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a b s t r a c t

There are many conditions in which a vortex ring deviates from axisymmetry. The shape of a three
dimensional vortex ring represents the axisymmetry of propulsion, which has applications in animal
locomotion (e.g., the free-swimming of a jellyfish), rocket andmarine propulsion devices as well as blood
flow through the heart valves. No fluid dynamics’ measure is yet defined to quantify the axisymmetry
of a three dimensional vortex ring with a single value. The non-axisymmetry exists, for instance, in the
vortex ring formeddownstreamof themitral valve of healthy hearts, and helps efficient bloodmomentum
transfer from the left atrium toward the aorta. Here, we introduce an index thatmeasures the deviation of
a vortex ring from axisymmetry. This index examines the spectrum of the impulse of a naturally-formed
vortex ring and expresses the deviation from axisymmetry in terms of the vortex’s impulse. We show
that the axisymmetry index is related to the second moment of the vorticity distribution of the ring, i.e.,
as the second moment of vorticity on one side increases compared to the other side, the axisymmetry
index decreases accordingly.

© 2014 Elsevier Masson SAS. All rights reserved.
1. Introduction

Vortex rings exist in nature wherever ‘‘propulsive systems’’ or
‘‘transient jet flows’’ are present; from flow through the mitral
valve to the vortex that pushes a jelly fish forward. Various charac-
teristics related to vortex rings’ formation, structure and dynamics
have been extensively studied in the past, many of which are well
reviewed by Shariff and Leonard [1]. The shape of the vortex ring
indicates the degree of axisymmetry of the flow. No fluid dynamics
measure currently exists to quantify the axisymmetry of a vortex
ring with a single value. Here, we develop an index that quantifies
the axisymmetry of vortex rings. This index not only allows dif-
ferentiating between non-axisymmetric rings but also quantifies
their difference, which is important in designing propulsive sys-
tems and for diagnostic purposes (e.g., cardiac flows).

There are many conditions in which vortices are non-
axisymmetric as have been numerically and experimentally
shown. One example is the non-axisymmetric vortex that forms
inside a healthy left ventricle of the heart. Non-axisymmetry can
be induced either because of an external strain field [2] or due
to a nonlinear perturbation of an axisymmetric vortex [3]. The
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metamorphosis of non-axisymmetric vortices into axisymmetric
structures and vice versa has been frequently reported. It has been
suggested that non-axisymmetry relaxes to an axisymmetric state
for a class of elliptic vortices through the ‘axisymmetrization’
process [4]. Along the same line, it has been shown that the axisym-
metrization process is due to the shear-diffusion averaging mech-
anism [5,6]. Alternatively, for sufficiently large Reynolds numbers,
axisymmetric vortices can evolve into an asymmetric or non-
axisymmetric state during a process called ‘asymmetrization’. Ax-
isymmetric vortex rings formed along with a starting jet out of
a circular nozzle are observed to ultimately become asymmetric.
Feng et al. numerically simulated the azimuthal instability for the
ring and showed that the ring remains axisymmetric during early
formation, but later on undergoes a wavy azimuthal instability [7].
Asymmetrization has been shown to be an indicator of perfor-
mance and control of aircraft and other flight vehicles capable of
extreme maneuvers [8].

For two-dimensional turbulence, the axisymmetrization pro-
cess results in the circular shape of the vortex [9]. The tendency
of isolated and initially non-axisymmetric vortices in becoming
axisymmetric by purely inviscid mechanisms has been demon-
strated by Dritschel [10]. Dritschel also showed that vortices with
sufficiently steep edge gradients can indefinitely remain non-
axisymmetric, and further defined the limits for the tendency to
axisymmetrization [10]. In 3D flows, O’Farrell and Dabiri [11] stud-
ied the variation of vortex formation time on non-axisymmetric
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vortex rings, formed from different elliptical nozzles [12]. Further-
more, Couch and Krueger [13] experimentally investigated the in-
teraction of vortex ringswith oblique surfaces in three dimensions.
They studied the symmetry of the flow based on moments of ki-
netic energy and vorticity around their centroids. In their study,
symmetry was defined using three moments of kinetic energy and
vorticity. In that study, the symmetry of the flow was investigated
with respect to planes and axisymmetry of the vortex ring with re-
spect to its axis was not addressed.

In this study, we introduce an index to quantify the degree of
non-axial-symmetry for vortex rings generated behind a nozzle or
in other propulsive systems. We systematically examine the per-
formance of the index for a range of vortex structures in analytical
vortex rings and in realistic computational fluid dynamics (CFD)
cases.

2. Methods and results

In this section, we describe an index to assess the axisymmetry
of 3D vortex rings. Here, by a vortex ring, we refer to any closed
vorticity structure (one complete ring) that can be either axisym-
metric or non-axisymmetric. In other words, a vorticity patch in an
otherwise ‘‘almost’’ irrotational flow field, where ‘‘almost’’ stands
for the possible presence of others ‘‘isolated’’ structures that do not
directly interact with each other (in terms of distances comparable
with the viscous length-scale).

According to Batchelor [14], the impulse for a general vortex
ring, Iv, is

Iv =
ρ

2


x × ωdV , (1)

where x is the position vector,ω is the vorticity vector, and V is the
volume of the fluid where the ring is located. For an axisymmetric
vortex ring, Eq. (1) simplifies to Ia [1], as follows

Ia = Iax̂ = πρx̂


ωθ (x, σ ) σ 2dxdσ , (2)

where x̂ is the axis of the ring; ρ is the density of the fluid; ωθ is
the vorticity distribution in any azimuthal plane θ ; and x and σ are
the axial and radial coordinates, respectively.

In contrast to an axisymmetric vortex ring, the circulation,Γ , of
a non-axisymmetric ring is not inevitably constant, as some vortex
lines can escape from the ring on one side and attach either to the
wake on the other side or to the upstream boundary layer [15]. Be-
cause of this, we computed the equivalent axisymmetric impulse
by examining the spectrum of axisymmetric impulses, Iaθ , at mul-
tiple θ-planes. A θ-plane is a plane that sections the vortex ring and
passes through the axis of the ring while making an angle θ with
the reference plane.

The radial vorticity centroid [1] for each θ-plane is defined as

Rθ =


Aθ

σωθ (x, σ ) dxdσ
Aθ

ωθ (x, σ ) dxdσ
. (3)

The axisymmetric impulse for each θ-plane is

Iaθ = Iaθ x̂ = πρx̂

Aθ

ωθ (x, σ ) σ 2dAθ , (4)

where Aθ is the area of the θ-plane whose extent is from the axis
of the ring to either the boundary of the domain or infinity, and
makes an angle θ with respect to the axis. Īa is the average of all
the impulses of the θ-planes and is called the impulse threshold,
i.e., the average of Iaθ s

Īa =
1
2π

 2π

0
∥Iaθ∥dθ =

1
N

N
i=1

∥Iaθ∥, (5)
Fig. 1. An example of a non-axisymmetric vortex ring. Planes shown in the figure
represent the planes where the axisymmetric impulse, Iaθ is calculated. The area
Aθ is the area of the θ-planes (from θ = 0, . . . , 2π ) whose extent is from the axis
of the ring to infinity. In the figure, only a portion of four θ-planes are shown, as
examples.

Fig. 2. An example of the spectrum of the vortex ring impulse at different θ-planes.
Īa , Ī< , Ī> are three representatives of any impulse spectrum that are used to define
the axisymmetry index, ξ =

Ī<
Ī>

.

whereN is the number of θ-planes. In this study, using 72 θ-planes,
θ = 0, 5π

360 , . . . ,
715π
360 with respect to the axis of the ring and with

a resolution of 100×100, provided the convergency of the results,
as schematically shown in Fig. 1. Depending on the complexity
of the vortex ring, increasing the number of θ-planes might yield
more accurate values for the equivalent axisymmetric impulses
and therefore, must be checked for convergency of the results. It
should be noted that for calculation of Iaθ , each θ-plane is assumed
to be an axisymmetric plane in its own (x, σ ) coordinate system.
We describe the axisymmetry index, ξ , to be a non-dimensional
impulse

ξ =
Ī<
Ī>

(6)

where Ī< is the average of all the impulses that are less than the
impulse threshold, i.e., Iθ < Īa. Similarly, Ī> is the average of all the
impulses that are greater than the impulse threshold, i.e., Iθ > Īa.
This concept is further clarified in Fig. 2.

The circulation in each θ-plane is found by

Γθ =


Aθ

ωθ · dAθ . (7)

The mean circulation and mean radial vorticity centroid are
defined as

Γ̄a =
1
N

N
i=1

Γθ , R̄a =
1
N

N
i=1

Rθ . (8)

For an axisymmetric vortex ring, ξ is equal to unity as there is no
difference between Ī< and Ī>. The less the difference, the more
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axisymmetric the vortex ring is. Once the vortex ring deviates from
axisymmetry, ξ deviates from unity. This deviation in the impulse
ratio is described in Eq. (6) and can be due to the eccentricity of
the vortex ring centroid, which is linked to a non-axisymmetric
distribution of circulation, Γθ , radial vorticity centroid, Rθ , and
impulse, Iθ , among all the θ-planes. In other words, the more
uniform the Iθ -spectrum is, themore axisymmetric the vortex ring
is. Consequently, an axisymmetric ring is only represented by one
impulse value: Īa while a non-axisymmetric vortex ring possesses
three distinct representatives: Īa, Ī<, and Ī>.

The axisymmetry of the 3D naturally-formed vortex ring is
measured with respect to (x̄ω, ȳω, z̄ω), which is the center of the
3D vorticity distribution, ω (x, y, z),

(x̄ω, ȳω, z̄ω) =



V

x∥ω∥1V
V

∥ω∥1V
,


V

y∥ω∥1V
V

∥ω∥1V
,


V

z∥ω∥1V
V

∥ω∥1V

 , (9)

where x, y, and z are the Cartesian coordinates; ∥ω∥ is the magni-
tude of the vorticity; and 1V is the finite cell volume. The centroid
and the axis of the ring are used in defining the θ-planes as well
as in the calculation of ξ . Alternatively, the vortex ring centroid
can be found by the methods described by Chong et al. [16], Braun
et al. [17], or Ouellette and Gollub [18]. For the cases where no in-
formation is available about the axis of the propulsion or transient
jet, one may use Principal Component Analysis to obtain the axes
of the ring.

In the following sections, we describe a systematic validation
for the axisymmetry index, ξ , in analytically and numerically ob-
tained vortex rings. First, we validate ξ for a Gaussian vortex ring
in an axisymmetric plane. Since a non-axisymmetric vortex ring is
a 3D flow structure, the performance of ξ in three dimensions is
examined. To test this, we utilize Hill’s spherical vortex [19] as a
3D benchmark for ξ . Additionally, several non-axisymmetric vor-
tex rings are generated by asymmetrically revolving the Gaussian
vorticity distribution around the axis. Finally, we examine the ax-
isymmetry of a vortex that is numerically formed from an oval-
shaped nozzle.

2.1. Gaussian vortex ring

First, we examine the axisymmetry index, ξ , for a Gaussian
vortex ring whose vorticity field is defined by [20] as follows

ωθ (x, σ ) =
Γ

πRc
2 exp


−

(x − x0)2 + (σ − R0)
2

Rc
2


, (10)

where σ is the distance from the axis, Γ is the circulation, Rc is the
core radius, and (x0, R0) are the coordinates of the Gaussian vortex
ring location.

A Gaussian vortex ring was generated using Eq. (10) in the xσ -
plane, as shown in Fig. 3(a). The ring was located at R0 = 5.0 and
x0 = 5.0,with Rc = 0.5 andΓ = 1.0 at the domain of x ∈ [0, 10.0]
and σ ∈ [0, 10.0]. The vorticity distribution was revolved around
the axis in a grid of 100× 100× 100 to compute the axisymmetry
index, as shown in Fig. 3(b). In this case, ξ was found to be 0.9965.

2.2. Hill’s spherical vortex (HSV)

HSV is a convenient example for the purpose of validation [19].
This vortex is an extreme member of the Norbury family vortex
rings [21], which is used as a model in applications such as the
motion of bubbles and droplets at high Reynolds number. The
vorticity inside the HSV varies linearly with the distance from the
axis of symmetry, while the vorticity outside the HSV is zero. In a
HSV, the external flow is irrotational around a sphere whereas the
internal flow possesses an axisymmetric vorticity distribution.
Fig. 3. A Gaussian vortex ring. (a) Gaussian vorticity distribution. The ring was
located at R0 = 5.0 and x0 = 5.0, with Rc = 0.5 and Γ = 1.0. (b) The isosurface
of vorticity magnitude ∥ω∥ = 0.14 s−1 is used to illustrate the ring. Contours of
vorticity magnitude are also shown.

TheHSV is described by two velocity fields. The internal field,ui,
is defined for points inside the unit sphere r =


x2 + y2 + z2 ≤ 1

and the external velocity field, uo, is when the points lie outside
the sphere (r ≥ 1)

ui (x, y, z) =

x2 + 1 − 2r2

xy
xz

 , (11a)

uo (x, y, z) =

z2r−5
−

1
3
r−3

−
2
3

xyr−5

xzr−5

 . (11b)

This results in a linear vorticity field distribution inside the sphere
ωx = 0, (12a)
ωy = −5z, (12b)

ωz = 5y, (12c)
while the vorticity is zero everywhere outside (r ≥ 1). Eqs. (11a)
and (11b) create a HSV whose axis is along the x-axis.

A HSV, with the centroid at the origin in a domain of 1.5×1.5×

1.5 was studied. The HSV vorticity distribution was populated in
100 × 100 × 100 grid. For HSV, the axisymmetry index was found
to be 0.9917.

2.3. Parametric generation of non-axisymmetric vortex rings

In this section, we describe how we artificially generated non-
axisymmetric vortex rings. In fact, non-axisymmetry can be found
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(a) ρ = 3.8.

(b) ρ = 4.9.

(c) ρ = 105.

Fig. 4. Different views of three vortex rings generated by different revolving factors
shown by isosurfaces of vorticity magnitude ∥ω∥ = 0.05 s−1 . The ring was located
at R0 = 5.0 and x0 = 5.0, with Rc = 0.5 and Γ = 1.0 at the domain of
x ∈ [0, 10.0] and σ ∈ [0, 10.0] in the xσ -plane. The vorticity distribution was then
revolved around the x-axis with different parameters. The domain has a resolution
of 100 × 100 × 100. (a) shows a non-axisymmetric vortex ring with ρ = 3.8
with ξ = 0.3136. (b) illustrates a non-axisymmetric vortex ring generated by
ρ = 4.9 with ξ = 0.3873. (c) depicts a vortex ring created by ρ = 105 with
ξ = 0.9781. Views in each row and from left to right are the yz-plane, xz-plane,
xy-plane, respectively.

in a wide variety of forms and the ones created in this section are
only examples to test the performance of the index. To produce
a non-axisymmetric vortex ring in three dimensions, (x, σ ) was
parametrically transformed to (x, y, z) by

x = x, (13a)
y = σ cos (α) , (13b)
z = σ sin (α) , (13c)

where α varies from 0 to 2π . In fact, (x, σ ) coordinates were
revolved around the x-axis to generate a 3D field. To introduce non-
axisymmetry in the vorticity distribution,we utilized the following
revolving relations for the coordinates

x = x [ρ + cos (α)]n , (14a)

y = σ cos (α) [ρ + cos (α)]m , (14b)

z = σ sin (α) [ρ + cos (α)]m , (14c)
(a) Circulation.

(b) Radial vorticity centroid.

(c) Impulse.

Fig. 5. Spectrum of circulation, Γθ , radial vorticity centroid, Rθ , and impulse, Iθ ,
in 72 θ-planes for the non-axisymmetric vortex ring parametrically created by
ρ = 3.8. The left figures represent a polar distribution while the ones on right
are a linear distribution versus the angle each θ-plane makes with respect to the
xy-plane. The axisymmetry index for this vortex ring is ξ = 0.3136.

where ρ is the revolving factor and varied from 2.3 to 105, n = 1,
and m = 2. ρ = 2.3 creates the most non-axisymmetric ring
in the set and ρ = 105 creates an axisymmetric one. Eq. (14)
introduces non-axisymmetry both axially and radially. In addition,
in the process of revolving, the vorticity at point (x, σ ) is mapped
to point (x, y, z), i.e., ωθ (x, σ ) → ω (x, y, z), according to

ωx = 0, (15a)
ωy = −ωθ sin (α) , (15b)

ωz = ωθ cos (α) . (15c)
By using Eqs. (10), (14), and (15) along with different values for

the revolving factor, 50 Gaussian three dimensional vortex rings
were createdwith different degrees of axisymmetry. For each case,
the ring was located at R0 = 5.0 and x0 = 5.0, with Rc = 0.5 and
Γ = 1.0 at the domain of x ∈ [0, 10.0] and σ ∈ [0, 10.0]. The
resolution of the grid was 100 × 100 × 100. Three of the gener-
ated vortex rings (ρ = 3.8, ρ = 4.9, and ρ = 105) are illus-
trated in Fig. 4, as examples. Figs. 5 and 6 show the variation of
circulation, radial vorticity centroid, and impulse among θ-planes
when ρ = 3.8 and ρ = 105. By varying the revolving factor, ρ,
from 2.3 to 105, the broadness of the circulation spectrum in the
θ-planes of each ring became narrower. In other words, the ra-
tio of the maximum to the minimum circulation, Γmax/Γmin, for
each vortex ring decreased from15.9905 to 1.0705 and approached
unity. Different revolving factors resulted in variation of the ax-
isymmetry index from 0.2035 to 0.9781. Fig. 7 shows the variation
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(a) Circulation.

(b) Radial vorticity centroid.

(c) Impulse.

Fig. 6. Spectrum of the circulation, Γθ , radial vorticity centroid, Rθ , and impulse,
Iθ , in 72 θ-planes for the non-axisymmetric vortex ring created parametrically by
ρ = 105. The left figures represent a polar distribution while the ones on right
are a linear distribution versus the angle each θ-plane makes with respect to the
xy-plane. The axisymmetry index for this vortex ring is ξ = 0.9781.

of axisymmetry index, ξ , versus the broadness of the spectrum of
three features of each vortex ring: circulation, radial vorticity cen-
troid, and impulse. As the ratio of the circulation approached unity,
the axisymmetry index asymptotically approached unity as well
(Fig. 7). Alternatively when the Γmax/Γmin increased, the axisym-
metry index nonlinearly deviated from unity. Similar observations
were found for the radial vorticity centroid and impulse of the ring.
By varying from ρ = 2.3 to ρ = 105, the ratio of the maximum
tominimum of the radial vorticity centroid decreased from 1.4706
to 1.0045 (Fig. 7(b)). Also, the ratio of maximum to minimum of
impulse of θ-planes reduced from 34.7087 to 1.072 (Fig. 7(c)).

2.4. Non-axisymmetric vortex ring downstream of an oval-shaped
nozzle

Here we examined the axisymmetry index in a realistic vortex
ring formed downstream of an oval-shaped nozzle. The ring was
numerically created in a piston-cylinder mechanism, as shown in
Fig. 8. The geometry of the domain was designed such that the axis
of the cylinder was the x-axis. ANSYS Fluent 13.0 (Ansys Inc., Ce-
cil Township, PA, USA) was used for the simulation. Because of the
symmetry of the problem, only half of the domain was modeled.
The boundary condition for the inlet of the oval was a constant
velocity Umax = 0.04 m/s. Equivalent diameter of the oval was
De = 0.05680 m. The fluid was water, and the Reynolds number,
Re = ρUmaxDe/µ, was 2048. Boundary conditions on the lateral
Fig. 7. Axisymmetry index, ξ , versus the ratio of extreme values of circulation,
radial vorticity centroid, and impulse. Each graph has 50 data points. (a) shows ξ

versus the ratio of the maximum to minimum circulation of the ring, Γmax/Γmin ,
in θ-planes, (b) illustrates ξ versus the ratio of the maximum to minimum radial
vorticity centroid of the ring, Rmax/Rmin , in θ-planes, and (c) shows ξ versus the
ratio of the maximum to minimum impulse of the ring, Imax/Imin , in θ-planes. The
plateau for ξ occurs when Imax/Imin is greater than 34, according to the parametric
equations (14) and (15), which could not generate more non-axisymmetric rings
and asymptotically approached 0.2035 (corresponds to revolving factor ρ = 2.3).

and bottom wall of the flow domain as well as the surfaces of the
oval cylinder were all no-slip boundary conditions. We assumed
that the free surface at the top boundary of the tank does not con-
siderably vary and therefore, considered to be an outflow bound-
ary condition. The simulation continued until L/De = tUmax/De =

2.51. Fig. 9(a) shows a formed vortex ring downstream of the noz-
zle at time 3.56 s (L/De = 2.51). Fig. 9(b) illustrates the vortic-
ity distribution in two planes. The axisymmetry index for this case
was calculated as ξ = 0.84. In other words, the formed ring devi-
ated approximately 16% from axisymmetry. The spectrum of non-
dimensional circulation, radial vorticity centroid, and impulse are
shown in Fig. 10. The evolution of the vortex ring with time is
shown in Fig. 11. Axisymmetry of the ring increased, followed by
a decrease when L/De < 0.2. The ring then showed a monotonic
increase shortly after its formation.

3. Discussion

Vortex rings occurring in nature have been identified as impor-
tant flow features. The shape of a vortex ring is proven to be an im-
portant feature of blood flow in the heart. Kilner et al. emphasized
the significance of the asymmetry of the flow through the heart
cavities [22]. The shape of the transmitral vortex ring that devel-
ops during the filling phase of the left ventricle has been shown to
be a measure of diastolic function [23] as well as being a tool to
assess the mitral valve [24].

To date, vortices have been examined from many different
perspectives and in diverse applications including aerospace [8],
cardiac flows [22,23,25,26], and free-swimming jellyfish [27,28].
However, no study has yet discussed the measurement of the
inherited non-axisymmetry of vortex rings with a single value.
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Fig. 8. Domain of the CFD model, dimensions of the oval-shaped nozzle, and the
wedge angle at the nozzle. Equivalent diameter of the oval is De = 0.05680 m.
We studied our developed axisymmetric index, ξ , for several
different vortex ring cases. The indexwas assessed against the vari-
ation of the ratio of extreme values in the spectrum of circulation,
radial vorticity centroid, and impulse, i.e. Γmax/Γmin, Rmax/Rmin,
and Imax/Imin. We found that the ratio of the extremes of circula-
tion, radial vorticity centroid, and impulse are all directly corre-
lated with the deviation of the vortex ring from axisymmetry. As a
result, the broader the spectrum of circulation, radial vorticity cen-
troid, and impulse, the less the axisymmetry index is, and hence,
the more non-axisymmetric the vortex is. In other words, as the
degree of non-uniformity in the distribution of the secondmoment
of vorticity about a vortex ring’s axis is increased (i.e., the impulse
on one side of the ring is a factor of the impulse of the other side),
the value for ξ decreases accordingly. Furthermore, as this non-
uniformity tends to vanish (i.e. the ratio of maximum to minimum
of Γ , R, and I tends to unity), the change in axisymmetry becomes
steep while its variation loses sensitivity at higher degrees of non-
uniformity.

According to Couch and Krueger [13], symmetrywith respect to
planes was investigated by three vorticitymoments. However, one
needs to combine them in order to measure the axisymmetry with
Fig. 9. (a) Isosurfaces of vorticity magnitude, ∥ω∥ = 2.22 s−1 for the CFD case at non-dimensional time L/De = 2.51. Six different views of the same vortex ring are shown
for better illustration of the ring’s non-axisymmetry (ξ = 0.84). (b) The vorticity distribution in two planes.



270 A. Falahatpisheh, A. Kheradvar / European Journal of Mechanics B/Fluids 49 (2015) 264–271
(a) Circulation.

(b) Radial vorticity centroid.

(c) Impulse.

Fig. 10. Spectrum of circulation, Γθ , radial vorticity centroid, Rθ , and impulse, Iθ ,
in 72 θ-planes for the non-axisymmetric vortex ring resulted from CFD. Figures
on the left represent a polar distribution while the ones on the right are a linear
distribution versus the angle that each θ-planemakeswith the xy-plane. The values
are non-dimensionalized by inlet velocity,U0 , equivalent diameter of the nozzle,De ,
density of the fluid, ρ, the average of the circulation, Γ̄a , and average of the radial
vorticity centroid, R̄a . The plotted Iθ is divided by the density of the fluid. ξ was
found to be 0.84.

Fig. 11. Axisymmetry versus non-dimensional time L/De for the CFD case.

one single value. Here, we defined this combination as

ξ ′
= 1 −

ω2
12 + ω2

13 + ω2
23

ω2
11 + ω2

22 + ω2
33

(16)

where ωij is the vorticity moments (i = 1, 2, 3 and j = 1, 2, 3),
as defined in [13]. With this definition, this index yields results
between0 and1 that can be comparedwith Eq. (6). The comparison
is shown in Fig. 12. As can be seen, the sensitivity of ξ =

Ī<
Ī>

to
axisymmetry is greater than the metrics developed based on the
concept introduced by Couch and Krueger.
Fig. 12. The comparison between Eq. (16) and ξ =
I<
I>

for the non-axisymmetric
vortex rings family (Eqs. (14) and (15)).

It should be noted that ξ and ξ ′ are both positive numbers ≤1.
According to Eq. (6), when ξ = 0, it implies that Ī< should be
absolutely zero. This cannot physically exist as Ī< is the average
of the impulses of the spectrum that is less than the threshold
defined by Eq. (5). Therefore, Ī< is a non-zero number. However,
if theoretically, Ī< would be orders of magnitude smaller than Ī>,
i.e., O


Ī<


≪ O


Ī>


, then axisymmetry index, ξ , would approach

zero. In other words, the vortex ring would possess a very broad
spectrum, which would cause a huge difference between Ī< and
Ī>. As a result, ξ is a positive number ≤1.

Similar to ξ , ξ ′ is a positive number ≤1. In order for ξ ′ to
become zero, ω2

12 + ω2
13 + ω2

23 should be equal to ω2
11 + ω2

22 + ω2
33.

This implies that the summation of strengths of the off-diagonal
vorticity moments is the same as that of the diagonal terms. For
propulsive systems as well as the transient jets, ω2

12 +ω2
13 +ω2

23 is
always less thanω2

11+ω2
22+ω2

33. This limits ξ ′ to values larger than
zero. In addition, adding an exponent, n, to Eq. (16), i.e., ξ ′

= 1 −
ω2

12 + ω2
13 + ω2

23


/

ω2

11 + ω2
22 + ω2

33

n, allows ξ ′ to be more
sensitive to the variation of the vorticity moments. However, even
improving the sensitivity of ξ ′ would not provide the capability to
correctly evaluate the symmetry around an axis. This is due to the
inherent dependency of ξ ′ on vorticity moments with respect to
Cartesian coordinate planes. Because of this definition, there can
be non-axisymmetric vortices for which ξ ′

= 1, which therefore
limits the application of ξ ′ to measuring symmetry rather than
axisymmetry.

4. Conclusions

A quantitative measure of axisymmetry is developed based on
the comparison of a naturally-formed vortex ring with equivalent
axisymmetric rings, as discussed in themethods section.We tested
the performance of the index in the analytical cases of Gaussian
vortex rings and Hill’s spherical vortex. For these cases, the ax-
isymmetry index, ξ was found to be in close agreement with the
axisymmetric nature of the rings (i.e., ξ = 1.0). Furthermore, a
series of independent non-axisymmetric vortex rings were para-
metrically generated in three dimensions and their ξ were studied
versus the ratio of the maximum to minimum of circulation, ra-
dial vorticity centroid, and impulse. The axisymmetry index was
found to be correlated to the second moment of vorticity about
the vortex ring’s axis. As the second moment of vorticity on one
side increases compared to the other side, the axisymmetry index
decreases accordingly. The index was also examined in the evolu-
tion of the formed vortex ring in a realistic CFD case in which the
nozzle was oval-shaped. The ring showed a monotonic increase in
axisymmetry shortly after its formation.
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