or virtual) data

(described in more detail later) are calculated by executing a method when they

are accessed by a user. In the day to day interactions with the database, the only

visible difference between virtual and stored data is that virtual data cannot be

directly updated.

A Database

A database is a network of nodes and directed edges. Each node represents an

independent database object (for example, people, colors, automobiles, or engines)

and arcs represent various associations among them. Figure 5 (which shows a

single branch of a "modes-of-transportation" hierarchy) is used to further illustrate

39

various a.spects of the Poly View model. Notice that the modes of transportation

hierarchy is part of an application specific hierarchy.

The graphic representation shows the two distinct types of nodes: ellipses are

non-decomposable atomic objects and boxes which represent compound molecular

objects. The IS-A hierarchy (which is composed of nodes and unnamed arcs)

facilitates inheritance attributes from classes to their descendants. The IS-A arcs'

arrows show the direction in which inheritance takes place. A view designer may

choose how information is displayed. He may decide that those attributes which he

perceives as parts of an object should be displayed inside the larger object's node

while the more symmetrical relationships are displayed outside of the aggregate

object. For example, in figure 5 the attributes color and engine are "parts of"

an automobile while owner is a relationship between an automobile and a person.

Notice that these choices and many other choices related to the users' perceptions

of the data are subjective. Although meaningful to the user, whether an attribute

is displayed inside or outside of an object is irrelevant to the semantics of the

database itself. Other classifications of attributes are not subjective, for example,

there are some key attributes which are absolutely essential to the description of

an object. All other attributes are ordinary (or non-key) attributes (which may

or may not be instantiated in all instances). For example, in figure 5 the owner

attribute (from cars to people) is key because (in this very simple world) all cars

must be owned by people. However, the inverse of this relationship is not key

because some, not all people own cars.

Derived Data and Groupings

Much of the semantic richness of this model comes from its support of a

variety of derived data. There are two major categories of derived data: classes and

attributes, which are represented by rules that are included in class descriptions.

CARS

RED
CARS

Red
Racer

OW r

owner

ENGINES

Red
Wagon

ENGINES

;

'

;
;

;

'
' '

;

'

PEOPLE

NAMES

;
;

ENGINES

' '

Red
Hatchback

Figure 5

Single Branch "Modes-of-Transportation"

40

name

41

It is not our intention to identify all kinds of derived data nor even the most

important. The goal is to show that derived data can be supported in a simple,

straightforward manner. The nature of the object-oriented paradigm ensures that

other forms of derived data abstraction can be added at some later date, if they

are needed. To better illustrate the kinds of derived data, a non-trivial example

(shown in figure 6) which is based on examples in (McLEOD78] is presented. As

previously stated, derived data are represented by the dashed nodes and arcs in

figure 6.

Derived Classes

Derived classes are a grouping mechanism which allow the formation of het

erogeneous classes. These virtual classes the schema, by union-subset class objects

(GrLBERT88]. All union-subset classes contain pointers to the base classes that

are the basis for the grouping abstraction. There are three types of union-subset

abstraction called collections, categories and power sets. To define a derived class,

a user must specify: its name, its type, the classes whose union are the basis for the

derived class, restrictions on each class's attributes (if any), and any new attributes

which are associated with objects in the virtual class.

Collections

Collections are groupings (derived or non-base classes) based on a subset of

the union of one or more (base) classes. They may be defined in several ways

- intensionally (by a rule) or extensionally (by listing the classes which form

the union) or by a combination of both. When a collection class is added to an

application, all instance objects (in the unioned classes) whose descriptions are

consistent the collection's rule are automatically "inserted" into the collection. In

figure 6 Oil Tankers is a collection whose members are all military and merchant

ships whose classification is "oil tanker".

Categories

42

Categories are u"er controlled collection". They are defined in the same way as

,collections but instance objects are not automatically added to categories - users

must explicitly insert and delete objects into/from a category. When a category is

created, Poly View creates a category attribute which is added to all the base classes

(and their members) which are part of the category's union-subset class. Initially,

the category attributes of all instances are assigned the value "false". When an

instance is "inserted" into a category, the corresponding category attribute value

is set to "true". Conversely, when an object is removed from a category, the

corresponding attribute is reset to "false" . The Banned Ships class in figure 6 is

an example of a category. Potentially, any ship may be banned but a user must

explicitly ban it.

Power Sets

Power "ets can be thought of as a generalization of collections and categories.

They can be extensionally-defined, intensionally-defined or uJer-controlled. The

major difference between ordinary union-subset classes (collections and categories)

and power sets is that a power set is a subset of the power set of the union of some

base classes instead of their union. Each "instance" of a power set is a derived

class; that is either a collection or a category. In figure 6 Convoys are modeled

as a power set because each convoy is a set of ships (actually a category) and not

a single ship. Notice that the attributes (location and max-speed) are associated

with the convoy itself and not the individual ships in that convoy.

A variation on the power set (which we have chosen not to support initially)

is called an aggregate grouping. Aggregate groupings are based on a "fixed" cover

aggregation of the union of predefined classes. This abstraction allows these classes

to be tre~ted as instances of the grouping. When this abstraction is introduced,

it is also necessary to introduce the "member-of" relationship between classes in

the grouping and the set of database instances which they represent. Aggregate

43

groupings can be extensionally-defined or intensionally-defined. For example, there

could be a transformation which changes a base class to a grouping: (ships --. ship

types).

Derived Attributes

The method based attributes which were introduced earlier allow users to

access derived as opposed to stored data. These virtual attribute (VA-) abstrac

tions are classified by the action taken by the system when it instantiates them.

All method based attributes cause a subquery to be substituted for the virtual

attribute and spawn a new query which is reprocessed by the object. Some (VA ·

arc) derived attributes cause a virtual arc to be "created" while other (VA -node)

virtual attributes cause a virtual node to be "created" as well as a virtual arc.

To create a VA method a user provides either a sub query (a similar mechanism

is found in POSTGRES [STONEB86]) or a general purpose method. In both cases,

the user must specify: the name of the attribute and whether it is evaluated by

the cla"") or its in3tance3. In addition, for a subquery, the user names the class

which will receive the query and a list of attributes and restriction to be applied

to them. For a general method, a procedure must be defined.

An example of a VA-node abstraction is aggregate data. Aggregate data

are defined by aggregate operators which abstract a single object from a class of

objects . Examples of aggregate operations include: calculating the maximum speed

of a convoy (see figure 6) or determining the average length of an oil tanker (not

shown in the figure).

VA-arc abstractions are inference rule3, so called because the relationship

which they make explicit can be inferred from the structure of schema anyway.

Information is retrieved by substituting an attribute request subquery for a VA

arc "attribute" which effectively creates a virtual arc. For example, consider the

grandfather relationship between people. This could be represented explicitly as a

44

attribute (arc) from an individual to his parents' fathers or it could be represented

implicitly by including a rule which states: "To find a person's grandfather, first

find his parents and then find their fathers" (grandfather(X)=father(parent(X))).

To the user, derived data of all kinds can be used to retrieve information in

exactly the same way as any base attribute. Figure 7 shows part of the internal

structure of the base classes which represent military and merchant ships and the

non-base classes which represent convoys, oil tankers and banned ships. The global

symbol table containing these same classes is shown in figure 8.

The Object Structure

Several kinds of PolyView object have already been identified. They repre

sent both stored (base classes and instances) and derived information (collections,

categories and power sets). In this section, their underlying representation will be

discussed.

This discussion will focus on class objects because instances have relatively

straightforward representations - they are comprised of stored (simple) attribute

values and pointers to other object instances. All other information, including

generic and specialized message processing methods are inherited from their owner

class. In appendix 1 the data structures which represent various PolyView objects

are shown in detail. Each class object has three major components6: the generic

methods (for retrieving and updating data), the object description (which contains

a hidden internal representation of the object) and the view description. Figure 9

shows a very high level graphic representation of the internals of a class object

(more details are given in appendix 1). The overall structure of each of these

sections remains unchanged over the life time of an object, for example, the various

lists of attributes and is-a relationships contained within the object description.

6 Each instance has a single major component which corresponds to the class'
object description

Ship-Name

Classificatio

Ships

I ' ,, I ',
I ,..>, I '

,," I I' ', I ',
/ I ,," , I '

/ I I' ' I '
/ I / '" ',

// .A" 1', '
/ / I I ' ',

/ /" I I ', ',
,," " I I ', ,

I' /I' I I ' '
"/ ,," I I ', ',

/ / I I ', '

Merchant

Military

,," ,," I I ' ',
/ ,," I I ', '

/ " I I ', ',

f------ - ~ ~--------1 r-------~
1 Banned 1 1 O'l T k 1
1 Ships 1 1 l an ers 1 : Convoys :
I *CATEGORY* I I *COLLECTION* I 1*POWER-SET* 1
L--- ---~ -------- r-------~

Min
I

Speed
,,.- - --,. ... ,

/ ' I \

Re$on
Last

Loe< tion
~

Geo-

45

:MIN(max-speed()) I
\ / Coordinatej

' /

Inspection Text

's

Person's
Name

Figure 6

ate

Date

An Example of Derived Data

........ _ ---"'

Attributes and is-a connections may be added and removed from various lists but

the lists themselves persist for the lifetime of the object. The view description

46

Object Merchant Ships: / * for parta of object ahown Military Ships clasa would be identical */
Object Description:

Instance Attributes:
Compound: < list including < last-inspection > >

Local: < list including < reason > >
Category: < list including < banned ships > >

Object Banned Ships:
Object Description:

Class-type: Category
Restrictions: < banned ships > = 'true'
Is-A Connections:

BaseUnion: < Merchant Ships >, < Military Ships >
Instance Attributes:

Local: < reason >: < Text >
Category: < banned ships >: < Boolean >

Object Tankers:
Object Description:

Class-type: Collection
Restrictions: < classification > = 'Tanker'
Is-A Connections:

Base Union: < Merchant Ships >, < Military Ships >
Instance Attributes:

Compound: < last-inspection >: < Inspection >

Object Convoys:
Object Description:

Is-A Connections:
Base Union: < Merchant Ships >, < Military Ships >

Instance Attributes:
Compound: < location >: < Geo-Cord. >
Method: < max-speed >: min(torall x (• in Convoy•) max-speed(x))

Figure 7

Derived Classes: Internal Representations

contains a list of view inatance deacriptiona (through which various users access

the database) which may grow and shrink as views are added and removed from

the application environment. However, the view description always contains a

global view which acts as an identity mapping to the underlying data structure.

New views are always derived from the global view.

47

Ship
(V Ship)

_,,, Military
(Mil. Ships) View

..-
Ships

Merchant
(Merch. Ships) Ships

Banned Ships (Ban. Ships)

Tankers (Tankers)

Convoys (Convoys)

Figure 8

The Global Symbol Table

Including Derived Classes

Generic Methods - Using the Object/View Structure to Answer Queries

The generic methods section of an object contains data manipulation and

update procedures. Figure 10 shows PolyView's message driven processing strat

egy. When an object receives a request it must be examined in order to identify

the user's point of view. Once the view has been identified the query continues to

be processed through the appropriate view de3cription template. Local attributes

are checked directly while complex (compound and method-based) attributes may

cause subqueries to be spawned. Intermediate results are collected and when all

the results have been collected the query is either propagated to IS-A related de

scendents or a result is returned to the source of the query. Note that this is

a very high-level sketch of the Poly View data retrieval and update mechanism.

These operations are discussed in considerable more detail in the next chapter. It

is clear, even from such a high-level description, that this basic strategy requires

no centralized control and that messages can be processed in an a3ynchronou3

me.~33age-driven manner.

The Object Description

Generic Methods

Object Description

Includes: Object &
Attribute Identities

View Descriptions

Includes: View Identities &
Customized Attribute Names &

Written Descriptions of the Object

Figure 9

A Class Object

48

In object-oriented database systems, objects are composed of a private mem

ory, a unique time invariant identity and a public interface. In Poly View, these last

two features are extended and enhanced. An extended use of identity has already

been presented. In Poly View, internal names (identities) are assigned to attributes

as well as objects.

View

Instance

Description1

Merge

Results

result

To Source
of Request

From Source
of Request

Examine

Meaaage

Key:

--+- Internal Mesaage

D
0

Replicate/Merge MeNagea

Execute when MeHage on A111 Input

_,. Send MeNagea to Other Objects

request ~ Send MeAage on Exactly One Aic

View

Instance

Look up

Simple

Attributes

Identify

View

Check

Complex

Attributes

View

Instance

Descriptionn

,
I

; - - -

' Send \

r- J...----....---__,, Sub-Query I
f\.._ I I

Store

Results

Figure 10

', Messages ,,. ,
' - - -

To Instances
and Subclasses

The Generic Message Processing Strategy

49

50

Object descriptions are automatically maintained by the system. They are

hidden from database users. An object description contains an object's identity

and lists of ATTRIBUTE and IS-A relationships (including GROUPINGS).

The object descriptions contains IS-A connection lists which reference all base

class parents, descendents and ancestors. Similar object-oriented pointers to non

base classes (collections, categories and power sets) which are related to the class

are also found in the class description. In addition to the lists of object-oriented

pointers there is also an is-a "list" which contains an index used for accessing

instance objects of secondary storage devices.

There are ATTRIBUTE lists for each of the seven attribute subtypes: class

(compound, local and method) and instance (compound, local, method and cate

gory). Each attribute is an ordered tuple consisting of at least a unique identity

and a pointer. The pointer is either an object-oriented pointer (to another inde

pendent object) or a reference to the object's local memory . . Other information

about attributes is also kept with the object description. For example, separate

lists are kept for key and non-key attributes plus references to default objects to be

associated with the attribute when an new object is created. Finally, each attribute

may be declared to be changeable (the default) or not changeable.

The View Description

The view description contains one or more view instance descriptions. Each

view instance description is a "semi-public" user interface into the object structure.

The term semi-public is used because each view instance description provides a

public interface for a given object for a specific group of users. A view instance

description contains several subcomponents including a unique system defined

identity for the view (which is shared by all classes which participate in the view)

and the class's external name from the current point of view both of which are

also found in the view model object table. A view instance description may also

51

contain a natural language description of the class, its structure and its role in

the database enterprise. For example, if an engine object's primary function is to

fill the propulsion system role of an automobile then this would be noted in the

(written) description.

Each view description also contains lists of attributes which are accessible

from the current view. The same attribute may be referred to several times

within a single view description. Any attribute which appears in any view instance

description must also be part of the object description.

There are two distinct categories of attribute: those which are completely

visible through the view and those which are invisible but to which the system

is allowed limited access. Visible attributes each have a unique printable name

associated with them within a particular class. Each attribute may have a default

(value, object or operation) associated with it. These defaults are used by the

system to fill a role when a new object is created and for updating the attribute if

the object is changed.

Notice that in order for a view to be updatable, all key attributes must be

included in the combined list of visible and invisible attributes and all the invisible

key attributes must have default objects associated with them.

Most views do not encompass all classes in the database. If an object's

structure does not include a view instance description which corresponds to a

particular user view then that class and its instances simply do not exist in that

user's view of the world. There is a special global view which is guaranteed to

include all classes in the database and all attributes within all of those classes. From

this global perspective, all attributes are visible except the category attributes

which are still maintained by the system.

52

Summary - A Unique Framework for Supporting Relativism

Of PolyView's components the two-tiered symbol table, the object structure

and the extensions to identity make a unique framework for supporting relativism.

At the global level, the global symbol table contains all daJJeJ (base and derived)

which are reachable from a given point of view. Attribute reachability is determined

locally by the objects themselves. These unique features allow Poly View to support

many different, perhaps conflicting, points of view and preserve the principle of

encapsulation.

CHAPTER 4

Asynchronous Message- Driven Processing

In an object-oriented environment, each object is an ab3tract data type which

includes a description of the data it represents and a set of operations (method") for

manipulating that data. These methods are triggered by messages received from

other methods in this or other objects. The data representation is not visible to the

outside world; the user "sees" a "black box" and the protocols (for manipulating the

object) in its public interface. In PolyView, a similar situation exists except that

communication between objects is achieved by a small number of generic methods.

In this chapter, generic methods for the two basic kinds of query processing

will be discussed. Information retrieval operations will be presented first; queries

which update the database will be discussed second. All queries access the data

through a "semi-public" object interface or user view. Before discussing Poly View's

concurrent message-passing strategies, the internal structures which support rela

tivism within this paradigm will be presented.

PolyView Structures: Objects, Views and Queries

In the previous ch~pter the basic object structure was presented. The focus of

this chapter is query processing. Queries are sent to objects whose structure (the

object description and view de3cription) is designed to support query processing

through views. Before the query processing strategy is discussed in detail, the

important features of the query and object structure (in the context of query

processing) will be presented.

53

54

The Object Description

The object description is part of an object's hidden private storage. All the

structures in it are referenced indirectly through the protocol in the user view.

This is Poly View's way of supporting relativism and guarantees that access to the

data is completely controlled by the system.

The View Description

The view in3tance de3cription3 described in the previous chapter are accessible

to selected groups of Poly View users. They are semi-public object interfaces which

support the needs of a particular group of users. These interfaces allow objects to be

manipulated while hiding the internal details of their implementation and, possibly,

some of its attributes as well . Users are completely unaware of the view structure

which provides them with a strictly controlled window into the application world.

Figure 11 shows a high-level description of the conceptual structure of a

PolyView object. Several key relationships are clarified by this diagram. These

relationships include the premises that:

(i) Private object memory is completely contained within the local object mem

ory.

(ii) Users' access an object through a system controlled interface. (PolyView

selects the appropriate view instance description for each user.)

(iii) Attributes may be defined locally (within an object's private memory) or

outside of the objects local memory (in another object definition) . Note

that in either case the implementation is hidden from the users.

55

Userv

r--- -- ---- -------------------------------------- --------,

Private Object / 1 / 2 · · · n 1
I I I

Memory / / 1
: ···· ···· ··· · ·· ···/· ·· ··· ·· •/· 1· ···· ·· · · :

/ ;. I

Local Object
Memory

I I I

L--------~~---------,L----------------~--~-~--------------

Key:

1,2, ... n

namex,y

p ~

Attribute
Definitions

(Other Object Interfaces)

represent object-oriented pointers

represents the yth attribute name in view X
solid single arrows are inside local memory

Figure 11

Object Structure Including

Semi-Public Interfaces (Views)

I
I
I
I
I

56

A Structure for PolyView Query and Update Requests

Poly View requests are messages which are passed between objects in a da.ta

bMe application. Objects process messages depending on their content and the

point of view of the user who spawned the request. The view is determined by

information contained within both the object and the message itself.

The query message structure is shown in detail in appendix 1. Each query

message is a tuple which contains the following information:

(i) The target (object) of the query.

(ii) The sender of the query (again an object).

(iii) A system generated identity for the query.

(iv) · The status of the query.

(v) The user's "signature".

(vi) The type of the request (information retrieval, update, ...).

(v) Information about where to send the reply to the message.

(vi) Restrictions on the query7 which are a set of paths which describe restric

tions on the attributes of objects involved in the query.

The user's unique view identity (an internal signature) is automatically in

cluded in any query by the system. This is retrieved from the global symbol

table and corresponds to an identity found in some view description instances. By

matching a user's signature to a view identity the system determines which object

interface it should use. The target of the query must also be identified. This is

usually the class (either base or derived) which is the starting point for the query.

The user identifies the clMs by name (which must be unique within the view)

and PolyView uses the global symbol table to find its equivalent class identity.

The qu~ry restriction includes properties (which are mostly, but not exclusively

attributes) and their current status (found, not found ...). Most query restrictions

1 The format of these query restrictions is comparable to the body of the is -there?
query in Omega [ATTARDI86]. The processing strategy, however, is not the same.

57

are required restrictions which means that they must be satisfied in order for the

query to succeed. However, queries may include other restrictions which determine

what may be displayed. Finally, the message contains information which allows

the system to determine the type and destination of the reply to the message.

Message-Driven Processing

The object-oriented paradigm with its abstract data types and message pass

ing semantics make Poly View suitable for implementation on a highly parallel

loosely coupled multiprocessor. An ideal architecture would not need centralized

synchronous control or a shared global memory and each (class) object could be

mapped onto a different processing element (PE) as long as there were enough

physical communication paths for each logical arc. There are many architectures

that satisfy this requirement.

To query a Poly View application users must specify the type of the query

(retrieve, insert, etc.), target of the query (which is a view dependent external

name) and the restriction. PolyView takes the following actions:

• The system generates a query-id and looks up the user's view-id (in the

global symbol table). Both the view and query identities become part of

the internal message structure.

• The class object identity of the target is extracted from the model view

object table.

• The sender is identified as a source outside of the Poly View system.

• The message-type and query-retriction are determined directly from the

user query, the query-status is initialized to "not found" and the reply

type is set to *user*.

58

Once a Poly View message has been constructed, it can be sent to the target

object for processing. All responses eventually come back to the system/user

interface. This interface transforms the retrieved information into a form which

the user can understand and then displays the result for the user. Figure 12

shows a high level graphic representation of this interface. The dashed path (along

the top of the figure from Usern to System via Viewn) represents the conceptual

system/user interface. Conceptually, a. user formulates a. query against a view

which is sent directly to the view object. The receiving object translates the query

to the underlying structure, performs the requested action, translates it back to its

original form and returns the result. Unfortunately, this is too simplistic because

view classes are often "distributed" over several database classes. Requests must,

therefore, be processed by traversing the schema and gradually converting them

from a user view representation to a system representation. The system/user

interface (which is shown as the path from Usern to System via the lower three

nodes in the diagram) u3e3 part of Viewn in each visited object to perform the

piecemeal translation process from user to system and vice versa.

Information Retrieval

Conceptually, the simplest request for information either points to a set of

objects and retrieves the subset of those instances that satisfy some restrictions

on their outgoing attributes or retrieves information about some of an object's

attributes. Restrictions are recursively decomposed and applied to objects reached

via attribute arcs starting at the original object, until the entire restriction is

satisfied or fails. In order to describe the query, processing strategy references will

be made to the internal structure of PolyView queries and objects .

When processing any query, Poly View must differentiate between key and

non-key attributes. The reason for this is obvious: If an attribute in a class's

object description is key then it definitely exists for all instance objects associated

System

Ob ect
Descr pt ion

I

System
Request

I<- ____ O_bie~t_ __ _ _
Description

View Instance -- Descriptionn
....

View Instance
Viewn <- - - - - - - - - - - - ->

Descriptionn

r --- --- ;
I

I

System/User
Interface

I

I

L-------..J

--

Usern

I

Viewn
Request

Note: Solid arrows represent the actual user/system interface
Dashed arrows represent the conceptual user/system interface

Figure 12

The User Support System Architecture

Showing the User/System Interface

59

with that class; if it is non-key then it may exist in some of the instances. Notice

that this definition of key is quite different from a key attribute in many traditional

database models since uniqueness is not necessary.

The Attribute-Query-Request, Attribute-Query-Result, Request-From-Out

side, Check-Attribute and Test-Type methods are used to process attribute request

queries. The Request-From-Outside method is used initially because when a user

query is .received by any object, it may be necessary to adjust it before PolyView

can continue to process it (for example, additional restrictions may be added).

I

I

60

A query names an injection point r and lists the attributes (and restrictions

on those attributes) which are the focus of the query. When r receives the request,

it activates the user view and filters all attribute restrictions (and status values)

through that interface. A status value is calculated for all attributes named in

the query by sending an attribute request (sub)query message along ea.ch of the

named arcs. Each attribute object processes it's subquery (through the appropriate

interface) independently of all other attribute objects and the strategy is exactly

the same as that followed at the injection point. The overall strategy is that the

query is dynamicly recursively decomposed for parallel processing. Eventually, for

each attribute path, a terminal node is reached. A terminal node is an object

which can determine a status (and a value) for a particular (sub)attribute; it is

not necessarily a leaf node in the database structure. Once the status is known,

it is returned (in an attribute query re.rnlt message) along the arc on which the

original request arrived. When a non-terminal node has collected results from all

its subqueries, they are used to determine its own status which is then sent back

to the sender of the request. Note that because of the distributed structure of the

database and the absence of centralized control in this strategy, the subqueries are

distributed and the results collected in an asynchronous manner.

There are five possible status values for individual attributes; their most

general meanings are listed below. Note that all five status values are not necessary

for processing the simplest attribute request queries because in this case it is not

necessary to differentiate between key and non-key attributes. All status values are

necessary when processing more complex user requests.

1. This attribute was found and (the restrictions on it) satisfied for all possible

i~stances of the set rooted at this node (for key attributes only).

61

2. This attribute definitely exists for all possible instances; however, the re

striction on this attribute may not be satisfied (once again key attributes

only).

3. This attribute was found and exists for some instances of the rooted set (for

non-key attributes only).

4. This attribute was not found.

5. This attribute was found and is definitely not satisfiable for any instance of

the rooted set.

The maximum value of the individual attributes' status values is taken as the

status of the query for the entire object. The basic meanings of the object status

values (used by all query types) are listed below:

1. All restrictions (on attributes) were satisfied.

2. All restricted attributes definitely exist but some may not be satisfied.

3. Some restricted attributes may exist for some instances and not others.

4. Some restricted attributes were not found.

5. Some restricted attributes are definitely not satisfiable.

The semantics of subset query request processing is slightly more compli

cated because subset queries spawn attribute queries. Again appendix 2 includes

algorithms (Request-From-Outside and Subset-Query-Result) which are the

top level methods executed by a database object when it receives a subset query

message. The processing strategy depends on the propagation of messages from the

injection point down through the IS-A hierarchy, possibly all the way to the leaves.

At each node visited, subset query requests spawn attribute request subqueries to

determine whether individual restrictions have been satisfied. There are four basic

invariants which describe what happens to object descriptions as the IS-A hierarchy

is traversed towards the leaves: (1) more attribute descriptions may be added, (2)

any attribute's definition may become more restricted, (3) non-key attributes may

62

become key or so restricted that they "disappear" and (4) virtual attributes are

always treated like non-key attributes.

The two recursive procedures which capture the semantics of a subset request

query are applied in the following way: The query names a nodes as the target set,

from which elements are to be retrieved; S represents the set of nodes reachable

from s by following IS-A arcs and L is a subset of S containing only leaf nodes

(elements). Each element of Lis an object which may be retrieved by the query, if

it satisfies the specified restrictions.

In each element of S, the status of all attributes named in the query is

determined by sending attribute request queries to all attributes listed on the

query restriction list. In each object in the set S-L (i.e., non-leaf nodes), a status

is determined for each attribute by the attribute request query which is compared

with the status obtained by the node's parent. This is necessary because some

non-key attributes "disappear"; if the previous status was 3 and the current status

is 4 then the current status must be changed to 5. The object's status is then

calculated and if it-"is not 5 then the query (including the status values) is passed

to its descendants. Nodes in the set L determine the status in a similar way. This

final value determines whether the object satisfies the given query; if it does, the

data specified in the query's output field are retrieved and output.

Notice that all non-singleton attribute status values are calculated indepen

dently and that an object must wait for all of its attributes to report their status

before it continues processing a query. The first observation suggests a potentially

high degree of parallelism if the system is implemented on a loosely coupled mul

tiprocessor architecture. The second observation seems to imply that any benefit

from this parallelism is lost because objects spend much of their time waiting for

results from other objects. This conclusion is incorrect for several reasons: First,

the fact that objects spend much of their time waiting does not imply that PEs

63

are buJy waiting or even idle. When a. PE receives a request message, it creates

an activity record for the request and when all the necessary subqueries have been

spaWned, it stores the activity record until it receives result messages for that

request. When a result message is received, the PE determines whether it is the

last result for the query; if it is not, the message is stored with the activity record.

Otherwise, it is combined with the other results in order to calculate the object's

status. This strategy allows for true asynchronous processing of queries and enables

a high degree of parallelism without using a database management system query

optimizer.

Conditionally Retrieved Information

In some cases, it is desirable to display information which depends on the

status of a retrieved object or some attributes of that object. Some examples of

this type of query are listed below:

1. When listing all employees, a human resource administrator might want to

know the GPAs of those employees who are students.

2. When examining a list of employees, it might be desirable to list the salaries

of all employees who make more the $50,000 a year.

These illustrate the two cases of dependent retrieval. In (1), displaying the addi

tional information depends on the status of the object (in this case if it belongs

to the class of students). In (2), although all employees have a salary only those

salaries which are greater than $50,000 are to be displayed.

In Poly View, these dependent data are retrieved only when the unconditional

query has succeeded. Notice that the Attribute-Query-Result procedure includes

different strategies for independent attribute queries and ordinary attribute queries.

This simple strategy allows Poly View to process this kind of query in a straight

forward manner.

64

Using Views to Answer Queries

When an object receives a message there are several adjustments which it

may make to the restriction list of the query. Because the internal representations

of Poly View objects are hidden from the users, their view of the database is often

restricted or incomplete. Therefore, the system must use the information in the

appropriate view instance description to compensate for this by completing or

further restricting users' requests.

When an object processes a request, it performs the following tasks:

1. It creates an activity record for that request.

2. The message's view-id is used to find the correct view instance description

(if no match can be found then the query is rejected).

3. All user specified restrictions on visible attributes are checked. If any are

not satisfied then the query can be rejected without further processing.

4. If, from the current point of view, the class is "invisible" and its subclasses .

and instances lists are both empty then again the query can be rejected

without any further processing.

5. If 4 is false then the attributes (both visible and invisible) are considered in

conjunction with the restrictions found in the query's restriction list8 .

(a) For local attributes Poly View simply uses the intersection of the at

tribute definitions in the object and the message restriction list. If the

result is not empty then it becomes part of the new restriction list.

(b) Compound attributes cannot be validated locally so any view specific

restrictions are appended to the restriction list.

8 It is assumed that restrictions and attributes are mapped from the same domain.
If they are not then it is not necessary to spawn a subquery for that attribute and
if the attribute is key, the entire query can. be rejected.

65

Once the query has been preprocessed "through a view", the activity record is

stored and the query is allowed to propagate asynchronously through the database.

Each message (sub query) which is spawned by a query will eventually invoke a

response. These responses are combined and may be edited before a result is

passed back to the source of the query. This editing process is performed by the

"determine status of query" operation found in all result methods. For example,

in the subset and attribute result methods, it removes "invisible" attributes before

returning the result to the user.

Queries are formulated and processed through a view of the database. A view

consists of a collection of local object interfaces. In order to process a user request,

an object must load the appropriate view and use it as a window into its own

internal structure and behavior. This method of processing is unique to Poly View.

There are two kinds of information retrieval queries. The user spawns a

3Ub3et query when he wants to retrieve all elements of a set of objects which have

particular properties. If information about the objects associated with a particular

attribute is required then the user issues an attribute query. Subset queries refer

to class objects as 3et3 while attribute queries refer to them as type3.

In both cases, the user sends a message to an injection point object which

examines the request, through the users' view instance description, which either

replies to the request directly or propagates the query to other objects. When it

has received responses from all the (sub)queries, the injection point combines the

(sub)results and returns a result to the sender. This query processing strategy and

the two information retrieval query types are implemented by using four types of

generic message. These messages are called: (1) the subset query request message,

(2) the attribute query request message, (3) the subset query result message and

(4) the attribute query result message. The four message types (whose methods

are presented in detail in appendix 2) are illustrated in figure 13. Note that the

l
(

66

(1) subset
l ~ query

request

(2) attribute (4) attribute
query request query result

.::::. Object ;:... ~

(3) subset
i query

result

~

Figure 13

The Four Retrieval Message Types

arcs at the top and bottom of the object represent IS-A relationships and arcs o~

the sides represent ATTRIBUTE relationships.

By examining the message, an object can determine which action it should

take. The data retrieval strategy will now be presented. Descriptions of the .
procedures used to process user requests will not be presented in the text. They

are shown in appendix 2.

Mapping a User Query to a Database Object (An Example)

At the beginning of this section, it was noted that all queries are made on a

view and translated to the underlying database schema using the information in

the global symbol table and individual class definitions. To better illustrate this

process, a simple example will now be presented. For simplicity this example will

include:. partial object and message definitions only and restrictions on attributes.

This does not detract from the example, it simply makes it less tedious to present

and easier to follow. Figure 14 shows external schemas for a user's view and

67

the corresponding (partial) system schema. Figure 15 shows the relevant parts

of the internal object descriptions of the objects presented. It illustrates several

important features of the model. First, the principle of encapsulation is strictly

followed within the schema structure. For example, from the user's point of view

the color (of a [red] car) is directly retrieved from the Car object; in fact, the

color is actually part of the Car-Body. This means that within the view instance

description of the Car object, the name "color" causes a message to be sent to

a Car-Body object. The corresponding view description in the Car-Body-object

has no (external) name; this fact is represented by the special symbol: *invisible*.

This is interpreted as an_ object which is invisible to the user but which performs

a service within the view. In this case, the Car-Body object retrieves the color

attribute.

In figures 16 and 17, a simple user query will be presented. The format of the

query conforms to the template shown in appendix 1. Although not all query fields

are shown, their relative position is significant. Fields are separated by semi-colons

and multiple semi-colons are used to indicate that fields have been omitted.

Retrieving Information for Derived Classes

Derived classes use slightly modified versions of the base class retrieval mech

anism. Union-subset classes process users queries in the same way as base classes

except that once the validity of the query has been established the query is passed

directly to the base classes whose "union" forms the basis for union-subset. Since

this involves a single extra step the algorithm is not shown in the appendix. When

a base class receives an information retrieval request from a (union-subset) derived

class, the request is treated in exactly the same way as a request from a uJer.

Query processing through power-sets is a little different. Power-Sets treat

ordinary union-subset classes as instance objects. Once a subset request query is

Actual Database:

(Cars)

(Manufacturers)

(Engine)

(Car-Body)

User View:

Red Cars

Figure 14

External Schemas

68

has been found to be processable by a power set it is sent to each of its (union

subset) members for further processing. Each union-subset object retrieves the

requested information and returns it to the requesting power set.

69

Object Cars:

Object Description:
Class-Object-Id: < Cars >

Instance Attributes:
Compound:

< maker >: < Manufacturer >
< exterior >: < Car-Body >
< propulsion system >: < Engine >

View Instance Description:
View-Id: < Vl >

Names: Red Cars

Instance Attributes:
Compound:

maker: < maker >
color: < exterior >
horse power: < propulsion system>

Object Car-Body:

Object Description:
Class-Object-Id: < Car-Body >

Instance Attributes:

Local:
< color >: Colors

View Instance Description:
View-Id: < Vl >

Names: *invisible*

Instance Attributes:

Local:
color: < color >, = 'Red'

/* Note that this restricts the choice of colors to Red * /

Figure 15

Internal Object Descriptions

70

The English "equivalent" of the query is shown in italic"; comments are shown in

roman font.

Li3t all Red Car" Made by (a Manufacturer) Named Ford.

In determining the query type, the key word is "list" indicating that the system should return

a set of car object descriptions. Further notice that values which are generated by Poly View

have been enclosed in angle brackets (()) and that messages have been enclosed in curly

brackets({}). Abbreviations: Qi= query identity for query 1, U1 =user l's name, and V1

= the identity of view 1 ...

Message to PolyView:

Query1: {Red Cars; U1; (Q1}; (5}; (V1}i (subset-request}; (*user*}; maker= "Ford"}

Poly View uses the global symbol table to determine the target of this query. The name "Red

Cars" is view dependent so information about the user is used to identify which view model

object table should be used. Finally the message is resent to the Cars object.

Message to Cars:

Query1: {(Cars}; U1; (Q1}i (5}; (V1}; (subset-request}; (*user*}; maker= "Ford"}

The view description corresponding to (V 1} is used as a guide to spawn sub queries. In this

case, queries would be sent to Manufacturers, Engines and Car Bodies - the objects which

represent the attributes of Cars. Since the user query specifies that the "maker" is Ford,

that restriction is sent on to the Manufacturer class:

Message to Manufacturers:

Queryu: {(Manufacturers}; ; (Qu}; ; (V1}; ; (attribute-request}; maker= "Ford"}

Note that in order for the manufacturer object to process this query, its view instance

description (for user 1) would include the following:

maker: (name) .

Figure 16

A Sample Query (part 1)

71

In addition to sending a message to the manufacturer class the car object also sends a message

to the car body class. From this user 's point of view this is an unrestricted request - from

a global perspective it is not.

Message to Car-Body:

Queryl.2: {(Car-Body); ; (Ql.2); ; ... ; (empty restriction list)}

When the request is received view l's view description is activated and the restriction on

color ((color) = "Red") is added to the (empty) restriction list before processing continues.

Queryl.2: {(Car-Body);; (Ql.2);; ... ;(color) = "Red"}

After the three attribute requests have been completed the Cars object would spawn subset

request subqueries to be processed by its subclasses and instances. The restriction list of

the new subquery would be altered to reflect the changes made during the processing of

the attribute requests. Note that both the user and view specified restrictions on an entire

attribute path are now included by the system.

Message~ to subsets of Cars :

Query1 : {(subsets of Cars);; ... ; (maker).(name) ="Ford", (exterior).(color) = "Red", (en

gine) .(horse-power) 100},

The query restriction comes from both the original query and the user view: The user

asked for all red cars made by Ford (which restricts the name attribute of the maker attribute:

(maker) .(name) = "Ford"), in this view red cars are cars whose color is limited to red (the color

of the exterior ((exterior).(color) = "Red") and whose engines have more than 100 horse power

((engine).(horse-power) 100).

Figure 17

A Sample Query (part 2)

Updating PolyView Databases through View Templates

The following update operations are supported by the Poly View system: in

sert, delete and move for objects and insert, delete and change for attributes.

A primitive change object operation is not supported because it is not necessary.

72

Changing an object involves changing some of its attributes but not its identity;

therefore, this operation can be implemented by ~xecuting insert, delete and change

attribute operations.

Some derived data will not be updatable by users. For example, if a method

is used to calculate an aggregate value based on values found in many objects, this

value will obviously not be directly updatable. In addition, because some views hide

information from users, there is the possibility that a given user may not be able

to consistently change the contents of some classes in the system. The Poly View

system uses invisible attribute structures to remedy some of these problems.

Each view instance contains several lists of attributes which refer to the

internal object description, restrict their domains and, in some cases, provide

default object structures to be used by insert operations. The object description

contains attribute properties which are invariant across all views. These properties

include each attribute's "unrestricted" domain and (more importantly) whether an

attribute is key or not. In order for a user to have update privileges, the following

conditions must be satisfied: (1) the combined list of visible and invisible attributes

in the associated view instance description must contain all key attributes and (2)

all invisible key attributes must have a default object (or value) associated with

them. This guarantees that the PolyView system can generate consistent objects

from a combination of user requests, the view description instance and the object

description. Other update operations can be performed if the objects which are to

be updated can be identified. The asynchronous message passing strategy used to

retrieve information will be used to identify the objects which are to be deleted or

changed.

73

Inserting New Objects and Attributes

Finding the Target Class

All operations are performed "through" a user's view of the application

world. A user directs a request at a visible injection point which may not be the

appropriate owner class (target) for the new object. Starting at the injection point,

Poly View recursively searches for the target. Each descendent of the injection point

determines whether it is a potential target using a strategy similar to the one used

to retrieve an attribute value. For this reason, when a class object receives an insert

request, it first determines whether it may be the target class. The search within

the class hierarchy (which is almost identical to the Subset-Query-Request9 search

strategy) continues until a class is found which is not a candidate for the target

or the bottom of the class lattice is reached. The organization of the Poly View

hierarchy guarantees that there will be exactly one target. The major actions

performed are:

• Spawn attribute query requests.

• If the result indicates that the new object could not be inserted at this class

(status = 5) then inform the sender.

• Otherwise, if there are subclasses then send the insert object request to them.

• If all results, from subclasses, are 5 then change status to 1 and perform the

insert operation. Otherwise (a descendant has already inserted the object),

report success to parent.

• If there are no subclasses then status values of 2 or 3 are changed to 1 (this

is the target) and a status of 4 is changed to 5 (this is not the target).

• If the status is 1 then the insert operation can be performed.

9 The main difference is that in order to find the target class it is only necessary
to search the class hierarchy and not the database itself.

User View:

Xn

I - Injection Point

T - Target

Xi - ith instance object

74

Actual Database:

Ss: 5

Ss : <5,(1)

Ss: 5

Figure 18

Find Insert Target Set

• If the same request is received from more than one source, ignore the dupli

cates.

Consider the abstract Poly View hierarchy shown in figure 18. From the user's

point of view, the target and the injection point are the same object. The injection

point class (I) is actually an ancestor of the appropriate insert target class (T).

When class I receives the original request for the user, it determines that it is

a potential target (shown by the <5 symbol in the class node) and immediately

75

forwards the request to its children (S1, S2, Sa and 84). These four classes perform

the same test: Sa, and S4 report failure (their status = 5) while Si, and S2 are

both potential targets (like I) and spawn additional insert requests. Eventually, T

receives the request (from both S1, and Ss), determines its status and propagates

the query to its children (S6, S1 and Sa), all of which prove not to be the target.

When T creates the new object and inserts it into the database (the algorithm is

shown in appendix 2 and procedure is discussed in detail in the next section), the

success is propagated back to the injection point. In figure 18, the result status of

1 is not parenthesized in T because it actually performs the insert operation. In

all other classes (including I) which just report the result, the status is shown in

parentheses.

When I receives confirmation of a successful insert it "flushes" the request

from the system. This is a two part operation. First a message broadcast causes

all classes except the target to remove all partially completed insert requests. Once .

this has been completed I can instruct T to remove its reference to the operation.

This guarantees that the insert operation is never performed more than once. The

flush operation is necessary because of the lattice structure of the PolyView IS-A

hierarchy through which a target may receive the same request from more than

one parent. In the simple sample T received insert requests from both S1 and Ss.

Since there is no centralized control, T must "remember" that it performed the

insert operation until I tells it to "forget".

Inserting an Object (into a Target Class) Using a View Template

Once a target class has been identified, a new object is created and inserted

into the database. A shallow copy (with its own identity) of the (view sensitive)

default object is created and an IS-A connection is made from the class to the new

object. This shallow copy is a "shell" from which an object will be built; therefore,

it is not fully incorporated into the system until the insert object operation has

76

been successfully completed. When the shell is created, attribute connections are

established to each (non local) default attribute object but not from them because

many default objects will be changed by the insert method. Each local attribute is

a value and can be changed in a straight forward manner. In order to customize a

compound attribute, the attribute connection from the new object to the default

attribute object is severed and an Insert-Attribute-Request query is spawned. Once

the new object has received Insert-Attribute-Result messages for all the customized

compound attributes, the remaining default attributes will be made a permanent

part of the new object. Each default object is sent an insert-attribute-arc message

which causes it to create an inver3e attribute connection (an OOP) to the requesting

object.

The Insert-Attribute methods are quite simple:

• The system is searched.

• If a single object is found which matches the attribute description, it becomes

the attribute object and the corresponding attribute/inverse connection (be

tween the two objects) made.

• If several objects or no objects match the attribute description, the Insert

Object-Request10 method is used to create a unique object .

Adding an Object Using the View Structure (An Example)

The schemas shown in figures 14 and 15 will be used to illustrate how

Poly View uses information (some of which are not visible to the user) in a view

description template. In this example, the description of the Car-Body object will

be looked at in more detail in order to illustrate the use of "invisible" and default

10 Notice that Insert-Attribute and Insert-Object are mutually recursive.

Actual Database:

(Cars)

(Car-Body)

other
attributes

color

wheel
base)

Figure 19

(fr nt
do rs)

(count

size

(b ck
do rs)

Partially Expanded External Schemas

77

exterior

objects during the insert process. Figure 19 shows the partially expanded database

schema. The corresponding internal templates are shown in the next figure.

The insert operation from this perspective (V 1) is very simple: the user simply

specifies the (name of the) maker and horse power (of the engine) - Poly View

does the rest. Figure 21 shows how the request "insert a 150 hp Ford" would be

processed by the Cars, Car-Body and Doors (which receives two requests) classes.

Exactly the same strategies are applied by the other classes which represent other

attributes and will not be illustrated here.

j

Object Car-Body:
Object Description:

Class-Object-Id: < Car-Body >
Instance Attributes:

Local:
< color >:
< wheel base >:

Compound:
< front doors > :
< back doors > :

View Instance Description:
View-Id: < Vl >
Names: *invisible*
Instance Attributes:

Local:
Visible:

Colors

< Doors >
< Doors >

color: < color >, = 'Red' /* The color is Red * /
Invisible:

wheelBase: < # >, = '18' /* The wheelbase is 18 feet */
Compound:

Invisible:

Object Doors:

< front doors >
< back doors >

Object Description:
Class-Object-Id: < Doors >
Instance Attributes:

Local:
< count >:
< size >:

View Instance Description:
View-Id: < Vl >
Names: *invisible*
Instance Attributes:

Local:
Invisible:

dim

< front doors >. < count >: < count >, = '2'
< front doors >. < size >: < size >, = '2x4'
< back doors >. < count >: < count >, = 'O'
< back doors >. < size >: < size >, = 'nil'

Figure 20

Partially Expanded Internal Object Descriptions

Deleting Objects and Attributes

78

It is very important to remember that all requests received from users are

(incrementally) trarltlated from a user specific external view to an equivalent

79

Message to PolyView:

Insert1: {Red Cars; U1; (I1); (5); (V1); (insert-object-request);

maker = "Ford"}

horse power = "150",

PolyView determines that the message should be sent to the Cars object.

Message to Cars:

Insert1: {(Cars); ; ... }

For simplicity it is assumed that the Cars is the target of the insert operation. Then view

description is used as a template from which a shallow copy of a default object is created

(which the system fleshes out as the operation continues). Once the object has been created

(complete with default values for local attributes and unique identity), Poly View spawns

appropriate sub queries. These subquery messages are sent to the owners of Car's compound

attributes (Manufacturers, Engines and Car Bodies).

Message to Car-Body:

Insertl.2: {(Car-Body);; (Il.2);; (V1);; (insert-object-request); color= ""}

The Car Body class behaves like the Car class . It first finds the appropriate view description,

then creates a shell and finally spawns two subqueries (both of which are sent to the Doors

object).

Message to Doors:

Inserti.2.1: {(Doors);;;;;;; (front door)= ""} &

Inserti.2.2 : {(Doors); ; ; ; ; ; ; (back door) = ""}

Again the view template would be used to create complete (invisible) default objects which

represent the front and back doors of the new car instance respectively. Since doors do not

contain references to other complex objects this part of the insert operation is complete. The

Doors class spawns reply messages (containing references the newly created instances) which

are sent back to the Car Body object which can then respond to the Car object etc.

Figure 21

A Sample Insert Operation

80

internal representation. This is accomplished by translating printable (external)

names to their unique internal equivalences when they are first encountered. The

reference to the target class is changed immediately using the global symbol table;

attribute names are converted when they are first used by a class object.

When a class receives a delete object request it executes the following strategy:

• An Attribute-Query-Request is spawned to ensure that the class may lead to

instances which are to be deleted.

• If the Attribute-Query-Result request succeeds then the delete object request

is propagated to all children (subclasses and instances) of the class. Otherwise

no objects are deleted and the class can report that result.

When an instance object receives a delete object request:

• It spawns an Attribute-Query-Request.

• It removes itself from the database, if the Attribute-Query-Request succeeds.

Otherwise it must only acknowledge the request (send a result message to the

requester) but take no further action.

As is the case with all PolyView operations, the objects at the lower level report

their actions to their parent(s) which combine them with other results and pass

the aggregate result back up the hierarchy.

When an instance object recognizes that it is the target of a delete request,

it performs a two stage delete operation. First, it spawns a single Delete-All

Attributes-Request which in turn sends Delete-Inverse-Attribute-Requests to all of

its compound attribute objects. These subqueries cause the attribute objects to

break their connection with the requesting object. When all compound attribute

connections have been broken, the second part of the delete operation can be

executed. The object requests that its owner delete the IS-A connection to the

"deleted" object and remove its own connection to the owner. The resulting

81

structure is a partially defined unreachable instance object which can be removed

without side effects when the system needs its space.

To further illustrate this procedure, consider simple external schema in fig

ure 22. It represents a delete object operation performed on an abstract hierarchy.

In the figure, the target instance has two compound attributes, called A1 and

A2, which are connected to attribute instance1 and instance2, respectively. Before

the delete operation is performed, the target is fully connected to its parent and

neighbors; aiter the delete operation has been performed, the target instance is

isolated and can be garbage collected at an appropriate time.

The Delete-Attribute-Request method allows the user to delete a single at

tribute, as opposed to an object. The algorithm is very simple:

• The instance (or instances) from which the attribute is to be deleted are

located.

• If the attribute is local then it is deleted. (Note that the algorithm in

appendix 2 shows that some local attributes have special delete methods

associated with them. Special methods are necessary because, for example,

some attributes may not become nil in a consistent database.)

• If the attribute is not local then a request is sent to the corresponding

attribute instance object. This request causes the receiver to delete its

reference to the target object. Once this has been completed, the target

removes its reference to the attribute. Again there are both generic and

special methods to accomplish this.

Unlike the delete object operation, this procedure removes the attribute

connection to and from the target instance but does not necessarily leave any

object isolated.

82

Before: Class1 Class2 Classs

~

IS-A IS-A IS-A

I ~

Attribute +- A2 Target A1-> Attribute
Instance1 inverse.A2 - Instance

.....
+-inverse.Ai

.....
Instance2

After: Class1 B Classs

~ ~

IS-A IS-A

~ I -
Attribute

~
A2 Target A1 - Attribute

lnstance1 Instance Instance2

Figure 22

Deleting an Instance from a Poly View Database

Changing Attribute Instances

The Change-Attribute method is very similar to the Delete-Attribute method.

Explaining it in detail would be unproductive; therefore, the important differences

will be described very briefly. Local attributes are simply assigned a new value. For

compound attributes there are two possibilities: either a part of complex object

structure is to be changed by recursively applying the change method (to change

83

an attribute's attributes) or the attribute structure is to be completely replaced by

a new structure which must first be created.

Moving Instance Objects

This operation moves an object from one class (within a user's view) to

another. During this process, a new "container" is made for the object but

the object identity (and, therefore, its existence as an entity in the application

environment) is unchanged. The move operation can be compared to a delete

operation and an insert operation fused into a single critical section of code. The

overall effect would look very similar but 3emantically they are very different. The

move operation does not create or delete an object; it simply changes its "type"

and/ or "shape".

A Move-Object-Request message is sent to the owner of the object or objects

which are to be moved. In addition to identifying the objects which are to be

moved (by describing their properties), the request message includes a reference to·

the new owner class. Once Poly View has located an object which is to be moved, it

sends a Create-Move-Copy-Request to the new owner of that object which causes ·

it to create a new container for that object. PolyView then copies the existing

object identity from the old object to its new container and all properties which

are associated with its new type. If there are additional properties which are

associated with the new object type then the system will insert the appropriate

default object references/values. When all this has .been completed, the old object

is removed and the operation is complete.

Updating Derived Classes

Derived classes contain objects which belong to base classes. The actual

creating, deleting and changing of these objects is, therefore, only implemented by

base classes. Certain kinds of update can be instigated by derived classes. For

84

example, a user might want to add or remove something from a category (like

Banned Ships). This would be achieved by sending a request to the appropriate

base class (Ships) requesting that it change the appropriate category attribute.

Nothing would actually be directly changed by the Banned Ships category. Notice

that there is no comparable operation for collections because membership in a

collection depends on the contents of objects' attributes. Therefore, collections

may change as a side-effect of some other operation on the database.

CHAPTER 5

Supporting Semantic Relativism

The concept of 3emantic relativiJm is very important in any multi-user data

base environment. The underlying data model must be rich enough to support

many, perhaps conflicting, view" of the data's structure and semantics. In this

chapter semantic view transformations are presented which enhance the object

oriented semantic database model introduced in the previous chapters. These

transformations enrich the model by allowing many different users' views of the

database to be created within a single polymorphic schema.

In chapter 4, the operations on a PolyView database were presented. These

operations represent one of the forms of polymorphiJm supported by Poly View. The .

same operation (retrieve, for example) is performed by all objects in a database.

The semantics of an operation is the same regardless of the object type; however, its

implementation may differ significantly between object types. In the last chapter,

methods were shown to operate through a view distributed template. In this

chapter, a mechanism for constructing these templates will be presented.

Motivation

The typical large database enterprise has many different user groups. Each

of these groups may want to use the database in different ways. This means that

each class of users is likely to have a different perception of the structure and

semanti<;:s of the data. The term u3er view will be used to describe the (dynamic)

restructuring of the database in order to accommodate the different, and possibly

conflicting, needs of the various database users. This situation can be illustrated by

85

I
I

j
I
j
I

J

86

considering the concept of a marriage. Marriage can be thought of as a relationship

between a man and a woman, a legal entity (the way the town hall's record office

views a marriage), or one spouse may be deemed to be an attribute of the other

(i.e. a husband may be listed as a dependent in his wife's employee record) . In

most database systems, the database designer would have to choose to support

a single view of marriage or to maintain several instances of marriage separately.

Clearly, if an application requires the support of several different views of marriage,

the first choice is unacceptable. Unfortunately, the latter is almost as undesirable

because inconsistencies may develop between the independent representations of

a single entity. In this chapter, several generic tran3formation3 will be described

which allow all the user views to be modeled within a single polymorphic database

schema.

Poly View has several unique features for supporting user views. The most

significant of these is the GOncept that a view is a distributed (model) object and

that, like any other Poly View object, it has a unique identity (or color). Secondly,

each view supports many levels of relativism. Relativism is supported in attributes,

instance objects, class objects, IS-A and ATTRIBUTE hierarchies, and the "global"

schema. Each view is associated with a group of users and each group of users may

access the database through several views. Messages (requests for information and

updates) sent from a user have the appropriate view name appended to them.

When a message is received by any object, it uses the view information to retrieve

the users view instance description. The information in this description is used to

adjust its behavior and structure to suit the user's ·particular needs.

A Framework for Relativism

In 'chapter 4, it was shown how view descriptions are used as users' windows

into an application. In this chapter, the internal structure of (all levels of) the data

base will be examined more closely. The mechanisms for creating and customizing

87

user views will be presented in detail. Relativism is achieved in the PolyView

system by predefined semantic transformations which can be applied to a schema

to produce a view graph. A sequence of these applied transformations form a view

definition which is di.,tributed through the class objects within the view schema.

The view definition is a "distributed method" which acts as a filter that alters

queries as they propagate through the view schema causing the query message to

conform to the underlying database and the results message to conform to the view.

The view definition is also used to generate an ezternal view template. An external

template is the user's guide to the database; to the user, the external template i"

the database. In order to support all aspects of the Poly View data model, each class

object is be divided (internally) into three sections: a cla"" de.,cription section, a

view description section and a private local work area "ection (which is invisible to

all users but is necessary and used by the system). The class description and view

description sections form the class's internal template which contains two kinds of

information: The first (which is contained in the class description section) describes

the intension and extension of the set of instance objects represented by the class

and the second (contained in a series of view instance descriptions) describes the

various users' views of that class and its data.

Customizing a User Schema

View transformations can be thought of as graph editing procedures. They

include methods for coloring, building and changing graphic structures. Conceptu

ally, editing a Poly View view is very simple: A copy of a schema (graph) is made.

By using the view transformation methods, nodes and arcs may be added, removed

or changed in a view graph. When all the desired changes have been made, the

new graph is colored and added (or returned to) the application environment. The .
coloring procedure starts at the root (the generic application) and follows outgoing

IS-A and ATTRIBUTE arcs from each class object visited. Each visited class object

88

is marked with the view's unique color. The resulting colored graph is the new

user schema.

The strategy outlined above is extremely high level. The basic view trans

formations which are discussed in the remainder of this chapter are necessarily

lower level and actually make changes to the internal template of one or more

class objects. The effects that these methods have on the internal structure of

the database, individual objects and the users' perception of the database will be

shown.

Basic View Transformations

The basic view forming transformations fall into three general categories:

graph tailoring methods, operations on the IS-A hierarchy and methods that define

and redefine ATTRIBUTE relationships. Graph tailoring transformation methods

create, record or delete an entire view schema. They operate on the view model;

from this perspective, the view schema is treated as a single object. Other trans

formations affect individual classes and the IS-A or ATTRIBUTE decomposition (or

aggregation) hierarchies within a particular view schema. Once a (virtual) view

schema has been created (by applying the make-view graph method), other trans

formation methods are applied to customize the schema to meet the requirements

of the user. Descriptions of the transformations will be presented in two parts:

first, the operation will be described and then, in most cases, internal and/ or

external structures will be shown in order to demonstrate or clarify the effect of

the operation on a Poly View database.

Graph Tailoring Methods

There are four graph tailoring methods: MAKE-VIEW, REMOVE-VIEW, COLOR

and QUIT.

89

M alee-view, creates a virtual copy of a database (view) schema. It is the

first operation performed when a new view is to be created. It creates a unique

identity (color) for the view and enters it in the global symbol table which has the

effect of returning a reference to the new (temporary) view schema. Each global

symbol table entry contains the name of a user associated with the view, the view's

unique color (identity), and a reference to a view model object table. Initially, a

new view references a. generic default object which may, eventually, be included in

the permanent database environment. Each view model object table contains the

information used by the system to translate external class names (used by users) to

the unique internal names used by the system. The structure of the global symbol

table was described in chapter 3 and is also shown in appendix 1.

Once a view graph has been created, it can be customized. These changes,

made by the view transformations, must eventually be incorporated into the

database environment. For example, view dependent names for classes must be

associated with the view model (by adding them to the appropriate table) so that

queries on view schemas can be forwarded to the correct global subschema.

The color method publishes the new view schema. It sends messages which

"traverse" the view graph and collect external names for each class in the view while

(simultaneously) causing each class object to merge the temporary changes (in its

work area) into its view and class description areas. When the entire view graph has

been colored, the status of the view model object table in the global symbol table

is changed from "generic" to "permanent" and the publishing process is complete.

These actions cause the new view to become a permanent part of the database

environment. Occasionally, a view designer will want to abort a view editing

session; ~he quit method allows him to do just that. Quit is similar to color in that

it traverses the view graph, except that instead of saving all the temporary changes

(within the class objects), it removes them; when a "quit traversal" is completed,

90

the (temporary) entry in the global symbol table is also removed. Either color or

quit is, therefore, the final operation performed when creating (or changing) a user

view.

The Remove-view method is used to remove an obsolete view from the data-

base environment. Its input, which is provided by the system, is a reference to the

view to be removed. Remove-view messages are broadcast to all class objects and

those which recognize the view remove it from their internal templates. Finally,

all references to the view are removed from the global symbol table.

Customizing the ls-a Hierarchy

CLONE, ATTACH, REMOVE, HIDE and (re)NAME are the five methods for

customizing the IS-A hierarchy. They affect class objects and the IS-A relationships

between them. These methods are very simple and the changes are "localized" -

i.e. they are visible only from the particular user's point of view. It cannot be over

emphasized that these transformations to the schema change the user's view but

are completely invisible in all other database users. All changes are temporarily

associated with the view which is being formed within the class objects' local

memory. Only when a color message associated with that view is received are the

temporary changes made a permanent part of an object's description.

Name is the simplest of these operations; it associates a list of new external

names with a class. For example, if the database contains a class which represents

a set of Automobiles and a particular user prefers the name Cars, the name method

would be used to associate the symbol "Cars" with that class. Name has three

parameters: a view identity (color), a reference to the class which is to be renamed

and a list of new names. The generic form of name method is: Name(Viewrd,

Old-name, New-names). The view designer provides old and new external names .
for the class; the system associates the new name with the view in the class object's

local memory. When a color message is received, the new external name(s) will

BEFORE:

Object Automobiles:

Object Description:

View Descriptions
View Instance Description:

View-Id: < Vjim >

Names: Automobiles

AFTER:

Object Automobiles:

Object Description:

View Descriptions
View Instance Description:

View-Id: < Vjim >

Names: Cars, Autos

Figure 23

Applying the Name Method to the Automobile Class

(An Internal Representation)

91

be associated with the unique class identity in the appropriate view model object

table. This allows PolyView to use the global symbol table in order to translate

queries from a user's personalized perspective (with references to private external

class names) to an equivalent internal format containing only internal names.

In figures 23 and 24, the name transformation is demonstrated using a con

crete example. PolyView's internal and external representations are presented in

order to show the effect of changing the external name of a class from Automobiles

to Cars or Autos. This is the view of a user called Jim and the color of his view

is represented by V Jim· The example includes a class called Fords which is a

Automobile Name(VJim 1 Automobiles, (Cars, Autos)) -

Figure 24

Cars
or Autos

Applying the Name Method to the Automobile Class

(An External Representation)

92

descendant of Automobiles. Fords would be unaffected by the renaming of its

ancestor. Name, like all other transformation has no apparent effect until a color

message is received by the Automobiles class. This causes the class to permanently

record the name in its view description area and to "publish" new external class

names in the global symbol table. The full global effect of the name transformation

followed by color operation would include a change to the global symbol table; this .

is shown in figure 25.

In order to create a new class, a user selects its parent and then asks the

parent to clone itself. The clone method makes a copy of and establishes a

subclass IS-A link between them. A clone message includes: the message name

(clone), a view color, the clone's name and the original class' name. The following

representation will be used: Clone(View1a, Clone-name, Class). The new class

object contains copies of most of the original class' object description and its global

view description, including its methods and attributes and their external names, .

but not its instances and subclasses. The clone's object description differs from

the original in two places: the clones parent3 IS- A connection list contains a single

reference to the original class which is also added to the type list. Once created, a

cloned class can be customized by redefining its existing attributes and methods,

and by adding new properties and subclasses. This operation adds a new class to

93

BEFORE:

Jim's
(VJim) _,,, Automobiles (Automobiles) View

..

Fords (Fords)

AFTER:

Jim's
(VJim) Cars (Automobiles) View

,,.

Autos (Automobiles)

Fords (Fords)

Figure 25

Applying the Color Transformation to the Example in the Previous Figures

the schema but the only pre-existing class which is affected by clone is the one

which applied it. This class adds a new element to its subclasses IS-A list. Note

that this, like all local view transformations, causes a temporary change which

becomes permanent when the view is colored.

The clone operation will now be demonstrated. Its use will be shown in

conjunction with the color operation. In the previous example, part of a simple IS

A hierarchy which contained exactly two classes (Cars and Fords) was presented.

Figure 26 shows part of the internal representations of Cars before and after it has

been cloned. The cloned class (Chevys) is also shown. Figure 27 shows an external

Poly View schema before and after Cars has applied the clone method to create

BEFORE:

Object Automobiles:
Object Description:

Class-Object-Id: < Automobiles >
Is-A Connections:

Types: < list of types >
Parents: < list of parents >
SubClasees: < Fords >
Instances: < list of instances >

View Description:
Global View:
User Views:

< global view description of automobiles >
< other view instance descriptions >

AFTER:

Object Automobiles:
Object Description:

Clase-Object-Id: < Automobiles >
Is-A Connections:

Types: < list of types >
Parents: < list of parents >
SubClasses: < Fords >, < Chevye >
Instances: < list of instances >

View Description:
Global View:
User Views:

< global view description of automobiles >
< other view instance descriptions >

Object Chevys:
Object Description:

Class-Object-Id: < Chevys >
Is-A Connections:

Types: < list of automobile's types > + < Automobiles >
Parents: < Automobiles >
Subclasses: < nil >
Instances: < nil >

View Description:
Global View:
User Views:

< global view description of automobiles >
< nil >

Figure 26

The Clone Method is Applied by the Cars Class

Creating the Chevys Class (Internal Structure)

94

Fords

Vehicles Clone(V J im, Cars, Chevys) Vehicles -
Boats Cars Boats

Fords Chevys

Figure 27

The Clone Method is Applied by the Cars Class

Creating the Chevys Class (External Structure)

95

Chevys . Notice that the view of the database has been expanded to include both

the Vehicles and Boats classes which will be used in future examples. Finally,

figure 28 shows the change to the global symbol table after color has been applied.

Attach creates an IS-A connection between two predefined classes in a database

application. This operation must be supported because Poly View supports multiple

inheritance. 'When sending an attach message, the user must identify the new

child and parent objects while the system provides the view's color. When a (new

parent) class object receives an attach message, it adds an IS-A arc to its subclass

list to reference the new child and it sends an attach-parent (which contains its

own identity) message to that child. When the (new child) object receives an

attach-parent message, it adds an IS-A arc to its parent list and (if necessary) to

its type IS-A list. Now PolyView must make sure that the two class descriptions

are consistent with each other. In all common properties, the domain of the child's

property must be a subset of the domain of the parent's property. If this is not

the case then Poly View enters an interactive mode so that the view administrator

can resolve the anomalies caused by the attach transformation or abort it if the

differences cannot be resolved. Note that a successful attach operation causes both

BEFORE: - see AFTER from previous example

AFTER:

Jim's
(VJim)

__,,, Cars (Automobiles)
View

.
Autos (Automobiles)

Fords (Fords)

Chevys (Chevys)

Figure 28

The Clone Method is Applied by the Cars Class

Creating the Chevys Class (Global Symbol Table)

96

the parent and the child class objects to change their internal templates. The

generic form of this operation is Attach(View1d, Parent, Child).

Clone and attach are often used together - clone is used to create a sub

class of a single parent and attach adds additional parents if they are necessary .

. Figures 29 and 30 show a continuation of the previous example. The newly created

Chevys class object is attached to the Boats class. Figure 29 shows an internal

snapshot of the "after" of this operation has been performed; the "before" can

be seen in the previous example. Figure 30 shows the equivalent external before

views. The global symbol table will not be presented in this example because this

operation does not change it.

Some (or all) outgoing IS-A arcs may be removed by a class object . When

applied to a single arc, remove's effect is almo3t exactly the inverse of attach. The

BEFORE: /*for Chevys see AFTER from previous example */

Object Boats:
Object Description:

Class-Object-Id: < Boats >
Is-A Connections:

SubClasses: < list of subclasses >

View Description:
View Id: < Vjim >

Is-A Connections:
SubClasses: < list of subclasses >

AFTER:

Object Boats:
Object Description:

Class-Object-Id: < Boats >
Is-A Connections:

SubClasses: < list of subclasses > + < Chevys >

View Description:
View Id: < Vjim >

Is-A Connections:
SubClasses: < list of subclasses > + < Chevys >

Object Chevys:
Object Description:

Class-Object-Id: < Chevys >
Is-A Connections:

Types: < Automobiles >, < Boats >
Parents: < Automobiles >, < Boats >

View Description:
View Id: < Global >

Is-A Connections:
Types: < Automobiles >, < Boats >
Parents: < Automobiles >, < Boats >

View Id: < Vjim >
Is-A Connections:

Types: < Automobiles >, < Boats >
Parents: < Automobiles >, < Boats >

Figure 29

The Attach Method

Applied by the Cars and Chevys (Internal)

97

98

Vehicles Affaeh(V Jim, Boats, Chevys) Vehicles -
Cars Cars Boats

Fords Chevys Fords

Figure 30

The Attach Method

Applied by the Boats and Chevys (External)

user specifies the target class and a list of children (to be removed). The view's

identity is provided by the system. Re move(Viewrd, Target, (Children)) is the

generic form of the remove message. When a class object receives a remove message,

it sends remove-parent messages to each of the named children and removes its IS -A

connection with each of them (within the current view description only). Because

the instance objects are directly connected to exactly one class object, PolyView

does not explicitly forward the remove-parent message into the database - all

instances connected to a "removed" class are effectively invisible. These remove

parent messages are necessary because the remove operation only eliminates IS-A

connections from a view. Since Poly View classes may have more than one parent,

removing an IS-A arc makes a class unreachable from one branch of the IS - A lattice

but does not necessarily cause it to be completely removed from the user view.

Therefore, the remove transformation sometimes causes the global symbol table to

be changed.

Returning once again to the example, if Chevys are now removed by Boats,

the schema will revert to its form before the attach message was sent. The message

99

has the form: Remot1e(V Jim, Boats, (Chevys)). No figures are presented with this

example.

The hide operation "move_s" outgoing IS-A arcs from a class object to an

explicitly named parent class and then removes the class (from the view). This

effectively attaches the class's subclasses and/or instances to a named parent and

then "hides" the target class. The user names a parent class and the list of children

which are to be moved. This latter may contain the special identifier *instances*

which indicates that the target class's instances are to be moved to its parent, as

well. There will usually be far too many instances in a database to make naming

them explicitly feasible; therefore, the view designer can either hide all instances

or none of them. When a class receives a hide message, it creates a new view

description if necessary, changes its external view name to *invisible* and removes

all but the named subclasses from its from its subclass IS-A list. Finally, if instances

are NOT requested then the instances IS-A list is replaced with *nil*. Although

externally the changes are significant, internally only the target class is affected.

Figures 31 and 32 show the internal and external state of the schema before

and after the Cars class has performed the hide transformation. This particular

hide operation moves Cars' children (Chevys and Fords) to its parent (Vehicles).

The hide operation also affects the global symbol table. If the view was colored

immediately after this operation had been performed, the Cars class would be

removed from the global symbol table (see figure 33).

Redefining Attributes in a Decomposition Hierarchy

View customizing methods performed by classes on their attribute relation

ships are similar to those performed in the class hierarchy. There are methods

for renaming, creating, restricting, removing and moving attributes. A major

difference between these two categories of transformation is that the attribute

customizing transformations do not affect the global symbol table. This is because

BEFORE:
Object Automobiles:

Object Description:
Class-Object-Id: < Automobiles >

View Description:
View Id: < Vjim >

Names: Cars, Autos
Is-A Connections:

SubClasses: < Chevys >, < Fords >
Instances: < list of instances >

AFTER:

Object Automobiles:
Object Description:

Cfu.ss-Object-Id: < Automobiles >

View Description:
View Id: < Vjim >

Names: •invisible•
Is-A Connections:

Sub Classes: < Chevys >, < Fords >
Instances: < list of instances >

Figure 31

The Hide Method

Applied by the Cars Class (An Internal Snapshot)

100

changes to classes (like, for example, hiding and renaming) must be "published" in

a view model object table while attribute descriptions are encapsulated in object

descriptions. The five attribute transformation methods are called A·NAME11 , A

REMOVE, A-RESTRICT, A-INSERT and A-MOVE.

The a-name method is used to rename an attribute. Old and new external

names for the attribute are supplied by the user and Poly View identifies the view

(A-Name(View1d, old-name, new-name)). The new external name is associated

with the attribute identity, the user's view instance description.

11 The a- prefix denotes a method which customizes an attribute (a- methods may
be applied to both instance and class attributes).

101

Hide(V Jim, Cars,
Vehicles (Fords, Chevys, *instances*), Vehicles) ... Vehicles --

,,
,, ... ,,

@ Ford.

Cars

Chevys

Figure 32

The Hide Method

Applied by the Cars Class (An External Snapshot)

BEFORE: - see AFTER from previous example

AFTER:

Jim's
(V Jim) View

.. ..;.- Fords (Fords)

Chevys (Chevys)

Figure 33

Fords

The Effect of Sending a Hide Message to the Cars Class

on the Global Symbol Table

Chevys

For example, suppose that there is an attribute called position which asso

ciates an employee with a job description. If the executive vice president believes

that job would be a more appropriate name for this relationship then the a-name

BEFORE:

Object Employees:
Object Description:

Class-Object-Id: < Employees >
Instance Attributes:

< position >: < Job Description >
< salary > : < $ >

View Description:
View Id: < Vjim >

position: < position >
salary: < salary >

View Id: < Vvp >
position: < position >
salary: < salary >

AFTER:

Object Employees:
Object Description:

Class-Object-Id: < Employees >
Instance Attributes:

< position >: < Job Description >
< salary >: < $ >

View Description:
View Id: < Vjim >

position: < position >
salary: < salary >

View Id: < Vvp >
job: < position >
salary: < salary >

Figure 34

The A-Name Method

(Applied by Employees to (position) - Internal)

102

transformation could be used to create this preference. Figures 34 and 35 show

the internal and external schemas before and after the Employee class object has

executed the a-name method.

A-Remove hides attributes by removing them from the user's personal list of

attributes. The method is passed a list of attributes (to be hidden) and the color

of the view. The syntax of the a-remove is: A-Remo11e(Viewrd, (attribute-list)).

Before: Employees position Job-
Descriptions

1 A-Name(Vvp, position, job)

After: E l job _ Job-
mp oyees,. Descriptions

Figure 35

The A-Name Method

(Applied by Employees to (position) - External)

BEFORE: /*see AFTER from previous example */

AFTER:

Object Employees:
Object Description:

Class-Object-Id: < Employees >

Instance Attributes:

< position >:
< salary >:

< Job Description >
< $ >

View Description:
View Id: < Vjim >

position: < position >
/* < salary > has now been removed */

View Id: < Vvp >

Names:

job-title:
salary:

Employees

< position >
< salary >

Figure 36

The A-Remove Method

(Applied by Employees to (salary) - Internal)

103

Before:

After:

Employees

l .A-Remove(VJim, (salary))

Job
Descriptions

Employees _Q_ositio~ Job-
Descriptions

Figure 37

The A-Remove Method

(Applied by Employees to (salary) - External)

104

For example, if employees' salaries are confidential then it would be appro

priate to hide them from Jim. (See figures 36 and 37.)

Sometimes it is necessary to restrict the range of an attribute; to do this

the designer uses the a-restrict method. When applied to a particular attribute,

a-restrict places a restriction on that attribute which will be combined with all

subquery messages that are sent along the a-restricted arc. The user supplies the

restriction in the form of a binary predicate which explicitly names the attribute:

A-Reatrict(Viewrd, binary-predicate). When a class receives an a-restrict mes

sage, it first checks that the predicate identifies a subset of the original attribute's

range. Next, if the named attribute is not already part of the current view de

scription, a-restrict adds its internal and external names to the appropriate view

instance description. Finally, the binary predicate (constraint) is appended as a

suffix to the external/internal name pair in the view description. Now, when a

query through the current view, it is restricted by the explicit constraints in the

view description. Note that if a query that contains a restriction on a restricted

:BEFORE: / * see AFTER from previous example */

AFTER:

Object Employees:
Object Description:

Class-Object-Id: < Employees >

Instance Attributes:

< position >: < Job Description >
< salary > : < $ >

View Description:
View Id: < Vjim >

position: < position >

View Id: < Vvp >

Names:

job-title:
salary:

Overpaid Employees

< position >
< salary >, > 1000

Figure 38

The A-Restrict Method

(Applied by Employees to (salary) - Internal)

105

attribute then the logical conjunction of the two restrictions is used to constrain

the query.

Suppose that the aforementioned executive was only interested in the salaries

of employees who make more that $1,000.00 per week. Figures 38 and 39 demon

strate how a sequence of transformation methods (name and a-restrict) could be

applied to form a new (view) schema which contains the overpaid employees12.

Creating a new attribute relationship between two classes (using the a-insert

method) is slightly more complex than the previously described operations for two

12 Even though the name method changes the global symbol table the a-restrict
method does not, therefore, the global symbol table is not shown.

Before: Employees

Job
Descriptions

l Name(Vv~, Empl9_x~es, Overpaid-Em.ployees)
l :.4.-.Kutrteit_ v VP, salary> 1000)

After: Over_paid
Empfoyees

Figure 39

The A-Restrict Method

Job
Descriptions

(Applied by Employees to (salary) - External)

106

reasons. Firstly, it involves two classes and secondly, it causes changes to both

class descriptions as well as their view descriptions.

Both classes must exist somewhere in the schema; if a new relationship is to

be established between an existing class a new one then the clone method must

be used to create the new class prior to sending the a-insert message. The user

is responsible for supplying external names for the new attribute and its inverse

(if there is one) and for identifying both classes involved in the new relationship.

Poly View generates a unique internal name for the attribute and passes the view's

color to the a-insert message. The syntax for a-insert is A -insert(Viewrd, Class1,

new-attribute, inverse-name, Class2). This transformation does not specify any

instances of the new function; it simply declares a new relationship. The message

is sent to Class1 which records the new attribute in both its object and view

descriptions. Simultaneously, an a-insert-inverse message is sent to Class2. An

107

a-insert-inverse message carries the name of the sender and the (inverse) property

name if there is one. If no name is specified then an unnamed arc is associated with

the attribute inverse which means that the new attribute is recorded in the object

description only. The a-insert-inverse method is exactly the same as the a-insert

method except that it does not spawn another message. The effect of a-inserting a

"can-drive" relationship between EmployeeJ and AutomobileJ is shown in figures 40

and 41.

The A-Move associates a new attribute name with an existing attribute path

- it moves two classes next to each other. The new attribute name and the path

(a list of attribute arcs) are provided by the view designer and PolyView provides

the view's identity. A-Move is unique among attribute redefining transformations

because it is spread (recursively) through the classes on the path between the

"a-moved" classes. The a-move method distributes its side effects in order to

minimize violating the principle of encapsulation which is salient to the object

oriented paradigm. When a class receives an a-move message, it removes the first ·

attribute name from the path list and finds the local attribute which corresponds

to that name. If a corresponding local attribute cannot be found then the a

move transformation must be aborted and recursively undone. Otherwise, the

new attribute name is associated with that attribute. The new attribute name is

"marked", to indicate that it is visible only in the context of the a-moved attribute.

If the new path is not empty, an a-move message is sent along that attribute's arc.

A-move has the following syntax: A-Mo'Ve(View1d, new-attribute, path).

For example, consider the position attribute which is associated with a com

plex object called Job-Descriptions in the employee example. A job description

has several properties including a job title and a description of the job. If the

foreman (Jim) wants the job title to be directly associated each empl_oyee then an

a-move message would be sent to the Employees class. Figures 42 and 43 show

BEFORE: /*for employees see AFTER from previous example */

Object Automobiles:
Object Description:

Class-Object-Id: < Automobiles >
Instance Attributes:

< list of instance attributes >
View Descriptions

View Instance Description:
View-Id: < Vvp >
Names: Cars
Instance Attributes:

< list of visible instance attributes >

AFTER:

Object Employees:
Object Description:

Class-Object-Id: < Employees >
Instance Attributes:

< position >: < Job Description >
< salary > : < $ >
< can-drive >: < Automobiles >

View Id: < Vjim >

View Id: <
Names:
job:
salary:
can-drive:

Vvp >
Overpaid Employees
< position >

< salary >, > 1000
< can-drive>

Object Automobiles:
Object Description:

Class-Object-Id: < Automobiles >
Instance Attributes:

< list of instance attributes > + inverse o'f < can-drive >
View Descriptions

View Instance Description:
View-Id: < Vvp >
Names: Cars
Instance Attributes:

< list of visible instance attributes > /* note that this is unchanged * /

Figure 40

The A-Insert Method

. (Applied by Employees and Cars - Internal)

108

Before: Over_paid
Empfoyees

Job
Descriptions

! .A-ln• ert(Viewvp, Overpaid-Employees, can-drive, A, Cars)

After:

Note: A represents the empty string.

Figure 41

Job
Descriptions

The A-Insert Method

(Applied by Employees and Cars - External)

109

Cars

the schema's internal representation and the user's view, respectively. Notice that

"marked" attribute names in figure 42 begin with an asterisk.

Applying Sequences of Transformations

The view transformation methods which were presented in the previous sec

tions may be almo3t arbitrarily combined in order to form valid higher level

transformations. In other words, given any valid PolyView view, apply any valid

sequence of transformations and the result will be another Poly View view.

There are two issues which naturally arise in the context of the discussion

of sequences of transformations. The first pertains to what a "valid" view is and

what effect an arbitrary transformation has on a valid view. It will be shown that

applying any transformation to a valid view always results in another valid view.

BEFORE:

Object Employees:
Object Description:

Class-Object-Id: < Employees >
View Descriptions

View Id: < Vjim >
Names: Employees
Instance Attributes:

position: < position >

Object Job Description:
Object Description:

Class-Object-Id: < Job Description >
< job-title >: < String >

View Descriptions
View-Id: < Vjim >
Instance Attributes:

< list of visible instance attributes >

AFTER:

Object Employees:
Object Description:

Class-Object-Id: < Employees ·>
View Descriptions

View Id: < Vjim >
Names: Employees
Instance Attributes:

position:
job-title:

< position >
< position >

Object Job Description:
Object Description:

Class-Object-Id: < Job Description >
< job-title >: < String >

View Descriptions
View-Id: < Vjim >
Instance Attributes:

< list of visible instance attributes >
*job-title: < job-title >

Figure 42

The A-Move Method

(Applied by Employees and Job Descriptions - Internal)

110

The second issue deals more directly with sequences of transformations, specifically

which sequences cannot be applied.

Before: Job
Descriptions

i A-Mot1e(VieWJim, job-title, position.job-title)

After:

Figure 43

The A-Move Method

Text

String

Text

String

(Applied by Employees and Job Descriptions - External)

111

In PolyView, a valid view of an object is represented by a view instance

description. Each view instance description (view) is a subset of the global view

instance description (global view). To clarify this relationship, recall that the

global view contains pointer3 to all of the underlying data structures and methods

(attributes) in the class object description while each view contains pointer3 to

.some of the attributes. Therefore, for any "valid view" the following relationship

will hold: {pointers in view} ~ {pointers in global} which will be abbreviated to

view ~ global.

PolyView transformations fall into four major categories: Chide: those which

hide part of a schema (like a-remove and hide), Cname: those which rename objects

or attributes (like name and a-name), Crest: those which restrict the objects which

an attribute refers to (like a-restrict), and Cac1d: those which add an attribute or

object to the schema (like attach and a-insert). In the discussion which follows, it

112

is assumed that the pre-transformed view is valid and that Ti represents a generic

transformation from category Ci.

Chide These transformations do not have any direct effect on the global view or the

object description. Since they remove a reference from a view description,

the following relationship holds Thide(view) C view => Thide(view) £;; global.

Cna.me This kind of transformation has no effect at all on the pointers which the

view description contains. These operations replace the symbol which will be

used to refer to a pointer; therefore, view ~ global=> Tname(view) ~ global.

Crest Like the transformations in Cname these transformations do not change any

pointers. They simply restrict the information which can be retrieved along

a transformed arc.

Cadd These transformations do change both the global view and the object de

scription. What will be shown here is that not only does the transformation

result in a valid view but, since it also changes the global view, that it does

not invalidate any other existing views. Cadd transformations add a new

attribute or is-a relationship to an existing object description. New pointers

are added to the view performing the transformation and to the global view.

Therefore, after the operation has been performed the following relationships

hold: Tadd(view) ~ Tadd(global) and global C Tadd(global) => Vviewi~global

viewi ~ Tadd (global). In other words, all views which were valid before the

transformation was applied are also valid afterwards.

It has been shown that all transformations produce valid schemas, but some

of them hide or change the view so that completely arbitrary sequences of trans

formations are not possible. The exceptions are obvious and can be checked by a

purely syntactic mechanism. Transformations cannot refer to classes or attributes

which have been hidden from the view nor can they refer to the old name of a

113

Global (Va1) .- __,,, Animals (Animals)

Cats (Cats)

Tigers (Tigers)

Figure 44

The Global Symbol Table

for the Simple Animal Taxonomy

renamed class or attribute. In each of these cases, an attempt would have been

made to refer to some aspect of the view which no longer exists.

Supporting Higher Level Transformations

The transformations methods presented so far directly change a single aspect

of the structure of a schema and may indirectly affect some operational aspects

of the database. It has been shown that sequences of these methods can be used

to define higher level abstractions. Combinations of transformations might, for

example, change the shape of the IS-A hierarchy by creating new specializations

and generalizations from existing classes. The goal is not to present the complete

set of semantic operations but to show that the methods presented in this thesis

can be used to define higher level operations in a straightforward manner.

Class Collapsing Transformations

Each of the methods described in this subsection combines a class with one

of its ancestors and/or one of its descendants. They are referred to collectively as

class collapsing transformations.

The class Animals is not shown because it is not significantly
changed by the collapse transformations.

Object Cats:
Object Description:

Class-Object-Id: < Cats >

View Description:
View Id: < V global >
Is-A Connections:

SubClasses: < Tigers >
Instances: < list of instances >

Object Tigers:
Object Description:

Class-Object-Id: < Tigers >
Instance Attributes:

< name > string
< weight > fixed / * in kilos * /
< length > fixed / * in feet */
< doh > date /* month/day/year */
< diet > < Diet >

View Description:
View Id: < V global >

Instance Attributes: < list of attributes *including* Cat attributes >
name
weight
length
date-of-birth
diet

: < name >
: < weight >
: < length >
: < doh >
: < diet >

Figure 45

The Internal Structure

(Before Creation of the New Views)

114

For pedagogic ease, we begin by considering simple concrete examples of class

collapsing. Consider figures 44, 45 and 46; they refer to the global symbol table,

internal and external representations of part of a very simple taxonomy of animals.

Two quite different points of view will be considered.

The first is from the perspective of a three year old child. He has a general

idea about what an animal is and he "knows'' what tigers are, but he has never

seen a cat. When the three year old sees Tom and Ki tty he realizes that they

Animals

Cats

' '
I Kt'tty I

Tigers

Figure 46

The External Structure

(the Simple Animal Taxonomy)

Tigers

Animals
(Cats)

' '
I Krtty I

Figure 47

The Three Year Old's Point of View.

115

are animals and not tigers. An external representation of the three year old's

point of view (after his confrontation with Tom and Kitty) is shown in figure 47.

In this case, all database instances and subclasses IS-A connected to Cats are

"moved" to Animals and all attributes of Cats which were not inherited from

Animals "disappear". This operation (applied by Cats) is a combination of the

HIDE method and the A-REMOVE method. The HIDE method is applied with all

subclasses and *instances* in it's argument list. The A-REMOVE method is applied

to all attributes which were added by Cats.

Animals

Tigers
(Cats)

Figure 48

The Zoo Keeper's Point of View.

116

A second point of view is that of the tiger keeper. She is very knowledgeable

about cats in general (i.e. she knows that they eat meat) and tigers in particular

(i.e. that they might eat people). From her (professional) point of view, information

about cats is only useful when it is combined with information about tigers. In

this view of the world, information about (non-tiger) cats, the class itself and

individuals like Tom and Ki tty, is hidden. Figure 48 shows external schema after

it has been transformed to the zoo keeper's point of view. Notice that this is again

the HIDE method applied by Cats with a single subclass (Tigers) as its argument. •

It is significant that although these two view schemas are derived from the

same database using similar derivation methods, their attribute structures are very

different. Figure 49 shows the global symbol table after the two views have been

formed . As expected, the "global" picture (i.e. the classes) of both the three year

old and zoo keeper views are identical. However, when the internal structures

of the objects are considered (see figure 50), it is obvious that the views have

significant differences. From the three year old's point of view, the Cats class and

all the properties associated with cats just do not exist (they are "invisible" in

his view) but the individual instances of that class are undeniably real. From the

zoo keeper's perspective, individual cats are irrelevant but all the properties of the

Cats class are necessary and must be retained. The first case (the rule by which

Animals

Cate

Tigers

Global (V GI) Animals

3 year
old (V 3year) Tigers

Zoo
keeper (V Zoo)

Animals

Tigers

Figure 49

The Global Symbol Table

(After Creation of the New Views)

117

(Animals)

(Cats)

(Tigers)

(Animals)

(Tigers)

(Animals)

(Tigers)

the three year old's point of view was formed) is called collapsing a class up into

a parent and the latter case will be referred to as collapsing a class down into a

child.

The general forms of these two abstractions are: Collapae- Up(Viewrd ,

Target, Parent) and Collapae-Down(Viewrd; Target, Parent, Child). Notice that

118

the "collapse down" operation requires a reference to a parent as well as a child.

This is necessary because PolyView supports a multiple inheritance structure.

This simple example is sufficient to illustrate why class collapsing abstractions are

desirable. The fact that PolyView can support both the child's and the keeper's

points of view, without introducing any unnecessary redundancy into the data,

makes it superior to any other view support system.

The collapsing abstractions can easily be generalized; for example, a method

which performs both collapsing transformations on an entire path can easily be

defined. This COLLAPSE method would iteratively collapse the two ends of a path

into a target class. The user would specify the target and paths to ancestor and

descendant classes. PolyView would iteratively collapse the path down from the

ancestor and then up from the descendent. The iterative collapse operation is

shown in figures 51, 52 and 53. Notice that figure 52 is slightly different from other

figures which show an internal representation. Since it represents many objects, it

attempts to show in a general way how the structure of these objects would have

changed.

Using Independent Views - An Example

In this section, we return again to the two views of tigers. For the purposes

of this discuss it will be assumed that Tom and Kitty are tigers and not domestic

cats. The external view descriptions of the individual tigers will be presented in

an expanded form so that query and update processing can be demonstrated using

these two independent views of a single database representation. Information will

be retrieved from both views using a similar query. Several update requests which

affect one or both of the views will be presented. In figure 54, external views of

Tom and Kitty are presented.

After each sample operation has been performed, the result of the query

"Display all tigers" will be presented from both users (the zoo keeper and the

Object Cats:
Object Description:

Class-Object-Id: < Cats >
View Description:

View Id: < V global >
Is-A Connections:

SubClasses: < Tigers >
Instances: < list of instances >

View Id: < V3year >
Is-A Connections:

Subclasses: < Tigers >
Instances: < list of instances >

119

Instance Attributes: /* Attributes defined here for first time have been removed */
View Id: < Vzoo >

Is-A Connections:
SubClaases: < Tigers >
Instances: •nil•

Instance Attributes: /* unchanged */

Object Tigers:
Object Description:

Class-Object-Id: < Tigers >
View Description:

View Id: < Vglobal > /* unchanged */
View Id: < V3year >

Instance Attributes: < list of attributes *excluding* Cat attributes >
/* this is an abbreviated notation - view definition.! contain * /
/* labeled pointers to methods and not the methods themselves */

name : < name >
size : if (< length > greater than 3) then big else small
weight ca.se (< weight > less than 50) : light

(< weight > greater than 100) : very heavy
(default) : heavy

View Id: < Vzoo >
Instance Attributes: < list of attributes *including* Cat attributes >

name
weight
age
length
diet

: < name >
: < weight > * 2.2
: < date-today > - < doh >
< length >

: < diet >

Figure 50

The Internal Structure

(After Creation of the New Views)

three year old) points of view. For ease of presentation the results of these queries

will displayed in tabular form. The result of the query on the initial database is

shown below:

BEFORE:

Generic
(Vaen}

__,,, Ancestorn (Ancestorn}
View

.

Ancestor1 (Ancestor1}

Target (Target}

Descendent1 (Descendent1}

Descendentm (Descendentm}

AFTER:

Generic
(Vaen} View

.- -;lo Ancestorn

Figure 51

The Collapse Abstraction

(A Global Symbol Table)

From the Zoo Keeper's Point of View:
Name Length Age Weight

Kitty
Tom

in feet in pounds

6 10 330
3 1 88

(Ancestorn}

Meat to
Cereal

7:3
1:1

Quantity
in pounds
2{)

7

120

Object Target & Descendents (1 through m-1):

View Description:
View Id: < V gen >

l'l8.llles: •invisible•
Is-A Connections:

Instances: •nil•
Instance Attributes: /* unchanged * /

Object Ancestors (1 through n-1):

View Description:
View Id: < V gen >

l'l8.llles: *invisible•
Is-A Connections:

Instances: /"' unchanged "'/
Instance Attributes: < list of attributes excluding

descendent and target attributes >

Object Descendent m:

View Description:
View Id: < V gen >

l'lanies: •invisible•
Is-A Connections:

Instances: /"' unchanged */
Instance Attributes: /* unchanged * /

Figure 52

The Collapse Abstraction

(The "After" Internal View)

From the Three Year Old's Point of View:
Name Size Weight
Kitty big very heavy
Tom small light

121

Because of its greater level of detail many changes can be made to the zoo

keeper view without affecting the other view. For example, Tom's weight can be

changed. to 45 kilos and the quantity of food consumed by Kitty may be increased

from 20lbs to 22lbs. After these changes have been made the three year old's view

is clearly unchanged because 45 kilos is still less than 50 kilos (so Tom is still small)

BEFORE: AFTER:

Ancestor2

Ancestor1

Target

Descendent1

Descendent2

Descendentm

Figure 53

The Collapse Abstraction

(An External View)

Ancestorn

122

and the tigers' diet is not part of that view at all. The results from the sample

query, after these changes have been made, is shown below:

123

Global View

diet

Zoo Keeper's View 3 Year Old's View

diet

Global View

diet

Zoo Keeper's View 3 Year Old's View

diet

Figure 54

A More Detailed Look at Tom and Kitty

Zoo Keeper (changes shown in italic font):
Name Length Age Weight

Kitty
Tom

in feet in pounds
6 10 330
3 1 99

Three Year Old (unchanged):
Name Size Weight

Kitty big very heavy
Tom small light

Meat to
Cereal
7:3
1:1

Quantity
in pounds
22
7

124

Some changes will be reflected in both views. For example, if Tom's weight

increases from 45 kilos to 55 kilos then, from the three year old's point of view the

tiger is no longer "light". Adding a new tiger or removing an existing one would

also change both views so, for example, if Kitty was replaced by a younger, larger,

hungrier animal called Hobbs both users would immediately notice the change. If

a new database which reflected the above changes was sent the "Display all tigers"

query, the result would look like this:

Zoo Keeper (changes shown in italic font):
Name Length Age Weight

Tom
Hobbs

in feet in pounds

3 1 121
6.5 7 440

Three Year Old (changes shown in italic font):
Name Size Weight
Tom small heavy
Hobbs big very heavy

Meat to
Cereal
1:1
S:1

Quantity
in pounds
7
28

Summary

CHAPTER 6

Concluding Remarks

This dissertation has presented a data model capable of supporting many dif

ferent user perspectives. As the computer user population continues to grow and

becomes more diversified, we believe that all information systems will have to pro

vide mechanisms which support different users' needs and preferences. PolyView

is the first step towards this ultimate goal.

In Poly View, user views are supported through a number of unique and

innovative features:

• Objects have a unique internal structure which allows a single data structure

(object description) to have many independent user interfaces (view instance

descriptions).

• The concept of object identity has been extended to include both attributes

and views. By associating a time invariant identity with each attribute,

it is possible to avoid some problems associated with multiple inheritance

in an IS-A lattice and to support different external (printable) names for

each attribute for each user. By associating an identity with a view, it

is potentially possible to allow users to change from one environment to

another by asking the system to allow them to use a different view.

• Generic procedures permit queries to be processed and changes to be made

to the data in a purely message-driven manner. Since a database is rep

resented as a network of nodes and arcs in which each node is capable of

125

126

communicating with other nodes by exchanging messages, no centralized

control or shared memory is necessary.

• Finally, transformation rules which facilitate the controlled customization

of Poly View schemas have been presented. If these rules are used to create

or change user views then the new view is guaranteed to be a consistent

view.

Directions for Future Work

There are several possible directions for future research; in this section some

of the more significant ones will be suggested.

In order to better understand how well the various algorithms will perform, it

will be necessary to implement the system described in this thesis. Since Poly View

uses a purely message-driven paradigm, it will also be constructive to investigate

multiprocessor architectures and implement (or simulate) the Poly View algorithms_

on the most promising of those.

There are a number of issues dealing with the management of information .

stored on secondary storage devices which warrant research. For example, how

data should be clustered in order to minimize the frequency of access to secondary

storage. This can be further improved by query optimization techniques which

effectively predict what should be retrieved without traversing a path of objects

in secondary storage. It will also be necessary to extend the query processing

capabilities of Poly View in order to support transactions and concurrency control.

Finally, there is the issue of user/system interfaces13 . This is what is actually

presented to the user, not the underlying data structures which have been the topic

of this d~ssertation. Without support for different kinds of "user friendly" interface,

it ultimately will not matter how good the underlying data model is. A system

13 These interfaces are sometimes also called user views.

127

which is easy to learn and pleasant to use will be fully utilized by users of many

different backgrounds and skill levels. The object-oriented paradigm provides an

excellent foundation on which multimedia interfaces can be built. Therefore, the ·

development of attractive user environments is a natural extension of the current

model.

[ABIDA8lj

References

ABIDA, M. Derived Relations: A Unified Mechanism for Views,
Snapshots and Distributed Data. In Proc. Seventh Int'l. Conj. on
Very Large Data Ba3e.3, ACM, 1981, pp. 293-305.

[ABITEBOUL87] ABITEBOUL, S. AND HULL, R. IFO: A Formal Semantic Database
Model. A CM TranJ. on Databa3e Sy3tem.3 12, 4 (Dec., 1987),
525-565.

[ARVIND78] ARVIND, GOSTELOW, K.P. AND PLOUFFE, w. An Asynchronous
Programming Language and Computing Machine. In Advance3 in
Computing Science and Technology, Yeh, R., Ed., 1978.

[ATTARDI86] ATTARDI, G. AND SIMI M. A Description-Oriented Logic for Build
ing Knowledge Bases. Proc. of the IEEE 74, 10 (Oct., 1986),
1335-1344.

[BAcKus78] BACKUS, J. Can programming be liberated from the von Neumann
style? A functional style and its algebra of programs .. Comm. A CM
21, 8 (Aug., 1978), 613-641.

[BANERJEE87Aj BANERJEE, J., CHOU, H., GARZA, J., KIM, W., WOELK, D., BAL

LOU, N. AND KIM, H. Data Model Issues for Object-Oriented
Applications. A CM TranJ. on Office Information SyJtem3 5, 1
(Jan., 1987), 3-26.

[BANERJEE87B] BANERJEE, J., KoM, W., KIM, H-J. AND KORTH, H. Semantics
and Implementation of Schema Evolution in Object-Oriented Data
bases. Proceeding3 SIG MOD '87 (1987), 311-322, ACM.

[B1c86] Bic L. AND GILBERT J .P. Learning from AI: New Trends in Data
base Technology. Computer 19, 3 (Mar., 1986), 44-54.

[BOBROW85) BOBROW, D.G . , KAHN, K., KICZALES, G., MASINTER, 1., STEFIK, M.

AND ZDYBEL, F. CommonLoops: Merging Common Lisp and Ob
ject-Oriented Programming. Intelligent Systems Laboratory Series
ISL-85-8, Xerox PARC, Palo Alto, CA.

[BRACH83) BRACHMAN, R.J. What IS-A Is and Isn't An Analysis of Taxonomic
links in Semantic Networks. Computer 16, 10 (Oct., 1983), 30-36.

128

129

[BRODIE80] Proceedings of the WorkJhop on Data Abstraction, Databases and
Conceptual Modelling, Brodie, M.L. and Zilles, S.N, Ed., Sponsored
by the Nat'l. Bureau of Standards, ACM SIGART, SIGMOD and
SIGPLAN, Pingree Park, Colordo, 1980.

[BRODIE81] BRODIE M.L. AND SCHMIDT J.W. Final Rep. of ANSI/XS/SPARC
DBS-SG Relational Database Task Group, SPARC-81-690, 1981.

[BRODIE84] On Conceptual Modelling, Brodie, M.L., Mylopoulos, J. and
Schmidt, J.W., Ed., Springer-Verlag, 1984.

[BRODIE87] On Knowledge Base Management Systems, Brodie, M.L. and My
lopoulos, J., Ed., Springer-Verlag, 1987.

[BUNEMAN82] BUNEMAN' p ., FRANKEL, R.E., AND NIKHIL, R. An Implementa
tion Technique for Database Query Languages. A CM Trans. on
Database Systems 7, 2 (June, 1982), 164-186.

[BUNEMAN79] BUNEMAN, P. AND FRANKEL, R.E. FQL - A Functional Query
Language. In Proc. 1979 ACM SIGMOD Int'l. Conj. on the Man
agement of Data, Boston Mass, ACM, 1979.

[CHAM75] CHAMBERLIN, D.D., GRAY, J.N., AND TRAIGER, I.L. View Autho
rization and Locking in a Relational Database System. In Proc.
Nat'l. Computer Conj., Vol. 44, AFIPS Press, 1975, pp. 425-430.

[CHEN76] CHEN, P .P. The Entity-Relationship Model - Toward a Unified
View of Data. A CM Trans. on Database Systems 1, 1 (Mar., 1976),
9-36.

[CoDD70] CODD, E.F. A Relational Model of Data for Large Shared Data
Banks. Comm. ACM 1!1, 6 (June, 1970), 377-387.

[CoDD79] CODD, E.F. Extending the Database Relational Model to Capture
More Meaning. ACM Trans. on Database Systems 4, 4 (Dec., 1979),
397-434.

[CoPE84] COPELAND, G. AND MAIER, D. Making Smalltalk a Database
System. In ACM SIGMOD'84, Yormark, B., Ed., ACM, 1984,
pp. 316-325.

[DAHL66] DAHL, O.J. AND NYGAARD, K. SIMULA - An ALGOL-Based
Simulation Language. Comm. ACM 9, 9 (1966), 671-678.

[DAHL 70]

[DATE81]

[DAYAL84]

[DENNIS73]

[FIKES77]

[FINDLER79]

[FLINT84]

[GILBERT88]

130

DAHL, O.J., MYHRHANG, B. AND NYGAARD, K. The SIMULA 67
Common Base Language. Rep. No. S-22. Norwegian Computing
Center, Forskningsveien lB, Oslo 3.

DATE, C.J. An Introduction to Databa3e Sy3tem3 - Third Edition,
Addison Wesley, 1981.

DAYAL, U. AND HWANG, H.-Y. View Definition and Generalization
for Database Integration in a Multibase System. IEEE Tran3 . on
Software Engineering SE-10, 6 (Nov., 1984), 628-645.

DENNIS, J.B. First Version of a Datafiow Procedure Language.
MAC Tech. Memo. 61. MIT, Cambridge, MASS.

FIKES, R .E. AND HENDRIX, G.G. A Network-Based Knowledge
Representation and its Natural Deduction System. In Proc. Fifth
Int'l. Joint Conj. on AI, 1977, pp. 235-246.

ASSOCIATIVE NETWORKS Representation and Use of Knowl
edge by Computers, Findler, N., Ed., Academic Press, 1979.

FLINT, R.A. An Approach to Modeling Database Activity. Tech.
Rep. No. 239. Univ. of CA., Irvine, Dept. of Info. and Comp. Sci .. ·

GILBERT, J.P. AND Brc, L. Asynchronous Data Retrieval from
an Object-Oriented Database. In Proc. European Conj. on Obj.
Oriented Programming, Oslo, Norway, Springer Verlag, 1988.

[GoLDBERG81] GOLDBERG A. Introducing the Smalltalk-SO system. BYTE 8, 4
(Aug., 1981), 14-26.

[GoLDBERG83] GOLDBERG, A. AND ROBSON, D. Smalltalk-BO: The Language and
it3 Implementation, Addison-Wesley, Reading Mass., 1983.

[HAMMER81] HAMMER M. AND McLEOD D.J. Database Description with SDM:
A Semantic Data Model. ACM Trans. on Databa3e Sy3tem3 6, 3
(Sept., 1981), 351-386.

[HENDRIX79] HENDRIX, G.G Encoding Knowledge in Partitioned Networks. In
A33ociative Networb Repre3entation and Use of Knowledge by
Computer3, N. Findler, Ed., Academic Press, 1979, pp. 51-92.

[HULL87] HULL, R. AND KING, R. Semantic Database Modeling: Survey,
Applications and Research Issues. A CM Computing Survey3 19, 3
(Sept., 1987), 201-260.

131

[KENT78] KENT, W. Data and Reality - Ba3ic A33Umption3 in Data Pro
cessing Reconsidered, North-Holland, 1978.

[KENT83] KENT, W. A Simple Guide to Five Forms in Relational Database
Theory. Comm. ACM 26, 2 (Feb., 1983).

[KHOSH86] KHOSHAFIAN, S.N., AND COPELAND, G.P. Object Identity. In Proc.
OOPSLA '86, ACM, Portland, OR, 1986, pp. 406-416.

[KIM79] KIM, W. Relational Database Systems. ACM Computing Survey"
11, 3 (Sept., 1979), 185-211.

[KIM89] KIM, W., BERTINO, E. AND GARZA, J.F. Composite Objects
Revisited. In Proc. of the 1989 SIG MOD, Int 'l. Conj. on the Man
agement of Data, ACM, Portland, OR, 1989, pp. 337-347.

[KING83] KING, J. (ED.) Special Issue on AI and Database Research. ACM
SIGART Newsletter, 86 (Oct., 1983), 32-72.

[KLUG77] KLUG, A. AND TsICHRITZIS, D. Multiple View Support within the
ANSI/SPARC Framework. In Proc. Third Int'l. Conj. on Very
large Data Bases, ACM, 1977, pp. 477-488.

[KLUG78] KLUG, A.C. Theory of Database Mappings. Rep. No. CSRG-98.
Computer Systems Research Group, Univ. of Toronto.

[KRISTEN87] KRISTENSEN, B.B., MADSEN, 0.1., M0LLER-PEDERSEN, B. AND

NYGAARD, K. The BETA Programming Language. In Re3earch
Directions in Object-Oriented Programming, Shriver, B. and Weg
ner P., Ed., MIT Press, 1987, pp. 7-48.

[LEDGARD81] LEDGARD, H. ADA - An Introduction /ADA Reference Manual
(July 1980), Springer Verlag, 1981.

[LISKOV74] LISKov, B.H. AND ZILLES, S.N. Programming with Abstract Data
Types. ACM SIGPLAN Notice" 9, 4 (Apr., 1974), 50-59.

[LISKOV77] LisKov, B.H. ET AL Abstraction Mechanisms in CLU. Comm. of
the A CM 20, 8 (Aug., 1977), 564-576.

[MAIER85] MAIER, D., OTIS, A. AND PURDY, A. Object-Oriented database
development at Servio Logic. · Database Engineering 5, 1 (Dec.,
1985), 58-65.

132

[McGEE77] McGEE, W.C. The Information Management System IMS/VS.
IBM Systems Journal 16, 2 (1977), 82-168.

[McLEoD78] McLEOD, D. A Semantic Data Base Model and its Associated
User Interface. Rep. No. MIT /LCS/TR-214. Lab. for Computer
Sci., MIT, Cambridge.

[MOTR083] MOTRO, A. Interrogating Superviews. In Second Int'l. Conj.
on Databases (ICOD-2), Cambridge Univ., Cambridge, England,
1983, pp. 107-126.

[MYLOP80] MYLOPOULOS, J., BERNSTEIN, P.A., AND WONG H.K.T. A Lan
guage Facility for Designing Database-Intensive Applications.
ACM Trans. on Database Systems 5, 2 (June, 1980), 185-207.

[MYLOP88] Artificial Intelligence and Databases, Mylopoulos, J. and Brodie,
M.L., Ed., Morgan Kaufmann, 1988.

[PURDY87] PURDY, A., SCHUCHARDT, B. AND MAIER, D. Integrating an Object
Server with Other Worlds. A CM Trans. on Office Information
Systems 5, 1 (Jan., 1987), 27-47.

[QUILLIAN68] QUILLIAN, M.R. Semantic Memory. In Semantic Information Pro
cessing, M. Minsky, Ed., The MIT Press, Cambridge, MASS, 1968,
pp. 227-270.

[REITER83j REITER, R., GALLAIRE, H., KING, J., MYLOPOULOS, J. AND WEB
BER, B. A Panel on AI and Databases. In Proc. Eighth IJCAI,
Karlsruhe, West Germany, IJCAI, 1983, pp. 1199-1206.

[RowE79] RowE, L.A. AND SHOENS, K.A. Data Abstraction, Views and
Updates in RIGEL. In Proc. of SIGMOD 1919 Conj., ACM, 1979,
pp. 71-81.

[RUNDENST89] RUNDENSTEINER, E., Brc, L., GILBERT, J. AND YIN, M.-1.

[SCHREFL88j

Set-Related Restrictions for Semantic Groupings. Tech. Rep. 89-07.
Dept. of Info. and Comp. Sci., University of CA, Irvine.

ScHREFL, M. AND NEUHOLD, E.J. Object Class Definition by
Generalization Using Upward Inheritance. In Proceedings of the
Fourth International Conference on Data Engineering, IEEE, Los
Angeles, CA, 1988, pp. 4-13.

133

[SHIPMAN81] SHIPMAN, D. W. The Functional Data Model and the Data Lan
guage DAPLEX. ACM Tran8. on Databa8e System8 6, 1 (Mar.,
1981), 140-,173.

[S!BLEY77] SIBLEY, E.H. AND KERSHBERG Data architecture and data model
considerations .. In Proc. AFIPS Nat'l. Computer Conj., AFIPS,
1977, pp. 85-96.

[SMITH77] SMITH, J.M. AND SMITH D.C.P. Database Abstractions: Aggrega
tion and Generalization. A CM Tra~. on Databa8e Sy8tem8 2, 2
(June, 1977), 105-133.

[STEFIK86] STEFIK, M. AND BOBROW D.G. Object-Oriented Programming:
Themes and Variations. The AI Magazine 6, 4 (Jan., 1986), 40-62.

[STONEB86] STONEBRAKER, M. AND RowE, L. The Design of POSTGRES. In
Proc. of SIGMOD 1986 Conj., ACM, 1986, pp. 340-355.

[STROU86] STROUSTRUP, B. The C++ Programming Language, Addi
son-Wesley, Reading Mass., 1986.

[TANAKA88] TANAKA, K., YOSHIKAWA, M. AND ISHIHARA, K. Schema Virtual
ization in Object-Oriented Databases. In Proceedings of the Fourth
International Conference on Data Engineering, IEEE, Los Angeles,
CA, 1988, pp. 23-30.

[TAYLOR76] TAYLOR, R .. W. AND FRANK, R.L. CODASYL Data-base Manage
ment Systems. ACM Computing Survey" 8, 1(Mar.,1976), 67-103.

[TsICH77] TsICHRITZis, D.C. AND LocHOVSKY, F.H. Data Ba3e Management
Sy8tems, Academic Press, 1977.

[Ts1ca78] TsICHRITZis, D. AND KLUG, A. The ANSI/X3/SPARC DBMS
Framework Report of the Study Group on Database Management
Systems. Info. Sy8tems S (1978), 173-191.

[ULLMAN82] ULLMAN, J. D. Principles of Database Systems - Second Edition,
Computer Science Press, 1982.

[WoNG83] WONG, E. Semantic Enhancement through Extended Relational
Views. In Second Int'l. Conj. on Database3 (ICOD-2), Cambridge
Univ., Cambridge, England, 1983, pp. 169-178.

Appendix 1

Object and Message Structures

/* Poly View'" 'Global Symbol Table' con3ist3 of a "ingle * /

/* Global Symbol Table and one View Model Object Table */

/*for each active user view * /

Global Symbol Table: /*contain" any number symbol table listings */

Global Symbol Table Listing:

View Name: /* a unique external name for the view * /

View Identity: /*system generated identity of view * /

View Model: /* a pointer to the view'" model object table * /
/* Note: each view ha" a single identity and model * /

/* and at least one name */

View Model Object Table:/* contains any number model table listings */

Model Table Listing:

Class Name: /* a unique external name for class in view * /
Class Identity: / * system generated identity of view * /

/* Note: each class in the view has at least one name * /

134

Base Class Object:

/ * contains Generic Methods, an Object Description and a View Description * /

Generic Methods: /* uJed for data manipulation and update8 * /

Object Description:

Class-Object-Id: /*unique internal name */

Is-A Connections: / * internal name8 of object8 * /

MetaClasses: list of Meta-Classes

Types: list of Ancestors

Parents: list of Parents

/ * nonempty JubliJt-of Types unle.,., Type" i" empty * /
Collections: list of Collections (& associated rules)

Categories: list of Categories (& associated rules)

PowerSets: list of Powersets

SubClasses: list of Subclasses

Instances: list of Instance Objects/* on secondary Jtorage device */

Class Attributes: /* .some are inherited from meta-cla88e3 * /
Compound: list of Compound Attribute Instances

Local:

Method:

list of Atomic Attribute Instances

list of Derived Attribute Instances

Instance Attributes: /* inherited by all .subcla.s.se.s and in.stance.s * /
Compound: list of Compound Attribute Structures

Local:

Category:

list of Atomic Attribute Structures

list of Category Attribute Structures

Method:

/* category attributeJ are Jy.stem defined and * /
/* maintained - they determine which object8 * /
/* are member.s of a category * /

list of Derived Attribute Definitions

View Description:

Global View: View Instance Description

User Views: list of users' View Instance Descriptions

End /* BaJe Cla.s.s Object * /

135

View Instance Description:

View-Id: View-Id /*unique view internal identity */
Description: /* deJcription of object from thi3 point of view * /
Names: list of Conditions & External Name Lists/* for claJJ */
Is-A Connections:

Types: sublist of Object-Description.Is-A.Types

Parents: sublist of Object-Description.Is-A.Types

Collections: sublist of Object-Description.Is-A.Collections

Categories: sublist of Object-Description.Is-A.Categories

PowerSets: sublist of Object-Description.Is-A.Powersets

SubClasses: sublist of Object-Description.Is-A.SubClasses (restriction]

Instances: *nil* or Object-Description.Is-A.Instances (restriction]

Visible Attributes: /* ClaJ8 and lnJtance - ALL attributeJ for Global View * /

Compound: list of Compound Attribute View Structures and [restrictions]

Local: list of Local Attribute View Structures and [restrictions]

Category: list of Category Attribute Ids

Method: list of Derived Attribute View Structures

Invisible Attributes: /*optional */
Compound: list of Compound Attribute View Structures and Update-Methods

Local:

Category:

list of Local Attribute View Structures and Default

list of Category Attribute Ids

/* Note that if the view iJ updatable then the following relation8hip3 mu8t * /

/* hold for all KEY attribute8 (compound, local and category): * /

/* Vi8ible-Attribute8 + Invi8ible-Attribute8 = Global-View */
End /* View Jn3tance De8cription * /

136

Base Instance Object:

0 bject Description:

Instance-Object-Id /*unique internal name */
Is-A Connections:

Parent: Parent Class Id

Reference-Count: Integer

/ * number of attribute references to instance defined in Parent Class * /
Attributes: /* inherited from owner class * /

Compound: list of Compound Attribute Instances

Local: list of Atomic Attribute Instances

Method: list of Derived Attribute Instances

137

Derived: list of References to attributes inherited from Derived Classes

Category: list of Booleans

/*not visible to users - used by system to */
/*determine membership in some derived classes */

End /* Base Instance Object * /

Union-Subset Class Object: /*contain" Object and View De3cription3 * /

/* Both Category and Collection C/a33e3 have thi3 format * /
Object Description:

Class-Object-Id: /* unique internal name * /

Class-Type: Category or Collection

Restrictions: list of Restrictions

Is-A Connections: /* internal name3 of object3 * /
MetaClasses: list of Meta-Classes

PowerSets: list of Power Sets

Base Union: list of Base Classes

/* whose union form3 the ba3i3 for the derived clas.! * /

Class Attributes: /*some are inherited from meta-cla.,ses & power .!et" */

Compound: list of Compound Attribute Instances

Local: list of Atomic Attribute Instances

Method: list of Derived Attribute Instances

Instance Attributes: /*inherited by all in3tance3 */

Category: system generated Boolean /* only Categorie3 have thi3 * /

Compound: list of Compound Attribute Structures

Local:

Method:

list of Atomic Attribute Structures

list of Derived Attribute Definitions

/* the3e li3t3 differ from their ba3e clas3 counter part" in */

/* that they include a cla.!s ID in addition to a attribute * /

/*ID and re3triction - thi3 is because some attributes belong * /

/* to the union/subset and others belong to ba3e cla3.!e3 - * /

/ * re3triction3 on the latter are appended by the 3y3tem to * /

/*queries before it i3 forwarded to appropriate base cla33e3 */
View Description:

Global View: View Instance Description

User Views: list of users' View Instance Descriptions

End /* Union-Subut Cla33 Object * /

138

Power-Set Class Object:

/*member may cla.Be3 vary - ba.,ed on the power 3et of the union of */

/* bau cla.,.,e., - each member of a power set i" a union-subset cla3s * /

Object Description:

Class-Object-Id: /*unique internal name */

Restrictions: list of Restrictions

Is-A Connections: /* internal name" of object" * /

MetaClasses: list of Meta-Classes

Base Union: list of Base Classes

UnionSubsets: list of Union-Subset Classes

Class Attributes:

Compound: list of Compound Attribute Instances

Local: list of Atomic Attribute Instances

Method: list of Derived Attribute Instances

Instance Attributes: /*may be empty */

Compound:

Local:

Method:

list of Compound Attribute Structures

list of Atomic Attribute Structures

list of Derived Attribute Definitions

/* these lists similar to the union-sub3et list" * /
View Description:

Global View: View Instance Description

User Views: list of users' View Instance Descriptions

End/* Power-Set Clas3 Object */

139

Message:

Target: Object Id

Sender: Object Id

Query-Id /* system generated identity of query * /
Query-Status: Status

View-Id /* provided by system which has info about users * /
Message-Type: /* object uses thj,, info to determine its behavior * /
Reply-Type: Message Type OR *user* /* sender of message * /
Previous-Request: Message Type OR *user* /*sender of message * /

Query-Restriction:

140

tree of Required/Independent/Dependent Property Restrictions

/* restrictions on attributes includes status for * /
/* each all dependent attribute path" are to be * /
/* output each conditional attribute path 'may · be * /
/* marked for output * /

Check-Status: True or False

End/* Message */

Appendix 2

Generic Methods

Notes:

1. The message format is shown on the last page of appendix 1.
2. Each time a Request message is sent, the message.reply-type and

previous.request are automatically set. This is necessary because many
methods generate reply messages for several different message types.

3. Status values are associated with all restrictions and messages.
4. Processing is purely message driven. This is conceptually elegant but can

be hard to follow .
5. Loop iterations can be processed independently unless later iterations use

objects created by earlier ones.
6. With the exception of the first method, all methods are triggered by messages

which bare their name.

Information Retrieval Methods

Request-From-Outside is triggered by a Subset-Query-Request message or
an Independent-Attribute-Query-Request message; both of these originate
outside the object receiving the message. Each restriction in the message is
is examined - if it is not known to satisfy the query then the Check-Attribute
method is invoked in order to determine the restriction's status.

Procedure Request-From-Outside
create activity record for pending query
for each independent subtree I in query-restriction

if Status.head(l)=l
then(/* it satisfies the query * /

new.RHS.head(I) := intersection(RHS.head(I),
union(visible.local-attribute-list(message. view-id),

visible.compound-attribute-list(message. view-id),
visible.method-attribute-list(message. view-id)))

send an Attribute-Query-Result message containing head(I) to self)
else(Check-Attri bu te(I ,message. view-id))

endfor
endProcedure

141

Subset-Query-Result collects the results from subset queries which
were spawned by the object. For a particular query, the appropriate reply
is sent after the last result has been received. There are three possible
reply messages because subset queries may have been spawned by operations
which insert attributes and move objects as well as by other subset query
operations.

Procedure Subset-Query-Result
store result
if result.last(activity)

then(
determine status of query
switch /* determine type of original query and send appropriate result * /

case (reply-type.message is Subset-Query)
send Subset-Query-Result message to sender

case (reply-type.message is Insert-Attribute)
/* if a single object satisfies this request then a reference

to that object is returned otherwise the request fails * /
send Insert-Attribute-Result message to sender

otherwise /* reply-type.message is Move-Object * /
send Move-Object-Result message to sender

endswitch
destroy activity record)

endProcedure

142

Check-Attribute has two arguments - a restriction and the view identity.
It determines the type of the attribute which is to be restricted and initiates
a process which determines the status of the restriction. There are five
possibilities depending on what is restricted ...
1. The type of the object - the Type-Test function is used to determine

its status (see below).
2. A local attribute - its status can be determined directly.
3. A compound attribute - an attribute request message is sent.
4. A method in which case the method itself will determine the status.
5. An unrecognized attribute - if the attribute was previously found then

the restriction will now fail; otherwise, its status will remain unfound.

Procedure Check-Attribute(R, view-id)
switch /* determine whether head(R) is Type-test, Local, Compound or Virtual * /

case (head(R) is a type-test)
new.head(R) := Type-Test(head(R),view-id)
send an Attribute-Query-Result message to self

case (head(R) is on visible.local-attribute-list(view-id))
values : = lookup(local-attribute-list(view-id))
/* in general a list of ranges of values * /
result := intersection(RHS.R, values)
status := if empty(result) then(5 /* restriction not satisfied * /)

else(if non-key(R) then(3 /* non-key attribute * /)
else(if value in restriction then(l /* key & satisfiable * /)

else(if restriction in value then(2 /*key and found*/))))
send an Attribute-Query-Result message containing status,result to self

case (head(R) is on visible.compound-attribute-list(view-id))
send an Attribute-Query-Request message

containing tail(R) along all attribute-arcs = head(R)
case (head(R) is on visible.method-attribute-list(view-id))

if node is not a leaf and head(R) is a class attribute
OR if node is a leaf and head(R) is a instance attribute

then spawn appropriate subquery
otherwise /* there is no attribute which corresponds to head(R) * /

if status.head(R) = 3 then new.status.head(R) = 5
/* otherwise the head(R) is unchanged - head(R)
must not have been found before * /
send an Attribute-Query-Result message containing R to self

endswitch
endProcedure

143

Type.Test determines whether the current object is is-a related to the
class referred to by the restriction (R) in the specified view (view-id). Like
Check-Attribute there are five cases.
1. If the class is an ancestor or power set of the current class then the type

test is satisfied.
2. If the class is part of the base union (of a union subset class) then it

cannot be determined whether every instance object satisfies the type
test .

3. If the class is a category based on the current class then the result is
identical to 2.

4. If the class is a collection based on the current class then the status is
determined by examining the rule associated with the collection.

5. Otherwise, the class was not found on any of the relevant is-a-connection
lists. If the object is a leaf then the status is set to fail if it is not,
it remains unknown.

Function Type-Test(R,view-id)
/* a type test restriction has the following form: isa(type-name),status

all references to an object should be prefixed by: is-a-connections. * /
switch

case (R.type-name in types(view-id) ORR.type-name in powerset(view-id))
new.status.R := 1

case (R.type-name in baseunion(view-id))
new .status.R := 3

case (R. type-name in category(view-id))
new.status.R := 3
R.restriction := (R.type-name = "true")

case (R.type-name in collection(view-id))
new .status. R : = status. R. type-name. collection(view-id)
R .restriction := rule.R.type-name.collection(view-id)

otherwise
if leaf

then(new.status.R := 5)
else(new.status.R := 4)

endswitch
Type-Test := R

endFunction

144

Attribute-Query-Request is very similar to Request-From-Outside.
The difference is that this method checks to see whether or not it is a
terminal node before attempting to process the query.

Procedure Attribute-Query-Request
create activity record for pending query
if message.query-restriction is empty /* node is terminal • /

then(send an Attribute-Query-Result message to self)
else(

for each subtree S in message .query-restriction
if Status.head(S)=l

then(/* it satisfies the query * /
new .RHS.head(S) := intersection(RHS.head(S),

union(visible.local-attribute-list(message. view-id),
visible. compound-attribute-list (message. view-id),
visible.method-attribute-list(message. view-id)))

send an Attribute-Query-Result message containing head(S) to self) ·
else(Check-Attribute(S,message. view-id))

endfor)
endProcedure

145

Attribute-Query-Result is similar to Subset-Query-Result in several
ways - it may collect several results before sending a single message. It
must be able to respond in several different ways because Attribute-Query-Request
may be invoked by several different methods. If initiated by either an
attribute request or a delete object request then the corresponding result is
spawned in a straightforward manner. If the attribute query was independent
and it was satisfied then any associated dependent attribute subqueries must
be processed prior to returning the result. Finally, the attribute query
message may have been sent by a Subset-Query-Request. Although it looks
more complicated, the procedure followed in this case is very similar to the
previous one. It can be summarized in the following way - once all required
restrictions have been satisfied, messages for the optional restrictions (if
there are any) can be sent.

Procedure Attribute-Query-Result
store result
if result.last(activity)

determine status of query /* combines status of required subtrees /*
switch
case (reply-type.message is Attribute-Query-Request)

send an Attribute-Query-Result message to sender
destroy activity record

case (reply-type.message is Independent-Attribute-Query-Request)
if query.status < 4 & previous.request is independent-subtree .subquery

& dependent attribute tree A in activity.query-restriction is not empty
then(for each dependent subtree D in activity.query-restriction

if status of corresponding independent subtree < 4
then(Check-Attribute(D) ,message. view-id)
else(send an Attribute-Query-Result message to self/* leave status = 4 * /)

endfor)
else(send an Attribute-Query-Result message to sender)

case (reply-type.message is Delete-Object-Request)
send a Delete-Object-Result message to sender
destroy activity record

case (reply-type.message is Subset-Query-Request)
if class(object) & status.query not = 5

then(if previous.request is independent-subtree.subquery
then(for each dependent subtree D in activity.query-restriction

if status of corresponding independent subtree < 4
then(Chec.k-Attribute(D),message.view-id)
else(send an Attribute-Query-Result message to self)

endfor)
else(for each non-leaf child send a Subset-Query-Request message to child

if status < 4
then(for each leaf child send a Subset-Query-Request message to child)

adjust original activity record to reflect change in query)
else(/* the node is a leaf OR query has failed * /

send a Subset-Query-Result message to sender
destroy activity record)

end case
endProcedure

146

Insert Object and Insert Attribute Methods

Insert-Object-Request first finds the target cla.ss for the insert operation.
Once the class is found, Insert-Object-Request causes it to create a
new object. The new object's local attributes can be inserted directly while
compound attributes must be inserted by sending Insert-Attribute-Request
messages.

Procedure Insert-Object-Request
create activity record for pending query
/* Before an object can be inserted the class hierarchy must be

searched for the class which will perform the create operation
- the search algorithm is not included here because it is
very similar to the Subset-Query-Request method except that it
searches only the non-leaf (class) objects
Locate the appropriate Owner Class & then perform the following: * /

create a new instance object (N)
/* Create uses information in Object-Description.Instance-Attributes,

View-Instance-Description.Visible-Attributes and
View-Instance-Description.Invisible-Attributes.

This new object is a shallow copy of the "typical" object for the current
view - it contains a unique object id, defaults for attributes (but with pointers
from the new object only) and IS-A (parent) arc the latter points to its owner class*/

insert IS-A (child) arc to N
for each local subtree L in query-testriction

change value in N
remove L from query-restriction

endfor
if query-restriction does not contain compound attributes

then(send an Insert-Object-Result message to self)
else(for each (compound) attribute,subtree pair (A,S) in query-restriction

delete attribute arc corresponding to A in self
send an Insert-Attribute-Request(A,S) message to self

endfor)
endProcedure

147

Insert-Object-Result must wait for all outstanding requests to be
answered before reponding. The two cases are very straightforward - the
only complication occurs if the original query is an Insert-Object-Request.
In this case, the system must ensure that any default attributes are properly
connected to the new object.

Procedure Insert-Object-Result
store result
if result.last(activity)

then(
determine status of query
/* determine type of original query and send appropriate result * /
if reply-type.message is Insert-Object

then(for all remaining non local unchanged default attributes D
send insert-attribute-arc(inverse(D),self) message along D

send an Insert-Object-Result message to self)
else(/* reply-type.message is Insert-Attribute*/

send an Insert-Attribute-Result message to sender)
destroy activity record)

end Procedure

Insert-Attribute-Request requires a special explanation. It initiates
a search for an object which can fulfill the role of the attribute before
the actual insert operation is performed. The actual insert operation is
performed by Insert-Attribute-Result after the result of the search has
been determined.

Procedure Insert-Attribute-Request(A,S)
create activity record for pending query
send a Subset-Query-Request message (containing (A,S)) to owner class of attribute object

endProcedure

148

There are two cases for the Insert-Attribute-Result method. The
Subset-Query-Request message which is spawned by the insert attribute
request is guaranteed to return a reference to exactly one object or fail.
The first, which has three subcases, occurs when an object is found. An
attribute relationship is established between the newly created object and
found object by creating arcs in both directions. Once the arcs have been
created, one of three result messages (again this is dependent on the original
message) is sent. Otherwise, a new object must be created to represent the
attribute.

Procedure Insert-Attribute-Result(A,S)
if (A,S) was found /* this is guaranteed to be exactly one object * /

then(send insert-attribute-arc(A,S) message to self
send insert-attribute-arc(inverse(A),self) message to S
switch

case (reply-type.message is Insert-Object)
send an Insert-Object-Result message to sender

case(reply-type.message is Insert-Attribute)
send an Insert-Attribute-Result message to sender)

otherwise /* reply-type.message is Create-Move-Copy-Result * /
send a Create-Move-Copy-Result message to sender

end case
destroy activity record)

else(send an Insert-Object-Request message (containing S) to attribute's owner class)
endProcedure

Delete Object and Delete Attribute Methods

Delete-Object-Request causes the receiving object to determine whether
it satisfies the specified restrictions by spawning an attribute query request.
In addition, if the object is a cla.ss, it sets the query's check status value to
true - this information is used by the Delete-Object-Result method.

Procedure Delete-Object-Request
create activity record for pending query
if object is not a leaf

then(new.check.status := 'true')
send an Attribute-Query-Request to self
/* make sure that object is or may lead to a candidate for the delete operation * /

endProcedure

149

Once the last result h88 been received; Delete-Object-Result determines
the status of the operation. If the object does not satisfy the restrictions
then a result message is sent immediately. Otherwise, the delete operation
continues. If the object is a leaf then it sends itself a delete all
attributes message; otherwise, it uses the check.status value to determine
whether it is reporting a result or propagating a request to its
descendents.

Procedure Delete-Object-Result
store result
if result.last(activity)

then(/* determine status of operation, take appropriate action and report result * /
if status.operation = success

then(
switch

c88e (leaf(object))
send a Delete-All-Attributes message to self

c88e (class(object) & check.status = 'true ')
new.check.status := 'false'
for each child send a Delete-Object-Request message to child

otherwise/* class(object) & check.status= 'false'*/
for each 'deleted' leaf object remove IS-A arc
send a Delete-Object-Result message to sender

endswitch)
else(/* inform sender that object has not been deleted * /

send a Delete-Object-Result message to sender)
destroy activity record)

endProcedure

150

Notes about deleting attributes:

1. If any attribute delete operation removes a key attribute then it
automatically sends out a delete object request message to the local
object.

2. There are separate methods for deleting an attribute and its inverse.
Requesting an object to delete an attribute causes it to send a
Delete-Attribute-Inverse-Request message before deleting the attribute.

If the attribute is local then Delete-Attribute-Request deletes it
immediately, otherwise, it spawns a Delete-Attribute-Inverse-Request.

Procedure Delete-Attribute-Request(A)
/* This method shows the response of an instance object - it

is assumed that the a.synchronous search strategy was used
to identify the target instance object. * J

create activity record for pending query
if local(A)

then(if A has a special delete method associated with it
then(execute special delete method)
else(if A is key

then(send a Delete-Object-Request message (referencing self) to owner class)
else(new.A :=nil))

send a Delete-Attribute-Result message to sender)
else(send a Delete-Attribute-Inverse-Request message along A)

endProcedure

Delete-Attribute-Result deletes the attribute arc (if necessary)
- its inverse has already been removed. It also sends the appropriate
result message to the sender.

Procedure Delete-Attribute-Result(A)
switch

case (previous.request is Delete-Object-Request)
send Delete-Object-Result to sender

otherwise /* original request was Delete-Attribute-Request * /
if A has a special delete method associated with it

then(execute special delete method)
else(if A is key

then(send a Delete-Object-Request message (referencing self) to owner class)
else(new.A :=nil))

send a Delete-Attribute-Result to sender
endswitch
destroy activity record

endProcedure

151

Delete-Attribute-Inverse-Request deletes the specified attribute and
sends back a message of confirmation.

Procedure Delete-Attribute-Inverse-Request(A)
create activity record for pending query

if A.inverse has a special delete method associated with it
then(execute special delete method)
else(replace A.inverse with nil

if A.inverse is key
then(send a Delete-Object-Request message (referencing self) to owner class))

send a Delete-Attribute-Inverse-Result to sender
endProcedure

Delete-Attribute-Inverse-Result is straightforward - it simply sends
the appropriate result message to the sender.

Procedure Delete-Attribute-Inverse-Result(A)
switch

case (previous.request is Delete-Attribute-Request)
send a Delete-Attribute-Result to self

case (previous.request is Delete-All-Attributes-Request)
send a Delete-All-Attributes-Result to self

endswitch
destroy activity record

endProcedure

Delete-All-Attributes-Request is spawned by the Delete-Object-Result
method at the leaf level only. It does not have to check for key attributes
(see Delete-All-Attributes-Result below).

Procedure Delete-All-Attributes-Request
create activity record for pending query
for each non-nil attribute arc(A)

send a Delete-Attribute-Inverse-Request(A) along A
endProcedure

Delete-All-Attributes-Result removes the object's connection to the class
lattice - it effectively deletes the object from the database.

Procedure Delete-All-Attributes-Result
if result.last(activity)

then(remove IS-A (to parent)
send a Delete-Object-Result message to sender (of Delete-Object-Request)
destroy activity record)

endProcedure

152

I
I

Change Attribute Methods

Change-Attribute-Request has two arguments: the attribute to be changed (A)
and a description of the changed object (C). If A exists then there are two
possibilities: A is local and can be changed directly or A is compound and the
change must be propagated along A's arc.

Procedure Change-Attribute-Request(A,C)
/* This method shows the response of an instance object - it

is assumed that the asynchronous search strategy was used
to identify the target instance object. * /

create activity record for pending query
/ * Make sure that attribute A exists &: if it does not

report that fact to the source of the request * /
if not found(A)

then(new.query.status := 5
send Change-Attribute-Result message to sender)

else(if local(A)
then(new.query.status := 1

if A has a special change method associated with it
then(execute special change method using C)
else(new.A := C)

send a Change-Attribute-Result message to sender)
else(recursively propagate the change request along A)

endProcedure

Change-Attribute-Result is self explanatory.

Procedure Change-Attribute-Result
send a Change-Attribute-Result message to sender
destroy activity record

endProcedure

Move Object Methods - note this is semantically different from applying
the Delete Method followed by the Insert Method because moved objects'
identities are unchanged by this operation.

The main purpose of Move-Object-Request is to find the objects which are
to be moved. It sends a subset query request message to do this.

Procedure Move-Object-Request
/* Triggered by an Move-Object-Request message sent to the current owner class * /
create activity record for pending query
new.fou'nd-status := 'false'
send a Subset-Query-Request to self

end Procedure

153

If the search is successful, the Move-Object-Result spawns
Create-Move-Copy-Request messages which actually perform the move
object operation.

Procedure Move-Object-Result
if found-status = 'false' & search.status = 'success'

then(new.found-status :='true'
for each leaf found send a Create-Moved-Copy to new owner class

else(send a Move-Object-Result to sender
destroy activity record)

end Procedure

Create-Move-Copy-Request is almost identical to Insert-Object-Request.
It differs in one major aspect - instead of creating a new object with
its own identity, it creates a new version of an existing object without
changing its identity.

Procedure Create-Move-Copy-Request
create activity record for pending query

/* Before an object can be moved the new class hierarchy must be
searched for the class which will perform the create operation
- this is exactly the same search algorithm which is used by
Insert-Object-Request method
Locate the appropriate Owner Class & then perform the following: * /

create-version instance object (N)
/* Create-version uses information in Object-Description.Instance-Attributes,

View-Instance-Description. Visible-Attributes and
View-Instance-Description.Invisible-Attributes.

This new object is a shallow copy of the "typical" object for the current view
- it shares the moved object's id, it includes defaults for attributes (but with pointers
from the new object only) and IS-A (parent) arc the latter points to its owner class * /

insert IS-A (child) arc to N
for each local subtree L in query-restriction

change value in N
remove L from query-restriction

endfor
for each attribute,subtree pair (A,S) in query-restriction

delete attribute arc corresponding to A in self
send an Insert-Attribute-Request(A,S) message to self

endfor
for all non local unchanged default attributes D

send insert-attribute-arc(inverse(D),self) message along D
send an Create-Move-Copy-Result message to self

endProcedure

154

I
I

Create-Move-Copy-Result is very similar to the second C88e of
Insert-Object-Result but, in addition to making sure that default
attributes are properly connected to the new object, it also spawns a
message which causes the old version of the object to be deleted .

Procedure Create-Move-Copy-Result
store result
if result.last(activity)

then(
determine status of query
/* determine type of original query and send appropriate result * /
for all non local unchanged default attributes D

send insert-attribute-arc(inverse(D) ,self) message along D
send a Move-Object-Result message to self
send a Delete-Object-Request to owner of copied instance object
destroy activity record)

endProcedure

155

!
\

