
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title

Smoothing and Imputation of Longitudinal Vehicle Trajectory Data

Permalink

https://escholarship.org/uc/item/8c4333qs

Author

Fan, Ximeng

Publication Date

2023

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8c4333qs
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA,
IRVINE

Smoothing and Imputation of Longitudinal Vehicle Trajectory Data

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Civil Engineering

by

Ximeng Fan

Dissertation Committee:
Professor Wen-Long Jin, Chair

Professor Stephen G. Ritchie
Professor R. Jayakrishnan (Jay)

2023

© 2023 Ximeng Fan

DEDICATION

To my family

ii

TABLE OF CONTENTS

Page

LIST OF FIGURES vi

LIST OF TABLES viii

ACKNOWLEDGMENTS ix

VITA xi

ABSTRACT OF THE DISSERTATION xiii

1 Introduction 1
1.1 Research background . 1
1.2 Research objective . 3
1.3 Research outline . 5

2 Literature review 9
2.1 Collection and application of vehicle trajectory data 9
2.2 Problems lying in vehicle trajectory data . 10
2.3 Typical ranges of speeds and higher-order derivatives 11
2.4 Methods for improving the quality of the vehicle trajectory data 12

2.4.1 Existing methods for smoothing vehicle trajectories 13
2.4.2 Existing methods for imputing vehicle trajectories 15

3 An iterative method for smoothing based on first principles 17
3.1 Introduction . 17
3.2 A principle-based iterative method for smoothing 19

3.2.1 Differentiation of positions . 20
3.2.2 Speed correction . 21
3.2.3 Acceleration and jerk smoothing . 23
3.2.4 Integration to lower-order derivatives . 25

3.3 Method iteration and choice of smoothing method and parameters 27
3.3.1 Method iteration . 27
3.3.2 Choice of parameters in the Gaussian filter 28

3.4 Calibration and validation with the NGSIM data 30
3.4.1 Calibration with a sample trajectory . 30

iii

3.4.2 Comparison with an existing method and validation with manually re-
extracted freeway trajectories . 32

3.5 Conclusion . 36

4 Simplified iterative moving average method for smoothing 38
4.1 Introduction . 38
4.2 An iterative moving average method for smoothing 40

4.2.1 Flow chart of the method . 41
4.2.2 Speed smoothing . 42
4.2.3 Integration of the smoothed speeds . 50

4.3 Proof of termination within a finite number of iterations 51
4.3.1 Discrete Fourier Transform (DFT) of the kernel functions 51
4.3.2 Proof of the termination . 52

4.4 Method calibration and comparison with an existing method and manual re-extraction 57
4.4.1 Choice of parameters . 57
4.4.2 Calibration with sample trajectories . 59
4.4.3 Evaluation of different filters and comparison with an existing method . . . 61

4.5 Conclusion . 66

5 Two-step quadratic programming for physically meaningful smoothing 68
5.1 Introduction . 68
5.2 Derivatives of positions and their physically meaningful bounds 71

5.2.1 Derivatives of positions . 71
5.2.2 Linear inequality constraints based on bounded derivatives of positions . . 77

5.3 Two-step quadratic programming method . 78
5.3.1 First step: minimization of the discrepancy between the half-smoothed and

raw positions . 78
5.3.2 Second step: minimization of the sum of squared highest order derivatives . 79

5.4 Theoretical properties and computational complexity 82
5.4.1 Existence of solutions . 83
5.4.2 Uniqueness of solutions . 83
5.4.3 Computational complexity regarding the highest order of derivatives 85

5.5 Calibration, comparison, and application with NGSIM and highD data 86
5.5.1 Calibration of the highest order of derivatives 86
5.5.2 Comparison with an existing method with respect to manually re-extracted

data . 90
5.5.3 Application to the highD data . 93

5.6 Conclusion . 96

6 Quadratic programming method for imputation using fixed and mobile sensor data 99
6.1 Introduction . 99
6.2 Symplectic discretization scheme of positions and Newell’s simplified car-following

model . 102
6.2.1 Symplectic discretization scheme of positions 102
6.2.2 Newell’s simplified car-following model 102

iv

6.3 Three-step quadratic programming method for imputation 103
6.3.1 Introduction of the proposed method . 104
6.3.2 Determination of the time gap and jam spacing 110

6.4 Numerical experiments . 112
6.4.1 Application to the vehicle platoons of different sizes 112
6.4.2 Application to a sample mixed-traffic system 117

6.5 Conclusion . 119

7 Conclusion 121
7.1 Summary . 121
7.2 Future research topics . 124

Bibliography 125

v

LIST OF FIGURES

Page

1.1 Framework of the dissertation . 5

2.1 Sensors for detecting vehicle trajectory data. Sources: (FHWA, 2007; Krajewski
et al., 2018; Belcarz et al., 2018; Lim et al., 2020) 10

3.1 The framework of the calculations . 20
3.2 Illustration of discretized longitudinal vehicle dynamic 21
3.4 Illustration of initial values in the integration . 26
3.5 The final flow chart of the proposed method . 28
3.6 Process for determining standard derivations in the Gaussian filter 29
3.9 Illustration of capturing the trajectories on the I80 freeway recorded by camera 6 . 33

4.1 Flow chart of the proposed method . 42
4.2 Smoothed positions, speeds, accelerations, jerks, and spacing versus relative speed

of vehicle 1486 . 60
4.3 Frequency spectrums of accelerations and jerks of vehicle 1486 61
4.4 Speed variance decrease according to the iteration numbers 62
4.5 Distribution of the number of required iterations using different convolution filters . 63
4.6 Frequency spectrums of accelerations and jerks of the dataset 65

5.1 Symplectic discretization for derivatives of positions 71
5.2 The flow chart of the two-step quardratic programming method 78
5.3 The computation time for smoothing the NGSIM I80 camera 6 dataset 88
5.4 Positions, speeds, accelerations, and jerks of vehicle 1486 90
5.5 Frequency spectrums of the accelerations and jerks of vehicle 1486 91
5.6 Frequency spectrums of the accelerations and jerks of NGSIM I80 camera 6 data . 93
5.7 Positions, speeds, accelerations, jerks, and frequency spectrums of the accelera-

tions and jerks of vehicle 1011 . 94
5.8 Frequency spectrums of the accelerations and jerks of highD “25-tracks” data . . . 96

6.1 Illustration of the mixed traffic scenario . 101
6.2 Illustration of the trajectories to be imputed . 101
6.3 The flow chart of the proposed method . 104
6.4 Illustration of the safe bounds . 105
6.5 Imputation of the sample trajectories of three, four, five, and six successive vehicles

in the (a) NGSIM I80 camera 6 and (b) highD “25-tracks” datasets 113

vi

6.6 Position error distributions of the imputed trajectories of three, four, five, and six
successive vehicles in the (a) NGSIM I80 camera 6 and (b) highD “25-tracks”
datasets . 116

6.7 Results of our trajectory imputation method in the system scenario 118
6.8 Position errors versus time and distribution of position errors 118

vii

LIST OF TABLES

Page

1.1 List of notations . 8

3.1 Comparison of different approaches . 35

4.1 Number of the required iterations using different convolution filters 63
4.2 Comparison of different methods . 64

5.1 Comparisons of our method and existing splines methods 69
5.2 MSEs between half-smoothed and manually re-extracted data, and smoothed and

manually re-extracted data adopting different K 88
5.3 Comparison of different methods . 92
5.4 Statistic summary of the raw and smoothed highD 25-tracks dataset 95

6.1 MAE and RMSE between the imputed and true trajectories in the sample platoons . 115
6.2 MAE and RMSE between the imputed and true trajectories in the two datasets . . . 117

viii

ACKNOWLEDGMENTS

I would like to express my sincerest gratitude to Professor Wenlong Jin for his advice during
my doctoral study for the past five years. I am deeply appreciative of Professor Jin for not only
providing me with invaluable professional guidance but also for serving as a role model in terms of
dedication to studies and work. We have navigated through the challenges of a global pandemic,
an event of extraordinary rarity in a century. Throughout this challenging period, I am sincerely
thankful for the understanding and support that Professor Jin extended to me, not only in my
current research but also in finding my true interest in future development.

I would like to thank my dissertation committee members, Professor Stephen Ritchie and Professor
R. Jayakrishnan and, for their time and valuable suggestions. I also want to express my gratitude
to Professor Wilfred Recker, Professor Michael McNally, Professor Jean-Daniel Saphores, and
Professor Michael Hyland for their teaching and encouragement.

I also want to express my gratitude to all my ITS friends, including Xuting Wang, Lu Xu, Yiqiao
Li, Dingtong Yang, Jared Sun, Arash Ghaffar, Chenying Qin, Brian Casebolt, Guoliang Feng,
Koti Reddy Allu, Negin Shariat, Naila Sharmeen, Montana Reinoehl, Siwei Hu, Boyuan Jiang,
Rony Gracious, Younghun Bahk, Jooneui Hong, and Llorenç Miquel I Solé. This journey is more
fulfilling because of your company.

Taking this chance, I want to thank Real Madrid Football Club (RMCF). Since elementary school,
this has consistently remained one of my most significant sources of joy and inspiration. Defeat
wins, comebacks, etc., all inspire me. As Madridistas often say, football is a 90-minute affair, and
the outcome can remain uncertain right up to the 89th minute. In a broader context, life itself is an
extensive journey. It’s essential not to yield or surrender prematurely, but it’s equally vital to adapt
and change formation if we find ourselves heading in the wrong direction.

In addition, I want to express my gratitude to some of my lifelong friends. Bocheng Wan, Lianghui
Li, Menyyuan Wan, Ziya Zhong, and Zhou Zhou, with whom I have gone through more than 15
years of highs and lows. I would also like to express my gratitude to Tong Lu, Chenyu Sun,
and Xiaolan Yu. Our paths crossed through a series of fortuitous encounters, and they have been
witnesses to my growth, both academically and in love. AS flame of fire we gather, as skyful of
stars we scatter.

I wish to extend a heartfelt, special thank you to my family, my parents Hong Fan and Xiaoling
Guo; and my grandparents Jiuduo Guo and Yanlan Liao. Their unwavering love and support are
priceless gifts that I can never fully repay. They have consistently expressed their sole desire to
see me happy. I aspire to bring them pride, even if it’s just a small measure of it. I also want to
thank my close relatives, my aunt Xiaoan Guo; and my cousins Ziyue Zhang and Yiyang Zhang.
Every Spring Festival we spend together forms one of the most beautiful parts of my childhood
memories. During my growing up, this lovely big family has brought me a lot of happiness.

Moreover, I want to express my gratitude to my husband, Albert Lee. His unwavering support, pa-
tience, and unshakable belief in me have been the bedrock of my journey to complete this journey.

ix

Your presence, with a listening ear, a comforting embrace, and unwavering respect, has made all
the difference. I cannot put into words how fortunate I feel to have clicked that button and accepted
the conversation from you. You are the best sweetie in the world for me.

In closing, I wish to extend my deepest love towards the heavens, where my beloved grandmother,
Donglan Li, resides. Thank you for being the steadfast safe harbor that sustained me through
my challenging and painful childhood, a time marred by the discriminatory tradition of favoring
males over females. Despite your slender and fragile shoulders, you provided me with unwavering
support and strength. I hope you know the significance of everything you’ve done for me. It is also
my earnest wish that you can perceive my diligent efforts in fulfilling all the promises I made to
you. Next time, I will place a lily on your gravestone, wishing that in your next life, you may find
happiness, freedom, love, and never be taken for granted by undeserving men.

x

VITA

Ximeng Fan

EDUCATION

Ph.D. in Transportation and System Engineering 2023
University of California, Irvine Irvine, CA

M.S. in Transportation and System Engineering 2020
University of California, Irvine Irvine, CA

B.S. in Civil Engineering 2018
Central South University Irvine, CA

RESEARCH EXPERIENCE

Graduate Research Assistant 2019–2023
University of California, Irvine Irvine, California

TEACHING EXPERIENCE

Teaching Assistant 2022–2023
University of California, Irvine Irvine, California

REFEREED CONFERENCE PUBLICATIONS

Quadratic Programming Method for Vehicle Trajectory Impu-
tation Using Fixed and Mobile Sensor Data

2024-01

Transportation Research Board Annual Meeting (No. 24-03230)

Two-step quadratic programming for physically meaningful
smoothing of longitudinal vehicle trajectories

2023-03

The 25th International Symposium on Transportation and Traffic Theory (ISTTT25) (Under
review)

Novel Approach for Correcting and Smoothing Longitudinal
Trajectories of Individual Vehicles

2022-01

Transportation Research Board Annual Meeting (No. 22-02118)

Periodicity Detection of Simulated Traffic Data and Calibra-
tion of Network Fundamental Diagrams in Signalized Road Net-
works

2021-01

Transportation Research Board Annual Meeting (No. 21-02673)

xi

Impact of Advisory Speed Limit on the Overall Performance
of Signalized Networks: A Network Fundamental Diagram Ap-
proach

2020-01

Transportation Research Board Annual Meeting (No. 20-02733)

xii

ABSTRACT OF THE DISSERTATION

Smoothing and Imputation of Longitudinal Vehicle Trajectory Data

By

Ximeng Fan

Doctor of Philosophy in Civil Engineering

University of California, Irvine, 2023

Professor Wen-Long Jin, Chair

The purpose of this study is to develop a methodology for processing vehicle trajectory data which

are presented as a series of discrete positions of vehicles recorded over consecutive time intervals.

The framework combines vehicle trajectory smoothing and imputation, ensuring that speeds and

higher-order derivatives of positions are consistently defined as symplectic differences in positions,

while adhering to physically meaningful bounds determined by traffic laws, drivers’ behaviors, and

vehicle characteristics.

To remove the outliers and high-frequency noises in speeds and higher-order derivatives, we in-

corporate some basic principles, including internal consistency, bounded speeds and higher-order

derivatives, and minimum MAE between the raw and smoothed positions, based on physical prop-

erties and empirical observations. We propose an iterative method. One iteration comprises four

types of calculations: differentiation, correction, smoothing, and integration. We adopt the adap-

tive average method for correction, the Gaussian filter for smoothing, and minimizing the MAEs

as the objective in integration. The efficacy of the method is numerically shown with the NGSIM

data. However, it is mathematically challenging to demonstrate when the iterations converge or

even that the iterations can converge, leading us to develop more mathematically tractable tech-

niques that can either be proved to converge or get rid of iterations.

We then propose a simplified iterative moving average method that makes the ranges of the smoothed

xiii

speeds, acceleration rates, and jerks align with physical meaning, while preserving the average

speeds or total travel distance for a specified time duration segment of a vehicle’s trajectory. The-

oretically, we prove that without termination, the speed converges to a constant value after an

infinite number of iterations, ensuring the termination of our method and physically meaningful

ranges in speeds and their derivatives. Numerically, we demonstrate the advantages of the method

in achieving physically and behaviorally meaningful ranges by applying it to the NGSIM dataset

and comparing the results with manually re-extracted data and traditional filtering methods.

As another extension of the first smoothing method, We propose a two-step quadratic programming

method that incorporates insights into human behavior, particularly the tendency to minimize jerks

during motion, and integrates prior position errors derived from pixel length in video images. This

method operates without the need for iterative processes, facilitating a single-round solution. Math-

ematically, we establish the existence and uniqueness of solutions to the quadratic programming

problems, thus ensuring the well-defined nature of the method. Numerically, using NGSIM data,

we compare the method with an existing approach with respect to the manually re-extracted ones

and show the robustness of the method upon the highD data.

In addition, we investigate the scenarios involving missing portions of trajectories. In the last part

of this dissertation, we consider segment scenarios where leading and trailing vehicles’ trajecto-

ries are obtainable through mobile sensors, while those of intermediate vehicles require imputa-

tion based on detected entering and exiting times from loop detectors, and propose a three-step

quadratic programming method for longitudinal trajectory imputation of fully sampled vehicles.

The method ensures maintaining safe inter-vehicle spacing and adheres to physically meaningful

speed, acceleration, and jerk ranges. Using NGSIM and highD data, we demonstrate the great

performance of the method in imputing trajectories for three-, four-, five-, and six-vehicle platoons

and illustrate its successful application in capturing the true conditions of a mixed-traffic system

including 10% connected vehicles (CVs) and 10% CAVs.

xiv

Chapter 1

Introduction

1.1 Research background

Vehicle trajectory data provide a rich source of information for investigating traffic dynamics in

both spatial and temporal domains, and accurate and complete vehicle trajectory data is crucial

for numerous applications. Vehicle trajectory data can be collected through fixed-location sensors,

such as loop detectors (Chen et al., 2001), cameras installed on high buildings (FHWA, 2007),

stationary drones (Krajewski et al., 2018), or helicopters (Zheng et al., 2022), which can record all

vehicle trajectories at the study sites with high sampling frequencies. On the other hand, mobile

sensors include GPS devices (Yuan et al., 2010) and vehicle-equipped LiDARs (Sun et al., 2018);

they have been widely applied to connected and autonomous vehicles (CAVs) to record their own

trajectories and detect the trajectories of surrounding vehicles within their detection ranges (Yu

et al., 2021), and there are numerous private and publicly available datasets for both naturalistic

driving and autonomous vehicles (Masello et al., 2022).

However, limitations in sensor systems, image quality, extraction methods, and post-processing

smoothing techniques can compromise the accuracy of such data, leading to errors and high-

1

frequency noises in positions, speeds, and higher-order derivatives. For example, in the NGSIM

datasets, there can be an error of 1.2 m in positions and the sampling frequency is 10 Hz, the

maximum error in speeds can be as high as 24 m/s, and those in acceleration rates and jerks as

high as 480 m/s2 and 9600 m/s3, respectively. In addition, technical, infrastructure, and regulatory

challenges impede the rapid advancements of CAVs. Even by the year 2050, it is projected that

only approximately 50% of passenger vehicles sold will be highly autonomous (Litman, 2020), re-

sulting in sampling limitations for collected trajectories and an incomprehensive picture of traffic

conditions.

These problems pose many challenges to various applications of the data. While these prob-

lems have been the subject of study for many years, existing methods may yield smoothed or

imputed trajectories lacking physically and behaviorally meaningful ranges of speed and higher-

order derivatives, without providing mathematical guarantees of existence and uniqueness. This

dissertation addresses the aforementioned challenges by introducing a framework that leverages

physical properties, vehicle characteristics, and human driving behaviors to smooth and impute

longitudinal vehicle trajectory data.

2

1.2 Research objective

This study centers on the processing of vehicle trajectory data, with the primary goal of formulating

a methodology to smooth and impute longitudinal vehicle trajectory data. The objective is to align

speeds and higher-order derivatives of positions with physical characteristics, vehicle attributes,

and driver behaviors.

• To propose an principle-based method for smoothing longitudinal vehicle trajectory

data

Accurate vehicle trajectory data is crucial for numerous applications. However, limitations

in sensor systems, image quality, extraction methods, and post-processing smoothing tech-

niques can compromise the accuracy of such data, leading to errors in positions, speeds,

accelerations, and jerks. To bridge these gaps, there is a need to introduce innovative ap-

proaches for smoothing vehicle trajectory data. In this dissertation, we incorporate some

first principles for smoothing vehicle trajectories based on physical properties and empirical

observations. We propose an iterative method based on these first principles.

• To propose a simplified iterative moving average method for smoothing longitudinal

vehicle trajectory data

Due to the difficulties in demonstrating when the iterations of the aforementioned method

converge or even that the iterations can converge, we adopt the idea of the aforementioned

method and improve it. We propose a simplified and straightforward iterative moving aver-

age method that ensures termination when the ranges of the smoothed speeds, acceleration

rates, and jerks align with physical meaning, while preserving the average speeds or total

travel distance for a specified time duration segment of a vehicle’s trajectory.

• To propose a quadratic programming method for physically meaningful smoothing of

longitudinal vehicle trajectory data

With the same objective as the first part, we propose a two-step quadratic programming

3

method that ensures the smoothed speeds and higher order derivatives of positions are con-

sistently defined as symplectic differences in positions, while adhering to physically mean-

ingful bounds determined by traffic laws, drivers’ behaviors, and vehicle characteristics. This

method allows for the selection of the highest-order derivatives, which is as high as that in

the definition of roughness. Additionally, we provide proof of the existence and uniqueness

of solutions.

• To propose a longitudinal vehicle trajectory data imputation method of fully sampled

vehicles

Incomplete vehicle trajectory data results in an incomplete understanding of traffic condi-

tions and poses challenges for their practical applications. We investigate scenarios involv-

ing missing portions of trajectories, requiring the imputation of missing values with the sur-

rounding vehicles. We propose a three-step programming method for imputing longitudinal

trajectory data of fully sampled vehicles using fixed and mobile sensor data. The method

ensures maintaining safe inter-vehicle spacing and adheres to physically meaningful speed,

acceleration, and jerk ranges.

• To test the efficacy of our methods with empirical vehicle trajectory data

To assess the effectiveness of the proposed methods, we apply them to the NGSIM camera

6 datasets (FHWA, 2007). Specifically, for the smoothing methods, we compare their per-

formance with an existing method (Montanino and Punzo, 2015) with respect to manually

re-extracted data (Coifman and Li, 2017a). Additionally, we employ the methods with the

highD datasets (Krajewski et al., 2018) to evaluate their robustness.

4

1.3 Research outline

The overall framework of the dissertation can be illustrated via Figure 1.1, and the outline of this

dissertation are introduced as follows.

Chapter 1: Introduction

Chapter 2: Literature review

Chapter 3: Principle-based
method

Chapter 6: Vehicle trajectory
data imputation

Chapter 4: Simplified
iterative method

Chapter 6: Quadratic
programming method

Chapter 7: Conclusion

Figure 1.1: Framework of the dissertation

Chapter 1 introduces the research background and objective of this dissertation.

Chapter 2 provides a detailed literature review regarding the four important components of the

proposed framework: the collection of vehicle trajectory data, problems associated with vehicle

trajectory data, methods for smoothing vehicle trajectory data, and techniques for imputing vehicle

trajectory data.

Chapter 3 incorporates some first principles for smoothing vehicle trajectories, including the in-

ternal consistency among the positions, speeds, and higher-order derivatives, bounded speeds and

higher-order derivatives, and minimum MAE between the raw and smoothed positions, and pro-

poses an iterative method based on these first principles. One iteration comprises four types of

calculations: differentiation, correction, smoothing, and integration. In differentiation, we com-

pute speeds, accelerations, and jerks from trajectory data; in correction, we eliminate outliers in

speeds, especially negative values; in smoothing, we reduce noises in accelerations and jerks; and

5

in integration, we recalculate accelerations, speeds, and positions from jerks, and find the ini-

tial values via optimization problems. We adopt the adaptive average method for correction, the

Gaussian filter for smoothing, and minimizing the MAEs as the objective in integration. We then

numerically show the efficacy of our method upon the vehicle trajectories in the Next-Generation

Simulation (NGSIM) dataset. However, it is mathematically challenging to demonstrate when the

iterations converge or even that the iterations can converge, leading us to develop more mathemat-

ically tractable techniques that can either be proved to converge or get rid of iterations.

Chapter 4 presents a simplified and straightforward iterative moving average method for smoothing

vehicle trajectory data. The method guarantees physically meaningful ranges for the smoothed

speeds, acceleration rates, and jerks of a vehicle’s trajectory while preserving its average speeds or

total travel distance over a specified time duration. In each iteration, our method consists of two

steps. In the first step, we pad the speed profile with the average speed. We then apply a moving

average method to speeds using different kernel shapes. In the third step, we normalize the filtered

speeds to preserve the mean value. The iterative process terminates when speeds, acceleration

rates, and jerks fall within reasonable bounds. We then theoretically prove that without termination,

the speed converges to the average speed after an infinite number of iterations. Finally, we apply

our method to smooth vehicle trajectories in the NGSIM dataset and compare the results with

ground truth data and traditional filtering methods.

Chapter 5 proposes a two-step quadratic programming method to smooth vehicle trajectory data.

The method ensures that smoothed speeds and higher order derivatives of positions are consistently

defined as symplectic differences in positions, and present linear inequality constraints based on

bounded derivatives of positions. We leverage our prior knowledge of position error, determined

by pixel length in video images (FHWA, 2007; Krajewski et al., 2018), and formulate two se-

quential quadratic programming problems. In the first step, we minimize the discrepancy between

half-smoothed and raw positions, subject to physically meaningful bounds on speeds and higher

order derivatives of half-smoothed positions. In the second step, we minimize the roughness of

6

the smoothed positions, maintaining the same bounds on speeds and higher order derivatives of

smoothed positions, along with additional bounds on the smoothed positions themselves. This step

allows the smoothed positions to deviate from the raw data by at most those of the half-smoothed

positions and the prior position error. In both steps, the bounds are applied to derivatives, whose

order is as high as that in the definition of roughness; i.e., the second step dictates the highest order

of derivatives. This method gets rid of the iterative process, allowing the entire process to be com-

pleted in a single round. We then analytically prove the existence and uniqueness of solutions to

both quadratic programming problems. Finally, using both NGSIM and highD data, we calibrate

the highest order of derivatives and compare our method with an existing approach with respect to

manually re-extracted data.

Chapter 6 investigates the scenarios involving missing portions of trajectories, proposing a three-

step quadratic programming method for longitudinal trajectory imputation of fully sampled vehi-

cles using fixed and mobile sensor data. We consider segment scenarios where leading and trailing

vehicles’ trajectories are obtainable through mobile sensors, while those of intermediate vehicles

require imputation based on detected entering and exiting times from fixed sensors. Through-

out all steps, we incorporate physically meaningful ranges of speeds, accelerations, and jerks as

constraints. In step 1, we calculate the fastest possible trajectory that maintains a safe distance

from the leading vehicle. In step 2, we determine the slowest possible trajectory that maintains

safe distance from the following vehicles. Finally, we compute the trajectory lying between the

slowest and fastest possible trajectories, optimizing for the minimal sum of squared jerks. Using

NGSIM and highD data, we numerically show the efficacy of our method for three-, four-, five-,

and six-vehicle platoons, as well as a traffic system comprising 10% CVs and 10% CAVs.

Chapter 7 summarizes the results and findings of this dissertation, and proposes the potential ex-

tensions for future research.

A list of notation is given in Table 1.1. The superscript k denotes the “layer” of the method in

Chapter 3 (referred to Figure 3.1), and in Chapters 4 to 6, it denotes the order of the derivatives of

7

positions. x̂m and x̃m are featured in both Chapter 4 and Chapter 5, referred to as filtered positions

and normalized-filtered positions, and half-smoothed and smoothed positions, respectively.

Table 1.1: List of notations

Variables Definitions Variables Definitions

M Total number of time instants E(·) Mean value

K The highest order of derivatives of positions

x(k)− Lower bound of the kth order derivatives of positions, k = 1, · · · ,K, k = 1,2,3 correspond to v−, a−, and j−

x(k)+ Upper bound of the kth order derivatives of positions, k = 1, · · · ,K, k = 1,2,3 correspond to v+, a+, and j+

Notations for one-vehicle scenarios

L Order of the polynomial function for speed interpolation

t Time m Time index

tm mth time instant ∆t Time-step size

ε Prior position error φm Kernel of the filter

ψm Truncated kernel w Kernel size of the filter (it is an odd number)

σ Standard derivation of the Gaussian filter

xm Raw position at tm x̂m Filtered / half-smoothed position at tm

x̃m Normalized-filtered / smoothed position at tm x̄m Manually re-extracted position at tm

x− Vector of the lower bounds of positions x+ Vector of the upper bounds of positions

x(k)m kth order derivative of x at tm, k = 1, · · · ,K, k = 1,2,3 correspond to v, a, and j

x̂(k)m kth order derivative of x̂ at tm, k = 1, · · · ,K x̃(k)m kth order derivative of x̃ at tm, k = 1, · · · ,K

x̄(k)m kth order derivative of x̄ at tm, k = 1, · · · ,K

Notations for multiple-vehicle scenarios

N Number of vehicles in a platoon tn
m mth time instant of vehicle n’s trajectory

τn
1 Time gap between vehicle n and its leading vehicle

τn
2 Time gap between vehicle n and its following vehicle

ζ n
1 Jam spacing between vehicle n and its leading vehicle

ζ n
2 Jam spacing between vehicle n and its following vehicle

xn(t) Detected position of vehicle n at time t x̂n
+(t) Fastest possible position of vehicle n at time t

x̂n
−(t) Slowest possible position of vehicle n at time t x̃n(t) Imputed position of vehicle n at time t

x̄n(t) Real position of vehicle n at time t

8

Chapter 2

Literature review

2.1 Collection and application of vehicle trajectory data

Continuously growing sensing and extraction technology increases the availability of high-fidelity

vehicle trajectory data, which have further contributed to much in-depth transportation research and

widened new horizons at both vehicle-level and network-level studies. The data collection process

typically involves several stages, including system setup, trajectory dection, trajectory extraction,

and post-processing.

Trajectory data can be recorded using two types of sensors, some of which are shown in Figure

2.1. On the other hand, fixed-location sensors, such as loop detectors (Chen et al., 2001), cameras

mounted on high buildings (FHWA, 2007), drones (Krajewski et al., 2018) or helicopters (Zheng

et al., 2022), and roadside lidars (Sun et al., 2018), offers the capability to record all vehicle trajec-

tories within a limited detection range while requiring relatively high installation and maintenance

costs. They have contributed to many in-depth studies including driving behaviors analysis (Chi-

abaut et al., 2010; Chen et al., 2014), car-following models calibration and validation (Kesting

and Treiber, 2008; Punzo and Montanino, 2016), vehicle emission estimation (Sun et al., 2015;

9

Figure 2.1: Sensors for detecting vehicle trajectory data. Sources: (FHWA, 2007; Krajewski et al.,
2018; Belcarz et al., 2018; Lim et al., 2020)

da Rocha et al., 2015), and eco-driving strategy development (Yang and Jin, 2014; Gong et al.,

2016).

The other type is called mobile sensors, such as GPS devices (Yuan et al., 2010) and vehicle-

equipped lidars (Sun et al., 2018), which enable the recording of complete vehicle trajectories

and have been widely applied in connected and autonomous vehicles (CAVs). CAVs are usually

equipped with multiple sensors, such as Lidars, cameras, and GPS, empowering them to record

their own trajectories and detect the trajectories of surrounding vehicles within their detection

ranges (Yu et al., 2021). These data are frequently used for studies in large networks including net-

work design and improvement (Zheng et al., 2011) and route planning (Yuan et al., 2010, 2011a,b).

2.2 Problems lying in vehicle trajectory data

Vehicle trajectory data often suffer from errors and incompleteness, making it challenging to ob-

tain an accurate picture of traffic conditions. Errors and noises in vehicle positions can occur at

each stage in the aforementioned data collection process, caused by detector vibrations, blockage

of vehicles by road signs, projection angles of detectors, shadows, image resolutions, and so on.

With high sampling frequencies, errors in speeds and higher order derivatives of positions can be

further amplified (Coifman et al., 1998; Coifman and Li, 2017a). For example, with 25Hz sam-

pling frequency, a 0.1 m position error can translate to errors up to 5 m/s in speeds, 250 m/s2 in

accelerations, and 12500 m/s3 in jerks. Furthermore, when collecting data from mobile sensors,

10

only a limited number of vehicles equipped with such sensors are observable, while others remain

transparent to data collection efforts. This limitation persists, especially due to technical, infras-

tructure, and regulatory challenges. Remarkably, even in the year 2050, it is anticipated that only

approximately 50% of passenger vehicles sold will be highly autonomous (Litman, 2020). Con-

sequently, a prolonged period of mixed traffic, comprising both human-driven vehicles (HDVs)

and CAVs, is foreseen, leading to sampling limitations in the trajectories collected. This scenario

imposes constraints on the trajectories that can be collected. Additionally, despite the existence

of some high-resolution GPS datasets (Punzo and Simonelli, 2005), GPS data, particularly those

derived from mobile phones, frequently exhibit relatively high position errors. GPS devices, for

example, have an average user range error of 7.8 m (25.6 f t) with a 95% probability (Wang et al.,

2021).

The aforementioned challenges result in an incomprehensive picture of traffic conditions and

give rise to several difficulties, including significantly reducing the sensitivity of the objective

function in model calibration and further reducing the reliability of the calibration results (Os-

sen and Hoogendoorn, 2008, 2009), reducing the accuracy of trajectory prediction (Altché and

de La Fortelle, 2017), and inaccurate estimation of traffic emission (Tsanakas et al., 2022).

2.3 Typical ranges of speeds and higher-order derivatives

Typically, vehicles on a road are expected to either halt or progress, indicating that their speed

should not fall below zero. (Martinez and Canudas-de Wit, 2007) found that jerks are typically

bounded within [−8,8] m/s3 based on the experiments conducted with LOLA test vehicles. The

International Organization for Standardization (ISO) has also established requirements for adaptive

cruise control (ACC) systems, stipulating that the acceleration of ACC systems must not exceed

2 m/s2 and that the average rate of change of automatic deceleration (negative jerk) over one sec-

ond must not surpass −2.5 m/s3 (ISO, 2010). (Elert, 2012) observed that the average accelerations

11

of ordinary vehicles are usually between 3 m/s2 to 4 m/s2. (Bokare and Maurya, 2017) conducted

tests examining accelerating and decelerating behaviors for various vehicle types on a highway, re-

vealing that maximum acceleration and deceleration values for petrol vehicles were approximately

3 m/s2 and 4 m/s2, respectively. Based on a freeway experiment involving sixteen Honda Accords

and 108 randomly sampled drivers, (Feng et al., 2017) demonstrated that the 99th percentile accel-

eration and jerk values were 2.85 m/s2 and 2.6 m/s3. Moreover, some studies on adaptive cruise

control have also utilized a jerk range of [−5,5] m/s3 (Al-Gabalawy et al., 2021).

2.4 Methods for improving the quality of the vehicle trajectory

data

To address these challenges and enhance the accuracy and comprehensiveness of collected vehicle

trajectory data, various strategies can be employed. Correcting errors and reducing noise in tra-

jectory data involves improvements at each stage of data collection. This includes selecting road

sections devoid of large road signs, making the detectors directly above the recording vehicles, uti-

lizing high-resolution cameras and low-vibration carriers, and manual re-extraction. In addition,

post-processing smoothing methods can further help to estimate the most probable values of the

ground truth data from observed raw data (Whittaker, 1922). In cases where trajectory data rep-

resent only sampled traffic flow, trajectory imputation methods leveraging multi-source detected

trajectory data can aid in reconstructing fully sampled data. These methods contribute to a more

comprehensive and accurate representation of traffic patterns, despite the inherent challenges in

data collection.

12

2.4.1 Existing methods for smoothing vehicle trajectories

improving post-processing smoothing methods can be a cost-effective solution to correcting ob-

served vehicle trajectories1, especially when the sensor system, image quality, and extraction meth-

ods are already optimal under labor, financial, and other constraints. Smoothing methods can be

considered low-pass filters, which can be in frequency or time domains (Smith, 1997). Many

frequency-domain filters, such as the Butterworth filter (Pollock et al., 1999) and wavelet-based

filters (Young, 1992), have been applied to filter out high frequency oscillations in speeds (Fard

et al., 2017; Dong et al., 2021). However, there is no guarantee that the smoothed speeds and

higher order derivatives of positions adhere to physically meaningful bounds determined by traf-

fic laws, drivers’ behaviors, and vehicle characteristics (Pendrill and Eager, 2020; Jin, 2021). In

the time domain, positions, speeds, accelerations, and higher order derivatives of positions can

be smoothed by various convolution or recursive filters (Ma and Andréasson, 2005; Thiemann

et al., 2008; Coifman and Li, 2017a; Krajewski et al., 2018), in which the smoothed position at

time tm, x̃m, is calculated by the weighted average of raw or smoothed positions in a surrounding

time window. These methods are straightforward to implement, but separately smoothed posi-

tions, speeds, and higher order derivatives may not be consistent with each other or guaranteed

to satisfy physically meaningful bounds (Thiemann et al., 2008). In addition, these methods do

not ensure physically meaningful smoothed trajectories, as they may not adequately account for

the bounded nature of speeds, acceleration rates, and jerks observed in daily driving experiences,

vehicle mechanics, traffic laws, and observations (Jin, 2021).

The primary challenge in smoothing vehicle trajectories and general time series data is striking

the right balance between fidelity and smoothness. Smoothing data with lower roughness may

result in greater deviations from the raw data, whereas smoothing data closer to the raw data

tends to be rougher. In the literature, another category of smoothing methods, based on splines,

1Smoothing methods can help to correct vehicle trajectories, since, in general, smoothing methods can help to find
the most probable estimations of the true values (Whittaker, 1923).

13

addresses this challenge by formulating an optimization problem. These methods aim to obtain

reconstructed data that achieves the optimal combination of fidelity and smoothness. In the well-

known smoothing splines method (Whittaker, 1922; Eubank, 1999), which minimizes a weighted

sum of the discrepancy, measured by the sum of the squared differences between the raw and

smoothed data, and the roughness, measured by the sum of squared third-order derivative of the

smoothed data. To the best of our knowledge, the smoothing splines method has not been applied to

smooth vehicle trajectories; even if it is applied, the weights lack physical meaning for smoothing

vehicle trajectories. In contrast, regression splines methods fit raw data with piecewise polynomial

functions, which are smoothly connected at the separation points (known as knots) (Sheppard,

1914; Whittaker and Robinson, 1924); (Toledo et al., 2007; Venthuruthiyil and Chunchu, 2018)

adopted these methods to divide the whole interval of a vehicle’s trajectory into several smaller

sub-intervals and approximate such sub-trajectories with low-degree polynomial functions. Here

the piecewise polynomial functions and conditions at knots guarantee the smoothness of the fitted

data, and the least square regression process ensures the fidelity of the smoothed trajectory by

minimizing the discrepancy between the polynomials and raw data. Furthermore, the penalty

splines method was proposed in (Eilers and Marx, 1996), by fitting raw data with piecewise B-

splines and minimizing a weighted sum of the discrepancy and the roughness. Thus, it can be

considered a combination of smoothing and regression splines methods. This method was applied

to smooth vehicle trajectories in (Marczak and Buisson, 2012). However, there lacks a systematic

method to choose knots in regression and penalty methods; furthermore, some of the existing

methods fail to include physically meaningful bounds on various derivatives of positions (Marczak

and Buisson, 2012; Venthuruthiyil and Chunchu, 2018), and others struggle to ensure the existence

and uniqueness of solutions of the constrained optimization problem (Toledo et al., 2007).

In addition, a combination of different filters has been employed, which involves the smoothing

of speeds using a Butterworth filter, followed by locally approximating the speeds as fifth order

polynomials and eliminating the outliers via solving optimization problems (Montanino and Punzo,

2013, 2015). This method also faces difficulties in finding unique optimal solutions, and spline

14

filters may lack boundedness in speeds and higher order derivatives.

2.4.2 Existing methods for imputing vehicle trajectories

Numerous methods have been proposed for imputing vehicle trajectory data. One category of

methods focuses on the imputation of sparse single-vehicle trajectories. Periodical idle - accelera-

tion - cruise - deceleration - idle activity pattern was assumed, based on which probabilistic models

are proposed to impute sparse data into high-resolution vehicle trajectories (Hao et al., 2014; Shan

et al., 2016; Hao et al., 2016; Shan et al., 2018; Wang et al., 2019). In addition, some studies

have explored the utilization of filters, such as the particle filter and the unscented Kalman filter,

for the imputation of vehicle trajectories (Wei et al., 2020; Mu et al., 2021). Another significant

area of research focuses on imputing fully sampled trajectories. One approach involves utilizing

detected data from double-loop detectors to estimate travel time and vehicle trajectories based on

traffic flow models (Coifman, 2002). With the advancement of CAVs, mobile sensor data have

been increasingly incorporated into vehicle trajectory imputation, where the trajectories of CAVs

are given and the trajectories of HDVs are imputed with the assumption that human driving be-

haviors can be described by some car-following models (Wang et al., 2020; Zhou et al., 2022; Yao

et al., 2022), such as Wiedemann model (Wiedemann, 1974), Gipps model (Gipps, 1981), intel-

ligent driver model (IDM)(Treiber et al., 2000), and simplified Newell’s model (Newell, 2002).

Furthermore, to enhance the accuracy of trajectory imputation, data fusion algorithms have been

introduced to combine information from different sources, resulting in improved trajectory estima-

tion (Chen et al., 2022).

Despite significant advancements in trajectory imputation methods, there are still some limitations.

The studies using probabilistic models to impute single vehicle trajectories usually assume some

format of accelerations/decelerations, both accelerations/decelerations being linear functions of

time (Hao et al., 2014, 2016) or piecewise-constant (Wang et al., 2019), which contradicts the em-

15

pirical experiments that indicate the boundedness of speeds, accelerations, and jerks (Pendrill and

Eager, 2020; Jin, 2021). For the studies adopting particle filters (Wei et al., 2020; Mu et al., 2021),

ensuring the accuracy of particle weights necessitates employing very large sample sizes (Straka

and Ŝimandl, 2009). Besides, the imputation of single vehicle trajectories overlooks the influence

of vehicle-to-vehicle interactions, while the reliance on historical data for parameter calibration,

such as accelerations and decelerations, fails to adapt to real-time changes in the external envi-

ronment. As a result, there is a growing need for the imputation of fully sampled trajectories to

provide a more comprehensive and accurate description of traffic flow. Earlier studies in this area

primarily utilized loop detector data and did not exploit the potential of mobile sensor data. Con-

sequently, these studies had to make assumptions that all vehicles travel at the same speed passing

through a given band between two vehicle passages (Coifman, 2002). Additionally, studies as-

suming vehicles moving according to some models involving multiple parameters, such as IDM

and Wiedemann models, encounter challenges when it comes to parameter determination. Fur-

thermore, other car-following models, such as Gipps and Newell’s model, may lead to unbounded

higher-order derivatives of positions, conflicting with empirical observations. Moreover, it is worth

noting that certain methods have primarily undergone validation under simulated conditions, lack-

ing experiments with real-world data sources that would offer greater fidelity (Wei et al., 2019,

2020).

16

Chapter 3

An iterative method for smoothing based on

first principles

3.1 Introduction

In light of the physical properties and empirical observations, we proceed from the basic principles.

Intuitively, a good method should satisfy the following principles: (P1) The internal consistency

among the derivatives at different orders, i.e. positions, speeds, accelerations, and jerks, should be

guaranteed. The derivatives of positions should be consistent with speeds, the integrals of speeds

should be consistent with positions, and likewise for accelerations and jerks. (P2) According to

the first principles of road traffic, as stated in (Jin, 2021), speeds, accelerations, and jerks should

be bounded. (P3) The mean absolute errors (MAEs) in the raw positions should be kept to a

minimum, which implies that the modification of the raw positions should be kept to a minimum.

This will help us preserve the main information in the raw data, including cruising, accelerating,

decelerating, and stopping behaviors.

In this chapter, we propose an iterative method to smooth and correct the longitudinal vehicle

17

trajectory data which are detected at fixed study sites and extracted at high sampling frequen-

cies. These data usually include small errors in positions, but such errors are greatly amplified in

speeds, accelerations, and jerks after differentiation due to high sampling frequencies. One itera-

tion comprises four types of calculations: differentiation, correction, smoothing, and integration.

In differentiation, we compute speeds, accelerations, and jerks from trajectory data; in correc-

tion, we eliminate outliers in speeds, especially negative values; in smoothing, we reduce noises

in accelerations and jerks; and in integration, we recalculate accelerations, speeds, and positions

from jerks, and find the initial values via optimization problems. We analyze different strategies

and adopt the adaptive average method for correction, the Gaussian filter for smoothing, and min-

imizing the MAEs as the objective in integration. While it is ideal for all the derivatives to be

physically meaningful after one iteration, if there are still outliers after one iteration, we will begin

another to fine-tune the results. We then show the efficacy of our method upon a sample trajectory

from the NGSIM dataset, followed by comparing our smoothed trajectories with the raw trajecto-

ries and with those obtained from the state-of-the-art method proposed in (Montanino and Punzo,

2015), and validate the smoothed trajectories with those manually re-extracted by (Coifman and

Li, 2017a).

All of the aforementioned principles are maintained in our approach. P1 is maintained by differen-

tiation and integration, which guarantees internal consistency among the different-order derivatives

of positions. Following P2, the physically meaningful bounds of speeds, accelerations, and jerks

are maintained in correction and smoothing and serve as the criterion to determine when the it-

erations terminate; our method will end only if all speeds, accelerations, and jerks are physically

meaningful. P3 helps us determine the initial values in integration, where the initial values are

calculated in such a way that the MAEs between derivatives before and after smoothing are mini-

mized.

The remainder of the chapter is organized as follows. In section 3.2, we introduce our method

for smoothing and correcting vehicle trajectories. In section 3.3, We discuss the effect of different

18

smoothing methods and justify our selection, as well as develop an algorithm for choosing parame-

ters in the Gaussian filter. In section 3.4, we apply our proposed method to the NGSIM dataset, and

numerically show the efficacy of our method. We also compare our method with a state-of-the-art

approach and validate it upon the manually re-extracted freeway trajectories. Finally, we conclude

our study in section 3.5 and propose some future extensions.

3.2 A principle-based iterative method for smoothing

In this section, we present an iterative method for smoothing and correcting longitudinal vehicle

trajectories. We first present the flow chart of our method and the framework of the calculations,

and we then introduce each calculation in detail.

The framework of our proposed method is shown as Figure 3.1. The method takes into account

positions, speeds, accelerations, and jerks. The input is the raw position profile and the output is the

smoothed position profile. One loop in the dashed black box represents one iteration. One iteration

includes four different colored arrows that represent four types of calculations in the method:

differentiation, correction, smoothing, and integration. The red arrow represents differentiation,

the green arrow represents correction, the yellow arrow represents smoothing, and the blue arrow

represents integration. The entire framework contains four layers. All the derivatives in one layer

should be internally consistent, satisfying both differentiation and integration relations, and once

a correction or smoothing procedure is completed, we proceed to the next layer. Each time after

we integrate accelerations into speeds, we judge whether all speeds, accelerations, and jerks are

physically meaningful. All derivatives are ideally expected to be within physically meaningful

ranges after one iteration. However, if there are still outliers after one iteration, we will start another

iteration with smaller parameters to fine-tune the results. Finally, when all speeds, accelerations,

and jerks are physically meaningful, we consider that smoothing and correction are finished and

calculate the smoothed positions by integrating the speed profile. A detailed description of each

19

calculation will follow.

Start

x(0)i ,v−

v+,a−,a+

j−, j+

v(0)i

v(1)i a(1)iv(0)i = v(3)i

a(2)i j(2)i

∀v(3)i ∈ [0,vmax]

∀a(3)i ∈ [amin,amax]

∀ j(3)i ∈ [jmin, jmax]

No

v(3)i a(3)i j(3)iEnd x(3)i
Yes

Position Speed Acceleration Jerk

Layer 0

Layer 1

Layer 2

Layer 3

Differentiation

Smoothing
1. Adaptive average
2. Gaussian filter

Correction

Integration
(Determining initial values with optimization problems)

Figure 3.1: The framework of the calculations

3.2.1 Differentiation of positions

In this study, we consider the longitudinal kinematic behavior of vehicles. As pointed out by P1,

positions, speeds, accelerations, and jerks should be internally consistent. We calculate speeds

by differentiating positions. We adopt the symplectic discretization (mixed implicit-explicit Eu-

ler discretization) method, which was analytically proved to be the only physically meaningful

discretization method that can always lead to collision-free and forward-traveling solutions (Jin,

2019). The general discretized longitudinal vehicle motion dynamic can be illustrated via Figure

3.2. Each black node represents a position, each green node represents a speed, each blue node

represents an acceleration, and each yellow node represents a jerk. The arrows’ directions indicate

the directions of calculations. For example, the speed at time instant tm can be calculated with

the positions at tm−1 and tm. There are tM discrete positions in the position profile. The lengths

20

of corresponding speed, acceleration, and jerk profiles are tM, tM−1, and tM−2, respectively. The

speed profile covers t2 to tM. The acceleration profile covers t2 to tM−1, while the jerk profile starts

at t3 and ends at tM−1.

tt1 t2 t3 tm−2 tm−1 tm tm+1 tM−2 tM−1 tM

............

x

v

a

j

Figure 3.2: Illustration of discretized longitudinal vehicle dynamic

The speed, acceleration, and jerk at each time instant can be calculated as follows:

v(k)m =
x(k)m − x(k)m−1

∆t
, m = 2,3,,M, (3.1a)

a(k)m =
v(k)m+1 − v(k)m

∆t
=

x(k)m+1 −2x(k)m + x(k)m−1

(∆t)2 , m = 2,3,,M−1 (3.1b)

j(k)m =
a(k)m −a(k)m−1

∆t
=

x(k)m+1 −3x(k)m +3x(k)m−1 − x(k)m−2

(∆t)3 , m = 3,4,,M−1 (3.1c)

where x(k)m , v(k)m , a(k)m and j(k)m are the position, speed, acceleration, and jerk at the k th layer

(k = 0,1,2,3) at time tm. Speeds, accelerations, and jerks are the first, second, and third-order

derivatives of positions. Once the four derivatives are at the same layer, they should satisfy (3.1a)

to (3.1c). Higher-order derivatives can be obtained from lower-order derivatives.

3.2.2 Speed correction

As pointed out by P2, speeds should be in a reasonable range. Values outside this range are con-

sidered outliers. The objective of this calculation is to remove outliers in speeds that are generated

because of errors in position detection.

21

We develop the adaptive average method to correct the speed profile, in which we average speeds

starting at the time when the outlier occurs until the average speed is within the range [0,v+]. The

raw speeds are then replaced by the average speed. We take Figure 3.3 as examples to illustrate

this process, where x(0)m and v(0)m denote the raw position at tm and the speed calculated from the

raw positions at tm−1 and tm. Each black node represents a raw position, and the slope of the

line between two adjacent nodes represents a speed. The average speed between two non-adjacent

positions is equal to the slope of the single line connecting these two position nodes. In Figure 3.3a,

v(0)m+1 is negative and needs correction. We add up the speeds starting from v(0)m+1 and find that the

nearest time point that can lead to a physically meaningful average speed is m+3. Therefore, we

replace the raw speeds in such a period with the average speed between m and m+3, as illustrated

by the red line, and the new positions are shown as the red nodes. Similarly, when a speed exceeds

the upper bound, as Figure 3.3b shows, we also replace the raw speeds in such period with the

average speed. In both examples, the average speed can be calculated by (3.2):

v(1)m+1 = v(1)m+2 = v(1)m+3 =
v(0)m+1 + v(0)m+2 + v(0)m+3

3
, (3.2)

where v(1)m is the corrected speed at time tm. Additionally, when a speed outlier appears at the end

of the recording duration, we replace it with v+ if it is larger than v+, and with zero if it is negative.

22

t

x(0)

v(0)m+1

v(0)m+2

v(0)m+3v(0)m

v(1)m+1

v(1)m+2

v(1)m+3

tm−1 tm tm+1 tm+2 tm+3

v+

(a)
t

x(0)

v(0)m

v(1)m+1

v(1)m+2

v(1)m+3

tm−1 tm tm+1 tm+2 tm+3

v(0)m+1

v(0)m+2

v(0)m+3

v+

(b)

Figure 3.3: Illustration of the adaptive average method

3.2.3 Acceleration and jerk smoothing

After eliminating all outliers in the speed profile, we calculate the acceleration profile a(1) by dif-

ferentiating the speed profile according to (5.2b). According to P2, accelerations are also bounded,

and values outside the physically meaningful range [a−,a+] are regarded as outliers. If outliers

exist in a(1), we should smooth a(1). Here we consider two alternatives.

Here we consider the Gaussian filter, which averages the input signal with a Gaussian kernel in the

following:

φ(l) =
1√

2πσ2
e−

l2

2σ2 , (3.3)

where l is the variable and it represents the distance to the center of the kernel, σ is the standard

deviation. With (3.3) the weights of each value within the kernel can be calculated. A true Gaus-

sian response would have infinite impulse responses and they decay rapidly, thus we truncate the

23

Gaussian kernel at discrete time points as follows:

ψ(l) =
φ(l)

∑
pσ

α=−pσ φ(α)
, (3.4)

where p represents that we smooth the value at m with the values from m− pσ to m+ pσ , 2σ +1

values in total. We choose p = 4 where the amplitude of the Gaussian function is about 3×10−4 of

that at m, thus the kernel size of the Gaussian filter depends on the standard derivation. We handle

the edge of the signal via zero padding.

An example of calculating the smoothed acceleration at time i using the truncated Gaussian fil-

ter with the standard derivation σ(a) = 1 time-step is presented, which means that a(2)m will be

smoothed with the values from m−4 to m+4, 9 values in total. The smoothed acceleration (a(2)m)

will be the sum of itself and the 8 adjacent values multiplied by weights corresponding to their

distances to m, which can be written as follows:

a(2)m =
a(1)m + e−

1
2 (a(1)m−1 +a(1)m+1)+ e−2(a(1)m−2 +a(1)m+2)+ e−

9
2 (a(1)m−3 +a(1)m+3)+ e−8(a(1)m−4 +a(1)m+4)

∑
4
α=−4 e−

α2
2

.

(3.5)

By applying the Gaussian filter throughout the entire a(1), we can smooth accelerations and calcu-

late a(2).

With a(2), we can then obtain the jerk profile j(2) with (3.1c). Similarly, jerks should be bounded,

and if j(2) also contains outliers that are outside [j−, j+], we smooth the jerk profile with the

aforementioned procedure and calculate j(3).

24

3.2.4 Integration to lower-order derivatives

According to the ‘internal consistency’ mentioned in P1, accelerations should be equal to integrals

of jerks, speeds should be equal to integrals of accelerations, and positions should be equal to

integrals of speeds. Accelerations, speeds, and positions can be calculated as follows:

a(k)m = a(k)2 +∆t
m

∑
l=3

j(k)l , m = 3,4,, I −1, (3.6a)

v(k)m+1 = v(k)2 +∆t
m

∑
l=2

a(k)l , m = 3,4,, I −1, (3.6b)

x(k)m = x(k)1 +∆t
m

∑
l=2

v(k)l , m = 2,3,, I, (3.6c)

where k represents the layer in Figure 3.1, here k = 3, and a(k)2 , v(k)2 , x(k)1 are the initial values of

the acceleration, speed, and position profiles, respectively. The calculation is illustrated in Figure

3.4, with each black node representing a position, each green node representing a speed, each

blue node representing an acceleration, and each yellow node representing a jerk. The arrows’

directions indicate the directions of calculations. For example, the acceleration at time m can

be calculated with the jerk at m and the acceleration at m− 1. The calculation can be regarded

as an inversed procedure of Figure 3.2. However, unlike in Figure 3.2 where the entire speed,

acceleration, and jerk profiles can be calculated once the position profile is known, the initial

values of the acceleration, speed, and position profiles are still unknown when calculating them by

integrating the jerk profile, as shown by the hollow nodes in Figure 3.4. Since errors may exist

in the current initial values, we need to modify the initial values of the acceleration, speed, and

position profiles.

25

t

............

t1 t2 t3 tm−2 tm−1 tm tm+1 tM−2 tM−1 tM
x

v

a

j

Figure 3.4: Illustration of initial values in the integration

As pointed out by P3, we should minimize the MAE between the smoothed and the raw positions

and preserve the main information in the raw data. Correspondingly, the MAEs between the ac-

celeration and speed profiles before and after integration should also be modest. To obtain the

best initial acceleration, we formulate an optimization problem to minimize the MAE between the

integral of the jerk profile and the acceleration profile at layer 2 (a(2)) with the objective function

as follows:

E(|a(3)−a(2)|) = 1
M−2

M−1

∑
m=2

|a(3)m −a(2)m |= 1
M−2

M−1

∑
m=2

|a(3)2 +∆t
m

∑
l=3

j(3)l −a(2)m |, (3.7)

where a(2) and j(3) are the outputs of ‘acceleration and jerk smoothing’. Thus, the only unknown

variable is a(3)2 . We choose the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm (Fletcher,

2013) for solving the optimization problem, and a(2)2 as the initial guess of a(3)2 .

With a(3)2 , as well as the entire jerk profile (j(3)), we can calculate the entire acceleration profile

a(3). After obtaining the entire acceleration profile, the same procedure can be applied to calculate

the speed profile. From Figure 3.1 we can see that the objective is to find out v(3)2 which leads to the

minimum MAE between the integral of a(3) and v(1). At this point, we have finished one iteration

of the method.

26

3.3 Method iteration and choice of smoothing method and pa-

rameters

In this section, we first introduce how our method iterates. We then determine the best method for

smoothing the acceleration and jerk profiles, as well as the best parameter settings in the Gaussian

filter.

3.3.1 Method iteration

After we integrate accelerations to speeds, as introduced in section 2.4, we check whether all

speeds, accelerations, and jerks are physically meaningful. The physically meaningful ranges of

speeds, accelerations, and jerks are set as follows: 1. speeds should be greater than zero and not

significantly exceed the speed limit. 2. Taking references of previous experiment, the range for

accelerations is set as −5 m/s2 to 4 m/s2 (Elert, 2012; Bokare and Maurya, 2017). 3. The range

for jerks is set as −8 m/s3 to 8 m/s3. If there are still outliers, as Figure 3.1 shows, we take the

current speed profile as the new v(0) and conduct another iteration to fine-tune the results.

When all speeds, accelerations, and jerks are physically meaningful, we consider that we have

completed all the calculations in the dashed black box in Figure 3.1, and we can calculate the

ultimate output of our method. We integrate the speed profile back to the position profile accord-

ing to (3.6c), and calculate the initial position that leads to the smallest E(|x(3)− x(0)|). So far,

the smoothed vehicle trajectory is obtained. Therefore, with the choice of the Gaussian filter for

smoothing the accelerations and jerks, the final flow chart of our method can be plotted as Figure

3.5.

27

The raw positions

Differentiate the raw
positions to the raw speeds

Input the meaningful speed
range Correct raw speeds

Input the kernel shape σ(a)
Differentiate the speeds
to the accelerations and
smooth the accelerations

Input the kernel shape σ(j)
Differentiate the accele-
-rations to the jerks and

smooth the jerks

Integrate the jerks to
the accelerations & speeds

Input the meaningful ranges
of the jerk & speed

& accelerations
All data are within

the meaningful ranges

Yes

Integrate the speeds
to the positions

The smoothed positions

Figure 3.5: The final flow chart of the proposed method

3.3.2 Choice of parameters in the Gaussian filter

The parameters that need careful tuning are the standard derivations in the Gaussian filter for

smoothing accelerations and jerks (σ(a) and σ(j)). If we choose too small σ(a) and σ(j), the

method will go through a large number of iterations, which significantly increases the computation

cost and may also result in an increase in position errors following numerous integral calculations;

on the other hand, if we choose too large standard derivations, the method can be completed in a

single iteration, but the local information in the raw data may be overlooked. Except for the first

28

iteration, the subsequent iterations are mainly used to fine-tune the values if the speed, acceleration,

or jerk profiles still contain outliers after the first iteration. Therefore, we set both σ(a) and σ(j)

to be 1 time-step in the subsequent iterations, and we will further discuss the parameter settings in

the first iteration.

As pointed out by P3, the MAE in the raw positions should be kept to a minimum. To determine

the best combination of σ(a) and σ(j), we choose the MAE between the raw and the smoothed

positions as the evaluation metric, and it can be calculated as follows:

E(|x(3)− x(0)|;σ(a),σ(j)) =
∑

M
m=1 |x

(3)
m − x(0)m |
M

, (3.8)

where I = T/∆t − 1 and T is the recording duration. Based on this, we develop a grid-search

algorithm to determine σ(a) and σ(j). The flow chart of the algorithm is shown as Figure 3.6, and

detailed processes will follow.

Input parameter
combinations

Apply our method with the
parameter combinations and
calculate the position MAEs

Find the candidate
parameter combinations

Pick out the parameter
combination with the

maximum product

Figure 3.6: Process for determining standard derivations in the Gaussian filter

1. Investigate σ(a) and σ(j) values ranging from 1 to 10 time-steps at 1 time-step intervals

(100 combinations), apply our method, and calculate the corresponding MAEs between the

raw and the smoothed positions. This step returns 100 MAEs.

2. Pick out all the combinations of σ(a) and σ(j) which can satisfy ϕ(x;σ(a),σ(j)) < ε

as candidate parameter combinations, where ε is a small number representing the accept-

able threshold, ϕ(x;σ(a),σ(j)) = |E(|x(3) − x(0)|;σ(a),σ(j))− minE(|x(3) − x(0)|)| and

29

minE(|x(3)− x(0)|) is the minimum MAE among the 100 values.

3. Among the candidate parameter combinations, choose the one with the largest σ(a) ·σ(j).

If two combinations lead to the same σ(a) ·σ(j), choose the one with the larger σ(a).

At this point, we have completed the choice of σ(a) and σ(j). In summary, step 1 calculates

MAEs for all possible parameter combinations, step 2 ensures that the modification to the raw

positions retains a modest MAE between the raw and the smoothed positions, and step 3 ensures

the quickest convergence.

3.4 Calibration and validation with the NGSIM data

In this section, we apply our method to the NGSIM dataset. We first demonstrate the efficacy of

our method upon a sample trajectory. We then compare our method with an existing method and

validate our method upon the manually re-extracted freeway trajectories.

3.4.1 Calibration with a sample trajectory

We first choose vehicle 1486 from the NGSIM I80 dataset as a representation of vehicles. In

this example, we can find many outliers and high-frequency noises in acceleration and jerk pro-

files. Because the speed limit on the I80 freeway is 65 mph (28.9 m/s), we consider the feasible

speed ranges to be 0 to 30 m/s. The ranges of accelerations and jerks are set as [−5,4] m/s2 and

[−8,8] m/s3. According our parameter choice algorithm, σ(a) = 3 time-steps (0.3 seconds) and

σ(j) = 2 time-steps (0.2 seconds) are adopted, which can maintain E(|x(3)−x(0)|) at 0.122 meters.

With the above settings, we show how our method can smooth and correct the trajectories of the two

vehicles in Figure 3.7. The pre- and post-processed position profiles are displayed in Figure 3.7a, in

30

which the final positions are nearly identical to the raw positions. The speed profiles are displayed

as Figure 3.7b, with the orange dashed, red, and blue curves representing the raw, smoothed,

and manually re-extracted speed profiles. The smoothed and manually re-extracted speed profiles

retain the majority of the original characteristics while greatly smoothing out the rapid oscillations

in the raw data. However, the stop-and-go behavior shown in the manually re-extracted speed is

not shown in the smoothed data. The acceleration profiles are shown as Figure 3.7c. As indicated

by the orange dashed curves, the raw acceleration profiles contain a large number of outliers and

noises and thus require smoothing. Smoothing can significantly reduce outliers and noises in the

acceleration profiles, making all accelerations physically meaningful. Figure 3.7d displays the

jerk profiles. As can be seen, the raw jerk profiles contain many extreme values, all of which are

removed after smoothing. The final jerk profiles are free of quick oscillations while retaining the

main information in the raw data.

(a) Position (b) Speed

(c) Acceleration (d) Jerk

Figure 3.7: Smoothed positions, speeds, accelerations, and jerks of vehicle 1486

31

The frequency spectrums of the acceleration and jerk profiles before and after processing are dis-

played as Figure 3.8. It can be observed that for both vehicles, high-frequency values which are

out of the human operational range (up to 2 Hz) (Punzo et al., 2011) are removed. This is in

line with the aforementioned finding that the final acceleration and jerk profiles are free of quick

oscillations.

(a) Acceleration (b) Jerk

Figure 3.8: Frequency spectrums of accelerations and jerks of vehicle 1486

3.4.2 Comparison with an existing method and validation with manually re-

extracted freeway trajectories

Some people have smoothed the NGSIM I80-1 dataset, and made the smoothed data publicly

accessible, providing a good benchmark for data smoothing and correction. We also apply our

method to this dataset for further comparison. The speed range is considered to be [0,30] m/s,

and other ranges are the same as those in section 3.4.1. Because all trajectories in this dataset

were obtained using the same sensors and recognition technology, their error patterns should be

comparable. Considering that applying the parameter choice algorithm to each individual requires

high computation cost, we apply the method to 30% randomly-selected vehicles at the site and

calculate the average MAE between the raw and the smoothed positions. We choose σ(a) = 4

time-steps (0.4 seconds) and σ(j) = 2 time-step (0.2 seconds) according to the results of our

parameter choice algorithm, and the average MAE between the raw and the smoothed positions is

32

0.1 meters.

As a pioneer in vehicle trajectory data smoothing, (Montanino and Punzo, 2013, 2015) proposed a

well-known multistep optimization method and revealed smoothed trajectory data. More recently,

(Coifman and Li, 2017a) manually re-extracted the vehicle trajectories from the record of camera

6 at the I80 site, and recalculated speeds with the re-extracted data taking a separate instrumented

probe vehicle study under similar traffic conditions as the reference (Coifman et al., 2016). From

the presented video (Coifman and Li, 2017b) we can find that many erroneous recognitions are

revised. The re-extracted trajectories are closer to the ground truth, and their released dataset has

been used as the ‘ground truth’ NGSIM data (Dong et al., 2021). We follow the suggestion in (Coif-

man and Li, 2017a) and recalculate the positions, accelerations, and jerks with the new speeds, and

obtain the control group. For the raw trajectories, as well as the trajectories smoothed by us and

(Montanino and Punzo, 2013, 2015), we then pick out the trajectories in the region recorded by

camera 6, as the pink area in Figure 3.9 shows. There are around 150,000 vehicle·frame in total.

Figure 3.9: Illustration of capturing the trajectories on the I80 freeway recorded by camera 6

Figure 3.10a and Figure 3.10b display the comparison of the frequency spectrums of the acceler-

ation and jerk profiles. As shown by cyan dashed lines, noises contained in the original signals

spans the entire frequency range. All methods can eliminate a large number of noises and make

33

frequency spectrums (purple, red and black curves) within the range of the human-vehicle response

frequency (up to 2 Hz).

(a) Acceleration (b) Jerk

Figure 3.10: Frequency spectrums of accelerations (i) and jerks (j) obtained with different approaches

We compute the mean, standard deviation, range, and proportion of outliers in the speed, acceler-

ation, and jerk profiles of the aforementioned four datasets. We also compare the raw data, as well

as the smoothed data obtained with the multistep optimization method and our method, with the

data obtained with the manual re-extraction. The mean squared error (MSE) and the mean absolute

error (MAE) are chosen as the indicators. For speed profiles, the three indicators can be calculated

through (3.9) to (3.10), and likewise for the acceleration and jerk profiles:

E((v̄− v(3))2) =
1

M−1

M

∑
i=2

(v̄m − v(3)m)2, (3.9)

E(|v̄− v(3)|) = 1
M−1

M

∑
i=2

|v̄m − v(3)m |, (3.10)

where v̄ is the manually re-extracted speed profile and v(3) denotes the speed profile to be compared

with v(3), which in this case are the raw speed profile, the speed profile smoothed via (Montanino

34

and Punzo, 2015), and the speed profiles smoothed using our method.

Results are presented in Table 3.1. Means of speeds, accelerations, and jerks are preserved by all

methods. Outliers in the raw acceleration and jerk profiles account for 15% and 42.3% of total data.

Both our method and the manual re-extraction eliminate these outliers. The multistep optimization

method reduces the outliers in accelerations and jerks to less than 0.05% and 0.6%, respectively. As

illustrated by the MSE and MAE, the difference between the raw speeds and manually re-extracted

speeds is not significant. However, the discrepancy is significantly amplified in the acceleration

and jerk profiles, with the MSE between the raw and manually re-extracted accelerations and jerks

being 44.56m2/s4 and 9960.09m2/s6. Both the multistep optimization method and our method

can greatly reduce such discrepancies. From the perspectives of all three indicators, the speeds,

accelerations, and jerks smoothed by our method are closer to manually re-extracted ones.

Table 3.1: Comparison of different approaches

variables Raw data
Multistep

optimization
Our method

Manual

re-extraction

Speed

(m/s)

Mean 8.07 8.05 8.07 7.88

Std 4.07 4.01 4.0 3.89

Range [0,36.0] [0,27.0] [0,27.1] [0,26.4]

Outliers (%) 0 0 0 0

Comparison to

re-extracted data

E((v̄− v(3))2) 0.88 0.47 0.41 /

E(|v̄− v(3)|) 0.62 0.48 0.46 /

Acceleration

(m/s2)

Mean -0.04 -0.04 -0.06 0.03

Std 6.69 0.92 0.79 0.58

Range [-176.5,292.2] [-14.1,4.5] [-5,4] [-4.2,3.5]

Outliers (%) 15 0 0 0

Comparison to

re-extracted data

E((ā−a(3))2) 44.56 0.68 0.49 /

E(|ā−a(3)|) 2.64 0.6 0.49 /

Jerk

(m/s3)

Mean -0.17 -0.13 -0.06 -0.02

Std 99.80 2.41 1.34 0.62

Range [-4171.5,2954.4] [-141.0,39.4] [-8,8] [-5.3,7.0]

35

Outliers (%) 42.3 0.6 0 0

Comparison to

re-extracted data

E((j̄− j(3))2) 9960.09 5.9 1.98 /

E(| j̄− j(3)|) 32.79 1.65 0.98 /

3.5 Conclusion

In this paper, we introduce three first principles for smoothing and correcting longitudinal vehicle

trajectories: (P1) The internal consistency among derivatives at different orders should be guaran-

teed, satisfying both differentiation and integration relations. (P2) All speeds, accelerations, and

jerks should be bounded within physically meaningful ranges. (P3) The MAE in the raw posi-

tions should be kept to a minimum, thus the modifications of the raw positions should be kept to

a minimum. Based on these principles, we propose an iterative method to smooth longitudinal

vehicle trajectories which are detected at fixed study sites and extracted at high sampling frequen-

cies. One iteration comprises four types of calculations: differentiation, correction, smoothing,

and integration. In differentiation, we compute speeds, accelerations, and jerks from trajectory

data; in correction, we eliminate outliers in speeds, especially negative values; in smoothing, we

reduce noises in accelerations and jerks; and in integration, we recalculate accelerations, speeds,

and positions from jerks, and find the initial values via optimization problems. Our design uses

the adaptive average method for correction, the Gaussian filter for smoothing, and minimizing

the MAEs as the optimization objective in integration. We then numerically demonstrate the ef-

ficacy of our method upon the NGSIM data. We select a sample trajectory from the NGSIM I80

dataset. The comparison of the speed, acceleration, and jerk profiles before and after smoothing

demonstrates that all outliers and rapid oscillations are eliminated, while the main information in

the raw data, including cruising, accelerating, decelerating, and stopping behaviors, are retained.

The frequency spectrums of the acceleration and jerk profiles also show that high-frequency noises

are removed. We finally compare our method with an existing method and validate our method

36

upon the manually re-extracted trajectories. The raw accelerations and jerks include a significant

number of outliers, accounting for 15% and 42.3% of total data, respectively. Both the multistep

optimization method and our method have good performance in removing outliers and reducing

high-frequency noises. According to the histograms and statistic summary, the speed, acceleration,

and jerk profiles smoothed using our method are closer to those manually re-extracted and can be

deemed more accurate.

Starting with the first principles, we propose this method to smooth vehicle trajectories. It should

also be noted that for smoothing the acceleration and jerk profiles, apart from the alternatives we

presented in this paper, our method is also open to other options. In this research, we propose a

general framework for smoothing longitudinal vehicle trajectories, and more advanced strategies

can be developed based on this.

The limitations and potential extensions of our method are as follows. Our method may require

multiple iterations, with P2 serving as the terminating criteria for iterations. However, it is math-

ematically challenging to demonstrate when the iterations converge or even that the iterations can

converge. This study can serve as a starting point for the development of more mathematically

tractable techniques that can either be proved to converge or get rid of iterations. In addition,

with the accessibility of data collected in different ways, we also plan to test the proposed method

with data from other fixed-location sensors, including highD, inD, and rounD data which are col-

lected with drones (Krajewski et al., 2018; Bock et al., 2020; Krajewski et al., 2020) and Lidar

data (Chang et al., 2019; Schwall et al., 2020). Furthermore, the ideas used in this method can

be extended to investigate the trajectories including missing values, and impute for the missing

values.

37

Chapter 4

Simplified iterative moving average method

for smoothing

4.1 Introduction

The aim of this study is to propose a simplified and straightforward iterative moving average

method that guarantees physically meaningful ranges for the smoothed speeds, acceleration rates,

and jerks of a vehicle’s trajectory while preserving its average speeds or total travel distance over

a specified time duration. In each iteration, our method consists of three steps. Firstly, we pad

the speed profile with the average speed and calculate the speed deviations. Secondly, we apply

a moving average method with different kernel shapes, representing different weights, to speed

deviations. Finally, we normalize the filtered speed deviations and add the average speed back to

obtain the output of one iteration. The iterative method terminates when the speeds, acceleration

rates, and jerks are within reasonable bounds. Our method is still straightforward to implement.

The differentiation of speeds, acceleration rates, and jerks from the positions is done consistently,

thus avoiding any inconsistency issues. In addition, we mathematically prove that the speed be-

38

comes constant after an infinite number of iterations without termination; this property ensures that

the bounds in speeds and their derivatives are physically meaningful with the corresponding ter-

mination criterion. We empirically demonstrate the efficacy of our proposed method by applying

it to smooth all 1714 trajectories recorded by camera 6 in the NGSIM I80-1 dataset. We compare

our smoothed trajectories with the raw trajectories, those obtained from the multistep optimization

method proposed in (Montanino and Punzo, 2015), and manually re-extracted trajectories (Coif-

man and Li, 2017a).

Traditionally, when it comes to handling padding or boundaries in convolutional filtering methods,

there are various approaches. These include introducing constant (including zero) or symmetric

values outside the two boundaries of a time series (Smith, 1997; Getreuer, 2013). For our study,

we have opted for padding with the average speed. This approach guarantees that our method can

terminate within a finite number of iterations. During each iteration, after applying the padding

and filtering the corresponding speeds, we proceed to normalize the resulting speeds. This nor-

malization ensures that the average speeds remain consistent, thereby maintaining the same total

travel distance throughout the study period. We will numerically demonstrate the impacts of these

two features on the accuracy and efficiency of the proposed method.

To the best of our knowledge, the iterative moving average method has not been applied to smooth

vehicle trajectories. However, there are a few related studies. First, the method was applied to

smooth images iteratively in (Wu et al., 2015), using the Savitzky-Golay (SG) filter. The itera-

tions continued until the relative difference between the original and smoothed signals reached

a termination criterion, which is arbitrarily chosen without physical interpretations. While the

method’s convergence was empirically demonstrated, it lacked theoretical proof. In addition, there

are no discussions on normalization in each iteration. In contrast, our approach employs a more

physically meaningful termination criterion based on the bounds of speeds and their derivatives;

and normalization is incorporated in each iteration. We also provide a mathematical proof of

convergence to ensure physically meaningful derivatives. Second, the iterative moving average

39

method was used in empirical mode decomposition (EMD) for nonstationary nonlinear signals,

as discussed in (Huang et al., 1998). This involved iteratively sifting individual Intrinsic Mode

Functions (IMFs) to obtain an invariant remaining signal. Lin et al. (2009) improved the tradi-

tional sifting algorithm by introducing convolutional Toeplitz filters and mathematically proved

its convergence. However, these EMD methods iteratively process the remaining signal, sifting

out higher frequency modes first. This approach is less efficient compared to our iterative moving

average method, which directly smooths the original signal (vehicle speeds). Although Dong et al.

(2021) used EMD to smooth vehicle trajectories by discarding high-frequency modes, it is not

guaranteed that the resulting trajectory is sufficiently smooth. Therefore, they resorted to further

employing a frequency-domain Butterworth filter. However, there is still no guarantee that speeds

and their derivatives remain within physically meaningful bounds in the smoothed trajectories. In

contrast, our simple iterative moving average method does not suffer from these limitations and

ensures both smoothness and physically meaningful bounds in the smoothed vehicle trajectories.

The rest of this chapter is organized as follows. In section 3.2, we introduce our method for

correcting and smoothing vehicle trajectories, as well as prove that our method can terminate

within a finite number of iterations. In section 3.3, we introduce the algorithm for choosing the

parameters of the filter, apply our method to smooth the vehicle trajectory data recorded in the

NGSIM dataset, and compare our smoothed data with an existing method with respect to the

manually re-extracted data. Finally, we conclude our study in section 3.4 and propose some future

extensions.

4.2 An iterative moving average method for smoothing

In this section, we propose an iterative moving average method for correcting and smoothing lon-

gitudinal vehicle trajectories. We first present the framework of the calculations in our methods

and introduce each calculation in detail.

40

4.2.1 Flow chart of the method

We illustrate the iterative process as Figure 4.1. We first differentiate the raw positions to raw

speeds, calculate the speed deviations, and launch the iterations. In one iteration, we smooth the

speeds, and the smoothing process involves three steps: zero padding the speed deviation profile,

applying moving average filters, and normalization. After smoothing the speeds, we differentiate

the smoothed speeds into accelerations and jerks and check whether all speed deviations, acceler-

ations, and jerks are within the physically meaningful ranges. If there are still outliers, we take the

current speed profile as the new input and conduct another iteration for tuning the results.

Only when all speeds, accelerations, and jerks are physically meaningful, we consider that we have

completed all the calculations for smoothing, and the smoothed data can satisfy the termination

condition. We then add the average speed back to the smoothed speed deviations, calculate the

ultimate output of our method by integrating the speeds back into the positions, and calculate the

initial position by formulating an optimization problem. So far, the smoothed positions have been

obtained.

Before launching the iterations, we calculate the raw speed from positions as follows:

vm =
xm − xm−1

∆t
, m = 2,3,,M, (4.1)

where M is the total number of detected positions, M > 3 and M is a finite number in our case. We

construct the vector of speed deviation u corresponding to the raw speed v. We place the initial

speed x(1)2 at the origin, and the speed deviations can be calculated as follows:

um−2 = vm −E(v), m = 2,3, ·,M. (4.2)

We then launch the iterative process, and a detailed introduction to all steps in each iteration will

be given.

41

The raw positions x

Differentiate raw positions to
raw speeds v and calculate

speed deviations u

Pad speed deviations with
zero and obtain ǔ

Filter speed deviations with
moving average filters and

obtain û
Input the kernel shape ψ

Normalize filtered speed
deviations and obtain ũ

Input the ranges of speeds,
accelerations, and jerks: v−,v+,

a−,a+, j−, j+

∀ũm ∈ [−E(v),v+−E(v)]

∀ãm ∈ [a−,a+]

∀ j̃m ∈ [j−, j+]

No

Yes
Add the average speed back
and integrate the smoothed
speeds ṽ into positions x̃

The smoothed positions x̃

Figure 4.1: Flow chart of the proposed method

4.2.2 Speed smoothing

Following the empirical observations, speeds, accelerations, and jerks should be bounded within

physically meaningful ranges (Jin, 2021). After calculating raw speed deviations according to

(4.2), we eliminate the outliers, the values outside the physically meaningful ranges, and reduce

high-frequency noises in speeds, accelerations, and jerks. In this regard, we propose the utilization

of the moving average filters.

42

Cyclic mean padding

Time domain moving average filters apply a boundary extension to handle the boundary of the

input signal, and the filtering process is conducted on the extended signal (Getreuer, 2013). The

boundary extension is usually done using a padding technique, which involves adding extra values

to the boundaries of the input signal. We pad the speed profile with the average speed and consider

that the padded speeds represent one cycle of a loop that repeats forever (Elliott, 2013). This is

equivalent to smoothing speed deviations u with zero padding at the boundary and consider the

padded speed deviations represent one cycle of a loop that repeats forever. The padded signal of u

can be written as follows:

ǔ = (· · · ,0, · · · ,0,u0,u1, · · · ,uM−2,0, · · · ,0,u0,u1, · · · ,uM−2,0, · · ·0, · · ·), (4.3)

ǔ satisfies the following relation,

ǔ(m+M−2+w) = ǔ(m). (4.4)

Applying moving average filters

After padding the signal, we smooth the signal with time-domain moving average filters. We use

ψ(l) to denote the kernel function, where l denotes the variable and it represents the distance

between the calculated point and the center point.

We first consider the simple moving average filter, which is an intuitive and easy-to-implement

method for smoothing signals. It is a simple sliding-window spatial filter that replaces the center

value in the window with the mean of all the values within the window (Smith, 2013). Considering

43

we are going to smooth um, the kernel can be written as follows:

φ
s(l) =

1
w
, l =−w−1

2
,1− w−1

2
, · · · , w−1

2
, (4.5)

where w is the window size. For the simple moving average filter, truncation isn’t necessary,

yielding a truncated kernel identical to the original (ψs(l) = φ s(l)).

In addition to the simple moving average filter, we explore weighted moving average kernels.

These kernels share the same concept but assign greater weight to center values. They compute

target values through weighted averages of all the values within the window. We consider expo-

nential, triangular, and Gaussian kernels. The kernel functions and the corresponding truncated

kernels can be written as follows:

• Exponential kernel

φ
e(l) = e−|l|/τ , l =

w−1
2

,1− w−1
2

, · · · , w−1
2

, (4.6)

where τ is the time constant of the function. Because we consider a symmetric kernel for

the filters, w should be odd. We normalize the exponential kernel at discrete time points as

(4.7):

ψ
e(l) =

φ e(l)

∑

w−1
2

α=−w−1
2

φ e(α)
. (4.7)

• Triangular kernel

φ
t(l) = 1− 2

w+1
|l|, l =−w−1

2
,1− w−1

2
, · · · , w−1

2
. (4.8)

44

We normalize the triangular kernel at discrete time points the same way as (4.7):

ψ
t(l) =

φ t(l)

∑

w−1
2

α=−w−1
2

φ t(α)
. (4.9)

• Gaussian kernel

φ
g(l) =

1√
2πσ2

e−
l2

2σ2 , (4.10)

where σ is the standard deviation (Romeny, 2008). With (4.10) the weights of adjacent

values near m can be calculated. A true Gaussian response would have infinite impulse

responses and they decay rapidly, thus we truncate the Gaussian kernel at discrete time points

as follows:

ψ
g(l) =

φl

∑
pσ

α=−pσ φ g(α)
, (4.11)

where p represents that we smooth the value at m with the values from m− pσ to m+ pσ ,

2pσ + 1 values in total. We choose p = 4 where the amplitude of the Gaussian function

is about 3× 10−4 of that at m, thus the kernel size of the Gaussian filter can be written as

8σ +1, that is, w = 8σ +1.

We use tm to denote the time instant of the target value we want to smooth. With (4.5), as well as

(4.7) and (4.11), the weights of the neighboring values near m can be calculated, and the smoothed

speed deviation can be written as follows:

ûm =
m+w−1

2

∑
l=m−w−1

2

ψ(l −m)ǔl, m = 0,1, · · · ,M−2, (4.12)

where ψ(∗) represents the truncated kernel of the filters, here we omit the superscript. The kernels

45

under consideration in this study must meet the following criteria: firstly, the weights must be

non-negative; secondly, the sum of the weights within the window must equal one; thirdly, the

kernel should exhibit symmetry around its center, meaning the window size should be odd; and

additionally, the weight must be non-increasing as the distance to the center increases.

In this study, we apply the moving average via circular convolution. We consider kernel function

span m− w−1
2 to m+ w−1

2 , pad the kernel function by zeros and let it spam from −w−1
2 to M−2+

w−1
2 , and consider the padded kernel represents one cycle of a loop that repeats forever. That is

(Elliott, 2013):

ψ̌(m+M−2+w) = ψ̌(m). (4.13)

We then move the kernel function along the positive direction of the x-axis, the circular convolution

of the signal ǔ and the padded kernel function ψ̌ can be written as follows:

{ψ̌ ∗ ǔ}(m) =
M−2+w−1

2

∑
l=−w−1

2

ψ̌(m− l)ǔl, m =−w−1
2

· · ·M−2+
w−1

2
. (4.14)

In this case, the convolution result will be a (M−2+w)−point sequence.

Lemma 4.1. With symmetric filter kernels, the filtered signal, which was calculated via (4.12), can

be written as follows:

ûm = {ψ̌ ∗ ǔ}(m), m = 0,1, · · · ,M−2, (4.15)

where there are M−1 speed deviation values.

Proof. The kernel ψ̌ for smoothing speed deviation ǔm can be conceptualized as a (M − 2 +

w)−point sequence spanning from −w−1
2 to M − 2 + w−1

2 , with all points except those within

46

the range of m− w−1
2 to m+ w−1

2 equal zero. Therefore, (4.12) can be written as follows:

m+w−1
2

∑
l=m−w−1

2

ψ(l −m)ǔl =
m+w−1

2

∑
l=m−w−1

2

ψ̌(l −m)ǔl

=
m−w−1

2 −1

∑
l=−w−1

2

ψ̌(l −m)ǔl +
m+w−1

2

∑
l=m−w−1

2

ψ̌(l −m)ǔl +
M−2+w−1

2

∑
l=m+w−1

2 +1

ψ̌(l −m)ǔl

As it has been mentioned that the filter kernel should be symmetric around its center, ψ is an even

function. Therefore, assuming l is the variable, when l = −w−1
2 ,−w−1

2 +1, · · · , w−1
2 , we have the

following relationship:

ψ̌(l) = ψ̌(−l).

Thus the equation can be rewritten as follows:

m+w−1
2

∑
l=m−w−1

2

ψ̌(l −m)ǔl =
m−w−1

2 −1

∑
l=2m−M−w−1

2 +2

ψ(m− l)ǔl +
m+w−1

2

∑
l=m−w−1

2

ψ(m− l)ǔl +

w−1
2 +2m

∑
l=m+w−1

2 +1

ψ(m− l)ǔl.

=
2m+w−1

2

∑
l=2m−M−w−1

2 +2

ψ(m− l)ǔl.

In addition, because both ψ̌ and ǔm are periodic with the periodicity M +w−2, the equation can

be rewritten as:

m+w−1
2

∑
l=m−w−1

2

ψ̌(l −m)ǔl =

w−1
2 +2m

∑
l=2m−M−w−1

2 +2

ψ(m− l)ǔl =

w−1
2 +2m

∑
l=−w−1

2

ψ(m− l)ǔl = {ψ̌ ∗ ǔ}(m).

Let m == 0,1, · · · ,M−2 and (4.15) is proved.

By applying the filters throughout the entire signal, in our case, the speed deviations, we can

smooth out the outliers and high-frequency noises in speeds, accelerations, and jerks.

47

Normalization

In the smoothing process, it is desirable to preserve the total travel distance. This equates to

preserving the average speed or speed deviation.

Lemma 4.2. With the average speed deviation after filtering being calculated as follows:

E(û) =
∑

M−2
m=0

(
∑

m+w−1
2

l=m−w−1
2

ψ̌(l −m)ǔl

)
M−1

, (4.16)

average speed deviation after filtering, denoted as E(ũ), may not be equivalent to the original

average speed deviation, denoted as E(u). This implies that the summation of speed deviations

after filtering may not equal the summation of the original speed deviations.

Proof. The filtered speed deviations should satisfy the following relation:

M−2+w−1
2

∑
m=−w−1

2

ûm =
M−2+w−1

2

∑
m=−w−1

2

 m+w−1
2

∑
l=m−w−1

2

ψ̌(l −m)ǔl


=

M−2+w−1
2

∑
l=−w−1

2

 l+w−1
2

∑
m=l−w−1

2

ψ̌(l −m)ǔl


=

M−2+w−1
2

∑
l=−w−1

2

ǔl

 l+w−1
2

∑
m=l−w−1

2

ψ̌(l −m)

=
M−2+w−1

2

∑
l=−w−1

2

ǔl = 0.

With the sum of speed deviations from t−w−1
2

to tM−2+w−1
2

being 0, the sum of the filtered speed

deviations from t0 to tM−2 may not equal to 0. To illustrate this point, we consider a three-digit

time series (2,−1,−1). When we apply a 3-point simple moving average filter to smooth the speed

deviations, we obtain the sequence
(2

3 ,
1
3 ,0,−

2
3 ,−

1
3

)
. The filtered speed corresponding to the input

can be expressed as
(1

3 ,0,−
2
3

)
, and its sum is −1

3 .

Hence, it is evident that the sum of the filtered speed deviations does not align with the sum of the

original speed deviations.

48

Consequently, directly integrating speeds filtered by moving average filters into positions can lead

to an alteration in the total travel distance. Therefore, an additional step, termed ‘normalization’, is

introduced in the smoothing procedure. This step involves adjusting the filtered speed deviations

to ensure that the resulting average is zero. The normalized filtered speed deviations can be written

as follows:

ũm = ûm +(E(u)−E(û)) = ûm −E(û), (4.17)

where E(û) and E(u) denote the average of the filtered and raw speed deviations, respectively.

Check for termination

We then calculate the accelerations and jerks with the smoothed speed derivations ũ. We still

employ the symplectic discretization (mixed implicit-explicit Euler discretization) to calculate ac-

celerations, and jerks (Jin, 2019).

Acceleration and jerk at each time instant can be calculated as follows:

ãm =
ũm−1 − ũm−2

∆t
, m = 2,3,,M−2, (4.18a)

j̃m =
ãm − ãm−1

∆t
=

ũm−1 −2ũm−2 + ũm−3

(∆t)2 , m = 3,4,,M−1. (4.18b)

We check whether all speed deviations, accelerations, and jerks are physically meaningful and

within the following ranges:

∀ũm ∈ [v−−E(v),v+−E(v)] = [−E(v),v+−E(v)] (4.19a)

∀am ∈ [a−,a+] (4.19b)

49

∀ jm ∈ [j−, j+] (4.19c)

If there are still outliers, we take ũ as new u and conduct another iteration for tuning the results.

Only when all speeds, accelerations, and jerks are physically meaningful, we consider that we have

completed all the iterations and the smoothed data can satisfy the termination condition.

4.2.3 Integration of the smoothed speeds

After the iterations terminate, We add the average speed back to the smoothed speed deviation and

calculate the smoothed speed:

ṽm+2 = ũm +E(v), m = 0,1, · · · ,M−2. (4.20)

Smoothed positions can be calculated by integrating the smoothed speeds as follows:

x̃m = x̃1 +∆t
m

∑
l=2

ṽl, m = 2,3,4,,M, (4.21)

where x̃1 is the initial smoothed position.

Since errors may exist in the initial detected position, after we obtain the normalized-filtered

speeds, we calculated the smoothed positions, the output of our method, by formulating an op-

timization problem. We minimize the residuals between the integrals of smoothed speeds and raw

positions, which can be calculated as follows:

E(|x̃− x|) = 1
M

M

∑
m=1

|x̃m − xm|=
1
M

M

∑
m=1

|x̃1 +∆t
m

∑
l=2

ṽl − xm|. (4.22)

Thus, the only unknown variable is x̃1. We choose the Broyden-Fletcher-Goldfarb-Shanno (BFGS)

algorithm (Fletcher, 2013) for solving the optimization problem, and x1 as the initial guess of x̃1.

50

4.3 Proof of termination within a finite number of iterations

We use the simple moving average filter as an example, and other weighted moving average filters

can be discussed in a similar way. We show that the iterative process in our method is guaranteed

to conclude within a finite number of iterations.

4.3.1 Discrete Fourier Transform (DFT) of the kernel functions

Using Ǔ to denote the discrete Fourier transform (DFT) of ǔ, which can be written as follows

(Oppenheim et al., 1997):

Ǔm =
M−2+w−1

2

∑
l=−w−1

2

ǔle−im 2π

M−2+w l, m =−w−1
2

,−w−1
2

+1, · · · ,M−2+
w−1

2
, (4.23)

where M−2+w is the length of Ǔ .

Correspondingly, the DFT of the padded kernel function can be written as follows:

Ψ̌(m) =
M−2+w−1

2

∑
l=−w−1

2

ψ̌(l)e−im 2π

M−2+w l, m =−w−1
2

, · · · ,M−2+
w−1

2
. (4.24)

Because the kernel function is symmetric at the origin, (4.24) can be written as follows:

Ψ̌(m) =
M−2+w−1

2

∑
l=−w−1

2

ψ̌(l)e−im 2π

M−2+w l

= ψ(0)+

w−1
2

∑
l=1

ψ̌(l)
(

e−im 2π

M−2+w l + eim 2π

M−2+w l
)
+

M−2+w−1
2

∑
l=w−1

2 +1

ψ̌(l)e−im 2π

M−2+w l

= ψ̌(0)+2

w−1
2

∑
l=1

ψ̌(l)cos(m
2π

M−2+w
l).

(4.25)

51

When m = 0, we can easily find that Ψ̌(0) = ∑

w−1
2

l=−w−1
2

ψ̌(l) = 1.

Lemma 4.3. Given (4.25), when m ̸= 0, we have the following inequality:

|Ψ̌(m)| ≤ 1− ψ̌(1)
[

2−2cos(
2π

M−2+w
)

]
< 1, (4.26)

Proof. From the values that m can pick, we can have the following inequality:

1
M−2+w

≤ m
M−2+w

≤
M+ w

2 − 5
2

M−2+w
< 1.

Therefore, from (4.25), we can have the following inequality:

Ψ̌(m) = ψ̌(0)+2

w−1
2

∑
l=1

ψ̌(l)cos(m
2π

M−2+w
l)

≤ 1−2ψ̌(1)+2ψ̌(1)cos(
m

M−2+w
2π)

≤ 1−2ψ̌(1)+2ψ̌(1)cos(
1

M−2+w
2π)

= 1− ψ̌(1)
[

2−2cos(
1

M−2+w
2π)

]
.

Because both w ≥ 3 and M > 3 in our case, 1
M−2+w ≤ 1

5 and 0 < cos(2π

M−2+w) < 1. Therefore,

1− ψ̌(1)
[
2−2cos(1

M−2+w2π)
]
< 1 and (4.26) is proved.

4.3.2 Proof of the termination

Theorem 4.4. Convolution in the time domain corresponds to pointwise multiplication in the fre-

quency domain. Given the padded speed deviations ǔ and kernel function ψ , we have the following

52

relation:

{ψ̌ ∗ ǔ}(m)↔ ǓmΨ̌(m), (4.27)

where {ψ̌ ∗ ǔ}(m) denotes the convolution of ψ̌(m) and ǔm

Proof. With {ψ̌ ∗ ǔ}(m) calculated by (4.14). The DFT of {ψ̌ ∗ ǔ}(m) can can be calculated as

follows:

M−2+w−1
2

∑
m=−w−1

2

M−2+w−1
2

∑
l=−w−1

2

ψ̌(m− l)ǔl

e−im 2π

M−2+w m =
M−2+w−1

2

∑
l=−w−1

2

ǔl

M−2+w−1
2

∑
m=−w−1

2

ψ̌(m− l)e−im 2π

M−2+w m

=
M−2+w−1

2

∑
l=−w−1

2

ǔl

M−2+w−1
2

∑
m=−w−1

2

ψ̌(m− l)e−im 2π

M−2+W (m−l)e−im 2π

M−2+W (l).

We replace m− l by y, then the equation can be written as follows:

M−2+w−1
2

∑
m=−w−1

2

M−2+w−1
2

∑
l=−w−1

2

ψ̌(m− l)ǔl

e−im 2π

M−2+w m =
M−2+w−1

2

∑
l=−w−1

2

ǔle−im 2π

M−2+W (l)
M−2+w−1

2 −l

∑
y=−w−1

2 −l

ψ̌(y)e−im 2π

M−2+W (y)

= ǓmΨ̌(m)

Lemma 4.5. According to Parseval’s theorem, the energy of a signal in the time domain equals

the energy of the transformed signal in the frequency domain. With the padded speed deviations ǔ

as an example, it can be written as follows (Van Drongelen, 2018):

M−2+w−1
2

∑
m=−w−1

2

ǔ2
m =

1
M−2+w

M−2+w−1
2

∑
m=−w−1

2

Ǔ2
m. (4.28)

53

The energy of the speed deviation is guaranteed to decrease after being filtered with the aforemen-

tioned filters:

M−2

∑
m=0

û2
m ≤

(
1− ψ̌(1)

[
2−2cos(

2π

M−2+w
)

])2 M−2

∑
m=0

u2
m. (4.29)

Proof. With Lemma 4.3 and Theorem 4.4, once ǔ is filtered by the moving average filter, the

energy of the signal after filtering can be calculated as follows:

M−2+w−1
2

∑
m=−w−1

2

[{ψ̌ ∗ ǔ}(m)]2 =
1

M−2+w

M−2+w−1
2

∑
m=−w−1

2

[
ǓmΨ̌(m)

]2

≤
(

1− ψ̌(1)
[

2−2cos(
2π

M−2+w
)

])2 1
M−2+w

M−2+w−1
2

∑
m=−w−1

2

Ǔ2
m

Therefore, the following relation can be obtained:

M−2+w−1
2

∑
m=−w−1

2

[{ψ̌ ∗ ǔ}(m)]2 ≤
(

1− ψ̌(1)
[

2−2cos(
2π

M−2+w
)

])2 M−2+w−1
2

∑
m=−w−1

2

ǔ2
m

<

(
1− ψ̌(1)

[
2−2cos(

2π

M−2+w
)

])2 M−2

∑
m=0

u2
m.

We then remove the padding area and have the following relation:

M−2

∑
m=0

û2
m =

M−2

∑
m=0

[{ψ̌ ∗ ǔ}(m)]2 ≤
M−2+w−1

2

∑
m=−w−1

2

[{ψ̌ ∗ ǔ}(m)]2

≤
(

1− ψ̌(1)
[

2−2cos(
2π

M−2+w
)

])2 M−2

∑
m=0

u2
m <

M−2

∑
m=0

u2
m

ǔ may have a different mean value from the raw data, and we shift the filtered ǔ back to ensure the

mean is equal to zero by normalization.

54

Lemma 4.6. The normalization process in our method will never increase the energy of the signal.

That is:

M−2

∑
m=0

ũ2
m ≤

M−2

∑
m=0

û2
m. (4.30)

Proof. We define a function g(e) of e as follows:

g(e) =
M−2

∑
m=0

(ûm − e)2 =
M−2

∑
m=0

û2
m −2e

M−2

∑
m=0

ûm +(M−1)e2.

g(e) is a convex function, and we obtain its minimum value when the following relation holds:

dg(e)
de

=−2
M−2

∑
m=0

ûm +2(M−1)e = 0.

In other words, e = ∑
M−2
m=0 ûm
M−1 , indicating that g(e) reaches the minimum value when e equals to the

mean value of ûm. Because normalization makes zero the mean value of ũm, we have the following

relation:

M−2

∑
m=0

ũ2
m ≤

M−2

∑
m=0

û2
m,

where ũ is a (M−1)-point sequence and the equality only holds when the average of ũm is zero.

The variance of x(1) is equal to the signal energy of u, as follows:

(M−1) · var(v) =
M−2

∑
m=0

u2
m =

M−2+w−1
2

∑
m=−w−1

2

ǔ2
m. (4.31)

Therefore, we can have the following theorem.

Theorem 4.7. Without termination, the smoothed speed deviations ũ will finally converge to zeros

after an infinite number of iterations after applying our method. That is, if the iterations continue

55

without termination,

ṽ → E(v). (4.32)

The iterative smoothing process will always terminate within finite iterations once we choose the

physically meaningful ranges of speeds, accelerations, and jerks as the termination condition.

Proof. Lemma 4.5 and Lemma 4.6 proved that the signal energy of ũ satisfies the following

inequality:

M−2

∑
m=0

ũ2
m ≤

M−2

∑
m=0

û2
m ≤

(
1− ψ̌(1)

[
2−2cos(

2π

M−2+w
)

])2 M−2+w−1
2

∑
m=−w−1

2

ǔ2
m

≤
(

1− ψ̌(1)
[

2−2cos(
2π

M−2+w
)

])2 M−2

∑
m=0

u2
m

Hence, supposing the method undergoes n iterations, the eventual signal energy of u converges to-

ward
(
1− ψ̌(1)

[
2−2cos(2π

M−2+w)
]
)
)2n

∑
M−2
m=0 u2

m. In the scenario of iterations continue infinitely,

i.e., as n → ∞,
(
1− ψ̌(1)

[
2−2cos(2π

M−2+w)
])2n → 0.

Here we can conclude that ∑
M−2
m=0 ũ2

m will finally converge to zero if the iteration continues without

termination and all values of um will approach zero. That is, the speed ṽ → E(v) and the derivatives

of ṽ will be all-zero. Therefore, the iterative smoothing process will always terminate within finite

iterations once we choose the physically meaningful ranges of speeds, accelerations, and jerks as

the termination condition.

56

4.4 Method calibration and comparison with an existing method

and manual re-extraction

In this section, we first introduce an algorithm to determine the window size of the filters. We

then demonstrate the efficacy of our method when adopting the simple moving average, expo-

nential, triangular, and Gaussian filters upon the NGSIM camera 6 trajectories, and compare our

method with a state-of-the-art method with respect to the manually re-extracted data smoothed by

SavitzkyGolay (SG) filter.

As a pioneer in vehicle trajectory data smoothing, (Montanino and Punzo, 2013, 2015) proposed a

well-known multistep optimization method and revealed smoothed trajectory data. More recently,

(Coifman and Li, 2017a) manually re-extracted the vehicle trajectories from the record of camera

6 on the I80 freeway from 4:00 pm to 4:15 pm on April 13, 2005, and smoothed the re-extracted

data with the SG filter. From the presented video (Coifman and Li, 2017b) we can find that many

erroneous recognitions are revised. The re-extracted trajectories are closer to the ground truth,

and their released dataset has been used as the ‘ground truth’ NGSIM data (Dong et al., 2021).

Following the suggestion in (Coifman and Li, 2017a), we calculate the positions, accelerations,

and jerks with the new speeds, and construct the benchmark.

Because the speed limit on the I80 freeway is 65 mph (28.9 m/s). We consider the feasible speed

ranges to be 0 to 30 m/s. For both conditions, the ranges of accelerations and jerks are set as

[−5,4] m/s2 and [−8,8] m/s3.

4.4.1 Choice of parameters

Apart from the ranges of derivatives of positions, the window size of the filter kernels (w) is the

key parameter in our method. Choosing an overly small window size leads to a high iteration

57

count and increased computation cost; while if we choose a too-large window size, the method can

be completed in a single iteration, but the local information in the raw data may be overlooked.

Subsequent iterations primarily fine-tune data with outliers in speed, acceleration, or jerk profiles

after the initial iteration. For this, we set w as 5 time-steps for simple moving average and triangular

filters, and 9 time-steps for exponential and Gaussian filters in subsequent iterations. Detailed

parameter settings for the first iteration will be further discussed.

We choose the MAE between the smoothed and raw positions as the evaluation metric for choosing

the proper window size. The MAE should be kept to a modest value, which can be regarded as

a way of avoiding over-smoothness. The MAE between the smoothed and raw positions can be

calculated as follows:

E(|x̃− x|;w) =
∑

M
m=1 |x̃m − xm|

M
. (4.33)

Based on this, we propose an algorithm to determine the values of w. In the algorithm, we investi-

gate w ranging from 5 to 41 time-steps at 4 time-step intervals for the simple moving average and

triangular filters, and 9 to 81 time-steps at 8 time-step intervals for the exponential and Gaussian

filters to apply our method. Therefore, there are 10 optional w for each kernel. The algorithm

works as follows:

1. For each w, smooth the raw positions with our method in the way shown as Figure 4.1, and

calculate the MAE between the smoothed and raw positions. This step returns 10 MAEs.

2. Pick out all the window sizes w which can satisfy ϕ(x;w) < ε as candidate parameter

combinations, where ε is a small number representing the acceptable threshold, ϕ(x;w) =

E(|x̃−x|;w)−minE(|x̃−x|) and minE(|x̃−x|) is the minimum MAE among the 10 values.

3. Among the candidate window sizes w, choose the largest one.

At this point, we have completed the choice of the parameters for smoothing. In summary, step 1

58

calculates MAEs for all tested parameters, step 2 ensures that the modification to the raw positions

retains a modest MAE between the smoothed and raw positions, and step 3 ensures the quickest

convergence.

4.4.2 Calibration with sample trajectories

We first show the performance of our method upon a sample trajectory, the trajectory of vehicle

1486, which is also one example in (Coifman and Li, 2017a). The sample trajectory includes all

of the cruising, accelerating, and decelerating behaviors, and we can find many outliers in the

derivatives of positions, especially in the jerks.

We choose the parameters with our parameter choice algorithm. Setting ε = 0.02 m, our algorithm

returns 13, 25, 17, and 33 time-step window sizes for the simple moving average, exponential,

triangular, and Gaussian filters, respectively. The corresponding MAEs between the smoothed and

raw positions are 0.49, 0.46, 0.16, and 0.2 meters, respectively.

With the above settings, we smooth the positions, speeds, accelerations, and jerks, and evaluate the

performance of our method by comparing the smoothed data with those extracted manually. The

results are shown as Figure 4.2. Our methods are robust to different smoothing kernels, and all

the tested kernels can make all speeds, accelerations, and jerks physically meaningful with small

position modifications. In general, our method yields small differences between the smoothed and

raw positions. However, these differences are significantly amplified in derivatives of positions,

particularly in accelerations and jerks.

The pre- and post-processed positions are displayed in Figure 4.2a, in which our smoothed posi-

tions exhibit a high degree of similarity to the raw positions and different smoothing kernels lead

to little difference. Manual re-extracted positions reveal a stop-and-go behavior in the middle of

the trajectory, where the vehicle moves at low speeds but does not stop in the raw trajectory. This

59

(a) Position (b) Speed

(c) Acceleration (d) Jerk

Figure 4.2: Smoothed positions, speeds, accelerations, jerks, and spacing versus relative speed of vehicle
1486

can also be reflected in speeds, which is shown in Figure 4.2b. Our method smooths out the cor-

ners and rapid oscillations in speeds while preserving most of the essential information, including

decelerating, accelerating, and cruising behaviors. Nevertheless, in the middle of the speed pro-

file, our smoothed speeds do not reduce to zero, and the accelerating behavior lags behind that

obtained by manual re-extraction. The differences between the smoothed and raw accelerations

and jerks are more pronounced, as shown by Figure 4.2c and Figure 4.2d. Our method is robust to

different types of convolution filters. Every filter we tested successfully eliminates all outliers and

unrealistic oscillations in the raw accelerations and jerks, and the general trends of the smoothed

data obtained from different filters are the same. However, there were minor differences in the

smoothed accelerations and jerks produced by different filters. In addition, the smoothed acceler-

ations and jerks differ from the raw data at the endpoint of the raw data, because the speed at the

endpoint is greatly different from the average speed.

60

(a) Acceleration (b) Jerk

Figure 4.3: Frequency spectrums of accelerations and jerks of vehicle 1486

The frequency spectrums of the acceleration and jerk profiles before and after smoothing are dis-

played in Figure 4.3. It is evident that the noises in the raw accelerations and jerks occupy the

entire frequency range, including high-frequency values that are beyond the human operational

range (up to 2 Hz) (Punzo et al., 2011). Both our proposed method and the manual re-extraction

can eliminate these high-frequency values. This observation aligns with our earlier finding that our

method can effectively remove quick oscillations in acceleration and jerk profiles.

4.4.3 Evaluation of different filters and comparison with an existing method

After showing the performance of our method with a single trajectory, we apply our method adopt-

ing the four convolution filters to smooth the “NGSIM I80 camera 6” dataset. Due to the high

computational cost of the parameter determination algorithm, we randomly select 30% of the ve-

hicles at the site and calculate the mean absolute error (MAE) between the smoothed and raw

positions under different parameters. Our algorithm returns 13, 81, 29, and 49 time-steps as the

window sizes for the simple moving average, exponential, triangular, and Gaussian filters, respec-

tively; corresponding MAEs between the smoothed and raw positions are 0.18, 0.17, 0.17, and 0.16

meters. The total computation time for selecting the parameters for one filter and smoothing all

the trajectories is approximately 2 minutes on an Asus computer with an Intel i7 2.90 GHz CPU.

To verify the convergence pattern, we choose vehicle 1486, apply our method with different kernel

61

functions adopting the aforementioned parameters, and plot the natural logarithm of speed vari-

ances versus the iteration numbers. The result is shown as Figure 4.4, from which we can see the

natural logarithm of speed reduces in a linear pattern, meaning that the speed variances decrease

in an exponential pattern. This is in line with our proof in Theorem 4.7.

Figure 4.4: Speed variance decrease according to the iteration numbers

We calculate the number of iterations our method needs to go through before termination for

smoothing each trajectory. We set the upper limit of iterations to 20000. The average required

iterations, maximum required iterations, the proportion of trajectories finished in a single iteration,

and the proportion of trajectories finished within 10 iterations of the four filters are shown in Table

4.1, and the distributions of the required iterations are shown as Figure 4.5. The averages of the

required iterations for different filters range from about 1 to 9. The maximum required iteration

of all is 470. That is, all of the 1714 trajectories in the dataset satisfy the termination condition.

The average number of required iterations is minimized when utilizing the Gaussian filter, while

the exponential filter boasts the lowest maximum number of iterations. In comparison to other

filters, the exponential filter demonstrates the highest degree of stability in terms of the required

iterations, as indicated by its smallest standard deviation. The distributions of required iterations

are different for different filters. For the simple moving average filter, over 85% of trajectories can

be smoothed within 10 iterations, while this value rises to 97% for the exponential and triangular

filters, and reaches 99% for the Gaussian filter.

We compute the mean, standard deviation, range, and proportion of outliers in the speed, accelera-

62

Table 4.1: Number of the required iterations using different convolution filters

Simple moving
average filter

Exponential filter Triangular filter Gaussian filter

Average 6.4 3.12 4.22 1.9
Maximum 131 53 470 228

Std 9.98 3.74 27.41 11.44
= 1 (%) 25 32 96.1 99.1
≤ 10 (%) 86.2 97 97 99.1

(a) Moving average filter (b) Exponential filter (c) Triangular filter (d) Gaussian filter

Figure 4.5: Distribution of the number of required iterations using different convolution filters

tion, and jerk profiles of the raw data and the data obtained by the aforementioned three methods.

We also compare the raw data, as well as the smoothed data obtained with the multistep optimiza-

tion method (Montanino and Punzo, 2015) and our method, with the manually re-extracted data

smoothed by the SG filter (simply written as “manual re-extraction” in the following) (Coifman

and Li, 2017a). The mean squared error (MSE) and the mean absolute error (MAE) are chosen as

the evaluation metrics. For positions, the evaluation metrics can be calculated through (4.34) to

(4.35), and likewise for speeds, accelerations, and jerks:

E((x̄− x̃)2) =
1
M

M

∑
m=1

(x̄m − x̃m)
2, (4.34)

E(|x̄− x̃|) = 1
M

M

∑
m=1

|x̄m − x̃m|, (4.35)

where x̄ is the vector of manually re-extracted positions where there are M elements, and x̃ denotes

the vector of the positions to be compared with x̄, which in this case are the raw positions and the

63

positions smoothed via the multistep optimization method and our method.

The statistical comparison of the performance of different methods is presented in Table 5.3. The

MSE and MAE between the smoothed positions obtained by our method and the manually re-

extracted positions are nearly equivalent to those between the raw and manually re-extracted po-

sitions. All methods eliminate the outliers in speeds, and Our methods preserve the means of

the speeds. Outliers in the raw accelerations and jerks constitute 15% and 42.3% of the total

data, respectively. Both our proposed method and the manual re-extraction eliminate these out-

liers. The multistep optimization method reduces the proportion of outliers in accelerations to less

than 0.05% and the outliers in jerks to 0.6%. The difference between the raw and manually re-

extracted speeds is not significant, as indicated by the MSE and MAE. However, this discrepancy

is significantly amplified in accelerations and jerks, with the MSEs approaching 45 m2/s4 and

10,000 m2/s6, respectively. Both our proposed method and the multistep optimization method can

greatly reduce such discrepancies. From the perspectives of all three indicators (speeds, accelera-

tions, and jerks), the smoothed data obtained by our method are closer to the manually re-extracted

ones than those obtained by the multistep optimization method.

The comparison of the four different filters used in our method indicates that there are little dif-

ferences in the smoothed speeds and accelerations. However, more significant differences are ob-

served in the smoothed jerks. Notably, the Gaussian filter exhibits the best performance compared

to the other filters.

Table 4.2: Comparison of different methods

variables Raw data
Multistep

optimization

Our method Manual

re-extraction
Filter 1 Filter 2 Filter 3 Filter 4

Positions

(m)

E((x∗− x̂)2) 1.91 2.18 2.19 2.12 2.08 2.04 /

E(|x∗− x̂|) 0.98 0.99 1.05 1.04 1.02 1.04 /

Speed

(m/s)

Mean 8.07 8.05 8.06 8.07 8.07 8.07 7.88

Std 4.07 4.01 3.95 3.96 3.96 3.97 3.89

Range [0,36.0] [0,27.0] [0,26.9] [0,27] [0,26.8] [0,26.7] [0,26.4]

Outliers (%) 0 0 0 0 0 0 0

64

E((v∗− v̂)2) 0.88 0.47 0.43 0.42 0.38 0.37 /

E(|v∗− v̂|) 0.62 0.48 0.46 0.46 0.44 0.44 /

Acceleration

(m/s2)

Mean -0.04 -0.04 -0.03 -0.04 -0.05 -0.05 0.03

Std 6.69 0.92 0.81 0.8 0.66 0.66 0.58

Range [-176.5,292.2] [-14.1,4.5] [-5.0,4.0] [-4.4,4.0] [-5.0,4.0] [-5.0,4.0] [-4.2,3.5]

Outliers (%) 15 0 0 0 0 0 0

E((a∗− â)2) 44.56 0.68 0.66 0.64 0.4 0.4 /

E(|a∗− â|) 2.64 0.60 0.55 0.54 0.45 0.44 /

Jerk

(m/s3)

Mean -0.17 -0.13 -0.11 -0.11 -0.06 -0.06 -0.02

Std 99.80 2.41 1.81 1.86 1.07 0.97 0.62

Range [-4171.5,2954.4] [-141.0,39.4] [-8.0,8.0] [-8.0,8.0] [-8.0,8.0] [-7.4,8.0] [-5.3,7.1]

Outliers (%) 42.3 0.6 0 0 0 0 0

E((j∗− ĵ)2) 9960.09 5.90 3.46 3.65 1.33 1.12 /

E(|j∗− ĵ|) 32.79 1.65 1.23 1.31 0.82 0.75 /

Furthermore, we analyze the frequency spectrums of the acceleration and jerk profiles of the raw

data and data obtained by different methods. As Figure 4.6 shows, the noises contained in the raw

data, which can be seen from the orange dashed curves, span the entire frequency range. Both

the multistep optimization method and our method effectively eliminate a large portion of the

noise, resulting in frequency spectrums that fall within the range of the human-vehicle response

frequency (up to 2 Hz). Compared to the multistep optimization method, the frequency spectrum

of the smoothed jerk profile obtained by our method is closer to that obtained by the manual re-

extraction. The Gaussian filter shows the best performance among the four tested filters.

(a) Acceleration (b) Jerk

Figure 4.6: Frequency spectrums of accelerations and jerks of the dataset

65

4.5 Conclusion

In this paper, we propose a straightforward, iterative moving average method for smoothing lon-

gitudinal vehicle trajectory data. In each iteration, we pad both ends of the speed profile with

the average speed and apply a moving average method with different kernel shapes, representing

different weights, to speeds. We then normalize the filtered speeds to preserve the average speed

and maintain the total travel distance, and differentiate the normalized filtered speeds into accel-

erations and jerks to check whether the termination conditions are satisfied. If they are satisfied,

the iterative process concludes and we integrate these smoothed speeds back into the positions.

Otherwise, we take these smoothed speeds as the new input and initiate another iteration to further

smooth the speeds. Mathematically, we prove that our method can terminate within a finite number

of iterations, in accordance with predefined termination criteria. We then numerically demonstrate

the efficacy of our method upon the trajectories in the NGSIM I80 camera 6 dataset. The speed,

acceleration, and jerk profiles before and after smoothing indicate that our method eliminates all

outliers and rapid oscillations while retaining most of the information in the raw data, including

accelerating, decelerating, and cruising behaviors. However, because the speed at the endpoint is

greatly greater than the average speed, the smoothed data at the endpoint shows differences from

the raw data. In addition, this study reports on the smoothing of 1714 trajectories in the dataset.

Our method for smoothing all the trajectories satisfies the termination condition, although the req-

uisite iterations varied based on different kernels. Statistical comparisons among different methods

reveal the efficacy of our proposed method in eliminating outliers, and that the speed, acceleration,

and jerk profiles smoothed using our method can better resemble those manually re-extracted, un-

derscoring their enhanced accuracy. Among the kernels tested, the Gaussian kernel emerged as the

frontrunner, exhibiting superior performance compared to other tested kernels.

The contributions of this study are two fold. On one hand, we introduce a novel iterative moving

average method to effectively smooth longitudinal vehicle trajectory data. This method effectively

eliminates outliers and high-frequency noise from the raw data, resulting in smoothed speeds, ac-

66

celerations, and jerks that align with physical interpretations. On the other hand, we provide a

rigorous mathematical proof demonstrating that, without termination, the speeds finally converge

to a constant value after an infinite number of iterations, ensuring that the bounds in speeds and

their derivatives are physically meaningful within a finite number of iterations with the correspond-

ing termination criterion.

It should be noted that our proposed method is open to other options for smoothing speeds such as

the weighted kNN regression algorithm and the Savitzky-Golay filter, in addition to the alternatives

presented in this study. Furthermore, although our method cannot correct all detection errors, it can

eliminate outliers in higher-order derivatives of positions and enhance the accuracy of smoothed

trajectories at a low computational cost. The proposed method thus represents a general iterative

framework for smoothing longitudinal vehicle trajectories, with the potential for the development

of more advanced strategies based on our approach.

In the future, with the accessibility of data from various sources, we plan to test the proposed

method using data obtained from other sources. In addition, our method may necessitate multiple

iterations, with the physically meaningful ranges of speeds, accelerations, and jerks serving as the

termination criterion. This research provides a foundation for the development of more mathe-

matically tractable techniques that incorporate additional driving behavior principles, which could

potentially eliminate the need for the iterative process. Furthermore, this study focuses solely on

the smoothing of longitudinal vehicle trajectories, and we aim to extend the method to smooth

lateral vehicle trajectories with varying termination conditions.

67

Chapter 5

Two-step quadratic programming for

physically meaningful smoothing

5.1 Introduction

In this study, we propose a two-step quadratic programming method to address the gap. Our ap-

proach ensures that smoothed speeds and higher order derivatives of positions are consistently

defined as symplectic differences in positions, while adhering to physically meaningful bounds.

We carefully discuss the properties of resulted difference matrices, and present linear inequal-

ity constraints based on bounded derivatives of positions. Our method is closely related to the

aforementioned smoothing splines method, which addresses the trade-off between fidelity and

smoothness by solving an optimization problem with the weighted sum of the discrepancy and

roughness as the objective function. However, instead of formulating a single quadratic program-

ming problem, we leverage our prior knowledge of position error, determined by pixel length in

video images (FHWA, 2007; Krajewski et al., 2018), and formulate two sequential quadratic pro-

gramming problems. In the first step, we minimize the discrepancy between half-smoothed and

68

raw positions, subject to physically meaningful bounds on speeds and higher order derivatives of

half-smoothed positions. In the second step, we minimize the roughness of the smoothed positions,

maintaining the same bounds on speeds and higher order derivatives of smoothed positions, along

with additional bounds on the smoothed positions themselves such that the smoothed positions

are allowed to deviate from the raw data by at most those of the half-smoothed positions and the

prior position error. Therefore, our method is fundamentally different from the smoothing splines

method, as well as other splines methods. In Table 5.1, we provide a conceptual comparison of

our method with different splines methods.

Table 5.1: Comparisons of our method and existing splines methods

Method Discrepancy Roughness Splines
basis

Bounded
derivatives
of positions

Prior
position

error
Smoothing splines

√ √

Regression splines
√ √

Penalty splines
√ √ √

(Toledo et al., 2007)
√ √ √

(Marczak and Buisson, 2012)
√ √ √

(Venthuruthiyil and
Chunchu, 2018)

√ √

Our method Step 1
√ √

Step 2
√ √ √

In both steps, the bounds are applied to derivatives, whose order is as high as that in the definition

of roughness; i.e., the second step dictates the highest order of derivatives. Thus, the second step

is equivalent to minimizing the acceleration, jerk, or snap, if the highest order of derivatives is

two, three, or four, respectively. The highest order of derivatives is a central parameter in our

method and existing splines methods. In the literature, it is generally preassumed. For example,

(Whittaker, 1922) proposed the use of the sum of squared third-order derivatives to measure the

roughness of the smoothed data. If we study a vehicle trajectory as a time series of positions, the

third-order derivatives are jerks, and this choice is consistent with the minimum jerk principle in

human body movements (Flash and Hogan, 1985) and driving experiences (Othman et al., 2008).

However, the principles of both minimum jerks and minimum snaps were used to design drones’

69

and robot manipulators’ trajectories (Gasparetto and Zanotto, 2010; Mellinger and Kumar, 2011).1

In this study, we will calibrate the highest order with empirical data, considering both the quality

of smoothed trajectory and computational complexity. However, we only consider up to snaps

with the highest order of four, as planning physical quantities higher than snaps is considered

impractical due to the large increase in complexity (Lambrechts et al., 2005).

Based on the properties of difference matrices, we observe that the coefficient matrix in the sum

of squared highest order derivatives in the second step is not positive definite, and thus require that

the first few smoothed positions match the corresponding half-smoothed ones, where the number

of such equality constraints equals the highest order of derivatives.

Furthermore, mathematically, we establish the existence and uniqueness of solutions to both quadratic

programming problems, thus ensuring the well-defined nature of our method. This is achieved by

demonstrating that, in both steps, the domains defined by linear inequality constraints are non-

empty and that the objective functions are strictly convex. Numerically, we employ interior point

methods to solve the quadratic programming problems and discuss the computational complexity.

Empirically, using both NGSIM and highD data, we calibrate the highest order of derivatives and

compare our method with an existing approach with respect to manually re-extracted data.

The rest of this chapter is organized as follows. In Section 4.2, we define derivatives of positions

with symplectic differences and formulate physically meaningful bounds as linear inequalities. In

Section 4.3, we introduce the two-step quadratic programming method. In Section 4.4, we prove

the existence and uniqueness of solutions to both quadratic programming problems and discuss the

computational complexity for solving the problem with interior point methods. In Section 4.5, we

calibrate the highest order of derivatives and compare our method with an existing approach with

respect to manually re-extracted NGSIM data and apply our method to highD data. In Section 4.6,

we discuss future extensions of our method.
1The trajectory design problem in the x dimension is related to but different from the trajectory smoothing problem

in that one needs to find physically meaningful times t̃m passing given waypoints xm.

70

5.2 Derivatives of positions and their physically meaningful bounds

In this section, we first define the derivatives of positions with symplectic differences and then

introduce linear inequality constraints based on physically meaningful bounds on the derivatives.

These constraints are imposed on both half-smoothed and smoothed trajectories, such that the

resulting speeds, accelerations, jerks, and higher order derivatives are consistently defined and

physically meaningful.

5.2.1 Derivatives of positions

ttk+1 tk+2 tk+3 tm−3 tm−2 tm−1 tm tm+1 tm+2 tM−k−2tM−k−1 tM−k

............
x(2k)

x(2k+1)

(a) Implicit differences

ttk+2 tk+3 tk+4 tm−3 tm−2 tm−1 tm tm+1 tm+2 tM−k−2tM−k−1 tM−k

............
x(2k+1)

x(2k+2)

(b) Explicit differences

Figure 5.1: Symplectic discretization for derivatives of positions

For a time-continuous trajectory, x(t), the kth order derivative is denoted by x(k)(t) for k = 1, · · · ,K,

where K is the highest order of derivatives. Thus we have

x(k)(t) =
dx(k−1)(t)

dt
=

d(k)x(t)
dt(k)

. (5.1)

We employ the symplectic discretization (mixed implicit-explicit Euler discretization) method to

define the kth order derivatives, x(k)m , at tm (m= ⌊k+1
2 ⌋+1, · · · ,M−⌊ k

2⌋), where ⌊·⌋ is the floor func-

tion. For car-following models, this method leads to collision-free and forward-traveling solutions

71

(Jin, 2019). In particular,

x(2k+1)
m =

x(2k)
m − x(2k)

m−1

∆t
, k = 0,1, · · · (5.2a)

x(2k+2)
m =

x(2k+1)
m+1 − x(2k+1)

m

∆t
, k = 0,1, · · · (5.2b)

That is, speed, jerk, and odd-order derivatives are calculated with backward differences; and ac-

celeration, snap, and even-order derivatives with forward differences. The discretization scheme is

depicted in Figure 5.1, where the nodes represent the derivatives of positions and arrows represent

the calculation direction.

We denote the vector of x(k)m for m = ⌊k+1
2 ⌋+1, · · · ,M−⌊ k

2⌋ and k = 0, · · · ,K by x(k). Then (5.2a)

and (5.2b) can be rewritten with matrices as follows:

x(k) =
((0|IM−k)− (IM−k|0))x(k−1)

∆t
, k = 1, · · · ,K, (5.3)

where IM−k is a (M−k)× (M−k) identity matrix, and 0 is a (M−k)×1 vector of zeros. We then

write x(k) in positions as follows:

x(k) =
W (k)x

∆tk , (5.4)

fleqnfalsewhere W (k) is the kth difference matrix which has a staircase structure, and its dimension

is (M− k)×M (Strang, 1993).In particular, W (0) = IM. Following (5.3), other difference matrices

can be written as follows:

W (k) = ((0|IM−k)− (IM−k|0))W (k−1), k = 1, · · · ,K. (5.5)

72

Lemma 5.1. For k = 1, · · · ,K, the sum of each row in W (k) is zero; i.e.,

W (k) ·1 = 0, (5.6)

where 1 is a (M− k)×1 vector of ones.

Proof. For k = 1, from (5.5) we have W (1) = ((0|IM−1)− (IM−1|0)). Thus, W (1) ·1 = 0, since each

row has exactly one 1 and one −1, with all other elements being zeros. Further from (5.5) we have

W (2) ·1 = ((0|IM−2)− (IM−2|0))W (1) ·1 = 0 and W (k) ·1 = 0 for k ≥ 2.

Lemma 5.2. With D defined as

D =



1 0 0

−1 1

0 −1 1

0

0 0 −1 1


M×M

,

W (k) can be written as

W (k) = (0
(M−k)×k

|IM−k)Dk, (5.7)

where 0 is a zero matrix with the dimension written below it.

Proof. In the case of k = 0, W (0) = IM = IMD0, and the lemma is correct for this base case.

We assume that the lemma holds for k−1, that is, W (k−1) = (0
(M−k+1)×(k−1)

|IM−k+1)Dk−1.

73

Now we consider the case of k. Together with (5.5), W (k) can be written as follows:

W (k) = ((0|IM−k)− (IM−k|0))W (k−1)

= ((0|IM−k)− (IM−k|0))(0
(M−k+1)×(k−1)

|IM−k+1)D−1Dk,

where

D−1 =



1 0 0

1 1

1 1

0

1 1 1 1


M×M

.

Therefore, we can calculate W (k) as follows:

W (k) =

[
(0
(M−k)×k

|IM−k)− (0
(M−k)×(k−1)

|IM−k| 0
(M−k)×1

)

]
D−1Dk = (0

(M−k)×k
|IM−k)Dk,

which completes the inductive step and hence the proof of the lemma.

Corollary 5.3. We define two submatrices of W (k), W (k)
1 and W (k)

2 , as follows:

W (k)
1 ≡ (W (k)

i,q)1≤i≤M−k,1≤q≤k, (5.8a)

W (k)
2 ≡ (W (k)

i,q)1≤i≤M−k,k+1≤q≤M. (5.8b)

74

Then W (k)
1 and W (k)

2 are submatrices of Dk:

W (k)
1 = (Dk

i,q)k+1≤i≤M,1≤ j≤k, (5.9a)

W (k)
2 = (Dk

i,q)k+1≤i≤M,k+1≤ j≤M. (5.9b)

Proof. Dk is a M×M square matrix, and it can be partitioned into four blocks as follows:

Dk =


Dk

11
k×k

Dk
12

K×(M−k)

Dk
21

(M−k)×k
Dk

22
(M−k)×(M−k)

 .

Together with Lemma 5.2, we can write W (k) as follows:

W (k) = (0
(M−k)×k

|IM−k)


Dk

11
k×k

Dk
12

K×(M−k)

Dk
21

(M−k)×k
Dk

22
(M−k)×(M−k)

= (Dk
21

(M−k)×k
| Dk

22
(M−k)×(M−k)

).

From the definition of W (k)
1 and W (k)

2 , we know that W (k) = (W (k)
1 |W (k)

2), and the dimensions of

W (k)
1 and W (k)

2 are (M − k)× k and (M − k)× (M − k), respectively. Therefore, W (k)
1 and W (k)

2

satisfy the following equations:

W (k)
1 = Dk

21
(M−k)×k

= (Dk
i,q)k+1≤i≤M,1≤ j≤k,

W (k)
2 = Dk

22
(M−k)×(M−k)

= (Dk
i,q)k+1≤i≤M,k+1≤ j≤M.

In addition, the sum of squared kth order derivatives can also be written with x and W (k) as

75

(x(k))⊤(x(k))= x⊤(W (k))⊤W (k)x
∆t2k , where ⊤ is the transpose operator, and the dimension of (W (k))⊤W (k)

is M×M.

Corollary 5.4. The rank of (W (k))⊤W (k) is M− k.

Proof. From Lemma 5.2, it is evident that the rank of W (k) is equal to M − k. According to the

Rank-Nullity theorem (Strang, 2014), for any matrix W of dimensions n1×n2 (where n1 < n2), the

sum of the rank and nullity of W is equal to n2. Here, the nullity of W refers to the dimension of

its null space.

We define the null space of W (k) as N(W (k)) = {x ∈ RM : W (k)x = 0}. For any x ∈ N(W (k)), the

following equation always holds:

(W (k))⊤W (k)x = 0,

which implies that x ∈ N((W (k))⊤W (k)). Therefore, we can draw the following conclusion:

N(W (k))⊆ N((W (k))⊤W (k)).

Similarly, the null space of (W (k))⊤W (k) can be written as N((W (k))⊤W (k))= {x∈RM : (W (k))⊤W (k)x=

0}. For any x ∈ N((W (k))⊤W (k)), the following equation always holds:

x⊤(W (k))⊤W (k)x = (W (k)x)⊤W (k)x = 0,

from which we can know that W (k)x = 0 and x ∈ N(W (k)), and we can conclude:

N((W (k))⊤W (k))⊆ N(W (k)).

Therefore, we can conclude that N((W (k))⊤W (k)) = N(W (k)), and the dimensions of N(W (k)) and

76

N((W (k))⊤W (k)) are the same. Therefore, according to the Rank-Nullity theorem, we have

Rank((W (k))⊤W (k)) = Rank(W (k)) = M− k.

5.2.2 Linear inequality constraints based on bounded derivatives of posi-

tions

Following the empirical observations, all higher order derivatives of positions should be bounded

(Jin, 2021; Pendrill and Eager, 2020). Using k to denote the order of the derivative, the bounded-

ness of higher order derivatives can be written as follows:

x(k)− ≤ x(k) ≤ x(k)+ , k = 1, · · · ,K (5.10)

where x(k)− and x(k)+ represent the lower and upper bounds of x(k).

Replacing x(k) by positions, we can rewrite (5.10) as follows:

∆tkx(k)− ≤W (k)x ≤ ∆tkx(k)+ , k = 1, · · · ,K. (5.11)

Therefore, with (5.11), the boundedness of all the derivatives of positions can be expressed using

linear inequalities in positions.

77

5.3 Two-step quadratic programming method

In this section, we first introduce the framework of our two-step method for smoothing longitudinal

vehicle trajectories, followed by a comprehensive explanation of each step.

We illustrate the flow chart of our method with Figure 5.2. The initial inputs consist of raw po-

sitions. The final outputs consist of smoothed positions, from which speeds and higher order

derivatives can be calculated. The two rectangles represent the two steps in our method, with each

step involving a quadratic programming problem. A comprehensive explanation of the method is

provided in the subsequent subsections. As both step 1 and step 2 produce smoother positions, we

differentiate between their outputs by referring to the results of step 1 and step 2 as “half-smoothed

positions” and “smoothed positions”, respectively.

Raw positions

Minimize the discrepancy
between the half-smoothed
and raw positions

Minimize the sum of squared
highest-order derivatives

Smoothed positions

Physically meaningful
bounds of speeds and
higher-order derivatives

Prior position error

Figure 5.2: The flow chart of the two-step quardratic programming method

5.3.1 First step: minimization of the discrepancy between the half-smoothed

and raw positions

We formulate a quadratic programming problem to address the concern of preserving fidelity. The

objective of this quadratic programming problem is to minimally modify the raw positions while

concurrently guaranteeing that all higher order derivatives fall within the physically meaningful

78

ranges. The quadratic programming problem can be written as follows:

min
x̂
(x̂−x)⊤(x̂−x), (5.12a)

s.t.

x(k)− ≤ x̂(k) ≤ x(k)+ , k = 1, · · · ,K, (5.12b)

where x̂ denotes the vector of the variables in the quadratic programming problem and x̂(k) denotes

the vector of the kth order derivatives of x̂.

Together with the discretization scheme we introduced in section 2, (5.12a) to (5.12b) can be

rewritten as a standard quadratic programming problem, as follows:

min
x̂
(x̂−x)⊤(x̂−x), (5.13a)

s.t.

−W (k)x̂ ≤−∆tkx(k)− , k = 1, · · · ,K, (5.13b)

W (k)x̂ ≤ ∆tkx(k)+ k = 1, · · · ,K. (5.13c)

By solving this quadratic programming problem, the resulting half-smoothed positions ensure that

all speeds and higher order derivatives are within physically meaningful ranges.

5.3.2 Second step: minimization of the sum of squared highest order deriva-

tives

According to the features of trajectory detection, the errors of raw positions are typically confined

within the prior position error, which is determined by the length represented by a pixel in video

images (FHWA, 2007; Krajewski et al., 2018). However, certain raw positions may exhibit detec-

79

tion errors that surpass this anticipated bound. Therefore, the second step of our method allows the

smoothed positions to deviate from the raw data by at most those of the half-smoothed data and the

prior position error. To be more specific, considering the mth position in the trajectory, the lower

bound is set as x̂m when the difference xm − x̂m exceeds the prior position error. In cases where

the difference is within the prior position error, the lower bound is adjusted to the raw position

minus the prior position error. Similarly, the upper bound for the mth position in the trajectory is

determined as x̂m if the difference x̂m − xm exceeds the prior position error. In situations where the

difference falls within the prior position error, the upper bound is set to the raw position plus the

prior position error. Thus the ranges of the mth position in the trajectory can be written as follows:

min{xm − ε, x̂m} ≤ x̃m ≤ max{xm + ε, x̂m}, (5.14)

where x̃m is the mth position in the smoothed trajectory, and ε is the prior position error. We use x−

and x+ to denote the vectors of the lower and upper bounds of positions hereafter, both of which

are (M+1)×1 vectors.

Apart from the position ranges, we apply the same linear inequality constraints with physically

meaningful bounds as those used in the first step.

The objective function in the second step is to minimize the roughness, which can be indicated via

the sum of squared highest order derivatives, as represented by the following objective function:

min
x̃
(x̃(K))⊤x̃(K). (5.15)

Given that x̃(K) = W (K)x̃
∆tK , the objective function can be reformulated as:

min
x̃

1
∆t2K x̃⊤(W (K))⊤W (K)x̃. (5.16)

80

For any real vector x̃, the term x̃⊤(W (K))⊤W (K)x̃ is always non-negative, and (W (K))⊤W (K) is

a positive semi-definite matrix. For the objective function to be strictly convex, it is necessary

for (W (K))⊤W (K) to be positive definite (Nocedal and Wright, 2006). However, a positive semi-

definite matrix is positive definite if and only if it is invertible (Bhatia, 2009). This requirement

conflicts with the findings of Corollary 5.4, which states that the dimension of (W (K))⊤W (K) is

M×M, while rank((W (K))⊤W (K)) = M−K. Therefore, (W (K))⊤W (K) is not invertible or positive

definite. Based on Lemma 5.2, we require that the initial K elements in x̃(K) equal to the half-

smoothed positions, which is equivalent to specifying the initial value of the position and the first

(K −1) orders of derivatives; that is, we require x̃m = x̂m for m = 1, · · · ,K.

Furthermore, since the constant coefficient 1
∆t2K in the quadratic programming problem does not

affect the optimal solution, we can eliminate this coefficient without altering the optimal outcome

and re-write the second quadratic programming problem as follows:

min
x̃

(W (K)x̃)⊤(W (K)x̃), (5.17a)

s.t.

− x̃ ≤−x−, (5.17b)

x̃ ≤ x+, (5.17c)

−W (k)x̃ ≤−∆tkx(k)− , k = 1, · · · ,K, (5.17d)

W (k)x̃ ≤ ∆tkx(k)+ , k = 1, · · · ,K, (5.17e)

x̃1:K = x̂1:K, (5.17f)

where x̂1:K = (x̂1, x̂2, · · · , x̂K)
⊤. (5.17b) and (5.17c) bound the positions, and (5.17d) and (5.17e)

bound the speeds and higher order derivatives. (5.17f) is important for obtaining the unique optimal

solution, and detailed explanation will be given in section 4.2.

The possible values of K are 1, 2, 3, or 4, and the coefficient matrices differ based on the chosen

value of K. For instance, if we take K = 2, we only need to consider W (1) and W (2). Once the

81

problem is formulated, we can solve it to obtain the position vector that yields the smallest sum

of squared highest order derivatives. Up to now, we have obtained the smoothed positions, with

which all higher order derivatives can be calculated.

It can be observed that the outputs of step 2 (smoothed positions) are equal to those of step 1

(half-smoothed positions) when the prior position error is zero (ε = 0 m). This suggests that in

the absence of any detection errors, the two steps yield identical results. In contrast, a near-infinity

prior position error (ε → ∞) will approximately result in a (K − 1)th order polynomial, and the

highest order derivatives will be identically zero except for the initial values. While neither a

zero nor an infinitely large prior position error is practically possible, the two extreme examples

indicate that the prior position error helps to balance fidelity and smoothness. In this regard, the

prior position error plays a similar role to the weight in the objective function of the smoothing

splines method (Whittaker, 1922). However, it is important to note that the prior position error

holds significant physical meaning within our specific context and can be derived directly from

observations.

5.4 Theoretical properties and computational complexity

In this section, we analyze the properties of the quadratic programming problems in our method.

We prove that both quadratic programming problems are not only solvable but also possess unique

optimal solutions. Subsequently, we proceed to assess the computational complexity associated

with the interior point method employed for solving the quadratic programming problems, partic-

ularly with regard to the highest order derivatives.

82

5.4.1 Existence of solutions

We first demonstrate that the quadratic programming problems in both steps of our methods are

solvable under all conditions.

Theorem 5.5. The quadratic programming problem in step 1, (5.13a) to (5.13c), always has fea-

sible solutions, since the domain is non-empty.

Proof. From Lemma 5.1, when all elements of vector x̂ are equal (i.e., x̂ is a constant vector), the

following equation always holds:

W (k) · x̂ = 0, k = 1, · · · ,K.

This equation demonstrates that all the constraints are satisfied for a stationary trajectory, thus

leading to the attainment of a feasible solution.

Theorem 5.6. The quadratic programming problem in step 2, (5.17a) to (5.17f), always has feasi-

ble solutions, since the domain is non-empty.

Proof. Based on the formulation of the quadratic programming problem in step 2, it is apparent

that any solution obtained in step 1 is inherently feasible for step 2. That is, the half-smoothed

trajectories are in the domain. Consequently, the feasible regions for the quadratic programming

problem in step 2 are guaranteed to be non-empty, ensuring the existence of at least one feasible

solution for x̃ such that x̃ = x̂.

5.4.2 Uniqueness of solutions

We then prove that both quadratic programming problems always have unique optimal solutions.

83

Theorem 5.7. The quadratic programming problem in step 1, (5.13a) to (5.13c), always has a

unique optimal solution, since the objective function is strictly convex.

Proof. The objective function in (5.13a) can be re-written as x̂⊤x̂−2x̂⊤x+x⊤x, which is strictly

convex in the half-smoothed positions, x̂. Thus, together with Theorem 5.5, The quadratic pro-

gramming problem in step 1 always has a unique optimal solution.

Theorem 5.8. The quadratic programming problem in step 2, (5.17a) to (5.17f), always has a

unique optimal solution, since the objective function is strictly convex.

Proof. By incorporating (5.17f) into x̃, the objective function (5.17a) can be rewritten as follows:

min[W (K)(x̃
′
+ x̃

′′
)]⊤[W (K)(x̃

′
+ x̃

′′
)] = (W (K)x̃

′′
)⊤(W (K)x̃

′′
)+2(W (K)x̃

′
)⊤(W (K)x̃

′′
)

+(W (K)x̃
′
)⊤(W (K)x̃

′
),

where x̃′
= (x̂1, x̂2, · · · , x̂K,0,0, · · · ,0)⊤ and x̃′′

= (0, · · · ,0, x̃K+1, x̃K+2, · · · , x̃M)⊤, both of which

are (M)× 1 vectors and x̃ = x̃′
+ x̃′′

. (W (K)x̃′
)⊤(W (K)x̃′

) is a constant, and its removal does

not affect the optimal solution. With W (k)
1 and W (k)

2 defined in Corollary 5.3, the quadratic

programming problem can thus be reformulated as follows by defining x̃′
1:K = (x̂1, · · · , x̂K)

⊤ and

x̃′′
K+1:M = (x̃K+1, x̃K+2, · · · , x̃M)⊤:

min(W (K)
2 x̃

′′
K+1:M)⊤W (K)

2 x̃
′′
K+1:M +(W (K)

1 x̃
′
1:K)

⊤(W (K)
2 x̃

′′
K+1:M).

W (K)
2 is a triangular matrix with all the entries on its main diagonal being one and it is a full-

rank matrix. Thus (W (K)
2)⊤W (K)

2 is invertible. Consequently, (W (K)
2)⊤W (K)

2 is positive definite,

ensuring the strict convexity of the objective function (Nocedal and Wright, 2006). Thus, together

with Theorem 5.6, (5.17a) to (5.17f) always possess a unique optimal solution.

84

5.4.3 Computational complexity regarding the highest order of derivatives

Both quadratic programming problems in our method can be written in the following format:

min
x

x⊤Gx+ c⊤x, (5.18a)

s.t. Qx ≤ b, (5.18b)

where x is the vector of variables, G is an n1 × n1 positive definite matrix and Q is an n2 × n1

matrix with rank(Q) = n1. In our scenario, n1 is a constant and n2 changes according to the highest

order of derivatives (value of K). Interior point methods are quite reliable and work well in solving

convex optimization problems (Boyd et al., 2004). The barrier algorithm is a type of interior point

method that has been widely used in embedded optimization including IBM ILOG CPLEX (Lima

and Seminar, 2010), GUROBI (Gurobi Optimization, LLC, 2023). We discuss the time complexity

based on the barrier algorithm.

For a quadratic programming problem with linear constraints, with properly chosen parameters,

the number of iterations required to solve the problem is proportional to the number of inequal-

ity constraints. In the context of (5.18a) and (5.18b), the iteration complexity for converging to

a point with a desired accuracy grows like O(
√

n2) (Boyd et al., 2004). Consequently, in the

context of our method where the number of detected positions in one trajectory (value of M) is

a constant and M ≫ K, the theoretical iteration complexity for both steps 1 and 2 grows like

O(
√

2KM). It is worth noting that the aforementioned iteration complexity generally represents

an upper bound, and the actual performance may be faster in practice, depending on the problem’s

structure (Floudas and Visweswaran, 1995).

In this study, achieving a balance between the precision of the smoothed data and computational

complexity is important. Therefore, we should include the minimum number of inequality con-

straints when the discrepancy in the smoothed data is negligible.

85

5.5 Calibration, comparison, and application with NGSIM and

highD data

In this section, we first choose the highest order of derivatives (the value of K) to be included in

our method. We determine the highest order of derivatives to include in our method by comparing

the NGSIM I-80 trajectories (FHWA, 2007) smoothed by our method adopting different highest

order of derivatives with the trajectories obtained from manual re-extraction. We then smooth the

NGSIM I80 camera 6 trajectories with the proposed method adopting the chosen K and compare

our method with a state-of-the-art method. In addition, we apply our method to the new-released

highD data (Krajewski et al., 2018) to show its robustness.

The bounds of speeds are set according to the speed limits of the study sites. Taking reference of

previous studies, we choose [−4,5] m/s2 as the feasible acceleration range (Elert, 2012; Bokare

and Maurya, 2017) and [−8,8] m/s3 as the feasible jerk range (Martinez and Canudas-de Wit,

2007). To the best of our knowledge, there have been no experimental investigations on vehicle

snap bounds. Thus we make the ratio of the maximum absolute snap to the maximum absolute

jerk approximately equal to the ratio of the maximum absolute jerk to the maximum absolute

acceleration in this study, and choose [−12,12] m/s4 as the feasible snap range.

5.5.1 Calibration of the highest order of derivatives

(Coifman and Li, 2017a,b) manually re-extracted the positions recorded by camera 6 on the I80

freeway from 4:00 pm to 4:15 pm on April 13, 2005. The released video (Coifman and Li, 2017b)

shows that many errors in raw data are addressed, and their re-extracted data have been used as

the ground truth data (Dong et al., 2021). As (Coifman and Li, 2017a) suggested, we calculate the

positions, accelerations, and jerks with the new speeds and construct the ground truth dataset.

86

Because the speed limit on the I80 freeway is 65 mph (28.9 m/s), we set the speed range to

be [0,30] m/s. We also determine the bound of position errors prior to applying our method.

According to the features of the NGSIM I80 data, the bound of the absolute prior position error

is 1.2 m, while the errors in vehicular tracking are notably higher at the beginning (captured by

camera 1) and the end (captured by camera 7) of the section, in comparison to the road segments

captured by the other cameras (Montanino and Punzo, 2015), and (Coifman and Li, 2017a) showed

that the detection errors in trajectories captured by camera 6 mainly fall within a range of 2 feet

(0.6 meters). Thus we choose ε = 0.6 m.

Performance of the method with different highest orders of derivatives and without the sec-

ond step

We pick out all vehicle trajectories from 5 seconds before entering camera 6’s area until leaving

camera 6’s area from the raw NGSIM I80 data, and compare the smoothed trajectories in camera

6 with the manually re-extracted data. We adopt K values from 1 to 4, apply our method, and

solve the quadratic programming problems with GUROBI (Gurobi Optimization, LLC, 2023) via

CVXPY (Diamond and Boyd, 2016). We determine the appropriate K by comparing the mean

squared errors (MSEs) between the smoothed data and the manually re-extracted data, as well as

the computational cost.

The MSEs between the half-smoothed and manually re-extracted data, and the smoothed and man-

ually re-extracted data are displayed in Table 5.2. The MSEs between the raw and manually re-

extracted positions and speeds are 1.91 m2 and 0.88 m2/s2, respectively, which are not significant.

However, such MSEs significantly increase in higher order derivatives, as the MSE between the

raw and manually re-extracted jerks reaches 9960 m2/s6. The MSEs between the half-smoothed

and manually re-extracted data continuously decrease as K increases. K = 1 has little effect on

the MSEs, however, when K ≥ 2, the MSEs between the half-smoothed and the manually re-

extracted data are greatly reduced, especially in higher order derivatives. The MSE between the

87

half-smoothed and manually re-extracted jerks is reduced to 7.86 m2/s6 when K = 4, representing

a reduction of greater than 99.9%.

Table 5.2: MSEs between half-smoothed and manually re-extracted data, and smoothed and man-
ually re-extracted data adopting different K

variables Raw data K = 1 K = 2 K = 3 K = 4

Step 1

E((x̃− x̄)2) (m2) 1.91 1.91 1.91 1.90 1.90
E((x̃(1)− x̄(1))2) (m2/s2) 0.88 0.87 0.60 0.54 0.50
E((x̃(2)− x̄(2))2) (m2/s4) 44.56 44.09 5.09 1.79 1.05
E((x̃(3)− x̄(3))2) (m2/s6) 9960.09 9826.03 499.38 40.98 7.86

Step 1 + Step 2

E((x̃− x̄)2) (m2) 1.91 2.12 1.80 1.87 1.95
E((x̃(1)− x̄(1))2) (m2/s2) 0.88 0.40 0.29 0.32 0.40
E((x̃(2)− x̄(2))2) (m2/s4) 44.56 4.59 0.26 0.25 0.34
E((x̃(3)− x̄(3))2) (m2/s6) 9960.09 693.29 1.50 0.63 0.63

As shown in Table 5.2, the incorporation of step 2 in addition to step 1 results in a substantially

greater reduction in MSEs compared to the application of step 1 alone, which suggests that the

incorporation of step 2 makes the smoothed data more correct. The minimum MSEs between our

smoothed and manually re-extracted positions, speeds, accelerations, and jerks, corresponding to

the K values, are highlighted in bold. Upon including step 2, K = 2 yields the smallest MSEs in

positions and speeds, K = 3 produces the lowest MSEs in accelerations, and both K = 3 and K = 4

lead to the lowest MSE in jerks. The MSEs between our smoothed and manually re-extracted

positions, speeds, and accelerations exhibit little difference when adopting either K = 2 or K = 3,

while the MSE between our smoothed and manually re-extracted jerks decreases by more than half

when adopting K = 3 in comparison to K = 2. Therefore, we will choose K = 3 if the computation

complexity is acceptable.

Figure 5.3: The computation time for smoothing the NGSIM I80 camera 6 dataset

88

On the other hand, Figure 5.3 presents the duration required for smoothing the NGSIM I80 cam-

era 6 dataset with the two-step method, utilizing an Asus desktop equipped with an Intel Core

i7 2.9 GHz CPU. The time required to solve the quadratic programming problem grows as K in-

creases. The smoothing process for the dataset only takes approximately 340 seconds (5 minutes

and 40 seconds) even when employing K = 4. Collaboratively considering the MSEs between

the smoothed data and the manually re-extracted data, as well as the computation cost, we choose

K = 3 for the subsequent applications. It means that we will minimize the sum of squared jerks

with bounded positions, speeds, accelerations, and jerks in step 2.

An example with the two-step method and selected highest order of derivatives

We selected vehicle 1486 from the NGSIM I80 camera 6 dataset, which was previously utilized

as an example in (Coifman and Li, 2017a), to implement our method with K = 3. The results are

depicted in Figure 5.4, where the raw data are shown in yellow, the smoothed data are shown in

red, and the manually re-extracted data are shown in blue.

As shown in Figure 5.4a, the disparities between the raw and smoothed positions are relatively

minor. However, these differences become more obvious in the speeds, accelerations, and jerks,

as illustrated by Figure 5.4b to Figure 5.4d. Notably, many outliers and noises appear in raw

accelerations and jerks, particularly in raw jerks. Upon applying our method, all outliers and high-

frequency noises are effectively eliminated. The main features in the raw trajectories, including the

accelerating and decelerating behaviors, are preserved. In addition, our method effectively removes

low constant speeds, which are considered unrealistic based on experiments with probe vehicles

(Coifman and Li, 2017a), in the raw data, and the smoothed data obtained from our method closely

resemble the manually re-extracted data.

The frequency spectrums of accelerations and jerks of vehicle 1486 before and after applying our

method are shown as Figure 5.5. As indicated by the yellow dashed curves, the raw accelerations

89

(a) Position (b) Speed

(c) Acceleration (d) Jerk

Figure 5.4: Positions, speeds, accelerations, and jerks of vehicle 1486

and jerks encompass numerous high-frequency noises that can span the entire frequency range. The

red curves show that our method can effectively eliminate these high-frequency noises, resulting in

the frequency spectrums of our smoothed data being identical to those of the manually re-extracted

data, which are shown by blue curves. The frequency spectrums of our smoothed data are in line

with the reasonable human operational range (up to about 2 Hz), as suggested by (Punzo et al.,

2011; Zhou et al., 2020).

5.5.2 Comparison with an existing method with respect to manually re-

extracted data

We still adopt the manually re-extracted data from (Coifman and Li, 2017a) for comparison (re-

ferred to as “manual re-extraction” hereafter). The trajectories smoothed by the multistep opti-

90

(a) Acceleration (b) Jerk

Figure 5.5: Frequency spectrums of the accelerations and jerks of vehicle 1486

mization method in (Montanino and Punzo, 2015) have also been released, which provide a great

source of comparative data. We adopt them (referred to as “multistep optimization” hereafter)

for comparing with the trajectories smoothed by our method. Therefore, we have four sources

of data for comparison: (1) raw data, (2) multistep optimization, (3) our method, and (4) manual

re-extraction.

The statistic summary of the aforementioned methods is presented in Table 5.3. We compute

the means and standard deviations for position shifts, as well as the means, standard deviations,

ranges, and proportions of outliers for the speeds, accelerations, and jerks in the aforementioned

data sources. We also calculate the MSEs between the raw data, as well as the data smoothed by

different methods, and the manually re-extracted data as the evaluation metrics.

The average shifts between the raw positions and the positions smoothed by both methods are

about zero, while the average position error of the raw positions, which represents the difference

between the raw positions and the manually re-extracted positions, amounts to 0.12 m. Com-

pared to raw positions, the multistep optimization method can lead to a larger MSE between the

smoothed positions and the manually re-extracted positions. Conversely, the MSE between the po-

sitions smoothed by our method and the manually re-extracted positions exhibits a slight reduction

compared to the raw positions.

The means of speeds, accelerations, and jerks are preserved by all the aforementioned methods. All

91

raw speeds are physically meaningful. However, 15.0% and 42.3% of the raw accelerations and

jerks are outliers, respectively. The absolute values of the raw accelerations and jerks can almost

reach 300 m/s2 and 4200 m/s3, respectively. The MSEs between the raw data and the manually

re-extracted data reach 44.56 m2/s4 and 9960.09 m2/s6 in the accelerations and jerks, respectively.

The multistep optimization method can reduce the proportion of outliers in accelerations to less

than 0.05% and reduce the proportion of outliers in jerks to 0.6%. All outliers in accelerations

and jerks are eliminated by our method. The standard derivations of the accelerations and jerks

smoothed by our method are the closest to those of the manually re-extracted accelerations and

jerks. The positions, speeds, accelerations, and jerks smoothed by our method can better resemble

those manually re-extracted data, as the MSEs between our smoothed data and the manually re-

extracted data are smaller.

Table 5.3: Comparison of different methods

Variables Raw data
Multistep

optimization

Iterative

moving average
Our method

Manual

re-extraction

Position (m) E((x̃− x̄)2) (m2) 1.91 2.18 2.04 1.87 /

Speed

(m/s)

Mean 8.07 8.05 8.07 8.04 7.88

Std 4.07 4.01 3.97 3.99 3.89

Range [0,36.0] [0,27.0] [0,26.7] [0,27.2] [0,26.4]

Outliers (%) 0 0 0 0 0

E((x̃(1)− x̄(1))2) 0.88 0.47 0.37 0.32 /

Acceleration

(m/s2)

Mean (m/s2) -0.04 -0.04 -0.05 -0.03 0.03

Std 6.69 0.92 0.66 0.6 0.58

Range [-176.5,292.2] [-14.1,4.5] [-5.0,4.0] [-4.8,4.0] [-4.2,3.5]

Outliers (%) 15.0 0 0 0 0

E((x̃(2)− x̄(2))2) 44.56 0.68 0.4 0.25 /

Jerk

(m/s3)

Mean (m/s3) -0.17 -0.13 -0.06 -0.02 -0.02

Std 99.80 2.41 0.97 0.59 0.62

Range [-4171.5,2954.4] [-141.0,39.4] [-7.8,8.0] [-8.0,8.0] [-5.3,7.1]

Outliers (%) 42.3 0.6 0 0 0

E((x̃(3)− x̄(3))2) 9960.09 5.9 1.12 0.63 /

92

The frequency spectrums of accelerations and jerks smoothed or re-extracted by different meth-

ods are shown in Figure 5.6. The yellow dashed curves show that the raw accelerations and

jerks include the noises that span the entire frequency range. All these methods can eliminate

high-frequency noises, and the frequency of the smoothed accelerations and jerks are within the

human-vehicle response frequency (about 2 Hz) (Punzo et al., 2011). Compared to the multistep

optimization method, the frequency spectrums of the data smoothed by our method are closer to

those of the manually re-extracted data.

(a) Acceleration (b) Jerk

Figure 5.6: Frequency spectrums of the accelerations and jerks of NGSIM I80 camera 6 data

5.5.3 Application to the highD data

We also apply our method to the highD (Krajewski et al., 2018) data, newly-released vehicle tra-

jectory data collected by drone-equipped high-resolution cameras at a segment of more than 400

meters with a prior position error of 0.1 meters. There is no speed limit at the study site, so we

choose [0,50] m/s, a typical constraint of vehicle mechanics, as the feasible speed range. We adopt

the same acceleration and jerk ranges as before. There are 60 subsets in total, and we use the “25-

tracks” subset as an example. This dataset include the trajectories of 2850 vehicles on a three-lane

freeway.

93

(a) Position (b) Speed

(c) Acceleration (d) Jerk

(e) Frequency spectrum of accelerations (f) Frequency spectrum of jerks

Figure 5.7: Positions, speeds, accelerations, jerks, and frequency spectrums of the accelerations and jerks
of vehicle 1011

Using vehicle 1011 which experiences accelerating, decelerating, and stopping processes during

the recording as an illustrative example, we demonstrate the effects of our method. Figure 5.7a

to Figure 5.7d present the positions, speeds, accelerations, and jerks before and after smoothing,

with raw data shown as yellow dashed curves and smoothed data represented by red curves. It is

observed that the raw speeds exhibit numerous noises, which are translated into outliers and larger

94

noises in the higher order derivatives. The impacts of our method on the highD data are identical

to those on the NGSIM data. Our method effectively eliminates these outliers and high-frequency

noises in the higher order derivatives while ensuring bounded modifications of positions, thereby

preserving the general trend and main features of the raw speeds. The removal of high-frequency

noises can also be reflected by Figure 5.7e and Figure 5.7f, where any noise beyond the reasonable

range of human operation (approximately up to 2 Hz) is eliminated.

The statistic summary of the raw and smoothed data is presented in Table 5.4. The mean absolute

shift between the smoothed and raw positions is 0.05 meters, with a maximum absolute position

shift being 0.9 meters. This aligns with the claim that the prior position error of the highD data

is 0.1 meters. The range of raw speeds is [−6.0,35.3] m/s, with about 0.1% of speeds being

negative. Our method successfully eliminates all outliers while maintaining the average of the

raw speeds. Outliers constitute 57.9% and 74.2% of the raw accelerations and jerks, respectively,

with their ranges extending up to [−200.0,231.2] m/s2 and [−7656.2,9062.5] m/s3. Our method

effectively removes these outliers, resulting in the revised ranges of the accelerations and jerks as

[−4.6,4.0] m/s2 and [−8.0,8.0] m/s3, respectively.

Table 5.4: Statistic summary of the raw and smoothed highD 25-tracks dataset

Dataset Variables
Position

shift (m)
Speed (m/s) Acceleration (m/s2) Jerk (m/s3)

HighD

Raw data

Mean / 13.87 0.07 -0.39

Std / 7.70 6.45 267.76

Range / [-6.0,35.3] [-200.0, 231.2] [-7656.2,9062.5]

Outliers (%) / 0.1 57.9 74.2

smoothed data

Mean 0 13.87 0.04 -0.11

Std 0.06 7.70 0.54 0.92

Range [-0.9,0.8] [0,34.7] [-4.6,4.0] [-8.0,8.0]

Outliers (%) / 0 0 0

E(|x̃−x|) 0.05 / / /

95

The frequency spectrums of the accelerations and jerks before and after smoothing are shown as

Figure 5.8. Similar to the application to the NGSIM data, our method makes the accelerations

and jerks in the highD dataset free of high-frequency noises. The frequencies of all smoothed

accelerations and jerks fall within the reasonable human operational range (up to 2 Hz).

(a) Acceleration (b) Jerk

Figure 5.8: Frequency spectrums of the accelerations and jerks of highD “25-tracks” data

5.6 Conclusion

In this study, we proposed a two-step quadratic programming method for smoothing longitudinal

vehicle trajectory data. In the first step, we minimize the discrepancy between the half-smoothed

and raw positions, while adhering to physically meaningful bounds on the speeds and higher or-

der derivatives of the half-smoothed positions. Subsequently, in the second step, our objective is to

minimize the roughness of the smoothed positions, while incorporating the position ranges as addi-

tional constraints alongside those imposed in the first step. This step allows the smoothed positions

to deviate from the raw data by at most those of the half-smoothed positions and the prior position

error, and make the initial few positions in the trajectory the half-smoothed positions to ensure

the strict convexity of the objective function. We analytically proved that both quadratic program-

ming problems always yield unique optimal solutions, guaranteeing the well-defined nature of our

proposed method. This is achieved by demonstrating that, in both steps, the domains defined by

linear inequality constraints are non-empty and that the objective functions are strictly convex.

96

Numerically, we employed interior point methods to solve the quadratic programming problems,

with the computational complexity increasing with the number of positions and the highest order

of derivatives. Using NGSIM data, we demonstrated that a highest order of three yields an effi-

cient method and smoothed trajectories comparable to manually re-extracted ones. The results of

applying our method to a sample trajectory demonstrate its effectiveness in removing outliers and

high-frequency noises in higher order derivatives, with only modest adjustments to the positions.

Additionally, we compared our method with an existing approach and show its superior perfor-

mance in terms of leading to smaller MSEs between the smoothed positions, speeds, accelerations,

and jerks and those manually re-extracted. Furthermore, we applied our method to the smoothing

of the recently released highD dataset, showcasing the robustness of our approach in handling tra-

jectory data from diverse sources. Our method effectively aligns the smoothed trajectories with the

vehicle characteristics and drivers’ behaviors inherent in the dataset.

The contributions of this study are four fold. Firstly, we define speeds and higher order derivatives

as symplectic differences in positions, carefully discuss the properties of resulted difference ma-

trices, and present linear inequality constraints to ensure bounded derivatives of positions. These

definitions, formulations, and properties form the foundation of the ensuing formulation of a well-

defined two-step quadratic programming method. Secondly, we introduce a novel method that

integrates multiple factors, including discrepancy, roughness, bounded speed and higher order

derivatives, and prior position errors, to effectively smooth longitudinal vehicle trajectory data.

We provide numerical evidence that demonstrates the practical applicability and effectiveness of

our proposed method. Thirdly, we offer theoretical justification for the existence and uniqueness

of the optimal solutions in our method. This theoretical analysis establishes a solid foundation

for the reliability and robustness of our approach, further supporting its practical implementation.

Fourthly, we demonstrate that a highest order of three yields an efficient method and smoothed tra-

jectories comparable to manually re-extracted ones; this finding is consistent with the minimun jerk

principle for human body movements (Flash and Hogan, 1985) and the well-established smoothing

splines method by (Whittaker, 1922).

97

In the second step, we incorporate additional equality constraints by ensuring that the initial

smoothed positions match the corresponding half-smoothed positions. The number of these con-

straints is equal to the highest order of derivatives (K), guaranteeing the strict convexity of the

objective function. It is worth noting that, in (Whittaker, 1922), additional equality constraints

were introduced using K = 3 moments. In our future research, we aim to explore the possibility

of incorporating these equality constraints into our method, potentially resulting in strictly convex

objective functions and comparable smoothing outcomes.

In the future, we intend to apply our method to smooth longitudinal vehicle trajectory data col-

lected from other sources. Additionally, we aim to incorporate different boundedness criteria in

the constraints to smooth lateral vehicle trajectory data. Moreover, the concepts introduced in this

study open avenues for investigating scenarios involving missing portions of trajectories, requiring

the imputation of missing values. We are particularly interested in predicting and planning trajec-

tories to ensure safe, efficient, and environmentally friendly operations for both human-driven and

automated vehicles.

In our method, the prior position error functions similarly to the weight in the objective function

of the smoothing splines method (Whittaker, 1922). Nevertheless, it is crucial to emphasize that

the prior position error carries substantial physical significance within our specific context and can

be directly derived from observational data. Consequently, we assert that our two-step quadratic

programming method holds applicability for broader smoothing problems, encompassing situa-

tions where traditional splines methods are employed and the prior error in the raw data can be

reasonably estimated or observed in advance.

98

Chapter 6

Quadratic programming method for

imputation using fixed and mobile sensor

data

6.1 Introduction

Empirical investigations have demonstrated the effectiveness of the minimum jerk theory in ac-

curately describing human movements. (Flash and Hogan, 1985) observed that individuals tend

to execute arm movements that minimize jerks, and (Othman et al., 2008) discovered a positive

correlation between increased stress levels in drivers and higher jerks experienced during mo-

tion. (Whittaker, 1922) proposed the use of the sum of squared third-order derivatives, the jerks

in the context of vehicle trajectories, to measure the roughness of the smoothed data. The mini-

mum jerk theory has proven effective in smoothing vehicle trajectories by eliminating outliers and

high-frequency noises while maintaining consistency with both vehicle characteristics and human

driving behaviors. The minimum jerk theory has also found great application in the trajectory

99

design of drones and robots (Mellinger and Kumar, 2011; Gasparetto and Zanotto, 2007, 2008,

2010).

In this study, we propose a three-step quadratic programming method to impute the fully sam-

pled longitudinal vehicle trajectories from multi-source trajectory data corporately considering the

following principles: (P1) Maintaining a safe inter-vehicle spacing. (P2) Ensuring that speeds,

accelerations, and jerks remain within physically meaningful ranges. (P3) Considering drivers’

tendency to minimize jerks during their movements. The scenario of the problem we discuss is

shown in Figure 6.1, where two loop detectors are located at the entrance and the exit of the seg-

ment. Mixed traffic comprising of CAVs (marked in red), CVs (marked in green), and HDVs

(marked in blue and black) is considered, where CVs can provide their individual trajectories,

while CAVs can offer not only their own trajectories but also the trajectories of its preceding and

following vehicles. However, for HDVs not recorded by CAVs, we only have the information on

their entry and exit times, requiring us to impute their trajectories. The trajectories to be imputed

are shown as Figure 6.2, once the detected trajectories of two vehicles (marked in blue) and the

entering and exiting times are available, we can impute the trajectories in between. Our method in-

volves solving a quadratic programming problem in each step, with constraints ensuring physically

meaningful ranges for speeds, accelerations, and jerks. In step 1, we calculate the fastest possible

trajectory that maintains a safe distance from the preceding vehicle. In step 2, we calculate the

slowest possible trajectory that maintains safe distance from the following vehicles. Finally, we

compute the trajectory that lies between the slowest and fastest possible trajectories, optimizing

for the minimal sum of squared jerks. We numerically show the efficacy of our method with the

NGSIM (FHWA, 2007) and highD data (Krajewski et al., 2018). We consider scenarios with one,

two, three, and four undetected vehicles between a leading and a trailing vehicle, and impute the

trajectories of the undetected vehicles. Additionally, we demonstrate the efficacy of our method in

a traffic system comprising 10% CVs and 10% CAVs, showcasing its suitability in a mixed-traffic

environment.

100

It should be noted that we focus on longitudinal trajectories and do not consider lane-changing

behaviors in this study. If the number of the vehicles between two detected vehicles remains the

same when entering and exiting the segment, we consider no lane-changing behavior happens and

our method can be applied.

Loop detector Loop detector

CAV CAV CVHDV (detected) HDV (detected)HDV (undetected)

Segment

Figure 6.1: Illustration of the mixed traffic scenario

t

x
Exiting time detected
by loop detectors

Entering time detected
by loop detectors

Available trajectory Available trajectory

HDV trajectories to be imputed

Figure 6.2: Illustration of the trajectories to be imputed

The remaining sections of this chapter are structured as follows. Section 5.2 offers an introduction

to internally consistent positions and higher-order derivatives, alongside a presentation of Newell’s

simplified car-following model. In Section 5.3, we present our quadratic programming trajectory

imputation method and outline the procedures for determining the parameters. Section 5.4 presents

numerical examples using the NGSIM and highD data. Finally, in Section 5.5, we discuss the

contributions and limitations of our study and propose potential extensions for future research.

101

6.2 Symplectic discretization scheme of positions and Newell’s

simplified car-following model

In this section, we begin with introducing the symplectic discretization scheme for the positions

of vehicles, followed by formulating speeds, accelerations, and jerks as linear combinations of po-

sitions and introducing linear inequality constraints based on their physically meaningful bounds.

We then introduce Newell’s simplified car-following model which is later adopted for calculating

safe inter-vehicle spacing.

6.2.1 Symplectic discretization scheme of positions

From a physical standpoint, the derivatives of positions correspond to speeds, while the integrals

of speeds yield positions, and likewise for higher-order derivatives. The discretization scheme of

position was introduced in section 4.2.1, thus we omit it here.

6.2.2 Newell’s simplified car-following model

Newell’s simplified car-following model (Newell, 2002) assumes that a following vehicle aims to

advance as much as possible while concurrently ensuring a minimum safe inter-vehicle spacing

from the leading vehicle, all within the constraints of the speed limit. In our study, we adopt the

simplified Newells car-following model to determine the ranges of the positions to be imputed as it

offers several advantages, including its minimal parameter requirements, mathematical tractability,

and demonstrated consistency with real-world observations (Ahn et al., 2004). Newell’s simplified

car-following model can be written as follows:

102

xn(t + τ
n
+) = min{xn−1(t)−ζ

n
+,x

n(t)+ x(1)+ τ
+
n }, (6.1)

where τn
+ and ζ n

+ are the time gap and jam spacing between vehicle n and vehicle n− 1, xn(t)

is the position of vehicle n at time t, and x(1)+ is the upper bound of the first order derivatives of

positions, that is, the speed limit. The model has two phases: the free flow phase and the following

phase. In the free flow phase, the vehicle travels at its speed limit: xn(t + τ+n) = xn(t)+ x(1)+ τn
+;

while in the following phase, the vehicle experiences constraints imposed by its leading vehicle,

necessitating the maintenance of a minimum distance, known as the jam spacing, from the leading

vehicle: xn(t + τn
+) = xn−1(t)−ζ n

+.

It should be noted that Newell’s simplified car-following model does not consider the boundedness

of the higher-order derivatives of positions; instead, such boundedness will be incorporated into the

constraints of our optimization problems. We will introduce this in detail in the following section.

6.3 Three-step quadratic programming method for imputation

In this section, we first introduce the flowchart illustrating the three-step methodology employed

for vehicle trajectory imputation. Subsequently, each step is explained in detail to provide a com-

prehensive understanding of the proposed approach. We then introduce the process of determining

the parameters associated with Newell’s simplified car-following model, i.e. jam spacing and time

gap.

103

6.3.1 Introduction of the proposed method

Available trajectories,

entering and existing time

Calculate the fastest

possible trajectory

Calculate the slowest

possible trajectory

Minimize the sum of

squared jerks

Imputed trajectories

Physically meaningful
bounds for speeds, acce-
lerations, and jerks

Figure 6.3: The flow chart of the proposed method

The framework and concept of our proposed method are depicted in Figure 6.3 and Figure 6.4,

respectively. The scenario under consideration encompasses a heterogeneous mix of vehicles,

including CAVs, CVs, and HDVs, as illustrated in Figure 6.1. We focus on a typical scenario in-

volving a platoon of vehicles, where the trajectories of the leading and trailing vehicles are known,

while the objective is to impute the trajectories for the intermediate vehicles.

Our method consists of three steps, depicted as rectangles in Figure 6.3. The imputation process for

each vehicle within the platoon follows a sequential order, commencing from the foremost vehicle

to be imputed and progressing towards the rear. This approach ensures a structured and organized

trajectory estimation process. For one trajectory to be imputed, the inputs consist of the nearest

available trajectories of its leading and trailing vehicles, along with the entering and exiting times

of the intermediate vehicles between the aforementioned leading and trailing vehicles obtained

from loop detectors, as indicated by the blue curves and red nodes in Figure 6.4. For simplicity, the

illustration in Figure 6.4 omits the available trajectories that will not be utilized for imputation. The

red curves illustrate the fastest and slowest possible trajectories, while the gray curve corresponds

104

to the trajectory that minimizes the sum of squared jerks. This gray curve represents the output of

our method, the imputed trajectory.

t

x 1 N2

w1
+

τ1
+

ζ 1
+

w1
−

(N −2)τ1
−

(N −2)ζ 1
−

Available trajectory Available trajectory

Upper bound

Fastest possible trajectory

Imputed trajectory

Lower bound

Slowest possible trajectory

t1
Mt1

1

Figure 6.4: Illustration of the safe bounds

Calculating the Fastest Possible Trajectory

In order to satisfy safety regulations, a certain space must be maintained between a vehicle and its

leading vehicle. We employ the concept of Newell’s simplified car-following model (Newell, 2002)

to construct the upper bound of the trajectory to be imputed. This model serves as a foundation

for guaranteeing inter-vehicle safety. As shown in Figure 6.4, taking the first HDV that is to

be imputed (vehicle 2) as an example, the upper bound is represented by a blue dashed curve,

which is a temporal and spatial translation of the trajectory of its leading vehicle (illustrated by

the continuous blue curve on the left) by a time gap τ1
+ and a jam spacing ζ 1

+. By analogy, we

can follow the same process and use the trajectory of vehicle 2 to determine the upper bound of

the trajectories of subsequent vehicles. Moving forward, we extend this procedure to encompass

vehicle n, thereby formulating our method with vehicle n as the target of trajectory imputation.

With the aforementioned procedure, we formulate the upper bound of the trajectory to be imputed.

We denote the time vehicle n enters and exits the segment as tn
1 and tn

M, which can be detected

by loop detectors. If the shifted trajectory of the front vehicle ends before the following vehicle

105

exits the segment (tn
M > tn−1

M + τn
+), we consider the upper bound during the remaining time to be

the detected position at tn
M. Therefore, the upper bound of vehicle n’s trajectory can be written as

follows:

xn
+(t

n
m) =

xn−1(tn
m − τ

n
+)−ζ

n
+, when tn

m ≤ tn−1
M + τn

+ (6.2a)

xn(tn
M), when tn

m > tn−1
M + τn

+, (6.2b)

where τ+n and ζ+
n are the time gap and jam spacing between vehicle n and vehicle n− 1, respec-

tively. We use xn
+ to represent the upper bounds of the trajectory of vehicle n. Then the fastest

possible trajectory of vehicle n is the trajectory that is the closest to xn
+ while making the speeds,

accelerations, and jerks with in the physically meaningful ranges, which can be formulated as

follows:

min
x̂n
+

(x̂n
+−xn

+)
T (x̂n

+−xn
+), (6.3a)

s.t.

− x̂n
+ ≤ 0, (6.3b)

x̂n
+ ≤ xn

+, (6.3c)

−W (k)x̂n
+ ≤−x(k)− ∆tk, k = 1,2,3, (6.3d)

W (k)x̂n
+ ≤ x(k)+ ∆tk, k = 1,2,3, (6.3e)

x̂n
+(t

n
1) = xn(tn

1), x̂
n
+(t

n
M) = xn(tn

M), (6.3f)

where x̂n
+ denote the fastest possible trajectory, and x(k)− and x(k)+ are the lower and the upper bounds

of the kth order derivatives of positions. (6.3b) and (6.3c) ensure that the calculated positions are

positive and smaller than the upper bound, (6.3d) and (6.3e) ensure that all speeds, accelerations,

106

and jerks are bounded, and (6.3f) keeps the detected data by loop detectors.

Calculating the Slowest Possible Trajectory

Vehicle n should also keep safe distance from its followers. This includes two aspects. Firstly, it

involves ensuring a safe distance from the available trajectory of the trailing vehicle. Secondly,

it necessitates maintaining a safe distance from the positions of its followers when they enter the

segment. Similar to the calculation of the upper bound of the trajectory, the lower bound is a

translation in time and space of the available trajectory of the trailing vehicle, as shown by the

right dashed blue curve in Figure 6.4. The lower bound of vehicle n’s trajectory can be written as

follows:

xn
−(t

n
m) =


xN(tn

m +(N −n)τn
−)+(N −n)ζ n

−, when tn
m ≥ tN

1 − (N −n)τn
− (6.4a)

max{xn(tn
1),x

n+q(tn+q
1)+qζmin}, when tn+q

1 −qτmin ≤ tn
m ≤ tn+q+1

1 − (q+1)τmin, (6.4b)

q = 1, ...,N −n−1

where τn
− and ζ n

− are the time gap and jam spacing between vehicle n its followers, respectively.

(6.4a) guarantees the safe distance between the target vehicle and the detected trailing vehicle,

and (6.4b) ensures the maintenance of safe distance between the target vehicle and all the vehicles

positioned between it and the trailing vehicle upon their entry into the segment.

Similar to step 1, we denote the lower bounds of the trajectory of vehicle n by xn
−. Then the slowest

possible trajectory of vehicle n is the trajectory that is the closest to xn
− while satisfying the same

constraints of speeds, accelerations, and jerks as those in step 1, which can be written as follows:

min
x̂n
−
(x̂n

−−xn
−)

T (x̂n
−−xn

−), (6.5a)

107

s.t.

− x̂n
− ≤−xn

−, (6.5b)

x̂n
− ≤ x̂n

+, (6.5c)

−W (k)x̂n
− ≤−x(k)− ∆tk, k = 1,2,3, (6.5d)

W (k)x̂n
− ≤ x(k)+ ∆tk. k = 1,2,3, (6.5e)

x̂n
−(t

n
1) = xn(tn

1), x̂
n
−(t

n
M) = xn(tn

M). (6.5f)

where x̂n
− is the slowest possible trajectory of vehicle n. (6.5b) ensures that the calculated po-

sitions are no less than the lower bounds, and (6.5c) ensures that the calculated trajectory is no

more than the fastest possible trajectory. (6.5d) and (6.5e) guarantee the boundedness of speeds,

accelerations, and jerks, and (6.5f) helps maintain the detected data.

Minimizing the sum of squared jerks

Finally, we can compute the imputed trajectory for vehicle n, represented by the grey curve in

Figure 6.4. Our objective is to minimize the sum of squared jerks. As illustrated by (5.4), we can

express all higher-order derivatives as linear combinations of positions using difference matrices.

Hence, the objective function in the quadratic programming problem can be formulated as follows:

min
x̃n

1
∆t6 (W

(3)x̃n)T (W (3)x̃n), (6.6)

where x̃n denotes the imputed trajectory of vehicle n, the output of our method. For position

constraints, we enforce that the positions should not fall below the slowest possible trajectory or

exceed the fastest possible trajectory. The constraints for speeds and higher-order derivatives re-

main the same as those in the previous steps. To ensure the uniqueness of solutions to the quadratic

108

programming problem, we must ensure that (W (3))TW (3) forms a positive definite matrix, necessi-

tating the invertibility of matrix W (3) (Nocedal and Wright, 2006). To achieve this, three elements

in the vector x̃n must be known. Apart from the initial and last values, we assume the second

position is known and it is the average of the slowest and fastest possible trajectory at that time

instant. Additionally, the constant coefficient 1
∆t6 in the objective function does not impact the

optimal solution. Consequently, it can be omitted during computation, resulting in the following

formulation of the quadratic programming problem:

min
x̃n

(W (3)x̃n)T (W (3)x̃n), (6.7a)

s.t.

− x̃n ≤−x̂n
−, (6.7b)

x̃n ≤ x̂n
+, (6.7c)

−W (k)x̃n ≤−x(k)− ∆tk, k = 1,2,3, (6.7d)

W (k)x̃n ≤ x(k)+ ∆tk, k = 1,2,3, (6.7e)

x̃n(tn
1) = xn(tn

1), x̃
n(tn

M) = xn(tn
M), x̃n(tn

2) = [x̂n
−(t

n
2)+ x̂n

+(t
n
2)]/2, (6.7f)

where x̂n
− and x̂n

+ denote its slowest and the fastest possible trajectories, respectively.

Thus far, we have successfully derived the imputed trajectory for vehicle n. It is noteworthy that in

order for our method to maintain its logical coherence, the trailing vehicle should enter the segment

prior to the leading vehicle leaving the segment. Failure to satisfy this condition would render the

formulation of our method invalid.

109

6.3.2 Determination of the time gap and jam spacing

In this subsection, we address the methodology for determining the parameters involved in the

first two steps, shifting the available trajectories of the leading and trailing vehicles. We begin by

presenting the procedure for determining τn
+ and ζ n

+ based on the front vehicles, followed by the

procedures of determining τn
− and ζ n

− based on the following vehicles.

If all the trajectories within the selected segment exhibit parallelism in the time-space diagram,

then given a feasible time gap, we can always calculate some jam spacing that makes the shifted

trajectory of the leading vehicle precisely coincide with that of the following vehicle. It is important

to note that such an extreme condition is highly improbable in practical scenarios, as real-world

trajectories of a platoon of vehicles are unlikely to be perfectly parallel. Consequently, in a more

realistic setting, we adopt a grid search method to determine the appropriate parameters. This

approach allows us to explore a range of feasible parameter values, accounting for variations in

vehicle trajectories and enhancing the validity of our findings.

We choose the time gap and jam spacing between the target vehicle and its front vehicle, τn
+ and

ζ n
+, according to the following procedures.

1. Investigate τn
+ ranging from τmin to min{tn

1 − tn−1
1 , tn

M − tn−1
M } at 0.2 seconds intervals and ζ n

+

ranging from ζmin to ζmax at 0.5 meters intervals.

2. Pick out the candidate parameter pairs ⟨τn
+,ζ

n
+⟩ which can satisfy the following conditions:

i. The upper bound of the vehicle’s positions corresponding to the time when vehicle n

enters the segment should be ahead of the entrance of the segment: xn−1(tn
1 − τn

+)−

ζ n
+ > xn(tn

1).

ii. The upper bound of vehicle n’s positions should keep a safe distance from the following

vehicles when they enter the segment, meaning that the upper bound should be ahead

110

of the entrance after shifting by τmin and ζmin when the following vehicles enter the

segment: xn−1(tn+q
1 − τn

+−qτmin)−ζ n
+−qζmin > xn+q(tn+q

1),q = 1, ...,N −n.

iii. The upper bound of vehicle n’s positions should keep a safe distance from the detected

trajectory of the trailing vehicle: xn−1(tN
m − τn

+− (N − n)τmin)− ζ n
+ > xN(tN

m)+ (N −

n)ζmin.

iv. From the last time and position values of the shifted leading vehicle’s trajectory, the

vehicle should be able to leave the segment at the detected time traveling at the lead-

ing vehicles’ last speed: ζ n
+

tn
M−tn−1

M −τn
+
≤ x(1),n−1(tn−1

M), where x(1),n−1(tn−1
M) denotes the

leading vehicles’ last speed and ζ n
+ is the distance between the exit point of the segment

and the last value of the shifted leading vehicle’s trajectory.

3. For all the candidate parameter pairs ⟨τn
+,ζ

n
+⟩, select the one that minimizes the distance

between the shifted leading vehicle’s position at vehicle n’s entering time and the entrance

point of the segment: argminτn
+,ζ

n
+
[xn−1(tn

1 − τn
+)−ζ n

+− xn(tn
1)]

After calculating the fastest possible trajectory, we determine ⟨τn
−,ζ

n
−⟩ which are used to calculate

the slowest possible trajectory. The procedures are as follows.

1. Investigate τn
− ranging from τmin to min{ tN

1 −tn
1

N−n ,
tN
M−tn

M
N−n } at 0.2 seconds intervals and ζ n

− ranging

from ζmin to ζmax at 0.5 meters intervals.

2. Pick out the candidate parameter pairs ⟨τn
−,ζ

n
−⟩ which satisfy the following conditions:

i. The lower bound of the vehicle’s positions should be no more than the fastest possible

positions: xn
−⟨τn

−,ζ
n
−⟩ ≤ x̂n

+.

3. For all the candidate parameter pairs ⟨τn
−,ζ

n
−⟩, select the one that minimizes the distance

between the shifted trailing vehicle’s position at vehicle n’s exiting time and the exit point of

the segment: argminτn
−,ζ

n
−
[xn(tn

M)− xN(tn
M +(N −n)τn

−)− (N −n)ζ n
−]

111

6.4 Numerical experiments

In this section, we numerically show the efficacy of our method upon the manually re-extracted

NGSIM I80 data (Coifman and Li, 2017a) and highD “25-tracks” data (Krajewski et al., 2018).

The study sites for the two datasets have lengths of approximately 70 meters and 420 meters, re-

spectively. We first consider the scenarios where a leading vehicle and a trailing vehicle whose

trajectories are available with one, two, three, and four undetected vehicles in between. The enter-

ing and exiting times of these undetected vehicles into and out of the segment are obtained from

the loop detectors. We proceed to impute the trajectories of these undetected vehicles using our

proposed method. We then consider a traffic system consisting of 40 vehicles. We randomly assign

10% CAVs and 10% CVs and impute the trajectories of all the vehicles in the system.

6.4.1 Application to the vehicle platoons of different sizes

Both the NGSIM and highD datasets encompass complete vehicle trajectories within a fixed seg-

ment throughout the recording duration. We first select single platoons consisting of different

numbers of vehicles from both the NGSIM and highD datasets to show the efficacy of our method.

We gradually increase the number of successive vehicles from three to six, while keeping the tra-

jectories of the leading and trailing vehicles known, meaning that the leading and trailing vehicles

are either CVs or detected by CAVs. The trajectories of the vehicles in between are to be im-

puted, while the only information available are their entering and exiting times detected by the

loop detectors.

We begin with sample platoons consisting of three vehicles from the aforementioned two datasets:

vehicles [1497,1506,1512] in the NGSIM I80 dataset and vehicles [2486,2490,2493] in the highD

dataset. Subsequently, we incrementally introduce additional vehicles at the front of the platoons

until they reach a size of six vehicles. The two six-vehicle platoons observed in the respective

112

(a) NGSIM I80 camera 6 dataset

(b) HighD “25-tracks” dataset

Figure 6.5: Imputation of the sample trajectories of three, four, five, and six successive vehicles in the (a)
NGSIM I80 camera 6 and (b) highD “25-tracks” datasets

datasets are [1463, 1478, 1486, 1497, 1506, 1512] and [2476, 2482, 2485, 2486, 2490, 2493]. The

imputation results are presented in Figure 6.5, with the leftmost column showcasing the imputation

results for three-vehicle platoons, followed by four-, five-, and six-vehicle platoons in subsequent

columns. In the visualization, the detected trajectories are depicted in orange, while the true tra-

jectories of undetected vehicles are represented in black. Our imputed trajectories are illustrated

by continuous red curves, while the fastest and slowest possible trajectories are depicted by dashed

green and blue curves, respectively.

Our imputation method consistently exhibits similar effects on platoons of varying sizes across

both datasets. Notably, all essential characteristics observed in the real trajectories, including

accelerating, decelerating, cruising, and stopping behaviors, are generally preserved in our imputed

trajectories. We calculate the mean absolute error (MAE) and the root mean squared error (RMSE)

between our imputed trajectories and the true trajectories as follows:

113

E(|x̃− x̄|) = ∑
N−1
n=2 ∑

M
m=1 |x̃n(tn

m)− x̄n(tn
m)|

∑
N−1
n=2 (t

n
M − tn

1)/∆t
, (6.8a)

√
E ((x̃− x̄)2) =

√
∑

N−1
n=2 ∑

M
m=1 (x̃n(tn

m)− x̄n(tn
m))

2

∑
N−1
n=2 (t

n
M − tn

1)/∆t
, (6.8b)

where x̃n(tn
m) and x̄n(tn

m) are the imputed and true positions of vehicle n at time tn
m, respectively.

The MAEs and RMSEs between our imputed trajectories and the true trajectories in the sample

platoons are listed in Table 6.1. In the sample platoons in both datasets, we observe that the MAEs

and RMSEs between the minimum-jerk trajectories and the true trajectories are the smallest, albeit

with a few exceptions, and the MAEs and RMSEs between the minimum-jerk trajectories and the

true trajectories exhibit the highest level of stability across varying platoon sizes. In general, with

the increasement of platoon sizes, the errors between the imputed and true trajectories increase

accordingly. Nevertheless, our method demonstrates a commendable level of robustness to platoon

sizes, as even for six-vehicle platoons, a high degree of accuracy is maintained.

114

Table 6.1: MAE and RMSE between the imputed and true trajectories in the sample platoons

Dataset

Platoon size
3 4 5 6

NGSIM

Fastest possible trajectories

(Step 1)

MAE (m) 1.83 2.52 1.55 1.91

RMSE (m) 2.26 3.28 2.84 2.42

Slowest possible trajectory

(Step 2)

MAE (m) 0.72 1.35 1.78 2.96

RMSE (m) 0.87 1.81 2.28 4.25

Minimum-jerk trajectory

(Step 3)

MAE (m) 1.23 1.42 1.18 1.96

RMSE (m) 1.69 2.14 1.45 2.72

HighD

Fastest possible trajectories

(Step 1)

MAE (m) 5.31 1.89 3.16 2.92

RMSE (m) 5.65 2.63 3.83 3.93

Slowest possible trajectory

(Step 2)

MAE (m) 1.63 3.75 3.28 4.97

RMSE (m) 1.84 4.59 4.15 5.95

Minimum-jerk trajectory

(Step 3)

MAE (m) 2.23 2.29 2.8 3.01

RMSE (m) 2.6 3.07 3.58 3.94

We then statistically show the efficacy of our method. We analyze vehicle platoons composed of

three, four, five, and six successive vehicles from the NGSIM I80 and highD “25-tracks” datasets.

In each dataset, we select 50, 40, 30, and 25 platoons respectively for the three-, four-, five-, and

six-vehicle platoons. The numerical experiment encompasses the testing of nearly 300 platoons in

total.

We plot the distributions of the position errors observed in the imputed positions of platoons con-

sisting of vehicles of varying sizes as Figure 6.6. The eight distributions exhibit a zero-centered

pattern, wherein the errors decrease as absolute values increase. Notably, the position errors in the

NGSIM I80 dataset tend to cluster around zero more prominently, primarily due to the length of

trajectories being shorter. The majority of position errors fall within the range of −10 meters to

10 meters. As the number of vehicles within the platoons increases, the position errors gradually

become less concentrated around zero. For the three-vehicle platoons in the NGSIM I80 and highD

115

(a) NGSIM I80 camera 6 dataset

(b) HighD “25-tracks” dataset

Figure 6.6: Position error distributions of the imputed trajectories of three, four, five, and six successive
vehicles in the (a) NGSIM I80 camera 6 and (b) highD “25-tracks” datasets

datasets, about 80% and 50% position errors range from −2 meters to 2 meters, respectively. While

for the six-vehicle platoons, the corresponding proportions become 50% and 30%, respectively.

We also choose the MAEs and RMSEs between the imputed and true trajectories in all selected

platoons as the indicators. The MAEs and RMSEs between the imputed and true trajectories

in the platoons with different sizes are presented in Table 6.2. In comparison to the outputs of

step 1 and step 2, representing the fastest and slowest possible trajectories respectively, we find

that the outputs of step 3, the minimum-jerk trajectories, exhibit the smallest MAEs and RMSEs in

relation to the true trajectories. Overall, the RMSEs exhibit a similar trend to the MAEs, indicating

an increase in errors with an increasing number of successive vehicles to be imputed. The RMSEs

consistently exhibit higher values compared to the MAEs, indicating that the position errors within

a trajectory are not uniformly distributed across time. This finding aligns with the characteristics of

the considered scenarios, where the loop detectors are positioned at the entrance and exit points of

the segment. Therefore, the entering and exiting times are accurately captured, while the imputed

trajectories in the middle of the segment exhibit relatively larger errors.

116

Table 6.2: MAE and RMSE between the imputed and true trajectories in the two datasets

Dataset
Platoon size

3 4 5 6

NGSIM

Fastest possible trajectories
(Step 1)

MAE (m) 1.88 2.48 2.62 3.29
RMSE (m) 2.56 3.92 3.72 4.46

Slowest possible trajectory
(Step 2)

MAE (m) 1.99 2.79 2.94 3.74
RMSE (m) 2.69 4.15 4.29 5.61

Minimum-jerk trajectory
(Step 3)

MAE (m) 1.23 1.95 2.09 2.69
RMSE (m) 1.65 2.81 3.00 3.77

HighD

Fastest possible trajectories
(Step 1)

MAE (m) 3.55 4.23 4.52 4.93
RMSE (m) 4.75 6.36 6.36 6.51

Slowest possible trajectory
(Step 2)

MAE (m) 4.4 4.45 6.19 6.32
RMSE (m) 6.4 6.08 8.44 8.26

Minimum-jerk trajectory
(Step 3)

MAE (m) 2.78 3.27 3.97 4.19
RMSE (m) 3.8 4.63 5.42 5.55

6.4.2 Application to a sample mixed-traffic system

Furthermore, we select a specific scenario from the highD dataset, which encompasses a sequence

of 40 successive vehicles exhibiting no lane-changing behaviors. In this scenario, we make the

assumption that both connected and autonomous vehicles (CAVs) and connected vehicles (CVs)

exhibit a market penetration rate (MPR) of 10%, resulting in the presence of four CAVs and four

CVs within this particular scenario. We assume the leading and trailing vehicles within the platoon

are CVs, whereas the remaining CAVs and CVs are randomly assigned to the other vehicles in the

scenario. The minimum number of trajectories to be imputed between two available trajectories

is set at one (a three-vehicle platoon), while the maximum number is set at 6 (an eight-vehicle

platoon). It is noteworthy that CVs are capable of reporting solely their own trajectories, whereas

CAVs possess the ability to report not only their own trajectories but also those of their adjacent

vehicles.

The trajectories imputed by our method are shown as Figure 6.7, where the scenario can be re-

garded as including two four-vehicle platoons, two five-vehicle platoons, two six-vehicle platoons,

and one eight-vehicle platoon for imputation. The CAVs are shown in purple and the CVs or the

trajectories recorded by CAVs are shown in orange. The true trajectories are shown in black, while

117

Figure 6.7: Results of our trajectory imputation method in the system scenario

the fastest possible trajectories, the slowest possible trajectories, and the imputed trajectories are

shown in green, blue, and red, respectively. From the imputed trajectories, we can see that our

method can generally unearth the real trajectories. While some errors exist, and such errors are the

most apparent in the eight-vehicle platoon compared to the platoons consisting of fewer vehicles.

(a) (b)

Figure 6.8: Position errors versus time and distribution of position errors

To better illustrate the efficacy of our method, we plot the MAEs and RMSEs of imputed trajecto-

ries at each time instant, and the distribution of position errors as Figure 6.8a and Figure 6.8b. It

can be found that MAEs and RMSEs show the same trend, both of which fluctuate over time, with

the values at the two edges being the smallest. The MAEs and RMSEs range from [0,9] m and

[0,11] m, respectively. The distribution of the position errors in this scenario has a trend similar to

Figure 6.6, with MAE and RMSE being 4.96 meters and 6.59 meters, respectively.

118

6.5 Conclusion

In this study, we propose a three-step quadratic programming method for imputing fully sam-

pled vehicle trajectories by jointly considering the following principles: (P1) Maintaining a safe

inter-vehicle spacing. (P2) Ensuring that speeds, accelerations, and jerks remain within physically

meaningful ranges. (P3) Considering drivers’ tendency to minimize jerks during their movements.

Our method is applicable to scenarios where the trajectories of the leading and trailing vehicles

within a segment are known, while the trajectories of intermediate vehicles need imputation. For

the trajectories to be imputed, we only know the time they enter and exit the segment. Each step

involves solving a quadratic programming problem, where the physically meaningful bounds on

speeds, accelerations, and jerks serve as constraints. In the first step, we calculate the fastest pos-

sible trajectory that maintains a safe distance from the leading vehicle. In the second step, we

determine the slowest possible trajectory that maintains safe distance from the following vehicles.

Finally, in the third step, we compute the trajectory that lies between the slowest and fastest pos-

sible trajectories, optimizing for the minimal sum of squared jerks. We apply our method to the

scenarios involving a leading vehicle and a trailing vehicle with a varying number of undetected

vehicles in between, and impute the trajectories of the undetected vehicles. Our method demon-

strates a high level of accuracy in imputing these trajectories. The distributions of position errors

observed in the imputed positions exhibit a zero-centered pattern and decrease as the absolute posi-

tion errors increase. The MAEs and RMSEs between the imputed and true trajectories indicate that

position errors increase with the number of undetected successive vehicles. Furthermore, the fact

that RMSEs consistently exceed MAEs suggests that position errors are not uniformly distributed.

Moreover, we consider a traffic system consisting of 40 successive vehicles including 10% CVs

and 10% CAVs. Our method successfully captures the true conditions of the traffic system, cor-

rectly imputing the trajectories of all vehicles within the system. The position errors of the imputed

trajectories of all vehicles in the system distribute in the same way as the aforementioned platoons.

Our contribution can be summarized from two perspectives. On one hand, we have introduced a

119

novel and comprehensive method that integrates multiple principles, including safe inter-vehicle

spacing, physically meaningful ranges on speeds, accelerations, and jerks, as well as the minimum-

jerk theory, to effectively impute fully sampled vehicle trajectories. This approach addresses the

challenges posed by missing data and enables us to obtain accurate and realistic vehicle trajectories.

On the other hand, through numerical experimentation, we have demonstrated that the imputed tra-

jectories derived from our method closely align with the true trajectories. This empirical evidence

further supports the validity of utilizing the minimum-jerk theory as a reliable approximation of

human driving behaviors. Notably, this finding is consistent with the arguments presented in (Flash

and Hogan, 1985).

For future studies, we plan to categorize the successive vehicles into different phases, including

the approaching phase, free-driving phase, following phase, and braking phase, and study the

difference in the efficacy of our method in different phases. Additionally, building upon the ideas

proposed in this study, we are particularly interested in exploring the application of trajectory

prediction and planning techniques. These works aim to ensure safe, efficient, and environmentally

friendly operations for both human-driven and automated vehicles.

120

Chapter 7

Conclusion

7.1 Summary

Vehicle trajectory data provide a rich source of information for investigating traffic dynamics in

both spatial and temporal domains, and accurate and complete vehicle trajectory data is crucial

for numerous applications. However, longitudinal vehicle trajectories suffer from errors, noises,

and incompleteness due to detection and extraction techniques, posing challenges for various ap-

plications. This dissertation introduces a framework that leverages physical properties, vehicle

characteristics, and human driving behaviors to smooth and impute longitudinal vehicle trajectory

data.

To remove the outliers and high-frequency noises in speeds and higher-order derivatives, we in-

corporate some first principles, including the internal consistency among the positions, speeds,

and higher-order derivatives, bounded speeds and higher-order derivatives, and minimum MAE

between the raw and smoothed positions. We propose an iterative method based on these first prin-

ciples. One iteration comprises four types of calculations: differentiation, correction, smoothing,

and integration. In differentiation, we compute speeds, accelerations, and jerks from trajectory

121

data; in correction, we eliminate outliers in speeds, especially negative values, via the adaptive av-

erage method; in smoothing, we reduce noises in accelerations and jerks with the Gaussian filters;

and in integration, we recalculate accelerations, speeds, and positions from jerks, and find the ini-

tial values via optimization problems which minimize the MAEs between the data before and after

smoothing. The efficacy of the method is numerically shown with the NGSIM data. However, it is

mathematically challenging to demonstrate when the iterations converge or even that the iterations

can converge, leading us to develop more mathematically tractable principles-based techniques

that can either be proved to converge or get rid of iterations

We then proposed a simplified iterative moving average method that makes the ranges of the

smoothed speeds, accelerations, and jerks align with physical meaning, while preserving the aver-

age speeds or total travel distance for a specified time duration segment of a vehicles trajectory. In

each iteration, we pad both ends of the speed profile with the average speed and apply a moving

average method with different window shapes, representing different weights, to speeds, followed

by normalizing the filtered speeds to preserve the average speed and maintain the total travel dis-

tance. We differentiate the normalized filtered speeds into accelerations and jerks to check whether

the termination conditions are satisfied, and the iterative process concludes only when they are sat-

isfied. Otherwise, we initiate another iteration to further smooth the speeds. Mathematically, we

prove that the method can terminate within a finite number of iterations, in accordance with prede-

fined termination criteria. Numerically, the method is validated upon the NGSIM data, effectively

eliminating outliers and high-frequency noise while preserving the main information, including

acceleration, deceleration, and cruising behaviors, from the raw data.

A two-step quadratic programming method for smoothing vehicle trajectory data was then pro-

posed in Chapter 5, which operates without the need for iterations, and concludes in a single round.

In the first step, we minimize the discrepancy between the half-smoothed and raw positions, while

adhering to physically meaningful bounds on the speeds and higher order derivatives of the half-

smoothed positions. Subsequently, in the second step, our objective is to minimize the roughness

122

of the smoothed positions, while incorporating the position ranges as additional constraints along-

side those imposed in the first step. This step allows the smoothed positions to deviate from the

raw data by at most those of the half-smoothed positions and the prior position error, and make the

initial few positions in the trajectory the half-smoothed positions to ensure the strict convexity of

the objective function. The existence and uniqueness of solutions are analytically proved and the

efficacy of the method is numerically shown with the NGSIM data. Comparisons with an exist-

ing approach with respect to the manually re-extracted data show the superior performance of the

proposed method in terms of leading to smaller MSEs between the smoothed positions, speeds,

accelerations, and jerks and those manually re-extracted.

Finally, in Chapter 6, the scenarios involving missing portions of trajectories were investigated.

We propose a three-step quadratic programming trajectory imputation method that is applicable to

scenarios where the trajectories of the leading and trailing vehicles within a segment are known,

while the trajectories of intermediate vehicles need imputation. The method ensures maintain-

ing safe inter-vehicle spacing and adheres to physically meaningful speed, acceleration, and jerk

ranges. Each step involves solving a quadratic programming problem, where the physically mean-

ingful bounds on speeds, accelerations, and jerks serve as constraints. The method is applied to

diverse scenarios involving a leading vehicle and a trailing vehicle with varying numbers of un-

detected vehicles in between, effectively imputing the trajectories of these unobserved vehicles

with a commendable degree of precision. Furthermore, we extended the assessment to a traffic

system consisting of 40 successive vehicles including 10% CVs and 10% CAVs. In this context,

the method adeptly captured the real conditions of the traffic system, correctly reconstructing the

trajectories of all vehicles within it.

123

7.2 Future research topics

In Chapter 4, we adopted convolution filters for smoothing the speeds. However, the methodology

we proposed is open to different options, for example, the k-nearest-neighbors (kNN) regression

algorithm and the Savitzky-Golay filter, and this is one topic for our future study.

In Chapter 5, in the second step of the quadratic programming method, we incorporate additional

equality constraints by making the initial several values of the smoothed positions equal to the

corresponding half-smoothed positions. The number of constraints equals the highest order of

derivatives. This serves to manage the degrees of freedom within the quadratic programming

problem, ensuring the strict convexity of the objective function. Nevertheless, alternative methods

exist for introducing additional equality constraints, such as employing the concept of moments.

Exploring these alternative approaches is a topic worthy of our consideration in future research

In Chapter 6, we current approach processes the entire trajectory directly. In the future, we would

like to segment successive vehicles into distinct phases: the approaching phase, the free-driving

phase, the following phase, and the braking phase. We plan to examine the variations in the

effectiveness of our method across these different phases.

In addition, With the accessibility of more and more high-fidelity vehicle trajectory data collected

in different countries from different sources, we are interested in testing our method with other

datasets. Moreover, our study solely focuses on the longitudinal vehicle trajectory data, we plan

to incorporate different boundedness criteria to smooth lateral vehicle trajectory data. Apart from

the smoothing and imputation of vehicle trajectory data, we are also interested in predicting future

vehicle behaviors using historical trajectory data from the past several seconds.

124

Bibliography

Ahn, S., Cassidy, M.J., Laval, J., 2004. Verification of a simplified car-following theory. Trans-
portation Research Part B 38, 431–440.

Al-Gabalawy, M., Hosny, N.S., Aborisha, A.h.S., 2021. Model predictive control for a basic
adaptive cruise control. International Journal of Dynamics and Control 9, 1132–1143.

Altché, F., de La Fortelle, A., 2017. An LSTM network for highway trajectory prediction, in:
2017 IEEE 20th international conference on intelligent transportation systems (ITSC), IEEE.
pp. 353–359.

Belcarz, K., Białek, T., Komorkiewicz, M., Żołnierczyk, P., 2018. Developing autonomous vehicle
research platform–a case study, in: IOP Conference Series: Materials Science and Engineering,
IOP Publishing. p. 022002.

Bhatia, R., 2009. Positive definite matrices. Princeton University Press. chapter 1. pp. 1–34.

Bock, J., Krajewski, R., Moers, T., Runde, S., Vater, L., Eckstein, L., 2020. The inD Dataset: A
Drone Dataset of Naturalistic Road User Trajectories at German Intersections, in: 2020 IEEE
Intelligent Vehicles Symposium (IV), IEEE. pp. 1929–1934.

Bokare, P.S., Maurya, A.K., 2017. Acceleration-deceleration behaviour of various vehicle types.
Transportation research procedia 25, 4733–4749.

Boyd, S., Boyd, S.P., Vandenberghe, L., 2004. Convex optimization. Cambridge University Press.
chapter 11. pp. 561–630.

Chang, M.F., Lambert, J., Sangkloy, P., Singh, J., Bak, S., Hartnett, A., Wang, D., Carr, P., Lucey,
S., Ramanan, D., et al., 2019. Argoverse: 3D tracking and forecasting with rich maps, in:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
8748–8757.

Chen, C., Petty, K., Skabardonis, A., Varaiya, P., Jia, Z., 2001. Freeway performance measurement
system: mining loop detector data. Transportation Research Record 1748, 96–102.

Chen, D., Ahn, S., Laval, J., Zheng, Z., 2014. On the periodicity of traffic oscillations and capacity
drop: the role of driver characteristics. Transportation research part B 59, 117–136.

125

Chen, X., Yin, J., Tang, K., Tian, Y., Sun, J., 2022. Vehicle trajectory reconstruction at signal-
ized intersections under connected and automated vehicle environment. IEEE Transactions on
Intelligent Transportation Systems 23, 17986–18000.

Chiabaut, N., Leclercq, L., Buisson, C., 2010. From heterogeneous drivers to macroscopic patterns
in congestion. Transportation Research Part B 44, 299–308.

Coifman, B., 2002. Estimating travel times and vehicle trajectories on freeways using dual loop
detectors. Transportation Research Part A 36, 351–364.

Coifman, B., Beymer, D., McLauchlan, P., Malik, J., 1998. A real-time computer vision system
for vehicle tracking and traffic surveillance. Transportation Research Part C 6, 271–288.

Coifman, B., Li, L., 2017a. A critical evaluation of the next generation simulation (NGSIM)
vehicle trajectory dataset. Transportation Research Part B 105, 362–377.

Coifman, B., Li, L., 2017b. I-80 NGSIM validation video. http://www2.ece.
ohio-state.edu/˜coifman/documents/I80-NGSIM/.

Coifman, B., Wu, M., Redmill, K., Thornton, D.A., 2016. Collecting ambient vehicle trajectories
from an instrumented probe vehicle: High quality data for microscopic traffic flow studies.
Transportation Research Part C: Emerging Technologies 72, 254–271.

Diamond, S., Boyd, S., 2016. CVXPY: A Python-embedded modeling language for convex opti-
mization. The Journal of Machine Learning Research 17, 2909–2913.

Dong, S., Zhou, Y., Chen, T., Li, S., Gao, Q., Ran, B., 2021. An integrated empirical mode
decomposition and butterworth filter based vehicle trajectory reconstruction method. Physica
A: Statistical Mechanics and its Applications 583, 126295.

Eilers, P.H., Marx, B.D., 1996. Flexible smoothing with B-splines and penalties. Statistical Science
11, 89–121.

Elert, G., 2012. The physics factbookan encyclopedia of scientific essays. Volume of Blood in a
Human .

Elliott, D.F., 2013. Handbook of digital signal processing: engineering applications. Elsevier.

Eubank, R.L., 1999. Nonparametric regression and spline smoothing. CRC Press.

Fard, M.R., Mohaymany, A.S., Shahri, M., 2017. A new methodology for vehicle trajectory re-
construction based on wavelet analysis. Transportation Research Part C 74, 150–167.

Feng, F., Bao, S., Sayer, J.R., Flannagan, C., Manser, M., Wunderlich, R., 2017. Can vehicle
longitudinal jerk be used to identify aggressive drivers? an examination using naturalistic driving
data. Accident Analysis & Prevention 104, 125–136.

FHWA, U., 2007. Department of Transportation. NGSIM–Next Generation SIMulation.

126

http://www2.ece.ohio-state.edu/~coifman/documents/I80-NGSIM/
http://www2.ece.ohio-state.edu/~coifman/documents/I80-NGSIM/

Flash, T., Hogan, N., 1985. The coordination of arm movements: an experimentally confirmed
mathematical model. Journal of Neuroscience 5, 1688–1703.

Fletcher, R., 2013. Practical methods of optimization. John Wiley & Sons.

Floudas, C.A., Visweswaran, V., 1995. Quadratic optimization. Handbook of global optimization
, 217–269.

Gasparetto, A., Zanotto, V., 2007. A new method for smooth trajectory planning of robot manipu-
lators. Mechanism and Machine Theory 42, 455–471.

Gasparetto, A., Zanotto, V., 2008. A technique for time-jerk optimal planning of robot trajectories.
Robotics and Computer-Integrated Manufacturing 24, 415–426.

Gasparetto, A., Zanotto, V., 2010. Optimal trajectory planning for industrial robots. Advances in
Engineering Software 41, 548–556.

Getreuer, P., 2013. A survey of gaussian convolution algorithms. Image Processing On Line 2013,
286–310.

Gipps, P.G., 1981. A behavioural car-following model for computer simulation. Transportation
Research Part B 15, 105–111.

Gong, S., Shen, J., Du, L., 2016. Constrained optimization and distributed computation based car
following control of a connected and autonomous vehicle platoon. Transportation Research Part
B 94, 314–334.

Gurobi Optimization, LLC, 2023. Gurobi Optimizer Reference Manual. URL: https://www.
gurobi.com.

Hao, P., Boriboonsomsin, K., Wu, G., Barth, M., 2014. Probabilistic model for estimating ve-
hicle trajectories using sparse mobile sensor data, in: 17th International IEEE Conference on
Intelligent Transportation Systems (ITSC), IEEE. pp. 1363–1368.

Hao, P., Boriboonsomsin, K., Wu, G., Barth, M.J., 2016. Modal activity-based stochastic model for
estimating vehicle trajectories from sparse mobile sensor data. IEEE Transactions on Intelligent
Transportation Systems 18, 701–711.

Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N.C., Tung, C.C.,
Liu, H.H., 1998. The empirical mode decomposition and the hilbert spectrum for nonlinear
and non-stationary time series analysis. Proceedings of the Royal Society of London. Series A:
mathematical, physical and engineering sciences 454, 903–995.

ISO, 2010. Intelligent transport systems–adaptive cruise control systems–performance require-
ments and test procedures.

Jin, W.L., 2019. Nonstandard second-order formulation of the LWR model. Transportmetrica B 7,
1338–1355.

127

https://www.gurobi.com
https://www.gurobi.com

Jin, W.L., 2021. Introduction to Network Traffic Flow Theory: Principles, Concepts, Models, and
Methods. Elsevier. chapter 3. pp. 33–56.

Kesting, A., Treiber, M., 2008. Calibrating car-following models by using trajectory data: Method-
ological study. Transportation Research Record 2088, 148–156.

Krajewski, R., Bock, J., Kloeker, L., Eckstein, L., 2018. The highD Dataset: A Drone Dataset
of Naturalistic Vehicle Trajectories on German Highways for Validation of Highly Automated
Driving Systems, in: 2018 21st International Conference on Intelligent Transportation Systems
(ITSC), IEEE. pp. 2118–2125.

Krajewski, R., Moers, T., Bock, J., Vater, L., Eckstein, L., 2020. The rounD Dataset: A Drone
Dataset of Road User Trajectories at Roundabouts in Germany, in: 2020 IEEE 23rd International
Conference on Intelligent Transportation Systems (ITSC), IEEE. pp. 1–6.

Lambrechts, P., Boerlage, M., Steinbuch, M., 2005. Trajectory planning and feedforward design
for electromechanical motion systems. Control Engineering Practice 13, 145–157.

Lim, H.S., Lee, J.E., Park, H.M., Lee, S., 2020. Stationary target identification in a traffic moni-
toring radar system. Applied Sciences 10. URL: https://www.mdpi.com/2076-3417/
10/17/5838, doi:10.3390/app10175838.

Lima, R., Seminar, E., 2010. Ibm ilog cplex-what is inside of the box, in: Proc. 2010 EWO
Seminar, pp. 1–72.

Lin, L., Wang, Y., Zhou, H., 2009. Iterative filtering as an alternative algorithm for empirical mode
decomposition. Advances in Adaptive Data Analysis 1, 543–560.

Litman, T., 2020. Autonomous vehicle implementation predictions: Implications for transport
planning .

Ma, X., Andréasson, I., 2005. Dynamic car following data collection and noise cancellation based
on the Kalman smoothing, in: IEEE International Conference on Vehicular Electronics and
Safety, 2005., IEEE. pp. 35–41.

Marczak, F., Buisson, C., 2012. New filtering method for trajectory measurement errors and its
comparison with existing methods. Transportation research record 2315, 35–46.

Martinez, J.J., Canudas-de Wit, C., 2007. A safe longitudinal control for adaptive cruise control
and stop-and-go scenarios. IEEE Transactions on control systems technology 15, 246–258.

Masello, L., Sheehan, B., Murphy, F., Castignani, G., McDonnell, K., Ryan, C., 2022. From
traditional to autonomous vehicles: a systematic review of data availability. Transportation
Research Record 2676, 161–193.

Mellinger, D., Kumar, V., 2011. Minimum snap trajectory generation and control for quadrotors,
in: 2011 IEEE International Conference on Robotics and Automation, IEEE. pp. 2520–2525.

128

https://www.mdpi.com/2076-3417/10/17/5838
https://www.mdpi.com/2076-3417/10/17/5838
http://dx.doi.org/10.3390/app10175838

Montanino, M., Punzo, V., 2013. Making NGSIM data usable for studies on traffic flow theory:
Multistep method for vehicle trajectory reconstruction. Transportation Research Record 2390,
99–111.

Montanino, M., Punzo, V., 2015. Trajectory data reconstruction and simulation-based validation
against macroscopic traffic patterns. Transportation Research Part B 80, 82–106.

Mu, J., Han, Y., Zhang, C., Yao, J., Zhao, J., 2021. An unscented kalman filter-based method for
reconstructing vehicle trajectories at signalized intersections. Journal of advanced transportation
2021.

Newell, G.F., 2002. A simplified car-following theory: a lower order model. Transportation
Research Part B 36, 195–205.

Nocedal, J., Wright, S.J., 2006. Quadratic programming. Numerical Optimization , 66–98.

Oppenheim, A.V., Willsky, A.S., Nawab, S.H., Ding, J.J., 1997. Signals and systems. Prentice hall
Upper Saddle River, NJ. volume 2. chapter 5,6. pp. 358–513.

Ossen, S., Hoogendoorn, S.P., 2008. Validity of trajectory-based calibration approach of car-
following models in presence of measurement errors. Transportation Research Record 2088,
117–125.

Ossen, S., Hoogendoorn, S.P., 2009. Reliability of parameter values estimated using trajectory
observations. Transportation research record 2124, 36–44.

Othman, M.R., Zhang, Z., Imamura, T., Miyake, T., 2008. A study of analysis method for driver
features extraction, in: 2008 IEEE International Conference on Systems, Man and Cybernetics,
IEEE. pp. 1501–1505.

Pendrill, A.M., Eager, D., 2020. Velocity, acceleration, jerk, snap and vibration: Forces in our
bodies during a roller coaster ride. Physics Education 55, 065012.

Pollock, D.S.G., Green, R.C., Nguyen, T., 1999. Handbook of time series analysis, signal process-
ing, and dynamics. Elsevier.

Punzo, V., Borzacchiello, M.T., Ciuffo, B., 2011. On the assessment of vehicle trajectory data ac-
curacy and application to the next generation simulation (NGSIM) program data. Transportation
Research Part C: Emerging Technologies 19, 1243–1262.

Punzo, V., Montanino, M., 2016. Speed or spacing? cumulative variables, and convolution of
model errors and time in traffic flow models validation and calibration. Transportation Research
Part B 91, 21–33.

Punzo, V., Simonelli, F., 2005. Analysis and comparison of microscopic traffic flow models with
real traffic microscopic data. Transportation Research Record 1934, 53 – 63.

da Rocha, T.V., Leclercq, L., Montanino, M., Parzani, C., Punzo, V., Ciuffo, B., Villegas, D., 2015.
Does traffic-related calibration of car-following models provide accurate estimations of vehicle
emissions? Transportation research part D 34, 267–280.

129

Romeny, B.M.H., 2008. Front-end vision and multi-scale image analysis: multi-scale computer
vision theory and applications, written in mathematica. volume 27. Springer Science & Business
Media.

Schwall, M., Daniel, T., Victor, T., Favaro, F., Hohnhold, H., 2020. Waymo public road safety
performance data. arXiv preprint arXiv:2011.00038 .

Shan, X., Hao, P., Chen, X., Boriboonsomsin, K., Wu, G., Barth, M.J., 2016. Probabilistic model
for vehicle trajectories reconstruction using sparse mobile sensor data on freeways, in: 2016
IEEE 19th International Conference on Intelligent Transportation Systems (ITSC), IEEE. pp.
689–694.

Shan, X., Hao, P., Chen, X., Boriboonsomsin, K., Wu, G., Barth, M.J., 2018. Vehicle en-
ergy/emissions estimation based on vehicle trajectory reconstruction using sparse mobile sensor
data. IEEE transactions on intelligent transportation systems 20, 716–726.

Sheppard, W.F., 1914. Graduation by reduction of mean square of error. Journal of the Institute of
Actuaries 48, 171–185.

Smith, S., 2013. Digital signal processing: a practical guide for engineers and scientists. Elsevier.

Smith, S.W., 1997. The Scientist and Engineer’s Guide to Digital Signal Processing. California
Technical Publishing. chapter 15. pp. 277–284.

Straka, O., Ŝimandl, M., 2009. A survey of sample size adaptation techniques for particle filters.
IFAC Proceedings Volumes 42, 1358–1363.

Strang, G., 1993. Introduction to linear algebra. Wellesley-Cambridge Press Wellesley, MA. vol-
ume 3. chapter 1. pp. 1–30.

Strang, G., 2014. Differential equations and linear algebra. Wellesley-Cambridge Press Wellesley.
chapter 4. pp. 246–338.

Sun, Y., Xu, H., Wu, J., Zheng, J., Dietrich, K.M., 2018. 3-D data processing to extract vehicle
trajectories from roadside LiDAR data. Transportation Research Rcord 2672, 14–22.

Sun, Z., Hao, P., Ban, X.J., Yang, D., 2015. Trajectory-based vehicle energy/emissions estimation
for signalized arterials using mobile sensing data. Transportation Research Part D 34, 27–40.

Thiemann, C., Treiber, M., Kesting, A., 2008. Estimating acceleration and lane-changing dynamics
from next generation simulation trajectory data. Transportation Research Record 2088, 90–101.

Toledo, T., Koutsopoulos, H.N., Ahmed, K.I., 2007. Estimation of vehicle trajectories with locally
weighted regression. Transportation Research Record 1999, 161–169.

Treiber, M., Hennecke, A., Helbing, D., 2000. Congested traffic states in empirical observations
and microscopic simulations. Physical review E 62, 1805.

Tsanakas, N., Ekström, J., Olstam, J., 2022. Generating virtual vehicle trajectories for the estima-
tion of emissions and fuel consumption. Transportation Research Part C 138, 103615.

130

Van Drongelen, W., 2018. Signal processing for neuroscientists. Academic press. chapter 7. pp.
107–126.

Venthuruthiyil, S.P., Chunchu, M., 2018. Trajectory reconstruction using locally weighted regres-
sion: A new methodology to identify the optimum window size and polynomial order. Trans-
portmetrica A: Transport Science 14, 881–900.

Wang, H., Gu, C., Ochieng, W.Y., 2019. Vehicle trajectory reconstruction for signalized intersec-
tions with low-frequency floating car data. Journal of Advanced Transportation 2019.

Wang, S., Bao, Z., Culpepper, J.S., Cong, G., 2021. A survey on trajectory data management,
analytics, and learning. ACM Computing Surveys (CSUR) 54, 1–36.

Wang, Y., Wei, L., Chen, P., 2020. Trajectory reconstruction for freeway traffic mixed with human-
driven vehicles and connected and automated vehicles. Transportation research part C 111,
135–155.

Wei, L., Wang, Y., Chen, P., 2019. Trajectory reconstruction using automated vehicles motion
detection data: A hybrid approach integrating wiedemann model and cellular automation, in:
2019 IEEE Intelligent Transportation Systems Conference (ITSC), IEEE. pp. 1379–1384.

Wei, L., Wang, Y., Chen, P., 2020. A particle filter-based approach for vehicle trajectory recon-
struction using sparse probe data. IEEE Transactions on Intelligent Transportation Systems 22,
2878–2890.

Whittaker, E., 1923. On a new method of graduation. Proceedings of the Edinburgh Mathematical
Society 41, 63–75.

Whittaker, E.T., 1922. On a new method of graduation. Proceedings of the Edinburgh Mathemati-
cal Society 41, 63–75.

Whittaker, E.T., Robinson, G., 1924. The calculus of observations: a treatise on numerical mathe-
matics. Blackie and Son Limited. chapter 11. pp. 285–316.

Wiedemann, R., 1974. Simulation des strassenverkehrsflusses. .

Wu, P., Sun, X., Hu, H., Mao, T., Zhao, W., Sheng, K., Cheung, A.A., Niu, T., 2015. Iterative ct
shading correction with no prior information. Physics in Medicine & Biology 60, 8437.

Yang, H., Jin, W.L., 2014. A control theoretic formulation of green driving strategies based on
inter-vehicle communications. Transportation Research Part C 41, 48–60.

Yao, Z., Liu, M., Jiang, Y., Tang, Y., Ran, B., 2022. Trajectory reconstruction for mixed traffic
flow with regular, connected, and connected automated vehicles on freeway. IET Intelligent
Transport Systems .

Young, R.K., 1992. Wavelet theory and its applications. volume 189. Springer Science & Business
Media.

131

Yu, H., Jiang, R., He, Z., Zheng, Z., Li, L., Liu, R., Chen, X., 2021. Automated vehicle-involved
traffic flow studies: A survey of assumptions, models, speculations, and perspectives. Trans-
portation research part C 127, 103101.

Yuan, J., Zheng, Y., Xie, X., Sun, G., 2011a. Driving with knowledge from the physical world, in:
Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and
data mining, pp. 316–324.

Yuan, J., Zheng, Y., Zhang, C., Xie, W., Xie, X., Sun, G., Huang, Y., 2010. T-drive: driving
directions based on taxi trajectories, in: Proceedings of the 18th SIGSPATIAL International
conference on advances in geographic information systems, pp. 99–108.

Yuan, J., Zheng, Y., Zhang, L., Xie, X., Sun, G., 2011b. Where to find my next passenger, in:
Proceedings of the 13th international conference on Ubiquitous computing, pp. 109–118.

Zheng, O., Abdel-Aty, M., Yue, L., Abdelraouf, A., Wang, Z., Mahmoud, N., 2022. CitySim: A
Drone-Based Vehicle Trajectory Dataset for Safety Oriented Research and Digital Twins. URL:
https://arxiv.org/abs/2208.11036, doi:10.48550/ARXIV.2208.11036.

Zheng, Y., Liu, Y., Yuan, J., Xie, X., 2011. Urban computing with taxicabs, in: Proceedings of the
13th international conference on Ubiquitous computing, pp. 89–98.

Zhou, Y., Ahn, S., Wang, M., Hoogendoorn, S., 2020. Stabilizing mixed vehicular platoons with
connected automated vehicles: An h-infinity approach. Transportation Research Part B: Method-
ological 132, 152–170.

Zhou, Y., Lin, Y., Ahn, S., Wang, P., Wang, X., 2022. Platoon trajectory completion in a mixed
traffic environment under sparse observation. IEEE Transactions on Intelligent Transportation
Systems .

132

https://arxiv.org/abs/2208.11036
http://dx.doi.org/10.48550/ARXIV.2208.11036

	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGMENTS
	VITA
	ABSTRACT OF THE Dissertation
	Introduction
	Research background
	Research objective
	Research outline

	Literature review
	Collection and application of vehicle trajectory data
	Problems lying in vehicle trajectory data
	Typical ranges of speeds and higher-order derivatives
	Methods for improving the quality of the vehicle trajectory data
	Existing methods for smoothing vehicle trajectories
	Existing methods for imputing vehicle trajectories

	An iterative method for smoothing based on first principles
	Introduction
	A principle-based iterative method for smoothing
	Differentiation of positions
	Speed correction
	Acceleration and jerk smoothing
	Integration to lower-order derivatives

	Method iteration and choice of smoothing method and parameters
	Method iteration
	Choice of parameters in the Gaussian filter

	Calibration and validation with the NGSIM data
	Calibration with a sample trajectory
	Comparison with an existing method and validation with manually re-extracted freeway trajectories

	Conclusion

	Simplified iterative moving average method for smoothing
	Introduction
	An iterative moving average method for smoothing
	Flow chart of the method
	Speed smoothing
	Integration of the smoothed speeds

	Proof of termination within a finite number of iterations
	Discrete Fourier Transform (DFT) of the kernel functions
	Proof of the termination

	Method calibration and comparison with an existing method and manual re-extraction
	Choice of parameters
	Calibration with sample trajectories
	Evaluation of different filters and comparison with an existing method

	Conclusion

	Two-step quadratic programming for physically meaningful smoothing
	Introduction
	Derivatives of positions and their physically meaningful bounds
	Derivatives of positions
	Linear inequality constraints based on bounded derivatives of positions

	Two-step quadratic programming method
	First step: minimization of the discrepancy between the half-smoothed and raw positions
	Second step: minimization of the sum of squared highest order derivatives

	Theoretical properties and computational complexity
	Existence of solutions
	Uniqueness of solutions
	Computational complexity regarding the highest order of derivatives

	Calibration, comparison, and application with NGSIM and highD data
	Calibration of the highest order of derivatives
	Comparison with an existing method with respect to manually re-extracted data
	Application to the highD data

	Conclusion

	Quadratic programming method for imputation using fixed and mobile sensor data
	Introduction
	Symplectic discretization scheme of positions and Newell's simplified car-following model
	Symplectic discretization scheme of positions
	Newell's simplified car-following model

	Three-step quadratic programming method for imputation
	Introduction of the proposed method
	Determination of the time gap and jam spacing

	Numerical experiments
	Application to the vehicle platoons of different sizes
	Application to a sample mixed-traffic system

	Conclusion

	Conclusion
	Summary
	Future research topics

	Bibliography

