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Abstract The prevalence of commercial activities whose profit and cost are corre-
lated with weather risk makes weather derivatives valuable financial instruments that
enable hedging of price or volumetric (quantity) risk in many industries. This paper
proposes a multi-period equilibrium pricing model for weather derivative. In our styl-
ized economy representative agents of weather-sensitive industries optimizes their
hedging portfolios that drive the supply and demand for weather derivative which are
dynamically determined based on a utility indifference pricing framework. At equi-
librium the weather derivative market will be cleared and their market price can be
obtained. Numerical examples illustrate the equilibrium prices and optimal choices
for the weather derivative as function of the correlation between weather indices and
demand for the underlying commodity. We also demonstrate the benefit of multiple
trading opportunities which allows rebalancing of the hedging portfolio prior to the
commodity delivery date, as compared to a single shot framework.

1 Introduction

Weather derivatives are contingent claims whose payoff depends on the value of an
underlying weather index such as degree days over the contract periods, precipi-
tation, snowfall, and frost days. Many weather-sensitive industries such as energy,
insurance, agriculture, and leisure confront two types of risk; price risk and vol-
umetric (or quantity) risk, which are both correlated with weather. Existing com-
modity derivatives cannot be used to fully hedge price and volumetric risks because
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the two risks are not perfectly correlated and volume instruments are not traded.
Therefore, weather-sensitive industries may wish to diversify their portfolios by in-
troducing financial instruments driven by weather indices to mitigate risk which
cannot be covered by commodity derivatives. One of the main buyers of weather
derivatives is the energy industry because it needs to stabilize profits as the mar-
ket becomes deregulated and more competitive and because temperature is the most
significant factor which affects price and demand of power and natural gas (see
[21]). Weather derivatives were initially introduced by energy companies such as
Enron, Koch Industries, Southern Energy, Aquila and Castlebridge Weather Mar-
kets in the over-the-counter (OTC) markets of the US in 1996. In order to meet
rapidly growing demand and increase liquidity and accessibility, the Chicago Mer-
cantile Exchange (CME) launched the first electronic market place for standard-
ized weather derivatives in 1999. In 2007 18 US cities’ weekly, monthly, and sea-
sonal weather derivatives, 6 European, 2 Asia-Pacific, 6 Canadian cities’ monthly
and seasonal weather derivatives are being traded at CME. Also Hurricane weeklies
were newly listed in 2007. In spite of the rapid market growth at CME, over-the-
counter (OTC) markets are still important since weather indices are highly location-
dependent.

Despite the advantages and increased use of weather derivatives, there are no ef-
fective pricing models for these instruments because the underlying weather index
is not a tradable commodity or equity share and the market is incomplete. There-
fore, classical arguments based on the existence of the unique risk-neutral proba-
bility measure or a perfect replication of the weather derivatives payoff cannot be
applied (see [5, 15, 23]). Jouini [18] reviews three approaches to derivative pricing
in complete and incomplete markets; the arbitrage approach through the existence
of a risk-neutral density, the utility approach through a utility maximization, and the
equilibrium approach through a market clearing condition. Staum [29] surveys pric-
ing methodologies of derivative securities in incomplete markets such as no-arbitrage
pricing and indifference pricing as a special case of good deal bounds detailed in [28],
marginal pricing, and risk-neutral pricing. In an incomplete market there exist infi-
nitely many equivalent martingale measures (EMMs) and some criteria are needed to
choose a proper EMM, for example, minimum-distance EMM (see [13]), minimiza-
tion of hedging residual variance (see [27]), and minimal entropy martingale measure
(see [12]).

Previous studies on pricing weather derivatives can be classified as actuarial pric-
ing, risk-neutral pricing, indifference pricing, and equilibrium pricing. First, Jewson
and Brix [16] discusses statistical issues concerning weather derivative valuation such
as parametric and non-parametric distributions for modeling temperature variability,
multivariate meteorological forecasting, etc. Platen and West [24] provides a fair pric-
ing model, based on the idea that the growth-optimal portfolio is used as a numeraire
and all derivative price processes discounted by the growth optimal portfolio (bench-
marked) are martingales under the real world probability measure. Other actuarial
methods assuming stochastic daily average temperature have been studied by several
researchers (see e.g. [4, 7, 17]). Because of ease of use and their intuitive appeal,
the actuarial pricing approach is widely used in insurance industry which usually
adds risk loading on top of the premium calculated as the expected value under the
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real world probability measure. However, the actuarial pricing model cannot cap-
ture, systematically, the risk-aversion aspect of market participants. Alaton et al. [1]
and Yoo [31] propose a risk-neutral pricing model for weather derivatives by infer-
ring an EMM under the assumptions that temperature process follows the Ornstein-
Uhlenback (O-U) process and the market price of risk is constant. Hamisultane [14]
extracts information from the existing weather futures market to find a risk-neutral
distribution and the market price of weather risk. Brockett and Wang [6] propose
utility indifference pricing in a single-period problem using a mean-variance utility
function. They assume that one risky portfolio can represent all risky assets. How-
ever, in order to obtain the indifference price it is essential to specify the probability
distribution function of the risky portfolio return. Yamada [30] assumes that the risky
portfolio return follows a normal distribution to obtain closed form solutions for the
indifference valuation of monthly average temperature derivatives. As a special case
of indifference pricing marginal pricing is proposed by Davis [11]. Also see [2] for
the indifference pricing approach in continuous time. Finally, Cao and Wei [8] sug-
gests a consumption-based equilibrium pricing model by using the Euler equation
for valuation of weather derivatives in a discrete time horizon. They assume that in
equilibrium both the financial market and the goods market clear so that aggregate
consumption equals the dividends generated from the risky stock and then they cal-
culate a Stochastic Discount Factor (SDF) to price weather derivatives. Richards et
al. [25] suggested an equilibrium pricing model based on temperature processes fol-
lowing a mean-reverting Brownian motion with discrete jumps and autoregressive
conditional heteroscedastic errors. A standard Euler equation from the Lucas general
equilibrium valuation model was applied to pricing Cooling Degree Days (CDD)
weather options. Chaumont et al. [10] complete the market by constructing a special
security which makes climate risk tradable and derive a unique market price of risk
at equilibrium, by solving a backward stochastic differential equations.

Unlike other pricing approaches an equilibrium pricing model can explain the
market dynamics more realistically because the market price of weather derivatives
will settle at the equilibrium price which is between a bid and ask price spread re-
sulting from the various pricing methods. Moreover, in typical weather derivatives
markets underwriters have only limited control over prices and the ultimate price of
the weather derivatives is determined by supply and demand resulting from hedging
activities of market participants exposed to weather risk who are optimizing their
hedging portfolios. Therefore, in this paper we propose an equilibrium pricing model
in a multi-period setting under an exponential utility preference function. Previously
Lee and Oren [20] explored a single-period equilibrium pricing model in a multi-
commodity setting and as a special case derived closed form expressions for the solu-
tions under the assumption of a mean-variance utility function. Under a similar eco-
nomic setting as in [20] we will break up the planning horizon of market participants
in a discrete manner. In each period agents can rebalance their portfolios by all avail-
able information so as to achieve higher expected utility level of terminal wealth. In
order to obtain an equilibrium price of weather derivatives we will recursively derive
supply and demand functions in each period by combining the indifference pricing
method and the expected utility maximization problems of buyers and sellers using a
dynamic programming algorithm. An equilibrium price of the weather derivatives in
each period can be determined from the derived supply and demand functions.
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The outline of the paper is as follows. In Sect. 2 we first study a single-period
indifference pricing problem faced by buyers and sellers and then introduce the multi-
period formulation. Numerical examples are used to illustrate the results and extract
insights in Sect. 3. We conclude in Sect. 4.

2 Model

2.1 Assumptions and notation

In a frictionless economy we consider a multi-period portfolio optimization prob-
lem where each representative market participant can rebalance her portfolio at the
beginning of each period given the updated information. We assume that there are
three types of market participants; weather derivatives buyers with a liquid commod-
ity derivatives market (type i buyers), buyers dealing with a commodity for which
there is no liquid commodity derivatives market (type j buyers), and an issuer (un-
derwriter, denoted by m) of weather derivatives who is a pure financial entity and
does not engage in sales of physical commodities or trading of commodity deriv-
atives. All agents can trade on either side, i.e., both types of buyers can engage in
short sales whereas the issuer can buy weather derivatives from the market if nec-
essary. We assume that all agents maximize the expected utility of terminal wealth
subject to a self-financing constraint. Although Samuelson [26] and Lucas [22] deal
with maximizing the sum of the discounted expected utility of consumptions we fo-
cus on maximizing the expected utility of terminal wealth because weather-sensitive
industries are institutional investors which do not consume any goods and just hedge
their risk exposure in peak seasons such as summer or winter in which spot prices,
demand, and temperature are more volatile than in spring or fall. Moreover, the buy-
ers’ terminal wealth is comprised of three parts; the income from the retail business,
the payoff of the commodity portfolio if available, and the payoff of weather deriv-
atives. In our economy the income function has the form of (regulated retail price—
wholesale spot price) × demand, which assumes that each buyer has an obligation to
meet random demand at a fixed price either due to a regulatory constraint or compet-
itive pressure. This type of the income function is common in energy industries (e.g.
electricity) where the supplier has an obligation to meet variable load at fixed retail
prices fixed by regulators or through a service contract for a load slice.1 Given the
income function, each buyer faces not only spot price risk but also volumetric risk,
whereas, spot price, demand, and temperature are all correlated. The demand of the
type i and j buyers can be positively or negatively correlated with temperature. The
commodity portfolio consists of a risk free bond and commodity derivatives which
include forward contracts and European call and put options of all strikes. The un-
derlying asset price of the commodity derivatives is its own spot price. However, if
the type i buyers represent electricity distribution companies the underlying asset of

1Some buyers can have a ‘news vendor’ type profit function, which means that there may exist shortage
cost, inventory cost and salvage values for the leftover stocks. But in this paper, we will not consider a
‘news vendor’ type profit function for simplicity.
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the commodity derivatives will be futures with maturity N because of non-storability
of electricity.2 Each buyer can trade these financial assets from time 0 to time N − 1
so as to hedge the two types of risks and maximize expected utility. In addition each
buyer is willing to include weather derivatives in her portfolio at or below the indif-
ference price. In other words, each buyer is willing to pay a certain amount for the
weather derivative to get utility gains by reducing uncertainty but does not want to be
worse off in expected utility terms than without the weather derivative. By applying
the indifference pricing to valuation of the weather derivative in the portfolio opti-
mization problem we can determine supply and demand functions for the weather
derivative in each period which in turn determine the equilibrium price through a
market clearing condition.

We now describe the problems confronted by the buyers and the issuer more
specifically. At time 0 the type i buyers with certain initial wealth construct the port-
folios consisting of risk-free bonds, commodity derivatives maturing at time 1, and
weather derivative maturing at time N . At time 1 the type i buyers have the portfolio
values which are realized from the previously constructed portfolios and construct
new portfolios given all updated information and so on up to time N − 1. The type j

buyers and the issuer can only trade the risk-free bonds and weather derivatives, but
not commodity derivatives which are irrelevant to their risk exposure at time N . Indif-
ference pricing and all market participants’ expected utility maximization problems
enable us to determine the supply and demand functions in each period and as a re-
sult we get each period’s equilibrium price for the weather derivative in this economy.
Therefore, we can formulate the problems of the type i and j buyers and the issuer
as separate stochastic dynamic programming problems.

In many financial theories the mean-variance utility function is widely accepted.
While in theory it is based on maximizing an exponential utility function over a
normally distributed outcome, it is a good approximation under more general util-
ity functions and distributional assumptions (see [19]). However, the mean-variance
utility function is hard to deal with in the stochastic dynamic programming setting
because of the following property of the variance operator.

var[var(·|Ft)|Fs] �= var(·|Fs) ∀s < t (1)

where Ft is the filtration at time t . Therefore, in this paper we assume that all
agents are exponential utility maximizers. The exponential utility function is well
defined and more tractable in the stochastic dynamic programming setting and in
the context of indifference pricing. The exponential utility function has the form
of U(x) = − 1

a
exp(−ax) where a denotes the risk aversion coefficient and U(·) is

smooth, increasing and strictly concave on R, and twice continuously differentiable
on R.

Under the assumptions mentioned in the previous paragraphs we denote a fil-
tered probability space triplet by (�, F ,P) in order to formulate the stochastic dy-
namic programming problems of the buyers and the issuer. The discrete filtration

2Electricity in different periods must be considered as different assets because once generated, electricity
should be consumed immediately.
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F = {Fn}n∈{0,1,...,N} describes the information structure and Fn represent the infor-
mation available at time n. Let index k ∈ {i, j,m} be the types of the buyers and
the issuer. We assume that there are u numbers of the type i buyers, v numbers of
the type j buyers, and the representative issuer of weather derivatives denoted by in-
dex m. The commodity spot (or futures) prices Pk,n change their values only at the
discrete time {0,1, . . . ,N} and are Fn-measurable. Demands and temperature de-
noted by Dk,N and TN are FN -measurable. In the next two sections we formulate
and solve the stochastic dynamic portfolio optimization problems by working back-
wards. We first explore the single-period problems and then two-period problems.
Lastly we generalize the results for the multi-period portfolio optimization problem.

2.2 Single-period indifference price

In this section we define states, controls, randomness, and the value functions of the
stochastic dynamic programming problems corresponding to type i and j buyers and
the issuer. We then derive the equilibrium price under the exponential utility function
with a single trading opportunity. First we describe the dynamic system equations for
type i buyers as

Si,n+1 = zi,n(Si,n, xi,n+1, Yi,n+1) ∀n = 0,1, . . . ,N − 1 (2)

where Si,n denotes a state of the dynamic system at time n and has the vector form
(Vi,n,Pi,n,Wn). Vi,n is the type i buyer’s portfolio value at time n and zi,n(·) denotes
some deterministic function which maps the previous state to the next state. The
randomness Yi,n+1 can be expressed as (Pi,n+1,Wn+1). The last state Si,N has the
additional randomness because terminal wealth of the type i buyers is dependent
on the random demand Di,N and temperature TN , therefore the randomness at N

Yi,N has the form (Pi,N ,Di,N ,TN). In addition our control xi,n+1(Pi,n+1) at time n

represents the payoff function of the commodity derivatives portfolio which consists
of a risk-free bond and commodity derivatives. Note that xi,n+1(Pn+1) is predictable,
i.e. it is Fn-measurable. The type i buyer’s profit function (or terminal wealth) at time
N can be defined as

�i,N = Ii(Di,N ,Pi,N ) + xi,N (Pi,N ) + αi,NWN

= Ii(Di,Pi,N ) + Vi,N (3)

where Ii(Di,N ,Pi,N ) denotes the income of type i buyers from the retail business.
αi,N and WN are the quantity purchased at time N − 1 and the payoff (or price) at
time N of the weather derivative, respectively. Then the corresponding value function
of type i buyers at time n can be defined as

J (Vi,n − αn+1Wn,αn+1) = max
{xi,n+1(Pn+1)}

En[Ui(�i,N )]

s.t. EQ
n

[
xi,n+1(Pi,n+1)

1 + rn

]
+ αi,n+1Wn − Vi,n = 0

(4)
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where rn denotes the interest rate at time n. In the above self-financing trading strat-
egy constraint the expected value of the discounted portfolio payoff under a risk-
neutral probability measure Q is the price of optimal commodity portfolio at time n.
For each realization p of the random price Pi,n+1 we will find the optimal payoff
function xi,n+1(p) of problem (4). Carr and Madan [9] show that any twice contin-
uously differentiable function, f (S), of the terminal stock price S can be replicated
by a unique initial position of f (S0) − f ′(S0)S0 unit discount bonds, f ′(S0) shares,
and f ′′(K)dK out-of-the-money options of all strikes K :

f (S) = [f (S0) − f ′(S0)S0] + f ′(S0)S +
∫ S0

0
f ′′(K)(K − S)+dK

+
∫ ∞

S0

f ′′(K)(S − K)+dK (5)

However, the replication of the optimal payoff function in an incomplete market is
out of scope of this paper and we will not elaborate on this issue any further. We will
just specify the closed form of the optimal payoff function in each period.

To solve the stochastic dynamic programming problem (4), we need to work back-
wards. In addition the problem in each period is a convex programming problem be-
cause the concavity of the objective function and the convexity of the feasible set.
Therefore we formulate the original constrained problem as a Lagrangian relaxation
problem and the optimal solutions of the relaxed problem will have no duality gap.
At time N we have

J (Vi,N ) = EN [Ui(�i,N )] = Ui(�i,N ) = Ui(Ii(Di,Pi,N ) + Vi,N ) (6)

At time N − 1 the buyers’ maximization problem is the same as in a single period
problem. The corresponding single-period problem is

J (Vi,N−1 − αi,NWN−1, αi,N ) = max
{xi,N (Pi,N )}

EN−1[Ui(�i,N )]

s.t. E
Q
N−1

[
xi,N (Pi,N )

1 + rN−1

]
+ αi,NWN−1 − Vi,N−1 = 0

(7)

Proposition 1 The optimal payoff function xi,N (Pi,N ) of problem (7) is

xw∗
i,N (Pi,N ) = 1

ai

(
lnEN−1[exp(−ai(Ii + αi,NWN))|Pi,N ]

− E
Q
N−1

[
lnEN−1[exp(−ai(Ii + αi,NWN))|Pi,N ]]

−
(

ln
gi,N (Pi,N )

fi,N (Pi,N )
− E

Q
N−1

[
ln

gi,N (Pi,N )

fi,N (Pi,N )

])

+ ai(1 + rN−1)(Vi,N−1 − αi,NWN−1)

)
(8)
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where fi,N (Pi,N ) and gi,N (Pi,N ) are probability density functions of the type i com-
modity spot price under the real world probability measure P and a risk neutral
probability measure Q, respectively and rN−1 is the interest rate at time N − 1.

The proof is provided in Appendix.
To get the indifference price for type i buyers, we need to solve the expected utility

maximization problem without the weather derivative.

J (Vi,N−1,0) = max
{xi,N (Pi,N )}

EN−1[Ui(Ii + xi,N (Pi,N ))]

s.t. E
Q
N−1

[
xi,N (Pi,N )

1 + rN−1

]
− Vi,N−1 = 0

(9)

Proposition 1 implies the following optimal payoff function in case of no weather
derivative.

xn∗
i,N (Pi,N )) = 1

ai

(
lnEN−1[exp(−aiIi)|Pi,N ] − E

Q
N−1

[
lnEN−1[exp(−aiIi)|Pi,N ]]

−
(

ln
g(Pi,N )

f (Pi,N )
− E

Q
N−1

[
ln

g(Pi,N )

f (Pi,N )

])
+ ai(1 + rN−1)Vi,N−1

)

(10)

Now we have the maximized expected utility function with and without weather
derivative and therefore, the indifference price can be obtained from the following
equation.

J (Vi,N−1 − αi,NWN−1, αi,N ) = J (Vi,N−1,0) (11)

As a result, the indifference price of type i buyers has the form of

WN−1 = 1

ai(1 + rN−1)αi,N

ln
�i,N−1

�i,N−1
= hi,N−1(αi,N ) (12)

where the Greeks are given by

�i,N−1 = EN−1

[ exp(−aiIi)
gi,N (Pi,N )

fi,N (Pi,N )

EN−1[exp(−aiIi)|Pi,N ]
]

× exp(EQ[lnEN−1[exp(−aiIi)|Pi,N ]]) (13)

�i,N−1 = EN−1

[ exp(−ai(Ii + αNWN))
gi,N (Pi,N )

fi,N (Pi,N )

EN−1[exp(−ai(Ii + αNWN))|Pi,N ]
]

× exp(EQ[lnEN−1[exp(−ai(Ii + αNWN))|Pi,N ]]) (14)

Note that the indifference price of the weather derivative is independent of the port-
folio value Vi,N−1 due to the Constant Absolute Risk Aversion (CARA) property of
the exponential utility function.
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Next we define the dynamic system equations of the type j buyers as

Sj,n+1 = zj,n(Sj,n, βj,n+1, Yj,n+1) ∀n = 0,1, . . . ,N − 1 (15)

where a state Sj,n is the vector form of (Vj,n,Wn), the control βj,n+1 is the risk-free
bond position, and the randomness Yj,n+1 has the single term Wn+1. The randomness
of the last state Sj,N includes the additional random variables because the income
function of terminal wealth of type j buyers has the random price and the random
demand of type j commodity. So Yj,N has the vector form (Pj,N ,Dj,N ,TN). The
profit function (or terminal wealth) of the type j buyers is

�j,N = Ij (Dj,N ,Pj,N ) + αj,NWN + βj,NBN (16)

The type j buyers at time n have the following utility maximization problem if the
weather derivative is included in their portfolios.

J (Vj,n − αj,n+1Wn,αj,n+1) = max
βj,n+1

En[Uj (�j,N )]

s.t. αj,n+1Wn + βj,n+1Bn − Vj,n = 0
(17)

At time N − 1 the single-period problem of the type j buyers can be simplified as an
unconstrained problem if we plug βj,N obtained from the self-financing constraint
into the objective function. Then, the reformulated problem is

J (Vj,N−1 − αj,NWN−1, αj,N )

= EN−1[Uj (Ij + αj,NWN + (Vj,N−1 − αj,NWN−1)(1 + rN−1))] (18)

To get the indifference price we need to consider the problem without the weather
derivative in the portfolio.

J (Vj,N−1,0) = EN−1[Uj (Ij + Vj,N−1(1 + rN−1))] (19)

Equating the right hand sides of (18) and (19) gives the indifference price of type j

buyers as

WN−1 = 1

aj (1 + rN−1)αj,N

ln
EN−1[exp(−aj Ij )]

EN−1[exp(−aj (Ij + αj,NWN))]
= hj,N−1(αj,N ) (20)

So far we have studied the buyers’ problems and in this paragraph we will explore
the issuer’s problem. We assume that the issuer is a pure financial firm, which can
trade only risk-free bonds and weather derivatives but not commodity derivatives.
The issuer is assumed to be able to sell or buy back outstanding weather derivative
in any period. When the weather derivatives are sold in the market the issuer will
receive the selling price and at maturity settle the payoff of the weather derivative.
The issuer’s system equations are similar to type j buyers except at the terminal
time since the issuer does not have the income function which contains two random
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variables, price and quantity for the commodity. Then the issuer’s dynamic system
equations can be expressed as:

Sm,n+1 = zm,n(Sm,n,βm,n+1, Ym,n+1) ∀n = 0,1, . . . ,N − 1 (21)

where a state Sm,n is characterized by the vector (Vm,n,Wn) and the randomness
Ym,n+1 of the dynamic system equations is the weather derivative price Wn+1. The
issuer’s value function is then,

J (Vm,n + αm,n+1Wn,−αm,n+1) = max
βm,n+1

En[Uj (−αm,NWN + βm,NBN)]

s.t. αm,n+1Wn + Vm,n = βm,n+1Bn

(22)

The issuer’s indifference price at N − 1, therefore, can be calculated from the follow-
ing equation.

J (Vm,N−1 + αm,NWN−1,−αm,N)

= EN−1[Um((Vm,N−1 + αm,N−1WN−1)(1 + rN−1) − αm,N−1WN)]
= EN−1[Um(Vm,N−1(1 + rN−1))] = J (Vm,N−1,0) (23)

After simplifying the above equation we have the following indifference price for the
issuer.

WN−1 = lnEN−1[exp(amαm,NWN)]
am(1 + rN−1)αm,N

= hm,N−1(αm,N) (24)

Now we have the supply and demand functions for the weather derivative at N −1.
If the supply and demand quantities are a function of price then we can directly apply
the market clearing condition i.e. a zero net supply equation. In our case the price,
however, is a function of quantities and the inverse functions of the derived supply
and demand are hard to get, so we need to solve the following system of equations
numerically. Then we can determine the equilibrium price W ∗

N−1 and the optimal
choices α∗

k,N for all k in {i, j,m} which clear the market.

W ∗
N−1 = hi,N−1(α

∗
i,N ) = hj,N−1(α

∗
j,N ) = hm,N−1(α

∗
m,N) ∀i, j (25)

∑
i

α∗
i,N +

∑
j

α∗
j,N = α∗

m,N (26)

By substituting the derived optimal portfolio positions and the equilibrium price
into the objective function we can find the value function of the type i buyers as

J (Vi,N−1 − α∗
NW ∗

N−1, α
∗
N) = J ∗

i,N−1(Vi,N−1)

= − 1

ai

exp(−ai(1 + rN−1)Vi,N−1)�i,N−1 (27)
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where �i,N−1 is an FN−1-measurable random variable, independent on Vi,N−1, and
has the form

�i,N−1 = exp

(
ai(1 + rN−1)α

∗
i,NW ∗

N−1

+ E
Q
N−1

[
lnEN−1[exp(−ai(Ii + α∗

i,NWN))|Pi,N ] − ln
gi,N (Pi,N )

fi,N (Pi,N )

])

× EN−1

[ exp(−ai(Ii + α∗
i,NWN))

gi,N (Pi,N )

fi,N (Pi,N )

EN−1[exp(−ai(Ii + α∗
i,NWN)|Pi,N )]

]
(28)

In (27) we use J ∗
i,N−1(Vi,N−1) as short hand notation for J (Vi,N−1 −α∗

NW ∗
N−1, α

∗
N).

From now on we will also use this short hand notation for the type j buyers and the
issuer. Similarly, the value function of type j buyers will be

J (Vj,N−1 − α∗
NW ∗

N−1, α
∗
N) = J ∗

j,N−1(Vj,N−1)

= − 1

aj

exp(−aj (1 + rN−1)Vj,N−1)�j,N−1 (29)

where �j,N1 is again independent of Vj,N−1, FN−1-measurable, and has the form:

�j,N1 = exp(aj (1 + rN−1)α
∗
j,NW ∗

N−1)EN−1[exp(−aj (Ij + α∗
j,NWN))] (30)

Finally, the value function for the issuer will be

J (Vm,N−1 + α∗
NW ∗

N−1,−α∗
N) = J ∗

m,N−1(Vm,N−1)

= − 1

am

exp(−am(1 + rN−1)Vm,N−1)�m,N−1

= − 1

am

exp(−am(1 + rN−1)Vm,N−1) (31)

The last equality comes from the indifference pricing equality because �m,N−1 has
the form:

�m,N−1 = exp(−am(1 + rN−1)α
∗
m,NW ∗

N−1)EN−1[exp(amα∗
m,NWN)] = 1 (32)

Note that all value functions are again exponential forms multiplied by FN−1-
measurable random variables and therefore, we can see the preservation for the dy-
namic programming algorithm.

2.3 Multi-period indifference price

Now we concentrate on a multi-period indifference pricing problem. Consider the
indifference pricing model for type i buyers, first. In the previous section we already
solved a single-period problem at N − 1, so in this section we will start from time
N − 2 and generalize the result for N periods. By applying the Bellman’s Principle
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of Optimality which states that given an initial decision the remaining decisions must
be optimal, we can see that:

max{xi,N−1,λi,N−1}
EN−2[Ui(�i,N )] − λi,N−1Ci,N−2

= max{xi,N−1,λi,N−1}
EN−2

[
max{xi,N ,λi,N }Ui(�i,N ) − λi,NCi,N−1

]

− λi,N−1C,N−2 (33)

where Ci,n denotes the self-financing constraint at time n. If we use the law of iterated
expectations, then we can find the recursive form known as the Bellman equation.

J (Vi,N−2 − αi,N−1WN−2, αi,N−1)

= max{xi,N−1,λi,N−1}
EN−2

[
max{xi,N ,λi,N }EN−1[Ui(�i,N )] − λi,NCi,N−1

] − λi,N−1Ci,N−2

= max{xi,N−1,λi,N−1}
EN−2[J ∗

i,N−1(Vi,N−1)] − λi,N−1Ci,N−2 (34)

Define Rn as
∏N−1

i=n (1 + ri). By solving the problem (34) we derive the following
optimal solution at time N − 2.

Proposition 2 The optimal payoff function xi,N−1(Pi,N−1) at N − 2 is

xw∗
i,N−1(Pi,N−1)

= 1

aiRN−1

(
lnEN−2[exp(−aiRN−1αi,N−1WN−1)�i,N−1|Pi,N−1]

− E
Q
N−2

[
lnEN−2[exp(−aiRN−1αi,N−1WN−1)�i,N−1|Pi,N−1]

]

−
(

ln
gi,N−1(Pi,N−1)

fi,N−1(Pi,N−1)
− E

Q
N−2

[
ln

gi,N−1(Pi,N−1)

fi,N−1(Pi,N−1)

])

+ aiRN−2(Vi,N−2 − αi,N−1WN−2)

)
(35)

Proof Similarly to the optimal solutions at N − 1 derived in the Appendix, taking
partial derivatives provides the optimality conditions at N − 2 as

∂Li,N−2

∂xi,N−1(p)
= EN−2

[
J ∗′

i,N−1(Vi,N−1)
∂Vi,N−1

∂xi,N−1(p)

∣∣∣∣p
]
fi,N−1(p)

− λi,N−1
gi,N−1(p)

1 + rN−2
= 0 (36)

∂Li,N−2

∂λi,N−1
= Vi,N−2 −

(
E

Q
N−2

[
xi,N−1(Pi,N−1)

1 + rN−2

]
+ αi,N−1WN−2

)
= 0 (37)

If we plug the value function at time N − 1 (27) into the above optimality condition
(36) and combine with the equation Vi,N−1 = xi,N−1(Pi,N−1) + αi,N−1WN−1 then,
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we have

∂Li,N−2

∂xi,N−1(p)
= RN−1 exp(−aiRN−1xi,N−1(p))

× EN−2[exp(−aiRN−1αi,N−1WN−1)�i,N−1|p]fi,N−1(p)

− λi,N−1
gi,N−1(p)

1 + rN−2
= 0 (38)

After simplifying the above equation (38) we get

xi,N−1(p) = 1

aiRN−1

(
lnEN−2[exp(−aiRN−1αi,N−1WN−1)�i,N−1|p]

− ln
λi,N−1

RN−2
− ln

gi,N−1(p)

fi,N−1(p)

)
(39)

By taking expectation under Q and combining with (37) we have

ln
λi,N−1

RN−2
= E

Q
N−2

[
lnEN−2[exp(−aiRN−1αi,N−1WN)�i,N−1|Pi,N−1]

]

− E
Q
N−2

[
ln

gi,N−1(Pi,N−1)

fi,N−1(Pi,N−1)

]

− aiRN−2(Vi,N−2 − αi,N−1WN−2) (40)

If we substitute (40) into (39) we obtain the resulting optimal payoff function at time
N − 2. �

To get the indifference price for type i buyers, we need J (Vi,N−2,0) and the opti-
mal payoff function in Proposition 2 implies

xn∗
i,N−1(Pi,N−1) = 1

aiRN−1

(
lnEN−2[�i,N−1|Pi,N−1]

− E
Q
N−2[lnEN−2[�i,N−1|Pi,N−1]]

−
(

ln
gi,N−1(Pi,N−1)

fi,N−1(Pi,N−1)
− E

Q
N−2

[
ln

gi,N−1(Pi,N )

fi,N−1(Pi,N )

])

+ aiRN−2Vi,N−2

)
(41)

By setting J (Vi,N−2 − αi,N−1WN−2, αi,N−1) and J (Vi,N−2,0) equal we have the
indifference price for the type i buyers as

WN−2 = 1

aiRN−2αi,N−1
ln

�i,N−2

�i,N−2
= hi,N−2(αi,N−1) (42)
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where we have

�i,N−2 = EN−2

[ �i,N−1
gi,N−1(Pi,N−1)

fi,N−1(Pi,N−1)

EN−2[�i,N−1|Pi,N−1]
]

× exp(E
Q
N−2[lnEN−2[�i,N−1|Pi,N−1]])

�i,N−2 = EN−2

[ exp(−aiRN−1αi,N−1WN−1)�i,N−1
gi,N−1(Pi,N−1)

fi,N−1(Pi,N−1)

EN−2[exp(−aiRN−1αi,N−1WN−1)�i,N−1|Pi,N−1]
]

× exp(E
Q
N−2[lnEN−2[exp(−aiRN−1αi,N−1WN−1)�i,N−1|Pi,N−1]])

(43)

Based on the pattern of the optimality condition at time N − 1 and N − 2, inductive
reasoning implies that the Bellman equation can be written as

Ji,N = Ui(�i,N )

J ∗
i,n(Vi,n) = max{xi,n+1,λi,n+1}

En[J ∗
i,n+1(Vi,n+1)] − λi,n+1Ci,n (44)

∀n = 0,1, . . . ,N − 1

and, therefore, we can induce the optimality conditions at time n as

∂Li,n

∂xi,n+1(p)
= En

[
J ∗′

i,n+1(Vi,n+1)
∂Vi,n+1

∂xi,n+1(p)

∣∣∣∣p
]
fi,n+1(p)

− λi,n+1
gi,n+1(p)

1 + rn
= 0 (45)

∂Li,n

∂λi,n+1
= Vi,n −

(
EQ

n

[
xi,n+1(Pi,n+1)

1 + rn

]
+ αi,n+1Wn

)
= 0 (46)

By solving the above optimality conditions or by induction we can obtain the follow-
ing optimal payoff function.

Proposition 3 The optimal payoff function xw∗
i,n+1(Pi,n+1) at n can be expressed as

xw∗
i,n+1(Pi,n+1) = 1

aiRn+1

(
lnEn[exp(−aiRn+1αi,n+1Wn+1)�i,n+1|Pi,n+1]

− EQ
n [lnEn[exp(−aiRn+1αi,n+1Wn+1)�i,n+1|Pi,n+1]]

−
(

ln
gi,n+1(Pi,n+1)

fi,n+1(Pi,n+1)
− EQ

n

[
ln

gi,n+1(Pi,n+1)

fi,n+1(Pi,n+1)

])

+ aiRn(Vi,n − αi,n+1Wn)

)

∀n = 0,1, . . . ,N − 2 (47)
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Moreover the indifference price of type i buyers at time n will be

Wn = 1

aiRnαi,n+1
ln

�i,n

�i,n

= hi,n(αi,n+1) (48)

where we have

�i,n = En

[�i,n+1
gi,n+1(Pi,n+1)

fi,n+1(Pi,n+1)

En[�i,n+1|Pi,n+1]
]

× exp(EQ
n [lnEn[�i,n+1|Pi,n+1]])

�i,n = En

[exp(−aiRn+1αi,n+1Wn+1)�i,n+1
gi,n+1(Pi,n+1)

fi,n+1(Pi,n+1)

En[exp(−aiRn+1αi,n+1Wn+1)�i,n+1|Pi,n+1]
]

× exp(EQ
n [lnEn[exp(−aiRn+1αi,n+1Wn+1)�i,n+1|Pi,n+1]])

(49)

Next we derive the optimal choices and the indifference price for type j buyers
in a multi-period setting. Recall J ∗

j,N−1(Vj,N−1) in (29). After substituting the self-
financing constraint into the objective function the dynamic programming algorithm
and the indifference price equation imply

J (Vj,N−2 − αj,N−1WN−2, αj,N−1) = EN−2[J ∗
j,N−1(Vj,N−1)]

= EN−2

[
− 1

aj

exp(−ajRN−1((Vj,N−2 − αj,N−1WN−2)(1 + rN−2)

+ αj,N−1WN−1))�j,N−1

]

= EN−2

[
− 1

aj

exp(−ajRN−2Vj,N−2)�j,N−1

]
= J (Vj,N−2,0) (50)

After simplifying the above (50) we have the following indifference price for type j

buyers at N − 2.

WN−2 = 1

ajRN−2αj,N−1
ln

(
EN−2[�j,N−1]

EN−2[exp(−ajRN−1αj,N−1WN−1)�j,N−1]
)

= hj,N−2(αj,N−1) (51)

In general, by inductive reasoning, the indifference price for type j buyers can be
expressed as

Wn = 1

ajRnαj,n+1
ln

(
En[�j,n+1]

En[exp(−ajRn+1αj,n+1Wn+1)�j,n+1]
)

= hj,n(αj,n+1) ∀n = 0,1, . . . ,N − 2 (52)

Lastly consider the issuer’s selling price at which she is indifferent between not
selling the weather derivative versus selling the weather derivative at the selling price
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today and settling the claim at maturity. The issuer’s problem is similar to type j

buyers’ problem in the sense that she has only two tradable assets, the risk-free bond
and the weather derivative but the incoming and outgoing cash flows are opposite to
the type j buyers. Therefore, the issuer’s portfolio value at n will be

Vm,n = (Vm,n−1 + αm,nWn−1)(1 + rn−1) − αm,nWn (53)

At N −2 the indifference selling price of the weather derivative can be obtained from
the following equation.

J (Vm,N−2 + αm,N−1WN−2,−αm,N−1) = EN−2[J ∗
m,N−1(Vm,N−1)]

= EN−2

[
− 1

am

exp(−amRN−1((Vm,N−2 + αm,N−1WN−2)(1 + rN−2)

− αm,N−1WN−1))

]

= EN−2

[
− 1

am

exp(−amRN−2Vm,N−2)

]
= J (Vm,N−2,0) (54)

After simplifying the above equation (54), the indifference selling price of the
weather derivative at N − 2 will be

WN−2 = 1

amRN−2αm,N−1
ln

(
EN−2[exp(amRN−1αm,N−1WN−1)

)

= hm,N−2(αm,N−1) (55)

By induction the indifference selling price at time n can be obtained as

Wn = 1

amRnαm,n+1
ln

(
En[exp(amRn+1αm,n+1Wn+1)]

)

= hm,n(αm,n+1) ∀n = 0,1, . . . ,N − 2 (56)

We have found the demand and supply functions for the weather derivative at time
n based on the indifference pricing model. The equilibrium price W ∗

n and the optimal
choices α∗

k,n+1 of the buyers and the issuer can be recursively determined from the
following market clearing conditions.

W ∗
n = hi,n(α

∗
i,n+1) = hj,n(α

∗
j,n+1) = hm,n(α

∗
m,n+1) ∀i, j (57)

∑
i

α∗
i,n+1 +

∑
j

α∗
j,n+1 = α∗

m,n+1 (58)

In each period the derived equilibrium price and optimal choices of the weather
derivative provide the value functions for type i and j buyers and the issuer recur-
sively. Here we derive the value functions at time N − 2 based on the previous re-
sults and then generalize the solutions. The value function of type i buyers at time
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N − 2 can be calculated by substituting the optimal payoff function from Proposi-
tion 2 into (34). Then, we have

J (Vi,N−2 − α∗
N−1W

∗
N−2, α

∗
N−1) = J ∗

i,N−2(Vi,N−2)

= − 1

ai

exp(−aiRN−2Vi,N−2)�i,N−2 (59)

where �i,N−2 is FN−2-measurable, independent of Vi,N−2, and has the form

�i,N−2 = exp

(
aiRN−2α

∗
i,N−1W

∗
N−2 − E

Q
N−2

[
gi,N−1(Pi,N−1)

fi,N−1(Pi,N−1)

]

+ E
Q
N−2

[
lnEN−2[exp(−aiRN−1α

∗
i,N−1WN−1)�i,N−1|Pi,N−1]

])

× EN−2

[ exp(−aiRN−1α
∗
i,N−1WN−1)�i,N−1

EN−2[exp(−aiRN−1α
∗
i,N−1WN−1)�i,N−1|Pi,N−1]

× gi,N−1(Pi,N−1)

fi,N−1(Pi,N−1)

]
(60)

By inductive reasoning the value function of the type i buyers at n can be ex-
pressed as

J ∗
i,n(Vi,n) = − 1

ai

exp(−aiRnVi,n)�i,n (61)

where �i,n is independent of Vi,n and Fn-measurable. From (60) �i,n can be induced
as

�i,n = exp

(
aiRnα

∗
i,n+1W

∗
n − EQ

n

[
gi,n+1(Pi,n+1)

fi,n+1(Pi,n+1)

]

+ EQ
n

[
lnEn[exp(−aiRn+1α

∗
i,n+1Wn+1)�i,n+1|Pi,n+1]

])

× En

[ exp(−aiRn+1α
∗
i,n+1Wn+1)�i,n+1

En[exp(−aiRn+1α
∗
i,n+1Wn+1)�i,n+1|Pi,n+1]

× gi,n+1(Pi,n+1)

fi,n+1(Pi,n+1)

]

∀n = 0,1, . . . ,N − 2 (62)

In a similar manner we obtain the value function of type j buyers at time n as:

J ∗
j,n(Vj,n) = − 1

aj

exp(−ajRnVj,n)�j,n (63)

where the Fn-measurable random variable �j,n can be induced as

�j,n = exp(ajRnα
∗
j,n+1W

∗
n )
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× En[exp(−ajRn+1α
∗
j,n+1Wn+1)�j,n+1] ∀n = 0,1, . . . ,N − 2 (64)

Finally the issuer’s value function at time n can be derived as

J ∗
m,n(Vm,n) = − 1

am

exp(−amRnVm,n) ∀n = 0,1, . . . ,N − 2 (65)

3 Numerical example

In this section we present a numerical example of our multi-period equilibrium pric-
ing model. For simplicity we assume a two-period planning horizon and price a plain-
vanilla weather call option with a strike of 70◦F. The underlying weather index is
one day average temperature. However, the pricing model can be easily extended to
Cooling Degree Days (CDD)/Heating Degree Days (HDD) if we specify the stochas-
tic processes of temperature during the contract period. In our economy there are 3
market participants; type i buyer which has a liquid commodity derivatives market,
type j buyer which does not, and the issuer of the weather call option. All commodity
prices and demand of the buyers are assumed to be positively correlated with temper-
ature. In addition the temperature process follows Brownian motion with a drift term
because after removing seasonality the normality of the temperature process is often
assumed in literature. Moreover, we model the commodity price and demand of the
type i and j buyers as geometric Brownian motions with a drift term. The correlated
temperature, demand, and price processes can be defined as

TN = T0 + μT N + W 1
N

Dk,N = Dk,0 exp

((
μDk

− 1

2
σ 2

Dk

)
N + σDk

W 2
k,N

)

Pk,n = Pk,0 exp

((
μPk

− 1

2
σ 2

Pk

)
n + σPk

W 3
k,n

)

∀k ∈ {i, j} and n ∈ {n0 = 0, n1, . . . , nN = N}

(66)

where W 1
N,W 2

i,N ,W 2
j,N ,W 3

i,n, and W 3
i,n are correlated Brownian motions represent-

ing the correlation among temperature, demand, and price of the type i and j com-
modities. Since we have a two-period planning horizon, Brownian motions will be
discretized by combining correlated standard normal distributions and a Markovian
property. In other words we observe the realization of Brownian motions at n0 = 0,
n1 = �, and n2 = 2�.

In this example we will vary the correlation of Brownian motions between de-
mand of the type i commodity and temperature from 0.2 to 0.8. All other correlation
coefficients among Brownian motions ρ are fixed and listed in Table 1 which is pos-
itive semi-definite for the range of the varied correlations. In addition we assume
that the real world probability measure P is equal to a risk-neutral probability mea-
sure Q in each commodity market for simplicity. This assumption has been justified
in the Nordic power market by Audet et al. [3]. In our single-period equilibrium
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Table 1 Correlation(ρ) matrix
TN Di,N Pi,N Dj,N Pj,N

TN 1 vary 0.3 0.6 0.3

Di,N 1 0.5 0.15 0.1

Pi,N 1 0.1 0.1

Dj,N 1 0.5

Pj,N 1

Table 2 Parameters
Parameters

Temperature T (0) = 65, μT = 1, σT = 5

Type i & j μDk
= μPk

= 0.1, σDk
= 0.3, σPk

= 0.1, PR
k

= 11

Risk aver. 0.1

� 0.5

pricing formula (12) of type i buyers we need to calculate conditional expectation
EN−1[exp(−ai(Ii +αNWN))|Pi,N ] and this can be obtained from the following con-
ditional probability density functions.

lnDi,N |Pi,N ∼ N

(
μ1 + ρDi,N ,Pi,N

(ln(Pi,N ) − μ2)
σDi

σPi

, (1 − ρ2
Di,N ,Pi,N

)σ 2
Di

n1

)

(67)

TN |Pi,N ∼ N

(
μ3 + ρT,Pi,N

(ln(Pi,N ) − μ2)
σT

σPi

, (1 − ρ2
Di,N ,Pi,N

)σ 2
T n1

)
(68)

where μ1, μ2, and μ3 have the form of

μ1 = ln(Di,0) +
(

μDi
− 1

2
σ 2

Di

)
(2�)

μ2 = ln(Pi,n1) +
(

μPi
− 1

2
σ 2

Pi

)
�

μ3 = T0 + μT (2�)

(69)

Other parameters in this numerical example are specified in Table 2.
Figure 1 illustrates the optimal choices of the weather call option for type i and j

buyers and the sum of the two optimal quantities representing aggregate demand or
supply quantities. In both figures we can see that the type i buyer shorts and the type j

buyer longs. Recall the assumption that the type i buyer can construct the commodity
derivatives portfolio with continuous strike prices. These infinitely many commodity
derivatives have more flexibility to hedge risks than the weather call option which is
just a small part of available derivatives. Therefore, type i buyer shorts the weather
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Fig. 1 Optimal choices of two & single-period
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Fig. 2 Equilibrium price of two & single-period

call option and invests more in commodity derivatives. This interpretation is also ver-
ified in Fig. 5. The variance reduction of the portfolio with commodity derivatives
and the weather call option is almost the same as the portfolio with commodity deriv-
atives only, which means that the weather call options have relatively small effect on
the portfolio of type i buyer.

Figure 2 shows the equilibrium prices of the weather call option in the two-period,
single-period, and the actuarial cases. Here the actuarial price is defined as the dis-
counted expectation of the weather call option payoff under the real world probability
measure P. The actuarial price graph is flat because the temperature process is inde-
pendent of the correlation coefficient ρT2,Di,2 . In this figure we can see that the price
is lowest under actuarial pricing, higher for the two-period case and the highest un-
der the single period case. The positive difference between the single or two-period
equilibrium price and the actuarial price represents the risk premium due to buyers’
risk-aversion.

The certainty equivalents (CE) of type i and j buyers for the single and two-period
case are shown in Fig. 3. The certainty equivalent for the two-period case is always
higher for both types of buyers. The difference in certainty equivalents between the
single and two-period case captures the value of the additional trading opportunity at
time 1.

Figure 4 shows the optimal payoff functions of the commodity portfolios at time
0 and 1 when the correlation coefficient ρT2,Di,2 is equal to 0.80. Figure 4(a) exhibits
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Fig. 3 Certainty equivalents (CE)
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Fig. 4 Optimal payoff functions (ρT2,Di,2 = 0.80)
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the optimal payoff of the portfolio with commodity derivatives and the weather call
option. In the case with only commodity derivatives, the optimal payoff function has
the form of Fig. 4(b).

Figure 5(a) illustrates the probability density functions (p.d.f.) of terminal wealth
for the type i buyer in three cases. If the type i buyer is not hedged and exposed
to all price and volumetric risks, the p.d.f. of terminal wealth is widely spread, i.e.
has large variance or risk. However, if the commodity derivatives are included in the
portfolio then the risk is greatly reduced. Compared to the portfolio with commodity
derivatives only, the portfolio with commodity derivatives and the weather call option
shows very similar probability density functions. This can be explained by the fact
that our portfolio of commodity derivatives includes a continuum of strikes whereas
the weather call option is just one derivative. However, in Fig. 5(b) type j buyer is
better off in terms of risk reduction when the weather call option is purchased because
the variance is reduced about 3% by including the weather derivative. Therefore, we
conclude that the weather call option plays a relatively important role in the port-
folio of type j buyer but is insignificant for type i buyer who can use commodity
derivatives to hedge both price and volumetric risk.

4 Conclusion

Many weather-sensitive industries such as energy, insurance, agriculture, and leisure
are exposed to price and volumetric risks coming from the stochastic aspect of cost
(or wholesale price) and demand in their profit functions. In addition these price and
volumetric risks are all correlated with weather. Commodity derivatives can mitigate
price risk but volumetric risk typically associated with weather changes can only
be partially hedged via commodity derivatives. Therefore, new financial instruments
are needed and weather derivatives represent an effective means for hedging volume
risk because demand is strongly correlated with weather. However, pricing weather
derivative is not a trivial task because of market incompleteness and it becomes even
more challenging in a dynamic setting.

In this paper we investigate a multi-period equilibrium pricing model for weather
derivative pricing within a framework of a stylized economy. Three types of market
participants are considered, buyers with and without a liquid commodity derivatives
market and an issuer. All market participants are assumed to maximize expected util-
ity of terminal wealth subject to self-financing trading constraints and are able to
rebalance their portfolios in each period. We use dynamic programming and indif-
ference pricing to recursively derive the supply and demand function for the weather
derivative in each period. We then apply a market clearing condition to determine the
equilibrium prices of the weather derivative in each period.

A numerical example employing Monte-Carlo simulations illustrates the forma-
tion of the equilibrium prices and the optimal choices of the weather call options in
a single and multi-period setting under various correlations between volumetric and
weather risks. The value of multiple trading opportunities is also demonstrated. We
also show how the weather derivative improves risk hedging capability by reducing
variance of terminal wealth, especially in situations where commodity derivatives are
not available.
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Fig. 5 P.D.F. of type i and j ’s profit function (ρ1 = 0.80)
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Appendix

Proof of Proposition 1: the optimal xi,N (Pi,N ) Let Ci,n denote the self-financing

constraint at time n, i.e. E
Q
n [ xi,n+1(Pi,n+1)

1+rn
] + αi,n+1Wn − Vi,n. Then we can form the

Lagrangian function as

Li,N−1 = EN−1[Ui(�i,N )] − λi,NCi,N−1

=
∫ ∞

−∞
EN−1[Ui(�i,N )|Pi,N = p]fi,N (p)dp

− λi,N

1 + rN−1

(∫ ∞

−∞
xi,N (p)gi,N (p)dp + αi,NWN−1 − Vi,N−1

)
(70)

where fi,N (p) is a marginal probability density function of the type i commodity
spot price Pi,N under the real probability measure P and gi,N (p) is a risk-neutral
probability density function of Pi,N . Because the commodity market is incomplete
there may exist infinitely many risk-neutral probability measures and we assume that
a risk-neutral probability measure is properly chosen under some criterion, for exam-
ple, minimum distance equivalent martingale measure. The ratio gi,N (p)

fi,N (p)
is a Radon-

Nicodym derivative in the type i commodity market and satisfies E[ gi,N (p)

fi,N (p)
] = 1. The

partial derivative with respect to xi,N (p) requires the Euler equation for the func-
tional derivatives because the decision variable xi,N (Pi,N ) is a deterministic function
of the random variable Pi,N . The value function at N − 1 can be expressed using the
Lagrange multiplier as

J (Vi,N−1 − αi,NWN−1, αi,N ) = max
{xi,N (PN ),λi,N }

EN−1[J (Vi,N )] − λi,NCi,N−1

= max
{xi,N (PN ),λi,N }

Li,N−1 (71)

Taking the partial derivative with respect to xi,N (p) based on calculus of variation
and λi,N gives us the first order necessary conditions as

∂Li,N−1

∂xi,N (p)
= EN−1

[
U ′

i (�i,N )
∂�i,N

∂xi,N (p)

∣∣∣∣p
]
fi,N (p) − λi,N

gi,N (p)

1 + rN−1
= 0 (72)

∂Li,N−1

∂λi,N

= Vi,N−1 −
(

E
Q
N−1

[
xi,N (Pi,N )

1 + rN−1

]
+ αi,NWN−1

)
= 0

∀i = 1,2 . . . , u (73)

Note that the first order conditions are sufficient for the optimality because the prob-
lem is a convex optimization problem. Moreover, under the assumption E0[|Ui(·)|] <

∞ the partial derivative and the expectation operator are interchangeable.
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From (72) and (73) the optimality conditions of the Lagrangian relaxation problem
under the exponential utility function are

∂Li,N−1

∂xi,N (p)
= fi,N (p)(EN−1[exp(−ai(Ii,N + xi,N (p) + αi,NWN))|p])

− λi,N

gi,N (p)

1 + rN−1
= 0 (74)

∂Li,N−1

∂λi,N

= Vi,N−1 −
(

E
Q
N−1

[
xi,N (Pi,N )

1 + rN−1

]
+ αi,NWN−1

)
= 0 (75)

Given p, xi,N (p) can be taken out of the expectation operator and then (74) can be
simplified as

xi,N (p) = 1

ai

(
lnEN−1[exp(−ai(Ii + αi,NWN))|p] − ln

λi,N

1 + rN−1

− ln
gi,N (p)

fi,N (p)

)
(76)

Because the above equation holds for all p we can substitute Pi,N for p. Then, taking
expectation on both sides of (76) under Q and combining with (75) imply

E
Q
N−1[xi,N (Pi,N )] = 1

ai

(
E

Q
N−1[lnEN−1[exp(−ai(Ii + αi,NWN))|Pi,N ]]

− ln
λi,N

1 + rN−1
− E

Q
N−1

[
ln

gi,N (Pi,N )

fi,N (Pi,N )

])

= (1 + rN−1)(Vi,N−1 − αi,NWN−1) (77)

After simplifying we have

ln
λi,N

1 + rN−1
= E

Q
N−1

[
lnEN−1[exp(−ai(Ii + αi,NWN))|Pi,N ]]

− E
Q
N−1

[
ln

gi,N (Pi,N )

fi,N (Pi,N )

]

− ai(1 + rN−1)(Vi,N−1 − αi,NWN−1) (78)

Plugging (78) into (76) we get the resulting optimal payoff function. �
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