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The Bruton tyrosine kinase inhibitor (BTKi) ibrutinib is a new
targeted therapy for patients with chronic lymphocytic leukemia
(CLL). Ibrutinib is given orally on a continuous schedule and induces
durable remissions in themajority of CLL patients. However, a small
proportion of patients initially responds to the BTKi and then
develops resistance. Estimating the frequency, timing, and individ-
ual risk of developing resistance to ibrutinib, therefore, would be
valuable for long-term management of patients. Computational
evolutionary models, based on measured kinetic parameters of
patients, allow us to approach these questions and to develop
a roadmap for personalized prognosis and treatmentmanagement.
Our kinetic models predict that BTKi-resistant mutants exist before
initiation of ibrutinib therapy, although they only comprise a mi-
nority of the overall tumor burden. Furthermore, we can estimate
the time required for resistant cells to grow to detectable levels.
We predict that this can be highly variable, depending mostly on
growth and death rates of the individual CLL cell clone. For a
specific patient, this time can be predicted with a high degree of
certainty. Our model can thus be used to predict for how long
ibrutinib can suppress the disease in individual patients. Further-
more, the model can suggest whether prior debulking of the tu-
mor with chemo-immunotherapy can prolong progression-free
survival under ibrutinib. Finally, by applying the models to data
that document progression during ibrutinib therapy, we estimated
that resistant mutants might have a small (<2%) mean fitness ad-
vantage in the absence of treatment, compared with sensitive cells.

evolutionary dynamics | drug resistance | personalized medicine |
mathematical models | stochastic dynamics

Chronic lymphocytic leukemia (CLL), the most common adult
leukemia in the Western hemisphere, is characterized by the

expansion of CD5+CD23+ mature monoclonal B cells in the
peripheral blood, as well as in lymph nodes and bone marrow.
B-cell receptor (BCR) signaling plays a central pathogenic role
in CLL, based on structural restrictions of the BCR and BCR-
dependent survival and growth of the malignant B cells (1, 2).
Bruton tyrosine kinase (BTK), a nonreceptor tyrosine kinase of
the Tec kinase family, is essential for BCR signaling. Ibrutinib
(previously called PCI-32765) is a potent (IC50, 0.5 nM) BTK
inhibitor that inactivates BTK through irreversible covalent
bonding to Cys-481 in the ATP-binding domain of BTK (3–5).
Early-stage clinical trials found ibrutinib to be particularly active
in patients with CLL (6, 7) and mantle cell lymphoma (8), and the
drug recently has been Food and Drug Administration-approved
for patients with relapsed CLL and mantle cell lymphoma.
Preclinical models demonstrated that ibrutinib inhibits CLL

cell survival and proliferation (9), as well as leukemia cell mi-
gration toward tissue-homing chemokines (CXCL12, CXCL13)
and integrin-mediated CLL cell adhesion (10, 11). For patients
with CLL, ibrutinib is given orally as a once-daily fixed dose of
420 mg on a continuous schedule until progression or toxicity. In
contrast to conventional chemo-immunotherapy, ibrutinib gen-
erally is not myelo-suppressive, and responses are not affected by
risk factors that predict failure to respond to or short remission
durations after chemo-immunotherapy, such as del17p.

In CLL, ibrutinib characteristically causes an early redistribution
of tissue-resident CLL cells into the peripheral blood, with rapid
resolution of enlarged lymph nodes, along with a surge in lym-
phocytosis (7, 12). This lymphocytosis is asymptomatic, transient,
and resolves in most patients during the first few months of
therapy. However, the majority of ibrutinib-treated patients do
not achieve complete remission (7), and instead the lymphocyte
counts stabilize in the long term in many patients at levels that are
significantly lower than before treatment, but higher than normal.
Although the clinical data so far demonstrate extremely en-

couraging responses in patients, the question arises as to how
long the control of the disease can be maintained during con-
tinuous ibrutinib therapy. In particular, drug-resistant mutants
can arise that can initiate renewed growth. Indeed, in a minority
of patients the growth of drug-resistant mutants has already been
documented (13–15). Resistance has been found to be caused by
point mutations, and a number of different mutants have been
documented. These mutants have been shown to have a muta-
tion in the BTK binding site of ibrutinib or gain-of-function
mutations in PLCgγ2, which lead to autonomous BCR activity.
The aim of our study was to determine whether, based on pre-
viously measured kinetic parameters of the disease in the absence
of treatment (16) and during ibrutinib therapy (17), it is possible to
use mathematical models to predict the evolutionary dynamics
of ibrutinib-resistant mutants, and to predict how long control of
CLL with single-agent ibrutinib treatment can be maintained.

Results
BTK Inhibitor-Resistant CLL Cells Are Present Before the Start of
Treatment. An important question that is currently debated in
the context of targeted treatments of cancer is whether resistant
subclones are present before the start of therapy, or whether they
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evolve during the treatment phase. Here, this question is ana-
lyzed in the context of ibrutinib treatment of CLL.
Using our computational modeling approach, we assume that

a colony of cancer cells grows stochastically from a single cell,
and at each division there is a small probability of creating a re-
sistant mutant. In the simplest scenario, we assume that: (i) the
mutants are neutral in the absence of treatment (that is, they
grow at the same rate as the wild-type CLL cells); (ii) CLL cells
acquire drug-resistant mutations at the physiological mutation
rate of human cells, and thus do not display elevated mutation
rates (e.g., caused by genetic instability); and (iii) mutant gen-
eration requires one genetic hit.
Under the scenario just described, Fig. 1 plots the probability

of creating at least one resistant mutant for different colony sizes
and different mutation rates. The vertical axis shows the log10 col-
ony size upon detection, and the horizontal axis shows the range of
log10 mutation rates. The numbers marked next to individual con-
tours on the graph denote the probability of existence of resistant
mutants. For example, we can see that for small mutation rates and
for very small colony sizes (the lower left corner of the diagram) the
probability of resistance is negligible. This probability grows with
the mutation rate and with the colony size.
ForCLL, the relevant parameter regime is shownby a rectangle in

the upper left part of the diagram in Fig. 1. We assume that the
number of CLL cells in tissue upon start of treatment ranges be-
tween 1012 and 1013 (as demonstrated in ref. 17). The range of
possible mutation rates is taken between 10−9 and 10−7. If resistance
can only be induced by a single point mutation, then the mutation
rate would be 10−9 (18–22). In contrast, if multiple different point
mutations can independently induce resistance, then the mutation
rate is higher. It is reasonable to assume an upper limit for the
mutation rate of 10−7, which means that hundreds of different point
mutations can independently cause resistance.Aswe can see, for this
region of the diagram in Fig. 1, the probability of resistance gener-
ation is very close to 1. Calculations show that this probability is
always greater than 0.995; in other words, the chance of not finding
resistance is smaller than 0.5%. This lowest bound corresponds to
the colony size of 1012 and the mutation rate of 10−9. We note that
this finding holds true for any division and death rates. We have il-
lustrated our cases assuming that the death rate is 10% of the di-
vision rate. The lowest chance to generate resistance during growth
occurs when the expanding cell population does not die (23). Even

under this extreme assumption, the probability that resistant
mutants exist upon treatment initiation is still practically certainty.
Now, suppose that assumption (i) above does not hold. In the

next section we present indication that ibrutininb-resistant CLL
cells may have a certain fitness advantage, even in the absence of
treatment. In this case, our conclusions definitely hold, and the
presence of resistance before treatment is a certainty. Next, let us
assume that resistant mutants are characterized by a certain se-
lective disadvantage compared with wild-type [although this has
not been observed for ibrutinib treatment of CLL, it has been
observed in the context of other targeted cancer therapies (24)].
In this case, it turns out that the estimates for the probability of
resistance are very nearly the same as shown above. Regardless
of the properties of the mutants, the probability of mutant
generation is extremely high. The reason that it does not depend
on whether the mutants are advantageous or disadvantageous is
because the main contribution to mutant generation comes from
a very large (compared with the inverse mutation rate) number
of cell divisions. In other words, it is most likely that the resistant
mutants are generated relatively late in the colony’s history,
where the population is so large that a new mutant is very likely
to be produced in each generation. This finding is in contrast to
another possible mechanism whereby a mutant is generated early
in the colony’s history and grows to large numbers. The latter
scenario, which is strongly dependent on the mutant properties
of growth, does not contribute significantly here.
If assumption (ii) above does not hold, that is, if ibrutinib-

resistant mutants are generated with an elevated mutation rate,
the chances of having resistance are even higher. In other words,
this assumption does not influence our conclusion.
The only circumstance under which we can expect the pres-

ence of resistance with less certainty is if assumption (iii) is violated;
that is, if mutant generation requires more than one mutational hit
(for example, if gene amplification is required for resistance) (25).
The higher the number of mutational steps required, the less the
chance of generating a resistant cell by the time of detection. Be-
cause the only documented ibrutinib-resistant mutants have been
shown to be caused by point mutations, however, we will focus on
this scenario (14, 15).

Resistant Mutants Can Have a Selective Advantage in the Absence of
Treatment. We know that resistant mutants enjoy a significant
advantage during treatment as they continue to grow, whereas wild-
type cells decline under ibrutinib. What can we say about growth
properties of mutants in the absence of treatment? For PLCgγ2
mutations, calcium flux in DT40 cells after stimulation with anti-
IgM antibody was enhanced compared with nonmutant PLCgγ2,
even in the absence of ibrutinib (15). This result indicates enhanced
pathway activation in the context of the PLCgγ2 mutation, which
could theoretically translate into a survival and fitness advantage of
mutant cells, although this has so far not been demonstrated. For
the mutation in the ibrutinib-binding site in BTK, there is so far no
indication for a mutant fitness advantage (15).
These data cannot tell us whether resistant mutants indeed

enjoy a fitness advantage compared with the wild-type when they
grow in vivo in the absence of treatment. Therefore, we will use
an epidemiological approach to investigate this question. In par-
ticular, we will use the data collected so far on ibrutinib treatment
response in CLL patients to see what level of mutant fitness is
consistent with the observations. Using the literature, we compiled
the information on nine different cohorts of CLL patients who were
treated with ibrutibib for different median time durations (6, 7, 13,
26–29) (see SI Appendix for details). The number of patients
showing progressive disease was reported in each case. Using
computer simulations, we determined what level of mutant fitness
in the absence of treatment is most consistent with these data. Al-
though the exact numbers depend somewhat on the assumed level
of mutant detection (SI Appendix), one overall conclusion is clear: if
the resistant mutants have a fitness advantage in the absence of
treatment, this advantage is not very large, about 1.5%. This figure
refers to the mean fitness advantage. In other words, if all resistant

Fig. 1. Probability of resistance generation. The horizontal axis is the log10 of
the mutation rate, and the vertical axis is the log10 of the colony size at de-
tection. Because these two parameters vary within many orders-of-magnitude,
we calculated the probability of resistance generation. The latter is presented
as a contour plot, where the contours (with the values marked next to them)
represent constant-level sets of probability. The black rectangle in the upper
left corner represents the parameter values relevant for CLL. The division and
death parameters for wild-type and mutant cells are given by lw = lr = 1 and
dw = dr = 0.1. The results do not change visibly if we take lw = lr = 1, dw = dr = 0.
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mutants have the same fitness in the absence of treatment, then this
fitness is 1.5% larger than that of the wild-type. If, on the other
hand, only 10% of all ibrutinib-resistant mutations confer fitness
advantage and the rest 90% are neutral in the absence of treatment,
then the advantageous mutants must be about 15% fitter than the
wild-type, thus yielding the same 1.5% mean fitness advantage.

The Number of Resistant Cells at Detection Is Very Low. By using our
model, we were able to predict the expected population size of
resistant cells at the time of tumor detection. Using the parameter
values fromMessmer et al. (16) andWodarz et al. (17), we find that
the number of mutants in patients at the start of treatment typically
has the order-of-magnitude of 106 to 108 cells. In Fig. 2A we present
a histogram of numerically predicted mutant population sizes that
were obtained in the following way. We randomly picked division
and death rates chosen inside the bounds given by Messmer et al.
(16) and paired them with randomly selected population sizes at
treatment start chosen between the minimum and the maximum
values measured in Wodarz et al. (17). A population of 1,000 ar-
tificial “patients” was created in this way, and then the expected
number of mutants at start of treatment was calculated. We per-
formed this procedure assuming that resistant mutants are neutral
at the start of treatment (the blue histogram in Fig. 2A), and then
repeated it with the assumption that resistant mutants have a 1.5%
fitness advantage in the absence of treatment (the red histogram
Fig. 2A). We can see that the median values for the mutant pop-
ulation are very similar in the two cases (and given by 1.1 × 107

and 1.9 × 107 cells). The main difference manifests itself in a
thicker “tail” of the distribution: if the mutants have a selective
advantage before treatment, there will be a very small percentage
of patients with a significant population of resistant mutants at the
start of treatment. About 0.1% of the artificial “patients” had
a population of mutants greater than 1% of the total CLL cells.
The question arises as to whether these mutants can be re-

sponsible for the long-term dynamics of CLL cells observed during
a time period of 2–3 y. The majority of the patients treated with
ibrutinib do not achieve complete remission. At present, the reason
for the corresponding long-term stabilization of the lymphocyte
counts is unknown. One hypothesis could be that it arises from
resistant cells that are generated in the colony. Because these cells
do not respond to treatment, they could be the ones that remain
after prolonged treatment.
To test this hypothesis we need to compare the predicted sizes

of the mutant colonies with the number of CLL cells in tissue
during the plateau phase. The number of CLL cells in the blood
has been measured during this time frame, but the great majority
of the disease resides in the tissue. Based on the blood mea-
surements and on volumetric analysis in the tissue, the number of
CLL cells in the tissue has been estimated in ref. 17. During the
plateau phase, the obtained values of CLL cells in tissue were

rather varied, with the median of 1.25 × 1011 and the minimum
value given by 4 × 108.
Our computations show that the presence of resistant mutants in

CLL is unlikely to explain the long-term stabilization of the lym-
phocyte counts in the patients. In Fig. 2B we present a histogram of
projected mutant population sizes after 300 d of treatment. We can
see that the majority of patients will have a mutant colony sizes
that are about 103-times smaller than the typical plateau value for
CLL cells. The median size of a mutant colony after 300 d is 4.0 ×
107 and 9.7 × 107 cells, for neutral and advantageous (1.5%)
mutants, respectively. This number is much smaller than the me-
dian of 1.25 × 1011 for estimated numbers of tissue CLL cells
during the plateau phase. Another reason for the observed plateau
to be of a different nature compared with a resistant clone is that
the former is relatively stable, whereas the latter is predicted to
expand exponentially, and can thus show different overall dy-
namics, depending on the rate at which resistant mutants grow.
To conclude, our analysis shows that at the time of treatment

initiation, and even after 300 d of treatment with ibrutinib, re-
sistant mutant colonies are most likely to be very small, well below
the detection limit. This finding is in agreement with the currently
available data (14, 15). Resistance mutations were detected when
progressive disease was first observed, but not before treatment or
during the initial response to treatment (including lymphocytosis)
(14, 15). In addition, the CLL cells found during lymphocytosis in
nonprogressing patients have been found to be quiescent rather
than carrying mutations that confer ibrutinib resistance (30, 31).

When Can Resistance Be Detected? We have shown that typically,
we do not expect resistance to be observable for the time frames
of treatment considered so far (300 d after therapy initiation). It
is inevitable, however, that the resistant colony will grow and
eventually become sizable. The question is how long this process
may take.
We have run themean course of resistant-mutant growth starting

from the expected mutant numbers at the start of treatment. We
assume that resistance becomes a problem and contributes to
visible disease relapse when the size of the resistant colony reaches
1010 cells. Although we know the number of tumor cells in the
blood at which the disease becomes detectable, most of the CLL
cells reside in tissue. The population size threshold for detection
of solid tumors is about 109 cells (32), and for the CLL cells to
accumulate at detectable levels in the blood, the tissue disease
burden likely has to be larger, hence our threshold level of 1010 cells.
As before, we studied 1,000 parameter combinations randomly

created using the bounds fromMessmer et al. (16) andWodarz et al.
(17). Assuming the mutation rate of 10−8, the model shows that 6%
(12%) of patients in our sample will develop resistance before 2 y
after start of treatment, 46% (59%) of patients will develop re-
sistance before 5 y, and 75% (86%) of patients will develop it before
10 y (the amount in parenthesis refers to resistant mutants having an
average fitness advantage of 1.5%). For 5% (1%) of the patients,
resistance will not come up for the first 30 y after treatment. The
mean time of developing resistance is about 9 y (5) after start of
treatment. A numerical probability distribution function for the
time when resistance reaches detection level is presented in Fig. 3.
Despite the fact that resistance is present with certainty in all

tumors upon detection, the dynamics of resistance growth is
predicted to be very different for different patients. Without
assuming any differences in the mechanisms of resistance, the
only parameters that are varied across our set are (i) the size
of tumor at start of treatment and (ii) the kinetic parameters of
untreated CLL cells. It turns out that it is the net growth rate
of mutants (parameter lm − dm; i.e., division minus death rate of
cells) that defines the eventual fate of the treatment. Fig. 4 illus-
trates this statement. In Fig. 4A andBwe plot the expected growth
dynamics ofmutant colonies for neutral mutants andmutants with
a 1.5% fitness advantage before treatment, respectively. The most
noticeable difference between the two cases is that slightly ad-
vantageous mutants are present above the detection level in
a small percentage of patients at the start of treatment. In both

A B

Fig. 2. A histogram of mutant population sizes: (A) at start of treatment
and (B) after 300 d of treatment. Plotted are results for a population of 1,000
artificial “patients” (with parameters from refs. 16 and 17). Blue histograms
correspond to the assumption that resistant mutants are neutral and red,
that they have a 1.5% fitness advantage in the absence of treatment. The
vertical bar in B marks the mean value of the plateau of CLL cells achieved
upon treatment in ref. 17. The mutation rate is 10−8.
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graphs we observe a wide range of dynamic behaviors, where in
some patients resistance does not arise before 10 y, and in others
it comes up very quickly. What parameter is mostly responsible
for this difference? Mathematically, the time to resistance for
each patient decays with the mutant growth rate and with the
tumor burden at start of treatment. The former parameter, how-
ever, exhibits an overall stronger influence on the rise of re-
sistance. In Fig. 4C we plot, for each patient, the inverse time it
takes for mutants to rise above the detection level of 1010 cells as
a function of the net growth rate of the cells. We can see a strong
positive correlation. The much weaker dependence on the pop-
ulation size at the start of treatment is masked by the growth rate
correlation, as shown in Fig. 4D.
We conclude that themeasured difference in the net growth rates

of CLL cells alone (without evoking the differences in the mecha-
nisms of resistance) can give rise to a significant heterogeneity of
resistance growth dynamics. Furthermore, it is the net growth rates
of CLL, rather than the size of the tumor upon initiation of therapy,
which are predicted to be the strongest correlates of resistance.

Average Behavior and Stochastic Variations. So far, our results on
the dynamics of mutant growth are based on averages derived from
deterministic models. We have observed significant heterogeneity
in the average time until resistant mutants grow to significant
levels, based on differences in the parameters by which the patients
are characterized, most importantly the rate of cell division and the
rate of cell death. However, even if these parameters are identical,
variation in the time until resistance rises to higher levels can come
about through stochasticity that is inherent in the dynamics of cell
growth, especially during phases when mutants grow from low
numbers. Therefore, we performed numerical analysis of the sto-
chastic model to study the variance in outcomes (SI Appendix).
Two measures were considered: (i) The number of mutants

when treatment was initiated. Treatment was assumed to start
when the number of tumor cells reached 8 × 1012, which is the
average estimated tumor size at the start of ibrutinib treatment
in our previous study (17). (ii) The time it takes for the resistant
mutant to grow to significant levels. In these computations, we
defined the time when the number of resistant tumor cells in the
tissue compartments reached 109 cells.
The algorithm was used for two parameter combinations, one

characterized by faster growth (slow turnover of cells, where di-
vision rate of cells is much larger than death rate), and one
characterized by slower growth (fast turnover, where division rate
of cells is close to death rate). The results are similar for both
scenarios and shown in Fig. 5. First consider the number of cells at
start of therapy (Fig. 5A). We can see that there is a large degree of
variation in this number, with a SD that is an order-of-magnitude
higher than the mean (please note the logarithmic scale on the
horizontal axis). This phenomenon has been previously described
(33). On the other hand, the time until the resistant mutant rea-
ches the threshold population size shows a much more narrow
distribution and only little variation (Fig. 5 B and C). The SD for

the timing of mutant growth is an order-of-magnitude lower than
the mean. The reason is that the time until the resistant mutant
population rises to a threshold size is determined by the logarithm
of the mutant population size at the start of treatment (SI Ap-
pendix), which logarithmically reduces the spread in the results.
The insight that there is only a small amount of stochastic vari-

ation in the time until the resistant mutant reaches its threshold size
for a given parameter set has important practical implications: it
enables us to predict the long-term treatment outcome with ibru-
tinib, and to tailor treatment strategies individually to avoid com-
plications from resistance. The time until resistant mutants emerge
to significant levels is rather accurately predicted by the average.
Hence, measurements of the cell division and death rates by heavy
water labeling, and estimations of total tissue tumor burden from
radiological data, can enable us to predict for how long continuous
ibrutinib treatment can control CLL. If control is predicted to be
maintained for decades, no special strategies to combat resistance
are likely needed. In contrast, if tumor relapse because of resistance
is predicted to occur within a few months, treatment schedules will
have to be designed to prevent this relapse, as described next.

Strategies to Overcome Resistance. The above analysis indicates
that drug-resistant mutants arise during the growth phase of CLL
before the onset of treatment, and continue to grow during
treatment. If resistant cells grow sufficiently to contribute to
relapse during the life span of the patient, measures have to be
implemented to combat this resistance against ibrutinib.
The first question to examine is whether early treatment, im-

mediately upon detection, would significantly lower the probability
that resistant mutants exist at the start of therapy. Let us assume
that resistance is generated with a mutation rate of 10−8 and that
the lowest detectable tumor tissue burden is approximately 109 cells.
Fig. 6A shows the probability that mutants resistant against ibrutinib
exist as a function of the tissue tumor burden. This is plotted for
different tumor cell turnover rates [i.e., ratios of cell division and
death, as estimated in Messmer et al. (16)]. Fig. 6A shows that once
the number of tissue tumor cells rises beyond 109 cells, the proba-
bility for resistant mutants to exist is very high, about 93% for the
lowest turnover rates and higher values for higher turnover rates.
This finding is also shown in Fig. 6B. In this figure, we assumed that
resistant mutants do not have a fitness advantage in the absence of

A B

Fig. 3. Numerically obtained probability distribution function for the expec-
ted time when a resistant colony reaches detection level, for different com-
binations of kinetic parameters. The artificial patient population of 1,000 was
created as in Fig. 2; the mutation rate is 10−8. (A) The probability density
function. (B) The cumulative distribution function.

A B

C D

Fig. 4. The growth dynamics of resistant mutants. (A and B) The mean
growth dynamics of mutants calculated for 100 parameter combinations,
created as in Fig. 2. The mutation rate is 10−8. The detection threshold of
1010 cells is marked by a horizontal line. In A, the resistant mutants are
neutral in the absence of treatment, and in B they have a fitness advantage
of 1.5%. (C) The inverse time of mutant detection is plotted against the net
growth rate, lw − dw for all of the “patients” in A. (D) Same as in C, but
plotted against the tumor size at the start of treatment. In panels C and D
we assume that the mutants are neutral in the absence of treatment.

Komarova et al. PNAS | September 23, 2014 | vol. 111 | no. 38 | 13909

EV
O
LU

TI
O
N

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1409362111/-/DCSupplemental/pnas.1409362111.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1409362111/-/DCSupplemental/pnas.1409362111.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1409362111/-/DCSupplemental/pnas.1409362111.sapp.pdf


treatment. If we assume a fitness advantage, this result becomes
even stronger. Once the number of tumor cells has risen to 1010,
they exist with certainty, irrespective of the turnover rate of the
tumor in the patient. Because the disease is not likely to be de-
tectable at tissue population sizes that are less than 109 cells, an
early start of ibrutinib treatment is unlikely to significantly improve
the duration for which the drug can control the tumor.
Another strategy to combat resistance could be to first debulk

the tumor with chemo-immunotherapy, followed by treatment
with ibrutinib. This could improve outcome in two ways.
First, although resistance is very likely to be present when the

disease becomes detectable in blood, the probability that re-
sistant mutants are present is lower if the disease burden is pushed
to lower levels. In some patients, chemo-immuotherapy can re-
duce the number of CLL cells below detection in blood. Let us
assume that in tissue the number of cells is reduced to 108. In this
case, resistant mutants are present in about 50% of patients if
the turnover rate of the tumor is low (Fig. 6 A and B). Thus,
debulking could pave the way for resistance-free ibrutinib treat-
ment in about half of the patients. For high turnover tumors,
however, this would not apply because the probability for resistant
mutants to be present at 108 cells is much higher (Fig. 6 A and B).
Elimination of the ibrutinib-resistant mutants further requires
that no mutants are present that are simultaneously resistant
against ibrutinib and chemo-immunotherapy. In the worst-case
scenario, resistance against chemo-immunotherapy is also ac-
quired by a single mutation. In this case, Fig. 6C shows that upon
initiation of treatment [when tissue disease burden is at 8 × 1012

(17)], the chances of having doubly resistant mutants are relatively
low (10–20%) for low-turnover tumors, but much higher if the
turnover rate is large (see also Fig. 6B). These plots are based on
a mutation rate of 10−8 per cell division and neutral resistant
mutants. The probabilities would be less for lower mutation rates,
but higher for resistant mutants that have a fitness advantage in
the absence of treatment. Thus, elimination of ibrutinib-resistant
mutants by prior debulking is difficult to achieve and can only have
a chance to be successful for low-turnover tumors.
Second, even if resistance is still present after debulking, the

number of mutants is going to be significantly lower than before

debulking, which could lead to a longer duration for which the
patient remains progression-free during ibrutinib therapy (Fig.
6D). Assume that chemo-immunotherapy reduces the tumor
burden by two orders-of-magnitude. For the same parameters
as above, the average time until progression now increases from
9 to 12.8 y. Fewer than 1% of patients (rather than 6%) are
predicted to progress in <2 y, 24% (rather than 46%) in <5 y,
55% (rather than 75%) in <10 y, and 14% (rather than 5%) of
patients are predicted to remain progression-free for >30 y.
A currently more hypothetical strategy could be to combine

different kinase inhibitors [such as idelalisib (34)] with ibrutinib
to prevent resistance-induced disease progression. If mutations
that confer resistance against ibrutinib do not simultaneously
confer resistance to the other inhibitors, then Fig. 6C shows that
for low-turnover treatment, the probability for two-drug resistance
is relatively low, and hence a combination of two drugs could
work. This is, however, not the case for high-turnover rates. For
such tumors, more drugs would have to be combined to prevent
resistance-induced disease progression. This theory can be ex-
plored further mathematically with the framework provided by
Komarova and Wodarz (23), although it remains to be explored
whether such combination treatments would be clinically prac-
tical considering the side effects.

Discussion
We used previously estimated key parameters of CLL dynamics
in the absence of treatment and in the presence of ibrutinib
therapy, as well as patient follow-up data, to analyze the evolu-
tionary dynamics of drug resistant cell clones. The following
key insights were obtained by using methods of evolutionary
and computational biology:
First, drug-resistant CLL cells are almost certain to exist by the

time of ibrutinib treatment initiation. Therefore, it is the pre-
existence of resistant cells that is important. The treatment phase

A

B C

Fig. 5. Stochasticity of mutant dynamics. (A) Histograms of the simulated
number of mutants at the start of treatment (when the colony reaches size
8 × 1012). (B and C) The histograms of the time it takes for the mutant colony
to reach the detection level of 109 cells. Two parameter combinations have
been simulated: “slow” (lw = lr = 0.0029, dw = dr = 0.0026) and “fast” (lw =
lr = 0.0178, dw = dr = 0.0106). The total number of simulations is about 5,000
for each parameter set. The mutation rate is assumed to be 10−8. For each
measurement, for “fast” and “slow” parameters, the mean ± SD is indicated.

A B

C D

Fig. 6. Dynamics of resistance. (A) The probability of one-drug resistance to
be generated in a colony of CLL cells before treatment, as a function of the
population size. The different lines correspond to different values of the
cellular turnover, dw/lw, taken from the nine sets of parameters in ref. 16.
The vertical line marks the detection size, 109 cells. (B) Circles: The probability
of one-drug resistance for different values of the turnover (horizontal axis)
at size n = 109. Squares: The probability of two-drug resistance for different
values of the turnover at size n = 8 × 1012. (C) Same as in A, but for the
probability of two-drug resistance. The vertical line marks the mean treat-
ment size in ref. 16, 8 × 1012. (D) Numerically obtained probability distri-
bution function for the expected time when a resistant colony reaches level
1010, after reducing the tumor size by a factor of 0.01 by debulking (compare
with Fig. 3A in the absence of debulking). The mutation rate is 10−8.
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is unlikely to contribute significantly to resistance generation.
Hence, the dynamics that are observed during ibrutinib treat-
ment, including the lymphocytosis phase, are not likely to con-
tribute to the evolution of resistant mutants.
Second, drug-resistant mutants are unlikely to explain the lack

of complete remission during ibrutinib therapy. The predicted
number of resistant cells during this phase is too low to account
for the observed plateau to which the CLL cell population con-
verges during treatment.
Third, the time until resistant mutants grow to sufficient levels

to contribute visibly to disease relapse is predicted to vary ex-
tensively across patients because of known variations in the basic
parameters describing the rate of clonal expansion. This in turn
defines the rate at which drug resistant CLL cells divide and die
in tissue during drug therapy. In general, we predict that signif-
icant interpatient variations in resistance dynamics will be caused
by genetic differences in the tumors alone. Further variations can
be caused by other factors, such as genetic differences among the
patients and the specific types of resistance mutations acquired.
Fourth, although differences in cellular growth parameters

across patients can lead to extensive variation in the time until
visible relapse occurs, for a given set of parameters, stochastic
variation in outcome is limited. Therefore, the expected time
until disease relapse is a reliable indicator for how long ibrutinib
monotherapy can control the disease for a particular patient.
Finally, depending on the relative rates of CLL cell division

and cell death, it might be possible to increase the duration of
progression-free survival during ibrutinib treatment by debulking
the tumor with chemo-immmunotherapy before ibrutinib therapy.
These insights open up the possibility to use such computa-

tional models for personalized predictions about the outcome of

treatment. For each patient, the division and death rate of cells
should be measured with heavy water labeling, and the tissue
tumor load before treatment initiation should be estimated with
CT scans. Based on these measures, we can predict the average
duration for which ibrutinib monotherapy can maintain control
of the disease, when resistance is likely to emerge, and whether
specific measures to prevent relapse are likely to be helpful.
Besides predictions about the dynamics of disease relapse,

another important contribution of our calculations is that we
were able to provide a first estimate of resistant-mutant fitness.
This estimate will need to be refined when more clinical data be-
come available that document the timing of disease relapse during
ibrutinib treatment. The methodology presented here is indirect,
and infers mutant fitness from epidemiological data; this is akin to
similar approaches that have been used to infer in vivo processes
from epidemiological data in cancer research (35–37). It is likely
one of the more reliable ways to estimate mutant fitness. Although
a direct measurement would obviously be preferable, this might
be very difficult to achieve. The growth properties of CLL cells de-
pend intricately on the tissue microenvironment in humans, which
renders any experimentation and direct approaches challenging.

Materials and Methods
We use methods of evolutionary and computational biology to answer
questions about the evolutionary dynamics of BTK inhibitor resistance in CLL.
Deterministic and stochastic methods are used. Please see SI Appendix and
refs. 38 and 39 for complete details.
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