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RESEARCH ARTICLE
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* Aditi.bhargava@ucsf.edu

Abstract

Functional gastrointestinal disorders (FGIDs) are characterized by dysregulated gut-brain

interactions. Emerging evidence shows that low-grade mucosal inflammation and immune

activation contribute to FGIDs, including functional dyspepsia (FD). Stress plays an impor-

tant role in the onset of FD symptoms. In human subjects with FD, presence of gastric mast

cells has been reported, but factors that influence mast cell infiltration remain uncharacter-

ized. Corticotropin-releasing factor (CRF) initiates the body’s stress response and is known

to degranulate mast cells. In this study, we delineated the role of the CRF system in the

pathogenesis of FD in a rat model. Gastric irritation in neonate rat pups with iodoacetamide

(IA) was used to induce FD-like symptoms. RNA interference (RNAi) was used to silence

gastric CRF expression. Mast cell infiltrate in the stomach increased by 54% in IA-treated

rats compared to controls and CRF-RNAi tended to decrease gastric mast cell infiltrate.

Sucrose intake decreased in IA-treated rats and mast cell numbers showed a negative

association with sucrose intake. IA treatment and transient silencing of gastric CRF

increased hypothalamic CRF levels. In IA-treated rats, gastric levels of CRF receptor 2

(CRF2) decreased by ~76%, whereas hypothalamic CRF receptor 1 (CRF1) levels

increased. Plasma levels of TNF-α showed a positive correlation with plasma CRF levels.

Levels of phosphorylated p38 and ERK1/2 in the stomach showed a positive correlation with

gastric CRF levels. Thus, CRF may contribute to low grade inflammation via modulating

mast cell infiltration, cytokine levels, MAPK signaling, and the gut-brain axis.

Introduction

Functional dyspepsia (FD) is a clinical syndrome characterized by pain or burning in the epi-

gastrium, early satiety, fullness during or after meal, or a combination of these symptoms that

involve the upper gastrointestinal tract, such as the stomach and the duodenum [1, 2]. FD

affects about 20% of world-wide population [3]. As per the latest iteration of the Rome process,
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the Rome IV criteria, FD is subdivided into two distinct categories: post-prandial distress syn-

drome and epigastric pain syndrome. Post-prandial distress syndrome is defined as meal-

induced dyspeptic symptoms, bothersome post-prandial fullness, and early satiety for at least 3

days per week. Epigastric pain syndrome is defined by symptoms that occur in between meals

for at least one day per week [1, 4, 5].

Although the etiology and pathophysiology of FD are not fully understood, Rome IV crite-

ria proposed the possible contribution of low-grade inflammation, alterations in the gut

microbiome composition, and altered brain processing of pathophysiological symptoms [1, 6,

7]. These inclusions were based on several studies that demonstrate presence of low-grade

mucosal inflammation and immune cell activation in association with impaired epithelial bar-

rier function and aberrant neuronal sensitivity in human subjects with functional gastrointes-

tinal disorders (FGIDs) [8, 9]. The mucosal inflammatory infiltrate in the intestines of FGIDs

subjects consisted mainly of mast cells, eosinophils, and intraepithelial lymphocytes. In a

recent meta-analysis, mast cell counts in the stomach were found to be increased in individuals

with FD compared to healthy subjects [10].

The gut-brain axis is thought to be dysregulated in subjects with FGID and patients often

suffer from mood disorders, such as increased anxiety [11–13]. Stressors are known to exac-

erbate FGID symptoms [14]. The perception of stress activates the hypothalamic-pituitary-

adrenal (HPA) axis. HPA axis activation is triggered by the release of corticotropin-releas-

ing factor (CRF) from hypothalamus, which acts on the anterior pituitary to release ACTH,

which in turn acts on the adrenal cortex to release glucocorticoids (cortisol in humans and

corticosterone in rodents). Peptide hormones CRF, three urocortins (UCN1-3), and two G

protein-coupled receptors, CRF receptors 1 (CRF1) and 2 (CRF2) coordinate stress and

immune responses [15–18]. In the gastrointestinal tract, local and transient inhibition of

CRF using RNA interference (RNAi) ameliorated inflammation in a Clostridium Toxin A-

mediated model of ileitis [19]. While UCN2-RNAi had no effect on inflammation in the ilei-

tis model, both CRF and UCN2 modulated ileal motility [19]. Silencing of CRF in the colon

also prevented stress-induced increases in fecal output, transepithelial conductance, and

ion secretion [20].

A rat model for functional dyspepsia that uses early-life adverse events has been described

[21]. In this model of functional dyspepsia, rats that experienced transient gastric irritation as

neonates exhibited depression- and anxiety-like behaviors as adults. While central CRF- and

vagal nerve-dependent mechanisms [21, 22] contributed to symptoms in FGID models, the

role of gastric CRF in FD models has not been demonstrated. In this study, we elucidated the

contribution of gastric CRF in functional dyspepsia symptoms and in modulation of the gut-

brain axis in a rat model.

Materials and methods

Animals

All animal procedures were approved by the Institutional Animal Care and Use Committee

(IACUC) at the University of California, San Francisco and were conducted in accordance

with the National Institutes of Health Guide for the Care and Use of Laboratory Animals. All

procedures were conducted in accordance to ARRIVE guidelines. Male Sprague-Dawley rats

(Harlan/Envigo Laboratories, Indianapolis, IN) were used in all the experiments. The rats

were housed in a room that was temperature (22–25˚C) and light controlled (12-h:12-h light/

dark cycle starting at 7:00 AM). They were handled daily to avoid handling act as a stressor.

Pups were weaned at age of 3 weeks and were housed 2 pups per cage.

CRF system in functional bowel diseases
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Functional dyspepsia model

Functional dyspepsia model rat has been previously described [21]. Ten-day old rat pups

received 0.2mL of 0.1% iodoacetamide (IA) in 2% sucrose daily for 6 days by oral gavage (per-

formed by E.K and S.P). Control rat pups received 0.2mL of 2% sucrose alone. The pups were

returned to their home cage with the dam after gavage and were weaned at 21 days. Rats were

housed in pairs. At 8 weeks after IA or sucrose gavage, rats were randomized into four experi-

mental groups to receive either double-stranded RNA against CRF (dsCRF) or vehicle (veh) in

the stomach (Fig 1): Group 1 (Control): Sucrose + veh (n = 8), Group 2 (IA): IA + veh (n = 8),

Group 3 (Control dsCRF): Sucrose + dsCRF (n = 8), and Group 4 (IA dsCRF): IA + dsCRF

(n = 8). Rats were euthanized using isoflurane followed by decapitation to collect trunk blood

for hormone assays. Hypothalami were dissected and flash-frozen in liquid nitrogen for pro-

tein/RNA analyses. Stomachs were removed, weighed, cleaned and re-weighed, cut longitudi-

nally in half (to include both forestomach and corpus), and one half was fixed in 4%

paraformaldehyde, and the other half frozen for protein/RNA analyses.

Transient silencing of CRF in the stomach using RNAi

Surgery for RNAi injection was performed between 11–13 weeks after IA treatment (Fig 1).

Briefly, rats were anesthetized with 2% isoflurane and 5% O2 using a nose cone and a vapor-

izer. A midline laparotomy was performed and the stomachs were exteriorized for injections.

The exteriorized gut was kept moist with normal saline. Vehicle (groups 1 and 2) or 10 μg of

dsCRF (groups 3 and 4) was injected intramuscularly at 4 or 5 sites into the stomach wall as

described in our previous publications [19, 23, 24]. After injection, the abdominal fascia was

Fig 1. Schematic representation of FD model with time line for IA treatment, CRF-RNAi surgeries, and

behavioral testing. To induce FD, ten-day old rat pups received IA or sucrose (control) by gavage. Eight weeks later,

baseline behavioral tests (SPT and OFT) were conducted. Surgery for gastric RNAi injection (RNAi against CRF or

vehicle control) was performed 1 week after behavioral testing and 5 days after surgery, behavioral tests (SPT and OFT)

were repeated. Thus, the same rats served as their own baseline for behavioral testing. One week after surgery, rats

were euthanized and various tissue samples harvested and blood collected. At 10-day of age, male rat pups were

randomized to either control (2% sucrose gavage) or FD (0.1% IA gavage) groups (n = 16/group). At 8 weeks after

gastric irritation, adult rats in control and FD groups were then randomized to receive the following surgical

treatments: Group 1 (Control): Sucrose + vehicle injection (n = 8), Group 2 (IA): IA + vehicle injection (n = 8), Group

3 (Control dsCRF): Sucrose + dsCRF injection (n = 8), and Group 4 (IA dsCRF): IA + dsCRF injection (n = 8).

https://doi.org/10.1371/journal.pone.0203704.g001
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closed in two layers. Rats were given one dose of buprenorphine as analgesics immediately

after surgery and returned to home cage. Surgeries were performed by S-I.H and A.B.

Behavioral testing

Behavioral tests were conducted in sequential order; sucrose preference test (SPT) was per-

formed first, followed by open field test (OFT), with one- to two-day interval in between the

tests. SPT and OFT were performed twice; once at 8–10 weeks after IA treatment, but before

surgery and once after injection of vehicle or dsCRF (at least 3–5 days post-surgery) as delin-

eated in Fig 1. Behavioral tests were performed by E.K.

Sucrose preference test

Sucrose preference test was performed as described previously [21]. Briefly, rats were subjected

to a 48-hour training session and a 1-hour test session conducted 24 hours after the training

session. In the 48-hour training session, singly-housed rats were given a choice of two bottles,

one bottle containing sucrose solution (1%, W/V) and the second bottle containing tap water.

The bottles were placed to the left and right side of the feeding compartment, respectively and

were switched every 12 hours to prevent possible effects of side preference in drinking behav-

ior. After the training session, only tap water was provided for 6 hours. Food and water were

then withheld from rats for 18 hours. Subsequently, in the test session, rats again had a choice

of two bottles; one with sucrose solution (1%, W/V) and the other with tap water, respectively,

for one hour. Sucrose intake was calculated as follows: sucrose intake (g) divided by body

weight at the day of SPT [25].

Open field test

The open field apparatus consisted of an arena (122 cm × 122 cm × 46 cm) made of rectangular

black plastic [26–28]. Individual rats were gently placed into the center of the box and allowed

to explore the arena for 30 minutes. Movements were recorded by a video camera mounted

above the arena, and analyzed using TopScan Realtime option version 3.00 software (CleverSys

Inc., Reston, VA). The videos were analyzed by the Gladstone’s Neurobehavioral Core (CA) by

personnel who were blinded to the groups.

Antibodies

Primary antibodies: The primary and secondary antibodies, dilutions used, and sources were

as follows: Antibodies from Cell Signaling Technology, Danvers, MA: phospho-ERK (31912;

mouse, 1:1,000) [29], phospho-p38 (#9211S; rabbit, 1:1,000) [15]; Santa Cruz Biotechnology,

Santa Cruz, CA: CRF1 (sc-1238; goat, 1:200) [30], CRF2 (sc-20550; goat; 1:1,000) [15], ERK

(sc154; rabbit, 1:1,000) [29], p38 (sc7972; mouse; 1:1,000) [15]; Thermo Fisher Scientific, Wal-

tham, MA: phospho-JNK1/2 [Thr183, Tyr185] (44-682G; rabbit; 1:1,000) [31]; Millipore-

Sigma, Billerica, MA: JNK2 (05–986; mouse; 1:1,000) [32], β-actin (A2228; mouse; 1:5,000)

[15]; Courtesy of Prof. W. Vale: CRF (rabbit; 1:5,000) were used. Secondary antibodies: For

immunofluorescence staining goat anti-rabbit conjugated to Rhodamine Red-X (Jackson

ImmunoResearch) at 1:500 dilution was used. For Western blot analyses donkey anti-goat/rab-

bit conjugated to Alexa Fluor 680 (Thermo Fisher Scientific) and donkey anti-mouse conju-

gated to IRDye 800 (Rockland Immunochemicals, Pottstown, PA) at 1:20,000 dilution were

used.

CRF system in functional bowel diseases
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Western blot analyses

Stomach and hypothalamus tissue samples were homogenized in RIPA buffer (50 mM Tris-

HCl, pH7.4, 150 mM NaCl2, 5 mM MgCl2, 1 mM EGTA, 10 mM NaF, 10 mM Na4P2O7, 0.5%

Nonidet P-40; supplemented with protease inhibitor cocktail (Roche, Mannheim, Germany)

and phosphatase inhibitor cocktails (Sigma-Aldrich). Lysates (40 μg) was boiled with Laemmli

Sample Buffer (BIO-RAD, Hercules, CA), resolved with 10% SDS-PAGE, transferred to poly-

vinylidene difluoride membranes (PVDF, Immobilon-FL; Millipore, Billerica, MA) and

blocked for 1 h at room temperature in Odyssey Blocking Buffer (Li-COR Biosciences, Lin-

coln, NE). Membranes were incubated with primary antibodies overnight at 4˚C. Membranes

were washed for 30 min (1 × PBS, 0.1% Tween20) and incubated with secondary antibodies

for 1 h at room temperature. Blots were analyzed with the Odyssey Infrared Imaging System.

Mast cell count

Longitudinal stomach sections (5μM thick) were stained with Toluidine blue. Mast cells were

counted at ×20 magnification in 10 fields per forestomach and corpus area with a BZ-X700

microscope (KEYENCE, Osaka, Japan) and average mast cell number was calculated after

pooling data from all sections/rat. Mast cells were counted by a single researcher (S-I. H) in a

blinded manner. Images of the corpus and forestomach were acquired using a Nikon Eclipse

bright field microscope (x20 and x40 objectives), and images were captured using AxioVision

Imaging software.

ELISA for mast cell Tryptase, CRF and Cytokines

Total protein concentration was measured using BCA assay (BIO-RAD). Tryptase levels in

gastric lysates (90μg/well) were measured using a Rat Tryptase ELISA Kit (ABclonal, Woburn,

MA). CRF levels in gastric (50μg/well) and hypothalamic lysates (45μg/well), and plasma

(25μL/well) were measured using a Rat CRF ELISA Kit (Phoenix Pharmaceuticals Inc., Bel-

mont, CA). Cytokines (TNF-α, IL-1β, IL-6, and IL-10) levels were measured in gastric lysates

(30μg/well) and plasma (25μL/well) using a proinflammatory panel 2 V-PLEX Rat ELISA Kit

(Meso Scale Discovery, Gaithersburg, MD) on the MSD platform. All kits were used according

to the manufacturers’ instructions.

Immunofluorescence and microscopy

Longitudinal stomach sections (5μM thick) were deparaffinized in xylene and rehydrated in

ethanol series. Sections were incubated in blocking buffer (1x PBS, 0.3% Triton X-100, 10%

normal goat serum) for 1 h at room temperature. Sections were incubated with primary anti-

body (anti-CRF) overnight at 4˚C, washed, and incubated with fluorescent secondary antibod-

ies (conjugated to Rhodamine Red-X) for 1 h at room temperature. Images were acquired

using a Nikon Eclipse epi-fluorescence microscope (20x and 40x objectives) and images were

captured using AxioVision Imaging software.

Statistical analysis

Two-way ANOVA was used to analyze interactions between treatment groups. When main

effects were significant, Student’s t test was used to compare two data points using Prism v7.0

software (GraphPad Software Inc., La Jolla, CA). A p value of p<0.05 was considered statisti-

cally significant and tendencies were discussed at p>0.051 to 0.40. Data are shown as

mean ± standard error of the mean (SEM).

CRF system in functional bowel diseases
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Results

Mast cell numbers increased in the stomach of IA-treated rats

Low-grade inflammation and presence of mast cells have been reported in human subjects

with FD [10, 33], but have not been determined in animal models. Toluidine blue-stained

stomach sections revealed that mast cell infiltration was present in the submucosal layers of

corpus and forestomach regions (Fig 2A). Mast cell numbers increased by 54% in IA-treated

rats compared to controls (Fig 2B, IA vs. Control, p<0.01). CRF is known to degranulate mast

cells and thereby exacerbates inflammation [34]. While mast cell infiltration increased in the

gastric mucosa of IA-treated rats, no significant change in mast cell degranulation was noted

between IA-treated and control rats (Fig 2A, inset).

CRF-RNAi in the stomach modulated mast cell numbers in IA-treated rats

We ascertained if transient inhibition of gastric CRF expression affected mast cell numbers or

granulation. CRF-RNAi did not affect mast cell degranulation. Two-way ANOVA revealed sig-

nificant main interaction between CRF-RNAi and IA treatment on mast cell numbers (F

Fig 2. Modulation of mast cell infiltration in FD model. (A) Representative stitched images of toluidine blue-stained stomach sections of control and IA rats

(scale bar = 1000μm). Magnified images of the corpus and the forestomach areas are shown (scale bar = 100μm); inset: zoomed-in mast cells. (B) Two-way

ANOVA showed significant main interaction between IA treatment and CRF-RNAi injection (p<0.05). Mast cell numbers were higher in IA-treated rats than

control rats (p<0.01; Student’s t-test; IA: 28.0 ± 2.7 vs. Control: 18.2 ± 1.9; n = 7-8/group). In IA-treated rats, dsCRF injection tended to decrease the numbers

of mast cells compared with vehicle-injected controls (p = 0.08; Student’s t-test; IA: 28.0 ± 2.7 vs. IA dsCRF: 21.8 ± 1.8; n = 7-8/group). (C) Mast cell tryptase

levels in gastric lysates did not differ between control and IA-treated groups.

https://doi.org/10.1371/journal.pone.0203704.g002
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(1,24) = 4.945; p<0.05). CRF-RNAi in IA-treated rats tended to decrease the numbers of mast

cells in the stomach compared with IA-treated rats (Fig 2B, IA vs. IA dsCRF, p = 0.08). Next

we determined mast cell tryptase levels in gastric lysates. Neither IA nor CRF-RNAi treatments

affected gastric tryptase levels (Fig 2C).

Mast cell numbers showed an association with behavior measures

Decreased sucrose intake is reflective of anhedonia and IA-treatment has been shown to result

in depression-like behavior in adult rats [21], but the role of CRF in mediating sucrose intake

has not been shown. Two-way ANOVA revealed significant main interaction between IA

treatment and CRF-RNAi on sucrose intake (F (1,28) = 6.961; p<0.05). Sucrose intake

decreased in IA-treated rats compared to controls (Fig 3A, IA vs. Control, p<0.05). Since mast

cells are known to modulate gut-brain function, we next determined whether mast cells

showed any relationship with sucrose intake. Sucrose intake showed an inverse correlation

with mast cell numbers in the stomach (Fig 3B, R = 0.4207; p = 0.0255).

Anxiety-like behavior is reported in animal models of functional bowel disorders [21, 35].

In this study, no significant main effect of IA treatment or CRF-RNAi was observed on the

total distance traveled, thigmotaxis, or time spent in the center during 30-minute test period

between groups (Fig 3C). However, mast cell numbers showed a positive association with total

distance moved (Fig 3D, R = 0.5194; p = 0.0046).

Transient-silencing of CRF increased gastric transit

Intraperitoneal or intravenous administration of CRF has been show to delay baseline gastric

transit via activation of CRF2R in otherwise naïve animals, suggesting that CRF delayed gastric

Fig 3. Behavioral modulation in FD by gastric CRF and association with mast cells. (A) Two-way ANOVA revealed

significant main interaction between IA treatment and CRF-RNAi injection on sucrose intake (p<0.05). Sucrose

intake of IA-treated rats (IA) significantly decreased compared with control rats (p<0.05; Student’s t-test; IA:

1.02 ± 0.2 vs. Control: 2.00 ± 0.30; n = 8/group). Transient silencing of gastric CRF tended to restore sucrose

consumption or preference in IA-treated rats. (B) Linear regression analyses showed a negative correlation between

mast cell numbers and sucrose consumption. (C) Neither IA treatment (IA) nor transient silencing of gastric CRF

modulated anxiety-like behavior as reflected by unchanged total distance moved or thigmotaxis in open field test. (D)

Linear regression analyses showed a positive correlation between mast cell numbers and total distance moved. Empty

circles (Control), filled circles (IA), empty squares (Control dsCRF), and filled squares (IA dsCRF).

https://doi.org/10.1371/journal.pone.0203704.g003
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transit [36–38]. Two-way ANOVA showed main effect of CRF-RNAi on stomach contents (F

(1,28) = 9.873; p = 0.004), but no effect of IA treatment. Transient silencing of CRF in control

rats decreased gastric contents by 24.1% compared to vehicle-injected controls (Fig 4A, Con-

trol dsCRF vs. Control; p<0.05), suggesting that gastric transit increased. Similarly, CRF-RNAi

decreased gastric contents in IA-treated rats by 24.7% compared to IA-treated rats (Fig 4A, IA

dsCRF vs. IA, p = 0.051). Importantly, stomach mass without contents did not differ between

groups (Fig 4B), suggesting that IA treatment did not alter baseline stomach size. Neither IA

nor CRF-RNAi treatments affected body weights, colon length, and spleen weights.

Transient-silencing of CRF altered hypothalamic CRF levels

CRF released from the brain is known to mediate both central and peripheral effects, but it is

not known if gastric CRF can feedback to mediate central effects. We previously showed that

CRF immunoreactivity in the hypothalamic paraventricular nucleus (PVN) was increased in

IA-treated rats [21]. Although IA treatment increased CRF levels in the hypothalamic lysates

by 82% compared to controls, it did not attain statistical significance (Fig 5A, IA vs. Control,

p = 0.24). IA treatment also resulted in non-significant increases in CRF levels in the stomach

compared to controls (IA vs. Control, p = 0.37). Transient silencing of CRF in the stomach

decreased CRF levels in the hypothalamus in IA-treated rats compared to vehicle-injected IA-

treated rats (Fig 5A, IA dsCRF vs. IA, p<0.05). Neither IA nor CRF-RNAi treatments affected

plasma CRF levels (Fig 5B). Robust CRF immunostaining was detected in the mucosal layers

and myenteric neurons in stomach sections from IA-treated rats (Fig 5C, top row). In the pres-

ence of dsCRF, CRF signal was undetectable in the mucosal layer and the signal was very weak

or patchy in the myenteric neurons (Fig 5C, middle row). No staining was detected when pri-

mary antibody was excluded (Fig 5C, bottom row).

IA treatment and CRF-RNAi modulated CRF2 receptor levels

CRF2 is predominantly expressed in peripheral tissues including in the gastrointestinal tract

and mediates anti-inflammatory effects [15, 39, 40]. CRF2 can exist as both monomers and/or

(hetero)dimers [41, 42]. Two-way ANOVA showed significant main effect of IA treatment on

expression of CRF2 dimers (F(1,28) = 29.8; p<0.0001). Expression levels of CRF2 dimers

decreased by 76.8% in stomachs of IA-treated rats compared to controls (Fig 6A, IA vs.

Fig 4. Transient silencing of gastric CRF altered gastric emptying. (A) Two-way ANOVA indicated significant

effect of CRF-RNAi injection on stomach contents (p = 0.004). The total weight of the stomach with its content was

lower in rats after CRF-RNAi (p<0.05; Student’s t-test; Control dsCRF: 0.0107 ± 0.0009 vs. Control: 0.0141 ± 0.0012;

n = 8/group, p = 0.051; Student’s t-test; IA dsCRF; 0.0121±0.0009 vs. IA 0.01611±0.0015; n = 8/group). (B) The weight

of empty stomachs was similar between the 4 groups.

https://doi.org/10.1371/journal.pone.0203704.g004
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Control; p<0.0001). CRF-RNAi did not affect baseline expression levels of CRF2 dimers (Fig

6A, Control dsCRF vs. Control). CRF2 dimer levels remained lower by 53.6% in IA-treated

rats with CRF-RNAi compared with control rats with CRF-RNAi (Fig 6A, IA dsCRF vs. Con-

trol dsCRF; p<0.05), but transient silencing of CRF in the stomachs of IA-treated rats

increased CRF2 dimer levels by 66.6% compared to vehicle-injected IA-treated rats (Fig 6A, IA

dsCRF vs. IA; p<0.05).

Two-way ANOVA also showed significant main effect of IA treatment (F(1,28) = 15.7;

p<0.001) and interaction between IA treatment and CRF-RNAi (F(1,28) = 9.48; p<0.005) on

expression levels of CRF2 monomer band (Fig 6B and 6C). CRF-RNAi increased CRF2 mono-

mer levels by 84.8% compared to vehicle-injected controls (Fig 6B, Control vs. Control dsCRF;

p<0.05), suggesting that transient silencing of gastric CRF affected expression levels of its

receptor, CRF2. After CRF-RNAi in IA-treated rats, CRF2 monomer levels were reduced by

68.6% (Fig 6B, Control dsCRF vs. IA dsCRF; p<0.0005).

Fig 5. Gastric CRF modulated hypothalamic CRF levels. (A) CRF levels in the hypothalamus decreased after

transient silencing of CRF in the stomach using RNAi in IA-treated rats (p<0.05; Student’s t-tests; IA dsCRF:

0.09 ± 0.05 vs. IA: 0.30 ± 0.06; n = 8/group) compared to control rats, reflecting a bidirectional feedback of the gut-

brain axis. (B) Plasma CRF levels were not changed by either IA treatment or after transient silencing of CRF in the

stomach. (C) Representative images of CRF-stained stomach sections of IA rats without (top row) and with (middle

row) dsCRF treatment (scale bar = 50μm). Bottom row is negative control staining where primary antibody was

excluded. Inset: Higher power (40x) images of the brush border of the mucosal layer and the myenteric neurons.

https://doi.org/10.1371/journal.pone.0203704.g005
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Fig 6. Modulation of CRF receptor levels in FD. Western blot analyses showing quantification of CRF receptor

dimeric and monomeric bands in stomach and hypothalamic protein lysates. β-actin, a housekeeping gene was used as

a loading control and its levels were used for normalization. (A) Two-way ANOVA showed significant effect of IA

treatment on CRF2 expression levels in the stomach (p<0.0001). CRF2 dimer levels (~100 kDa band) decreased by

~76.8% in IA-treated rats compared to controls (p<0.0001; Student’s t-tests; n = 8/group). CRF-RNAi increased CRF2

dimer expression in FD rats (p<0.05; Student’s t-tests; n = 8/group), but not in control rats. (B) Two-way ANOVA

revealed significant main effect of IA treatment and interaction between IA treatment and CRF-RNAi injection

(p<0.001 and p<0.005, respectively). CRF2 monomer (~60 kDa band) expression increased in control rats after

CRF-RNAi (p<0.05; Student’s t-test; n = 8/group), suggesting that ligand levels regulate receptor expression levels. (C)

Representative Western blots showing gastric CRF2 mono- and dimers. (D) Two-way ANOVA revealed significant

main effect of IA treatment on CRF1R levels in the hypothalamus (p<0.005). CRF1 dimer (~100 kDa band) expression

increased in IA-treated rats compared to control- rats (p = 0.06; Student’s t-tests; n = 4/group). CRF-RNAi further
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Central effects of CRF are mediated via activation of CRF1. Two-way ANOVA showed

main effect of IA treatment on expression of CRF1 dimers (F(1,12) = 16, 41; p<0.005). CRF1

dimer levels increased in hypothalamus of IA-treated rats and transient silencing of CRF fur-

ther increased CRF1 dimer levels in IA-treated rats (Fig 6D, Control dsCRF vs. IA dsCRF;

p<0.05). Neither IA nor CRF-RNAi treatments affected CRF1 monomer levels (Fig 6E and

6F). Of note, CRF1 levels were not detected in stomach lysates and conversely, CRF2 levels

were undetected in hypothalamic lysates.

CRF levels are positively associated with TNF-α levels

The involvement of cytokines in FD remains equivocal. In this rat model of FD, IA-treatment

did not affect plasma or gastric TNF-α levels compared to controls (Fig 7A and 7B). Transient

silencing of CRF increased baseline plasma TNF-α levels in IA-treated rats as well as in con-

trols compared to vehicle-injected IA-treated rats (Fig 7A, IA vs. IA dsCRF; p = 0.07 and IA vs.

Control dsCRF; p<0.05). Gastric TNF-α levels tended to increase in IA-treated rats with

CRF-RNAi compared to IA-treated rats that had vehicle injection (Fig 7B, IA dsCRF vs. IA,

p = 0.08). Plasma CRF levels showed a strong positive correlation with plasma TNF-α levels

(Fig 7C, R = 0.7155; p = 0.0018). Plasma IL-1β levels tended to be higher in IA-treated rats

after RNAi, but gastric IL-1β levels did not differ between groups (Fig 7D and 7E). Plasma and

gastric IL-6 and IL-10 levels were below detection limits in all 4 groups.

IA treatment and gastric CRF modulated MAPK signaling

MAPK signaling is known to regulate cytokine production in models of inflammation, but the

involvement of MAPKs in FD model is unknown. We ascertained the effect of IA treatment

and CRF-RNAi on phosphorylation levels on p-38, ERK1/2, and JNK. Two-way ANOVA

showed main effect of IA treatment on expression of phospho-p38 in gastric lysates (F(1,28) =

6.272; p = 0.018). CRF-RNAi treatment significantly increased gastric p-p38 levels by 155% in

IA-treated rats compared to controls (Fig 8A and 8F, IA dsCRF vs. Control dsCRF, p<0.05).

Further analysis showed that phospho-p38 levels did not show any significant association with

mast cell numbers, CRF, TNF-α, or IL-1β levels (gastric or plasma).

Two-way ANOVA showed main effect of IA treatment on expression of phospho-ERK1 in

the stomach (F(1,28) = 5.492; p = 0.026). Phospho-ERK1 (pERK1) levels increased in the gas-

tric lysates by 89.2% in IA-treated rats compared to controls after CRF-RNAi (Fig 8B and 8F,

IA dsCRF vs. Control dsCRF, p = 0.09). pERK1 levels were also significantly increased by

154% in IA-treated rats with transient silencing of CRF compared with controls (Fig 8B IA

dsCRF vs. control, p<0.05). Gastric CRF (Fig 8C, R = 0.3869; p<0.05) and plasma IL-1β levels

(Fig 8D, R = 0.5053; p<0.05) displayed a positive relationship with p-ERK1 levels. Mast cell

numbers or TNF-α levels did not exhibit any association with gastric pERK1 levels. While p-

ERK2 levels did not differ between groups after IA treatment or CRF-RNAi, gastric CRF levels

showed a strong positive correlation with pERK2 levels (Fig 8E and 8F, R = 0.9203; p<0.0001).

Mast cell numbers or IL-1β levels did not exhibit any association with p-ERK2 levels. Phos-

pho-JNK levels were not affected by either IA treatment or CRF-RNAi nor showed any associ-

ation with mast cell numbers, CRF, TNF-α, or IL-1β levels in the stomach or plasma.

increased CRF1 dimer levels in IA rats (p<0.05; Student’s t-tests; n = 4/group). (E) CRF1 monomer levels (~50 kDa

band) in the hypothalamus were not affected by either IA or CRF-RNAi treatments. (F) Representative Western blots

showing hypothalamic CRF1 monomers and dimers.

https://doi.org/10.1371/journal.pone.0203704.g006
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Fig 7. Modulation of cytokine levels in FD. (A) Two-way ANOVA indicates significant main effect of CRF-RNAi on plasma TNF-α
levels (p<0.05). Plasma TNF-α levels increased after CRF-RNAi treatment (p = 0.07; Student’s t-test; IA: 1.47±0.15 vs. IA dsCRF:

1.86 ± 0.09; n = 4/group and p< 0.05; Student’s t-test; IA: 1.47 ± 0.15 vs. Control dsCRF: 2.02 ± 0.16; n = 4/group). (B) Gastric TNF-α
levels tended to increase after CRF-RNAi in IA rats (p = 0.08; Student’s t-test; IA dsCRF: 0.27 ± 0.04 vs. IA: 0.17 ± 0.02; n = 8/group).

(C) Linear regression analyses showed that plasma TNF-α levels were directly proportional to plasma CRF levels. Empty circles

(Control), filled circles (IA), empty squares (Control dsCRF), and filled squares (IA dsCRF). (D) Plasma IL-1β levels (n = 4/group) and

(E) gastric IL-1β showed no significant differences between the 4 groups (n = 8/group).

https://doi.org/10.1371/journal.pone.0203704.g007

CRF system in functional bowel diseases

PLOS ONE | https://doi.org/10.1371/journal.pone.0203704 September 7, 2018 12 / 20

https://doi.org/10.1371/journal.pone.0203704.g007
https://doi.org/10.1371/journal.pone.0203704


Fig 8. Modulation of phosphorylation of MAPK in FD. Western blot analyses showing quantification of phosphorylated levels of p38

and ERK1/2. Total levels of p-38 and ERK1/2 were used for normalization. (A) Two-way ANOVA showed significant main effect of IA

treatment on p-p38 levels (p = 0.018). Levels of p-p38 increased in IA-treated rats compared to controls after CRF-RNAi (p<0.05;

Student’s t-tests; n = 8/ group). (B) Two-way ANOVA revealed a significant main effect of IA treatment on pERK1 levels (p = 0.026).

Levels of pERK1 increased in IA-treated rats after CRF-RNAi compared to controls (p = 0.09; Student’s t-tests; n = 8/group). (C) Linear

regression analyses showed that the levels of pERK1 in the stomach were directly proportional to the CRF levels in the stomach

(R = 0.3869, p<0.05). (D) Linear regression analyses showed that the levels of pERK1 correlated directly to the plasma levels of IL-1β
(R = 0.5053, p<0.05). (E) Linear regression analyses showed that levels of pERK2 in the stomach were directly proportional to gastric

CRF levels (R = 0.9192, p<0.0001). Empty circles (Control), filled circles (IA), empty squares (Control dsCRF), and filled squares (IA

dsCRF). (F) Representative Western blots showing gastric p-p38, p38, ERK1/2, and p-ERK1/2 levels.

https://doi.org/10.1371/journal.pone.0203704.g008
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Discussion

Low-grade inflammation and a dysregulated gut-brain axis are being recognized as important

contributors to FGID symptoms. Early-life adverse events are a risk factor for development of

FGID in adulthood [43]. In this study, using a previously described rat model of FD where

10-day old neonates were exposed to gastric irritation over a period of several days, we found

that mass cell infiltrate increased in stomachs of IA-treated adult rats and associated with

behavioral changes in adult rats. Both IA treatment and transient silencing of gastric CRF

expression altered hypothalamic CRF and CRF1 expression. Behavioral changes are modulated

by activation of the HPA axis via hypothalamic CRF and CRF1, thus gut-brain feedback

appears to be modulated by gastric CRF as summarized in Fig 9. Interestingly, CRF levels dis-

played a direct relationship with TNF-α as well as with phosphorylation status of several

MAPK levels, suggesting that several immune and cell signaling pathways are modulated by

CRF.

Fig 9. Gut-brain axis modulation by gastric CRF: Schematic showing summary of findings. Gastric irritation in the

neonatal period increased mast cell infiltration, delayed gastric emptying, decreased CRF2 expression in the stomach, and

increased hypothalamic CRF and CRF1 expression in adult rats. IA treatment modulated depression-like behavior, which also

correlated negatively with mast cell numbers. Anxiety-like behavior, on the other hand, correlated positively with gastric mast

cell numbers. Taken together, these data suggest a dysregulated gut-brain feedback that may involve gastric mast cells.

Silencing of gastric CRF led to decreased numbers of gastric mast cells, and restored gastric transit. CRF levels were directly

proportional to TNF-α and pERK1/2 expression levels in the stomach. Gastric silencing of CRF prevented IA-induced

increases in hypothalamic CRF levels, suggesting that gastric CRF feeds back to the hypothalamus, which has been postulated

for patients with FGID, but has not been demonstrated so far (as depicted by a question mark). Thus, a bidirectional gut-

brain information flow may be involved in the pathogenesis of FD. CRF: corticotropin-releasing factor; CRF1: CRF receptor

1; CRF2: CRF receptor 2; FD: functional dyspepsia; GE: gastric emptying; HPA axis: hypothalamic-pituitary-adrenal axis; MC:

mast cell.

https://doi.org/10.1371/journal.pone.0203704.g009
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Mast cells are potentially important effectors in causation of FGID symptoms, including in

FD subjects. They are found in proximity to nerves in locations throughout the body, includ-

ing the gut mucosa [8, 44]. Mast cell numbers were increased in the antrum and corpus

regions of the stomach in Helicobacter pylori-negative FD subjects [45, 46]. In addition, a

recent meta-analysis study showed that mast cell numbers were greater in the stomachs of FD

patients compared to healthy subjects [10]. Our finding of increased mast cell numbers in the

whole stomach in IA-treated rats is consistent with findings in human FD patients and con-

firms that early-life adverse events can lead to presence of low-grade inflammation that may

persist in adulthood. In mast cell deficient mice and blockade of brain, but not peripheral mast

cells, was shown increase anxiety- and depression-like behavior in mice [47, 48]. Thus, in our

study, it is possible that modulation of gastric CRF might have altered brain mast cells num-

bers along with gastric mast cell numbers, thereby altering behavior.

CRF is known to induce degranulation of mast cells and thereby exacerbates inflammation

[34]. However, the source of gastric CRF is not known. Since RNAi works at the mRNA level,

our CRF-RNAi in the stomach suggested that stomach cells also locally transcribed CRF. Tran-

sient silencing of CRF in the stomach tended to decrease mast cell numbers in IA-treated rats

(Fig 9), but did not alter mast cell degranulation, raising the possibility that locally expressed

CRF influences mast cell infiltration, but may not be sufficient by itself to activate mast cells.

Psychological distress, including anxiety and depression, is associated with FD [12, 49]. IA-

treated rats showed depression-like behavior. Others also reported depression- and anxiety-

like behaviors in animal models of FD [20, 21, 43]. In this study, both anxiety-and depression-

like behavior measures were associated with mast cell numbers, albeit in an opposite manner.

Depression-like behavior was negatively associated with mast cell numbers, whereas anxiety-

like behavior was positively associated. While others have shown that in rat models of FD, the

amount of time spent in the center or open arm was less in behavioral tests [21], we did not

find any difference between IA-treated and control rats in the amount of time spent in the cen-

ter or thigmotaxis. This discrepancy can be explained by the sex of the researcher performing

behavioral tests. It was reported that male researchers increased anxiety-like behavior in

rodents, whereas female researchers did not [50]. In our study, all behavioral training, testing,

and animal care were performed by one woman researcher (E.K) and female husbandry staff.

This may account for the differences reported in other FGID models using behavioral mea-

sures as well. Nonetheless, in our study, total distance moved showed a direct relationship with

mast cell numbers present in the stomachs of rats. Thus, reducing chronic mast cell or other

immune cell infiltration may have beneficial effect on FGID symptoms. In agreement with our

findings, treatment with mast cell stabilizer, disodium cromoglycate, suppressed the effect of

acute psychological stress on small bowel permeability in human subjects [51].

Psychological factors are important symptoms in FGIDs [52]. While a dysregulated gut-

brain axis is closely linked to psychological morbidity in FGIDs [53], bidirectional feedback of

the gut-brain axis has not been demonstrated unequivocally. Here, we show that hypothalamic

CRF and CRF1 expression levels increased in IA-treated rats compared to controls, suggesting

that early-life adversity, such as gastric irritation, modulated hypothalamic CRF signaling via

the gut-brain axis. Our novel finding that silencing of gastric CRF prevented IA-induced

increases in hypothalamic CRF, strongly suggests a bidirectional gut-brain communication

may be involved in the pathogenesis of FD.

Accumulating evidence demonstrates that peripheral CRF is involved in the regulation of

gastrointestinal motility. Our observations revealed that transient silencing of gastric CRF

expression decreased gastric contents in general or increased gastric transit. In agreement with

these observations, others and we have previously reported that CRF modulates gastric empty-

ing and bowel motility [19, 20, 22]. Astressin, a nonselective CRF antagonist delayed gastric
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transit and blocked CRF and stress-induced gastric contractions in guinea pigs and rats [36,

54]. In agreement with these published data, we found a significant interaction between IA-

treatment and CRF-RNAi on expression levels of CRF2 in the stomach. While both monomers

and dimers of CRF2 were detected in the stomach, IA-treatment appeared to specifically

reduce dimer expression. Receptor dimerization can modify the functional characteristics of

the CRF receptors, including downstream signaling as we have described previously [41].

Whether a balance between CRF receptor monomer/hetero(di)mer alters signaling in gastric

cells under pathophysiology remains to be determined. Post-translational modifications of

receptors could be another contributing mechanism for altered function of the CRF system in

functional bowel disorders [42, 55]. In the periphery, CRF2 is the predominant receptor and

pharmacological inhibition of its function is known to block CRF- and stress-induced delayed

gastric emptying [56]. Thus, increase in local CRF levels due to stress or inflammation may

delay gastric motility and/or transit.

MAPKs signaling are activated by CRF receptors via changes in intracellular Ca2+ and

cAMP levels. p38 plays a key role in regulating TNF-α in primary human macrophages [57]

and in regulating cytoprotective Hsp27 [15, 58]. MAPKs regulate heat shock proteins [15],

NF-κB [59], and other target proteins to increase expression of a plethora of proinflammatory

cytokines, that include TNF-α, IL-1β, and IL-6. We investigated a subset of MAPKs whose

phosphorylation levels may be regulated by altered CRF/CRF receptor levels and signaling.

Others and we have previously shown that phosphorylation of MAPK including p38 and

ERK1/2 is altered in experimental models of gastrointestinal inflammation [29, 60, 61]. In this

study, IL-6 and IL-10 levels were undetectable in serum or gastric lysates, thus these cytokines

do not appear to contribute to FD symptoms in this model. However, their role in human

FGID cannot be ruled out. Transient silencing of gastric CRF increased phspho-p38 levels in

IA-treated rats. CRF levels were directly proportional to the phosphorylation levels of p-ERK1/

2. CRF levels were positively associated with TNF-α levels, suggesting that increased CRF levels

may contribute to low-grade inflammation by increasing TNF-α levels. Furthermore, p-ERK1

levels were positively associated with IL-1β, suggesting that p-ERK affected IL-1β expression.

Functional dyspepsia, a relapsing and remitting disorder, is the most common cause of

symptoms in the epigastric region and the upper gastrointestinal tract [2]. Stress is a major

contributing factor for FGID symptoms, including FD, likely through dysregulation of the

brain-gut axis. In this study, we showed that in a rat model of FD, gastric CRF is key modulator

of the gut-brain axis and contributes to FD symptoms by mechanisms that include mast cells.
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