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Groundwater-dependent ecosystem map 
exposes global dryland protection needs

Melissa M. Rohde1,2,3 ✉, Christine M. Albano4, Xander Huggins5,6,7, Kirk R. Klausmeyer1, 
Charles Morton4, Ali Sharman8, Esha Zaveri8, Laurel Saito9, Zach Freed10, 
Jeanette K. Howard1, Nancy Job11, Holly Richter12,13, Kristina Toderich14,15, 
Aude-Sophie Rodella8, Tom Gleeson5,16, Justin Huntington4, Hrishikesh A. Chandanpurkar17, 
Adam J. Purdy18, James S. Famiglietti19,20, Michael Bliss Singer21,22,23 ✉, Dar A. Roberts24, 
Kelly Caylor23,24,25 & John C. Stella2

Groundwater is the most ubiquitous source of liquid freshwater globally, yet its  
role in supporting diverse ecosystems is rarely acknowledged1,2. However, the 
location and extent of groundwater-dependent ecosystems (GDEs) are unknown  
in many geographies, and protection measures are lacking1,3. Here, we map GDEs at 
high-resolution (roughly 30 m) and find them present on more than one-third of 
global drylands analysed, including important global biodiversity hotspots4. GDEs are 
more extensive and contiguous in landscapes dominated by pastoralism with lower 
rates of groundwater depletion, suggesting that many GDEs are likely to have already 
been lost due to water and land use practices. Nevertheless, 53% of GDEs exist within 
regions showing declining groundwater trends, which highlights the urgent need to 
protect GDEs from the threat of groundwater depletion. However, we found that only 
21% of GDEs exist on protected lands or in jurisdictions with sustainable groundwater 
management policies, invoking a call to action to protect these vital ecosystems. 
Furthermore, we examine the linkage of GDEs with cultural and socio-economic 
factors in the Greater Sahel region, where GDEs play an essential role in supporting 
biodiversity and rural livelihoods, to explore other means for protection of GDEs  
in politically unstable regions. Our GDE map provides critical information for 
prioritizing and developing policies and protection mechanisms across various local, 
regional or international scales to safeguard these important ecosystems and the 
societies dependent on them.

Globally, groundwater is critical for meeting human and ecosystem 
water needs, especially in drylands, which comprise roughly 40% of 
global land area and support more than two billion people. Serving as a 
buffer when surface water and precipitation are insufficient, groundwa-
ter is particularly relied on in dryland regions and increasingly impor-
tant in meeting higher water demands under a warming climate5–7. 
Despite groundwater accounting for most liquid freshwater on Earth, 
groundwater depletion is occurring rapidly in many places throughout 
the globe8–10. When groundwater depletion occurs, groundwater levels 
can drop out of reach from wells11 and ecosystems12–14, creating a lack 
of access to drinking or irrigation water and causing or contributing to 
land subsidence, seawater intrusion, streamflow depletion, ecosystem 

decline and biodiversity loss12–15. Ecosystems are particularly suscepti-
ble to groundwater depletion because legal protections and environ-
mental water rights are lacking around the globe1,16, and environmental 
groundwater requirements are often overlooked by conservationists, 
water managers and human development organizations2,17.

Ecosystems relying on groundwater for some or all of their water 
needs are collectively referred to as groundwater-dependent ecosys-
tems (GDEs). Although GDEs occur across many biomes, they are of 
greatest concern in drylands, where near-surface water availability is 
limited compared to humid environments. Water availability within 
dryland GDEs varies through time and space, as water tables rise and 
fall, generating surface flow in intermittent and perennial streams, 

https://doi.org/10.1038/s41586-024-07702-8

Received: 12 November 2022

Accepted: 11 June 2024

Published online: 17 July 2024

Open access

 Check for updates

1California Water Program, The Nature Conservancy, San Francisco, CA, USA. 2State University of New York, College of Environmental Science and Forestry, Syracuse, NY, USA. 3Rohde 
Environmental Consulting, LLC, Seattle, WA, USA. 4Division of Hydrologic Sciences, Desert Research Institute, Reno, NV, USA. 5Department of Civil Engineering, University of Victoria, Victoria, 
British Columbia, Canada. 6Global Institute for Water Security, University of Saskatchewan, Saskatoon, Saskatchewan, Canada. 7International Institute for Applied Systems Analysis, Laxenburg, 
Austria. 8The World Bank, Washington, DC, USA. 9The Nature Conservancy, Reno, NV, USA. 10Oregon Sustainable Water Program, The Nature Conservancy, Bend, OR, USA. 11Freshwater 
Biodiversity Programme, South African National Biodiversity Institute, Cape Town, South Africa. 12The Nature Conservancy, Hereford, AZ, USA. 13Resilient Rivers LLC, Hereford, AZ, USA. 
14International Platform for Dryland Research and Education, Tottori University, Tottori, Japan. 15Graduate School of Bioresources, Mie University, Tsu, Japan. 16School of Earth and Ocean 
Sciences, University of Victoria, Victoria, British Columbia, Canada. 17Center for Sustainability, Environment, and Climate Change, FLAME University, Pune, India. 18California State University, 
Monterey Bay, Seaside, CA, USA. 19School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan, Canada. 20School of Sustainability, Arizona State 
University, Tempe, AZ, USA. 21School of Earth and Environmental Sciences, Cardiff University, Cardiff, UK. 22Water Research Institute, Cardiff University, Cardiff, UK. 23Earth Research Institute, 
University of California, Santa Barbara, CA, USA. 24Department of Geography, University of California, Santa Barbara, CA, USA. 25Bren School of Environmental Science and Management, 
University of California Santa Barbara (UCSB), Santa Barbara, CA, USA. ✉e-mail: melissa@RohdeEnvironmental.com; singerm2@cardiff.ac.uk

https://doi.org/10.1038/s41586-024-07702-8
http://crossmark.crossref.org/dialog/?doi=10.1038/s41586-024-07702-8&domain=pdf
mailto:melissa@RohdeEnvironmental.com
mailto:singerm2@cardiff.ac.uk


102 | Nature | Vol 632 | 1 August 2024

Article

while also providing water to unsaturated soils occupied by the roots of 
numerous plant species. Under natural conditions, the water table level 
fluctuates in response to seasonal and interannual climate forcings, 
resulting in spatially and temporally dynamic interconnections with 
plant roots and surface water. Natural variations in water availability 
support highly diverse ecosystems in which groundwater provides a 
reliable water supply, thermoregulation and/or unique habitat condi-
tions depending on the expression of groundwater on, near or within 
the Earth’s surface18. In drylands, GDEs are important ‘island’ ecosys-
tems that are often isolated by the surrounding xerophyte-dominated 
desert environment19. GDEs are often biodiversity hotspots with niche 
habitats that support rare and endemic species, and provide critical 
thermal and hydrologic refugia during dry seasons, droughts and 
long-term climate changes20. However, perturbations in groundwater 
quantity and quality regimes due to climate change and other anthro-
pogenic stressors such as pumping are placing these GDE biodiversity 
hotspots under threat, which can result in a cascading series of negative 
effects on GDEs ranging from short-term water stress to the permanent 
loss of species and habitats. In addition, effects on GDEs can adversely 
affect a wide range of benefits they provide to society, including subsist-
ence livelihoods, water quality regulation, streambank stabilization, 
flood risk reduction, climate regulation, recreational opportunities 
and cultural values21,22.

Knowing the location and extent of GDEs is a critical first step 
to monitor, manage and protect these important ecosystems. 

Nevertheless, spatial data on GDEs are lacking in many places glob-
ally. GDE mapping so far has been predominantly a localized process 
requiring time-consuming data collection, expert review and field 
studies to verify ecosystem access to groundwater. At the same time, 
GDE mapping at broader landscape scales (more than 50 km2) has 
become increasingly possible through remote sensing and spatial 
analyses3,23. GDE mapping on broad scales has been conducted in 
Australia3,24, California25, Central Asia26, Chile27, Oregon28,29, Nevada30, 
Netherlands31, Ireland32, South Africa33, Spain34 and Texas35. The most 
common GDE mapping methods use inference-based approaches, 
which rely on landscape indicators that include hydrologic features 
(for example, springs, wetlands and rivers supported by baseflow), 
and vegetation mapping from aerial or satellite imagery23. Recent 
advances in remote-sensing techniques, cloud computing, emerging 
datasets and machine learning have markedly improved land cover, 
vegetation and climate mapping over large spatial scales. However, 
machine learning applications for mapping GDEs have remained lim-
ited to specific geographic locations24,26,27,34, or at a coarse resolution 
(roughly 1 km) globally2. It is imperative that the global distribution 
and extent of GDEs be improved so that programmatic and policy 
decisions can protect these vulnerable dryland environments at appro-
priate management scales.

Here, we use a random forest machine learning model to provide a 
high-resolution (1 arcsecond, roughly 30 m at the equator) spatially 
explicit global map of probable GDEs in dryland regions. The goals of 
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Fig. 1 | Global GDE map. a, Global map shows GDE area density at 30 arcsecond 
resolution (roughly 1 km grids). Call-out circles show binary GDE classification 
at the full 1 arcsecond resolution (roughly 30 m grids). Bar plot (bottom left) 
shows GDE surface area distribution across continents. AS, Asia; AF, Africa; OC, 
Oceania; SA, South America; NA, North America; EU, Europe. b–g, Regional 
maps shown at the full 1 arc second resolution for the western USA (b), central 

Argentina and Chile (c), the central Sahel region (d), southern Africa (e), central 
Asia (f) and eastern Australia (g). The global map is shown in the Robinson 
projection whereas all panel insets are shown in geographic projection 
(latitude and longitude) referenced to the World Geodetic System (WGS) 
1984 datum. An interactive version of the full resolution map is available at 
https://codefornature.projects.earthengine.app/view/global-gde.
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our map are to: (1) generate a conservative (low) estimate of the likely 
presence and extent of GDEs; (2) provide a reproducible methodol-
ogy that allows for periodic mapping to detect changes over time, 
and which can be refined for regional GDE mapping efforts at various 
scales using local data and expertise, as well as high-resolution satel-
lite imagery; and (3) serve as a starting point for prioritizing policy 
and programmatic decisions to enhance GDE monitoring and in situ 
validation studies so that GDEs can be protected by relevant groups, 
organizations and governments across the globe. Our results show that 
more than half (53%) of mapped GDEs are potentially threatened by 
groundwater depletion and only 21% of GDEs exist on protected lands 
or in jurisdictions with sustainable groundwater management policies. 
Because GDE protection may need to be achieved through integrated 
policies or programmatic work instead of sustainable groundwater 
management laws that may not be tractable in politically unstable 
regions, we also examined the linkage of mapped GDEs with cultural 
and socio-economic factors within the Greater Sahel region of Africa. 
Finally, we discuss how our global GDE map and methodology can be 
used as a starting point to facilitate and improve policy and program-
matic decisions at the local level.

High-resolution GDE mapping
We combine 6 years (2015–2020) of Landsat 8 imagery, climate, 
topographic, groundwater and GDE training data (n = 34,454 train-
ing points; Extended Data Fig. 1 and Extended Data Table 1) to map 
the likely presence of both aquatic and terrestrial GDEs at roughly 
30 m resolution across global drylands. Within our random forest 
model, training data are used within an ensemble of decision trees 
to perform a supervised classification resulting in each pixel being 
classified as a GDE or non-GDE. Given the global scale of our study 
and reliance on satellite-based indicators, this binary classification 
(GDE or non-GDE) occurs regardless of whether the GDE is aquatic or 
terrestrial, and slightly dependent (facultative) or entirely dependent 
(obligate) on groundwater but excludes subterranean GDEs that exist 
within aquifer formations. Characterizing the timing and nature of 

groundwater dependence requires intensive in situ field monitoring, 
such as isotopic studies that require localized field sampling and are 
not feasible at the global scale. Thus, the intention of our map is to 
provide an indication of where GDEs are most likely to exist across 
global drylands, and to provide a starting point for regionally refined 
mapping efforts and verification using local datasets, knowledge and 
targeted follow-on work.

In the absence of a comprehensive global groundwater level data-
base, our random forest model uses publicly and globally available 
satellite-based data, including vegetation and water indices, ambient 
land surface temperature (LST), climate and topographic data (Meth-
ods). To infer whether ecosystems are being supported by groundwater, 
our approach assumes that ecosystems with access to groundwater will 
appear as ‘blue or green islands’ because they will be wet and maintain 
ecohydrologic and photosynthetic function during the dry season, in 
contrast to those without access to groundwater23. For this reason, 
we selected satellite-based data that can measure vegetation green-
ness, leaf water content, open water bodies, the ratio of the annual 
sum of actual plant transpiration to precipitation (ETaP) and the spatial 
anomaly of LST. ETaP distinguishes pixels in which plant transpiration 
exceeds precipitation, indicating a likely reliance on groundwater, and 
LST distinguishes GDEs based on their cooler temperatures relative to 
the surrounding environment. These cooler temperatures are driven 
by higher evaporative rates from soil and water bodies influenced by 
groundwater and higher transpiration rates due to a more abundant 
water supply available to phreatophytic vegetation36. Although GDEs 
exist in both wet and dry environments, the identification of GDEs in 
humid environments is more difficult using existing satellite-based 
data because of the inability to differentiate between precipitation and 
groundwater sources. Thus, we restrict this inference-based approach 
and the model extent to global drylands (Extended Data Fig. 2), and 
exclude places with deep groundwater that are outside the reach of 
most plant roots37 (more than 30 m, Extended Data Fig. 3), in addition 
to agricultural and urban lands. This resulted in a total model analysis 
area of 23.2 million km2. Because our model relies on satellite-based 
thermal and spectral data from the 2015–2020 period, the resultant 
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map reflects the likely location of aquatic and terrestrial GDEs for this 
snapshot in time.

The validation accuracy of the random forest model was 84%, which 
is a measure of how well the model predicted true positives (GDEs) 
and true negatives (non-GDEs, Extended Data Table 2). The model 
precision, which measures the percentage of the predicted GDEs that 
are actually GDEs (true positives), was 81%. The model recall, which 
measures the percentage of actual GDEs that were predicted correctly, 
was 87% (Extended Data Table 2). The two most important predictor 
variables for distinguishing GDEs from their surrounding environ-
ment were ETaP and LST (Extended Data Fig. 4). To evaluate how well 
the model performs within regions lacking training data within the 
model extent (Extended Data Fig. 1), we compared the distribution of 
the predictor variables results from our model training data points 
(n = 34,454 points) with a randomly generated global point dataset 
of comparable size (n = 32,954 points). The distributions of each of 
the 11 predictor variables were similar across the training and global 
points, with their overlap index (Methods) ranging between 71% and 
99% (Extended Data Fig. 5). Furthermore, regional cross-validation 
tests, which are a standard machine learning protocol for assessing 
model performance in areas without training data, were performed in 
the Sahel, Western Australia and New Mexico (USA) yielding validation 
accuracies of 69, 53 and 61%, respectively (Supplementary Tables 1–3). 
Precision was much higher than recall in the Sahel and Western Aus-
tralia cross-validation tests, but lower in New Mexico. The lower recall 
rates in our cross-validation tests are a result of GDE training points 
being misclassified as non-GDEs, which suggests that our model is 
probably under-classifying GDEs and thus provides a conservative 
(low) estimate of the likely presence of GDEs within dryland regions 
worldwide. One possible explanation is that GDEs in drylands can be 
sparsely vegetated or contain small springs that may be difficult to 
detect at 30 m resolution. For example, if ground-truthed training 
points used in our model contain a lone tree or small spring within 
a roughly 30 metre pixel, the pixel can be saturated by bare ground 
reflectance that would result in that GDE point being misclassified 
as a non-GDE grid cell. Thus, it is possible that grid cells classified as 
non-GDEs may in fact be a GDE, especially in more arid landscapes 
in which GDE features are likely to be smaller and more difficult to 
detect with remote-sensing data. To better characterize the uncer-
tainty of our model, we also generated a probability layer in our GDE 
map that contains the likelihood that each pixel is a GDE (100%) or 
non-GDE (0%) (Extended Data Fig. 6 and Methods). In our GDE map 
(Fig. 1), we differentiated likely from non-likely GDE grid cells using 

a likelihood threshold of 50% but end-users of our data can reduce 
this threshold to lower values if less-conservative estimates of GDE 
presence are desired.

Our mapping reveals that GDEs are probably present within 8.34 mil-
lion km2 of global drylands, comprising 36% of the global dryland area 
analysed here (Fig. 1). An interactive version of the high-resolution 
(1 arcsecond, roughly 30 m) spatially explicit global GDE map and 
probability layer are accessible as a web map (https://codefornature.
projects.earthengine.app/view/global-gde). GDEs coincide with many 
global biodiversity hotspots, such as the California Floristic Province, 
Mesoamerica, Tropical Andes, Central Chile, Mediterranean Basin, East-
ern Arc and Coastal Forests of Tanzania/Kenya, Caucasus, Indo-Burma, 
Southwest Australia and New Zealand4. Mapped GDEs include a wide 
range of terrestrial and aquatic ecosystem types, including phreato-
phytic vegetation, rivers and streams, springs and wetlands that not 
only support rare and endemic species, but also rural livelihoods that 
depend on GDEs for domestic water supplies, food and livestock forage 
(Supplementary Fig. 1).

Groundwater development linkages
To assess risks to GDEs posed by groundwater depletion, we compared 
GRACE-derived groundwater storage trends over the past 20 years 
(2002–2022) for mapped GDEs, which reveal important differences 
between continents. For example, mapped GDEs are more contiguous 
and are more extensive in Central Asia, the Sahel and South America 
(Fig. 1), where they coincide with pastoral landscapes (Extended Data 
Fig. 7) and lower rates of groundwater depletion (Fig. 2). This is in 
contrast to more fragmented GDE landscapes in Australia and North 
America where agricultural lands and groundwater pumping domi-
nate38. Globally, our map indicates 59% of GDEs overlap lands with more 
than 25% pastoral land use (among areas with pastoral land use data). 
Because many GDEs rely on shallow groundwater, regions with a his-
tory of groundwater pumping are likely to have lost many GDEs over 
the decades since pumping commenced12,13,39. For example, intensive 
groundwater pumping in California’s Central Valley has caused ground-
water levels to drop below the roots of plants and to become discon-
nected from stream channels, contributing to a landscape with highly 
fragmented GDEs that often rely on shallow groundwater supported 
by local irrigation return flow, water conveyance or discharge from 
wastewater treatment facilities15. As groundwater depletion continues 
to increase globally to meet human40 and atmospheric evaporative41 
demands from a warming climate, less groundwater will be available 
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for GDEs to cope and buffer against reduced surface water availability 
and increased plant water stress6.

Globally, more than half (53%) of mapped GDEs (3.81 million km2) 
exist within regions showing declining groundwater storage trends 
(among GDE areas with available data; 7.20 of 8.34 million km2; Meth-
ods). However, there is significant regional variability in the threats 
posed to GDEs by groundwater depletion. Regions where most (more 
than 50%) dryland GDEs are in areas experiencing groundwater stor-
age loss include Europe (90%), Asia (75%) and North America (65%). 
Conversely, only moderate and small percentages of GDEs in South 
America (37%), Oceania (29%) and Africa (17%) are facing similar threats 
(Fig. 2). Because global groundwater storage trend data are only avail-
able at coarse spatial resolutions and vertically integrate shallow and 
deep groundwater resources (Methods), the direct impact on GDEs will 
vary considerably at local scales not captured in the large-scale stor-
age trend data. Groundwater storage loss can result in deeper water 
tables and reduced groundwater flow across the landscape and at the 
intersection of surface water bodies, but will vary locally depending on 
the hydrologic regime, aquifer configuration and streambed hydraulic 
conductivity. However, the widespread occurrence of groundwater 
storage losses in regions with identified GDEs underscores the need 
to proactively protect these ecosystems from the threat of ground-
water depletion in regions not facing the same storage losses, such as 
found across much of Africa. In many regions around the world, GDEs 
lack protection and pressures on GDEs are exacerbated by complex 
cultural, socio-economic and political factors.

Cultural and socio-economic linkages
To illustrate the linkages between GDEs with cultural and 
socio-economic factors, we focus on the Greater Sahel region in which 
GDEs play an essential role in supporting biodiversity, rural livelihoods 
and providing sustenance and relief along human migration pathways 
for pastoralists and traders42. With half of the world’s poor living in 
sub-Saharan Africa, the Sahel is a fragile region laden with social and 
climate instability, including social conflict, food insecurity, human 
displacement and extreme flood and drought events43. In the aftermath 

of severe drought events during the 1970s and 1980s, competition over 
water and agricultural resources between nomadic herders and seden-
tary farmers spurred ongoing confrontations for water, crop land and 
grazing options across the region44. During dry periods, when herds 
can no longer rely on nutrient-rich annual grasses, pastoralists move 
their herds onto croplands to graze and browse within wetlands and 
on trees, shrubs and perennial grasses that are probably sustained by 
groundwater, which can exacerbate conflict45,46.

In the Greater Sahel, our findings show that four well-known con-
flict hotspots (the Liptako–Gourma region at the borders of Mali, 
Burkina Faso and Niger; the Lake Chad Basin at the borders of Chad, 
South Niger, Northern Nigeria and Cameroon; the Darfur region at 
the borders of Sudan, South Sudan, Chad and the Central African 
Republic; and the South Kordofan region between Sudan and South 
Sudan) have a high prevalence of GDEs, which support local liveli-
hoods and exist at the convergence of forced migration pathways47. 
These hotspots coincide with growing food insecurity in the wake 
of climate shocks and conflict that have resulted in the expansion of 
crop cultivation into traditional grazing areas48 (Fig. 3). The overlap 
between GDEs and conflict zones of social vulnerability emphasizes 
the importance of recognizing the interdependencies between GDEs, 
climate change, rural livelihoods, food security and social stability 
in subnational, national and regional protection strategies. This is 
particularly important because many of our globally mapped GDEs 
co-exist with pastoral lands (Extended Data Fig. 7), where GDEs are 
likely to provide critical ecosystem services for both wildlife and live-
stock. However, our results also indicate that these same GDEs, and 
the services they provide, are likely to be threatened by policies that 
encourage groundwater exploitation due to agricultural intensifica-
tion. For example, single-objective policies aimed at food security that 
promote the proliferation of groundwater wells for irrigation or food 
pricing that encourages water-intensive grain cultivation have exacer-
bated groundwater depletion in regions such as India49. The likelihood 
of similar unintended consequences of single-issue policies is high for 
regions such as the Sahel, and groundwater depletion that leads to GDE 
degradation stemming from well-meaning policies (for example, bore-
hole development for irrigation) could contribute to further regional 
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destabilization by excluding pastoralists and increasing their societal 
vulnerability to climate shocks. Thus, multi-disciplinary approaches 
are necessary to address the interdependence of economic devel-
opment, natural resources and conservation, to ensure that diverse 
livelihoods and communities surrounding GDEs in dryland areas are 
protected along with these critical natural environments.

Overcoming global conservation challenges
GDEs in drylands are at risk of severe ecologic damage and loss if poli-
cies, development projects and management actions do not explic-
itly factor in environmental groundwater needs14,17. In the race to 
combat climate change and unprecedented biodiversity loss, global 
initiatives and land protection often overlook the significance of 
groundwater in supporting important species, habitats and many 
critical functions including climate regulation2,22. The importance 
of groundwater is generally under-represented in the United Nations 
Sustainable Development Goals, with vague linkages to ecosystems 
under Target 6.4 (Water use and scarcity) and Target 6.6 (Water-related 
ecosystems). Although environmental water needs for GDEs are 
increasingly being protected under Australia’s Environment Protec-
tion and Biodiversity Conservation Act, and considered under sus-
tainable water policies, such as Australia’s National Water Initiative, 
the European Union’s Water Framework Directive and California’s 
Sustainable Groundwater Management Act, significant policy gaps  
remain globally.

Our results show that only 21% of globally mapped dryland GDEs 
(1.76 million km2) have some degree of protection (Fig. 4). However, 
even in places with well-established legal frameworks that limit 
groundwater development, the implementation of these policies 
often falls short of protecting ecosystem water needs50. For example, 
a common practice within groundwater law is to manage groundwater 
towards a safe yield, which considers groundwater usage to be safe 
if it falls within the natural recharge rate51. However, the concept of 
safe yield fails to acknowledge negative ecologic consequences17. 
Even jurisdictions that have adopted a more inclusive definition 
of sustainability, such as in Australia, California in the USA and the 
European Union where ecologic water requirements or an evalua-
tion of ecosystem effects are required, are falling short of meeting 
ecosystem water needs. This is due to inequitable decision-making 
processes that prioritize human over ecosystem water needs, the 
absence of environmental groundwater rights regimes, limited 
ecohydrologic expertise in water agencies and a lack of scientific 
consensus on what measurable groundwater targets and thresholds 
are representative of environmental water needs1,14,16,17,50. Even with 
improvements, groundwater laws that limit groundwater develop-
ment or call for sustainable groundwater management planning 
may be intractable in politically unstable regions, as illustrated 
for the Sahel. Thus, it may be necessary to achieve GDE protection 
through means of other local, regional or international policies or  
humanitarian efforts.

Our study provides a conservative map of GDEs in drylands globally 
and an approach to delineate GDEs at local scales. However, further 
ground-truthing and verification should be undertaken before apply-
ing the global map to local contexts. Our map nevertheless provides 
critical information for subnational, national and intergovernmental 
organizations to prioritize, conceptualize and develop policy and pro-
tection mechanisms, so that efforts can be made to safeguard and avoid 
further degradation to these important dryland ecosystems and the 
communities that depend on them.
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Methods

Model development
Data processing and modelling were conducted in Google Earth Engine 
(GEE), an application program interface that provides access to large 
publicly available datasets and machine learning algorithms, which 
enables complex computing across large spatial and temporal scales 
that was nearly impossible in the recent past52.

Model extent. Dryland regions were identified at 30 arcsecond (rough-
ly 1 km) resolution using the Köppen–Geiger climate classes: arid and 
semi-arid (Type B), and three temperate climate types with distinct dry 
summer seasons (type C)53 (48.5 million km2, Extended Data Fig. 2). 
Agricultural and urban areas were masked out using the Environmen-
tal Systems Research Institute (ESRI) roughly 10 m resolution global 
land use and land cover map, which were derived from deep learn-
ing models and 2017–2020 Sentinel-2 imagery54. Isolated patches of 
groundwater-dependent vegetation existing within agricultural lands 
may be classified as croplands and subsequently masked out of the 
model extent. Oceans and inland seas were masked out using the Coper-
nicus Global Land Service Dynamic Land Cover map at 100 m resolution 
(CGLS-LC100), which is based on 2015–2019 Sentinel imagery55. Global 
depth-to-groundwater (DTG) data at roughly 1 km spatial resolution56, 
were used to define the model extent by masking out pixels where DTG 
exceeded 30 m from the land surface (Extended Data Fig. 3), which is 
beyond the rooting zone of most phreatophytic vegetation37. As the 
DTG dataset contains data gaps where open water occurs, we assigned 
a DTG value of 0 for pixels identified in the ESRI dataset as open water. 
Next, the DTG layer was smoothed using a 1.5 pixel focal mean window 
to interpolate values for any remaining, isolated ‘no data’ pixels using 
surrounding pixel values. The small window size was used to minimize 
the effects of smoothing on DTG values in regions with large changes 
in surface elevation. On visual inspection, the remaining ‘no data’ gaps 
appear to surround water sources that had been identified using the 
land cover data. It was assumed that DTG is shallow in these areas, and 
these remaining pixels were also assigned DTG values of zero. Only 
pixels with DTG less than or equal to 30 metres were included in the 
analysis to map GDEs. After applying these various spatial masks, the 
total model extent is 23.2 million km2.

Training and validation data. Training and validation GDE data 
(Extended Data Fig. 1 and Extended Data Table 1) were derived from 
ground-truthed points within the public version of the LANDFIRE 2016 
Remap Reference Database (LFRDB)57, the Australian Groundwater 
Dependent Ecosystem Atlas58 and the sPLOTOpen dataset59. In the 
Australian GDE Atlas, subterranean GDEs from karsts were excluded 
and the remaining aquatic and terrestrial GDE data were considered 
as GDE if classified as a ‘Known GDE—from regional studies’, and as 
non-GDE if classified as a ‘Low potential GDE—from regional studies’. 
Ground-truthed vegetation data inventoried within the LFRDB and 
sPLOTOpen datasets were classified as GDE or non-GDE data according 
to species and location based on expert and literature review (Sup-
plementary Table 4). For the LFRDB dataset, phreatophytes were clas-
sified from four different states in the western United States: Arizona, 
California, Nevada and Oregon. If there was consensus among two or 
more states that a particular plant species in the reference database was 
a phreatophyte, then it was classified as a GDE. Non-GDE points were 
identified when a plant species was not identified as a phreatophyte in 
three or more states. Other non-GDE training points were created by 
randomly sampling barren areas (n = 10,000 points) within the ESRI 10 m 
land use and land cover map. Because our model relies on satellite-based 
thermal and spectral data, we intentionally selected training data, pre-
dictor variables and regions that could readily map ecosystems showing 
surface expressions of groundwater. And thus, our GDE map does not 
reflect GDEs in subterranean systems or in cold or humid environments.

Predictor variables. GDEs were mapped globally using 11 predictor 
variables from a combination of observational, model-based and 
remote-sensing data, as summarized below.

First, satellite-based indices were developed using roughly 30 m 
surface reflectance data from Collection 2 of the Landsat 8 satellite plat-
form. All satellite images were processed in GEE. Landsat 8 data in GEE 
contains atmospheric-corrected multispectral imagery60, and contains 
a quality assessment band with cloud mask information (‘QA_PIXEL’) 
that is available for users to identify cloudy and cloud-free pixels. Land-
sat scenes with greater than 20% cloud cover were not included in the 
analysis to minimize misclassification of GDEs. For scenes with less than 
or equal to 20% cloud cover, clouds, snow and/or ice and cloud shadows 
were masked using the CFmask algorithm61–64. Four satellite-based 
vegetation and water indices were calculated: (1) normalized difference 
vegetation index65, a measure of greenness; (2) normalized difference 
moisture index66, a measure of water in plant mesophyll, (3) normalized 
difference water index67, a measure of open water and (4) modified soil 
adjusted vegetation index68, a measure of greenness that minimizes soil 
brightness effects on the vegetation signal (Supplementary Table 5). 
For each of these indices, two metrics were developed to be used as 
predictors in the random forest model using multi-year (2015–2020) 
satellite imagery from the dry season (late summer and early autumn 
period). Dry season satellite images were selected because GDEs can 
be more readily distinguished from non-GDEs as GDEs’ reliance on 
groundwater allows them to maintain vegetation vigour later into the 
season, when surface water and precipitation are scarce15,69. The dry 
season period was defined as 1 July–30 September in the Northern 
Hemisphere, and 1 January–31 March in the Southern Hemisphere. The 
two metrics developed for each index were (1) annual dry season aver-
age, and (2) multi-year coefficient of variation of the average dry season 
period as a measure of interannual variability. The four indices with two 
metrics each resulted in eight predictor variables. The coefficient of 
variation, which is calculated as the ratio of the standard deviation to 
the mean, was chosen over the standard deviation to provide a fairer 
measure of variability, given that pixels with high vegetation cover 
will have a higher variation than pixels with lower vegetation cover.

Second, the ratios of annual sums of ETaP, averaged over the 2003–
2016 time period for which vegetation transpiration data were available, 
were included as a predictor variable to indicate groundwater depend-
ence in which annual vegetation consumptive water use exceeded 
precipitation. This exceedance (that is, ETaP greater than 1) indicates 
that plant water needs are probably being met by groundwater rather 
than infiltrated precipitation. Transpiration to precipitation ratios 
were calculated in GEE using 500 m resolution vegetation transpira-
tion data from the Penman-Monteith-Leuning Evapotranspiration V2 
(PML_V2) product70,71, and 1/24° resolution precipitation data from 
TerraClimate72.

Third, compound topographic index (also known as topographic 
wetness index) data distinguish between ridge and valley forms, and 
were used to indicate the likelihood that soil is saturated with water as a 
result of topographic position without accounting for climate factors73.

Fourth, an ambient LST spatial anomaly dataset was developed using 
the Landsat dataset described in point (1) to identify anomalously cool or 
warm places relative to their surroundings, which is an expected attrib-
ute of GDEs. The surface temperature quality assessment band (‘ST_QA’), 
which indicates uncertainty about temperatures given in the surface 
temperature band file, was used to eliminate pixels with uncertainties 
greater than 5 °C. The spatial anomaly dataset was derived by calculating 
the differences in LST between a given focal pixel and the average LST 
of all pixels within the surrounding 270, 2,700 and 5,400 m2 area. The 
three differences were then averaged to generate a multi-scaled result74. 
From there, the 5 year average (2015–2020) of the annual mean summer 
and/or early autumn (fall) period LST spatial anomaly was calculated. 
Before applying the algorithm, open water land cover types were masked 
out to eliminate their influence on the spatial anomaly calculations.



Distribution plots for each of the 11 predictor variables were cre-
ated to compare the training data (n = 34,454 points) with randomly 
generated global points within the model extent (n = 32,954 points). 
Overlap statistics were calculated in the R statistical software using the 
overlapping package75, in which a statistical value of zero represents no 
overlap between the two samples’ distributions and a statistic value of 
one represents complete overlap (that is, identical datasets).

Random forest algorithm. We determined the likely presence of GDEs 
globally using a random forest algorithm within GEE based on the pre-
dictor variables, and training and validation data introduced above. The 
random forest algorithm is a statistical model that trains an ensemble of 
classification and regression tree models populated by random subsets 
of the model calibration data and predictor variables76. The trees within 
random forest are created through a ‘bagging approach’ that draws a 
random subset of attribute data (that is, a selection of predictor vari-
ables) through replacement, resulting in some samples to be selected 
several times and others never selected (the out-of-bag fraction). The 
‘bagging approach’ and attribute sampling both help ensure that each 
decision tree is independent of each other, which helps to minimize 
overfitting in the random forest model when the majority decision 
is taken from the ensemble of trees77. Random forest modelling was 
selected because it is computationally efficient, less likely to overfit 
and can handle many predictors78,79. The model was trained on 34,454 
point locations of aquatic features and vegetation types known to rely 
on groundwater (Extended Data Table 1 and Extended Data Fig. 1). The 
data were split 80 to 20 for training and test sets. Hyperparameter tun-
ing was used (Extended Data Fig. 8), resulting in the model to contain 
40 trees (numberOfTrees), five variables per split (variablesPerSplit), 
two minimum leaf population (minLeafPopulation), 0.7 bag fraction 
(bagFraction) and 3,010 maximum number of nodes (maxNodes). The 
out-of-bag error estimate was 0.18. Outputs from the random forest 
model include a ‘soft’ probability class (Extended Data Fig. 6) varying 
between 0 and 100% using a probabilistic mode in the random forest 
model (setOutputMode ‘MULTIPROBABILITY’), and a ‘hard’ probability 
class that results in a binary GDE (1) and non-GDE (2) classification that 
is obtained by identifying the most accurate soft probability GDE clas-
sification using a dynamic thresholding analysis (Fig. 1).

Regional cross-validation tests were performed to further evaluate 
how well the model extrapolated into regions without training data. 
This was accomplished by running the model three more times using  
(1) new training data provided by the World Bank from the Sahel region 
in Africa47 and (2) by omitting our training data from Western Australia 
and New Mexico, USA to test model performance in these regions. 
Hyperparameter tuning was used separately using the Western Australia  
and New Mexico cross-validation training, as those cross-validation 
tests used a subset of the main model training and validation data, 
whereas the Sahel cross-validation test used the main model’s train-
ing and validation data. It is important to note, that the GDE data from 
the Sahel are not ground-truthed data and primarily derived from 
a literature review, which required us to randomly generate points 
within polygon features and line buffers, which very probably intro-
duced some uncertainty into this dataset. For this reason, the Sahel 
data were not incorporated into the random forest classifier, and only 
used as a validation outside the model. Hyperparameter tuning for 
the Western Australia cross-validation test (Supplementary Fig. 2), 
resulted in the model to contain 70 trees (numberOfTrees), two vari-
ables per split (variablesPerSplit), one minimum leaf population (min-
LeafPopulation), 0.9 bag fraction (bagFraction) and 3,010 maximum 
number of nodes (maxNodes). Hyperparameter tuning for the New 
Mexico cross-validation test (Supplementary Fig. 3), resulted in the 
model to contain 40 trees (numberOfTrees), six variables per split 
(variablesPerSplit), one minimum leaf population (minLeafPopula-
tion), 0.7 bag fraction (bagFraction) and 3,010 maximum number of 
nodes (maxNodes).

Post hoc analyses
Data summarizing at multiple resolutions. Post hoc analyses were per-
formed at varying resolutions to best match the base resolutions of the 
datasets the GDE map was compared with. Thus, whereas the core GDE 
map developed in this study is at 1 arcsecond resolution (roughly 30 m 
grids at the equator), we also calculated and have provided GDE area 
densities at 30 arcsecond (roughly 1 km), 5 arcminute (roughly 10 km) 
and 30 arcminute resolution (roughly 50 km). GDE area densities were 
derived at each resolution as a ratio of: (1) area analysed per grid cell 
and (2) total grid cell area. We anticipate that these summary datasets 
(Data availability section) will be of interest to the broader scientific and 
practitioner community that routinely operates at these resolutions.

Groundwater storage trends. GRACE-based groundwater storage 
trends were derived using terrestrial water storage anomalies from 
NASA Jet Propulsion Laboratory Level-3 Release 6 v.2 gridded mascon 
data (0.5°, roughly 56 km at equator)80, and the soil moisture, canopy 
storage and snow water equivalent time series were obtained from 
Global Land Data Assimilation System v.2.1 (GLDAS-2.1) Noah81 and 
Variable Infiltration Capacity (VIC)82 land surface models. Groundwa-
ter storage anomalies are computed by removing the soil moisture, 
canopy water storage and snow water equivalent anomalies from the 
terrestrial water storage anomalies based on the modelled water bal-
ance83, in which the resultant groundwater storage vertically integrates 
shallow and deep groundwater resources84. The groundwater storage 
trends reported in this study correspond to the April 2002–April 2022 
time range.

A limitation of this approach is the lack of representation of surface 
water anomalies, which are not available at present in an existing global 
time series data product. However, surface water storage trends are 
typically small in comparison to large-scale trends in groundwater 
storage85, with a notable exception found in the filling of main res-
ervoirs86. The groundwater storage trends provided by this method-
ology do not cover the entire terrestrial land surface as regions are 
masked if they contain glaciers whose trends are not accounted for in 
the above-described methodology. This masking reduces the spatial 
extent of the groundwater storage trends dataset, with the implication 
that roughly 1.1 million km2 of mapped GDEs exist in these masked 
out regions. Following our post hoc analysis protocols, our analysis 
comparing GDE area density with groundwater storage trends is per-
formed at 30 arcminutes to match the resolution of the groundwater 
storage trend data.

To provide regional summaries of the relationship between GDE 
area density and groundwater storage trends, we map the relationship 
between GDE area density and groundwater storage trends globally 
and calculate area-averaged values for a selection of freshwater ecore-
gions87. We selected freshwater ecoregions as a unit of analysis because 
they are based on the distribution and composition of freshwater spe-
cies globally and offer a spatial template that is useful for informing 
large-scale conservation planning efforts.

Protected areas
To quantify the extent of GDE protection globally, we compared mapped 
GDE extents with the World Database on Protected Areas (WDPA)88 
and to jurisdictions where there are implemented sustainable water 
policies with GDE protection. The WDPA is the most comprehensive 
global dataset of protected areas. The WDPA contains both spatially 
explicit polygon representations of protected area extents as well as 
points where polygon extents are not available. Although point data 
correspond to roughly 9% of all entries in the WDPA89, we do not account 
for these areas as doing so requires assumptions on the spatial shape of 
the protected area. Jurisdictions with sustainable water policies include 
the European Union, South Africa, Australia and California (USA). We 
evaluated the protection status of GDEs at 1 arcsecond resolution by 
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rasterizing the WDPA and extents of the aforementioned jurisdictions 
and compared these extents to the base GDE classification map. We also 
conducted this comparison at 30 arcsecond (roughly 1 km) resolution 
for plotting in Fig. 4.

Limitations
Random forest is an inherently statistical rather than a deterministic, 
process-based approach that relies on training data and predictor 
variables to predict outcomes. Like most models, uncertainty can be 
embedded into models from input variables and training data. By using 
a random forest model to predict the likely occurrence of GDEs glob-
ally, there are three main sources of uncertainty in our final model 
output: (1) predictor variables: our model uses 11 predictor variables 
that have complete coverage across the global domain. Each of these 
predictor variables have different spatial and temporal resolutions 
(Supplementary Table 6) but each represents the best available data-
sets for each variable for our global model. Uncertainty embedded 
in each of the predictor variable datasets can be minimized in local 
applications of our modelling approach in which higher resolution 
and local-verified datasets can be used in place of these larger global 
datasets. (2) Training and validation data: data on the presence and 
absence of GDEs are limited to specific geographic locations and have 
temporal resolutions that vary, due to a lack of recognition of GDEs 
in many jurisdictions (which was a major motivator for this study). 
The lack of a globally consistent ground-truth dataset and reliance on 
regional expert opinion to identify GDE versus non-GDE vegetation is 
another factor that can be improved in more localized applications. 
(3) Model extrapolation: although we have tuned hyperparameters, 
checked the distribution of training data with a randomly generated 
dataset within the model extent for each of our predictor variables and 
performed regional cross-validation tests, some model extrapolation 
errors may have occurred. However, our analyses suggest that many of 
these errors are likely to be underestimating the occurrence of GDEs 
globally rather than overestimating. This means that whereas there 
may be pixels designated as non-GDEs, that there may be features (for 
example, upland channels, forest stands, small springs) within our 
modelling extent that are groundwater dependent, and vice versa. 
GDE reliance on groundwater varies in time and space and even for 
the same species depending on the availability of other water sources 
and seasonal and interannual climate variability15. For this reason, the 
intention of our GDE map is that it be used as a starting point for prior-
itizing more refined, localized mapping efforts based on local data and 
that it be accompanied by verification studies using in situ methods, 
including local groundwater monitoring. Although it is possible that 
our random forest model could be modified for localized applications 
in colder, humid environments, such as by using Sentinel imagery that 
has a higher temporal frequency than Landsat to avoid cloudy pixels 
and scan lines in the final map, the application of our random forest 
map is probably not suitable for subterranean GDEs. Subterranean GDE 
mapping will require other mapping approaches such as in situ and 
interference methods based on aquifer mapping. Future work looking 
at the dynamics of GDEs and fragility would benefit from integrating 
the perspectives and involvement of local and/or national researchers 
and practitioners to further refine context-specific interconnections 
and implications.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
GDE data are available at Zenodo (https://doi.org/10.5281/
zenodo.11062894)90. GDE data deposited include the high-resolution 
(1 arcsecond, roughly 30 m) GDE classification and GDE probability 

maps, as well as aggregated products of GDE area density at 30 arc-
second (roughly 1 km), 5 arcminute (roughly 10 km) and 30 arc-
minute (roughly 50 km) resolution. An interactive web map of the 
high-resolution GDE data is accessible at https://codefornature.pro-
jects.earthengine.app/view/global-gde. All source data used in model 
development and GDE analysis are documented in Supplementary 
Table 6 and are publicly accessible through the persistent web-links 
provided.

Code availability
Code used to generate the global GDE map and produce all results in 
this study is available alongside the study data at Zenodo (https://doi.
org/10.5281/zenodo.11062894)90. The code repository is also acces-
sible at https://github.com/XanderHuggins/global-gde-map. Code 
was developed using the R project (v.4.3.1) for statistical computing91, 
Google Earth Engine (https://earthengine.google.com/) and Python 
(v.3.9.15; https://www.python.org/). R packages necessary for analy-
sis and visualization include terra92, rasterDT93 and ggplot2 (ref. 94). 
High-resolution global maps were exported using QGIS (http://qgis.
org). Composite figures were assembled in Affinity Designer (https://
affinity.serif.com/en-us/designer/).
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Extended Data Fig. 1 | Groundwater-dependent ecosystem (GDE) training 
and validation data (n = 34,454 points). (a) Data sources: LANDFIRE vegetation 
(n = 6,652 points), Australian GDE Atlas data (n = 19,111 points), ESRI 10 m land 

use land cover bare ground data (n = 4,075 points), and sPLOT vegetation 
(n = 4,616 points). (b) GDE (n = 16,805 points) and non-GDE (n = 17,649 points) 
classifications.



Extended Data Fig. 2 | Köppen-Geiger climate classifications used to designate dryland regions for GDE mapping. Data Source: Beck et al., 2018.
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Extended Data Fig. 3 | Global depth to groundwater (≥30 meters). Masked areas where depth to groundwater >30 meters is denoted in dark blue and were not 
included in the model. Data Source: Fan et al. 2017.



Extended Data Fig. 4 | Random forest variable importance plot. Random 
forest variable importance plot ranked highest to lowest: ratio of the annual 
sum of plant transpiration and precipitation (ETaP), ambient land surface 
temperature spatial anomaly (LST), Landsat modified soil adjusted vegetation 
index annual average (MSAVI: annual), normalized difference moisture index 
annual average (NDMI: annual), normalized difference vegetation index annual 
average (NDVI: annual), compound topographic index (CTI), normalized 

difference water index annual average (NDWI: annual), normalized difference 
moisture index inter-annual variability (NDMI: multiyear), normalized 
difference vegetation index inter-annual variability (NDVI: multiyear), Landsat 
modified soil adjusted vegetation index inter-annual variability (MSAVI: 
multiyear), and normalized difference water index inter-annual variability 
(NDWI: multiyear).
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Extended Data Fig. 5 | Predictor variable distribution plots comparing 
predictor values for the main model’s training and validation data  
(n = 34,454 points) and random global points within the model extent  

(n = 32,954 points). The numbers in the upper left of each plot indicate the 
degree of overlap between the global and training point distributions, with 
zero indicating no overlap and one indicating complete overlap.



Extended Data Fig. 6 | Groundwater-dependent ecosystem (GDE) 
probability map, indicating how likely a pixel is a GDE (100%) or non-GDE 
(0%) within the model extent at 1 arcsecond (~30 m) resolution. Probability 
data are provided in 5 degree x 5 degree tiles (see Data availability). Areas 

outside of these tiles extent are shaded in gray. The GDE probability data map is 
also available as an interactive web map (https://codefornature.projects.
earthengine.app/view/global-gde).
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Extended Data Fig. 7 | Groundwater-dependent ecosystems (GDE) area density intersected with pastoral lands area density. Globally, our map indicates 
59% of GDEs (4.9 million km2) overlap lands with >25% pastoral land density at 5 arcminute resolution.



Extended Data Fig. 8 | Hyperparameter Tuning for the main Global GDE model. Selected hyperparameter values are indicated by the red vertical dashed lines. 
The red horizontal dashed lines represent the highest accuracy of parameter values.
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Extended Data Table 1 | Training and Validation Data used in the Random Forest model



Extended Data Table 2 | Random forest model confusion 
matrices based on training (n = 27,569 points) and validation 
(n = 6,885 points) data
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