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The relationship between the physics of turbulent transport of particles and azimuthal momentum
in a linear plasma device is investigated using a simple model with a background density gradient
and zonal flows driven by turbulent stresses. Pure shear flow driven Kelvin-Helmholtz instabilities
ðkk ¼ 0Þ relax the flow and drive an outward (down gradient) flux of particles. However, instabil-
ities at finite kk with flow enhanced pumping can locally drive an inward particle pinch. The turbu-
lent vorticity flux consists of a turbulent viscosity term, which acts to reduce the global vorticity
gradient and the residual vorticity flux term, accelerating the zonal flows from rest. Moreover, we
use the positivity of the production of fluctuation potential enstrophy to obtain a constraint relation,
which tightly links the vorticity transport to the particle transport. This relation can be useful in
explaining the experimentally observed correlation between the presence of E$ B flow shear and
the measured inward particle flux in various magnetically confined plasma devices. VC 2016
AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4942420]

I. INTRODUCTION

The self regulating, self-consistent “predator-pray”
feedback loop character of the zonal flow-turbulence sys-
tem has been well established in various experiments1,2 and
numerical simulations.3 In its most basic form, the parame-
ters controlling this system are the sources and zonal flow
(ZF) damping. In the presence of flow, the turbulence level,
which determines the transport, is directly set by the flow
damping.4 In the low collisionality limit, there have been
some efforts towards the understanding of the zonal flow
saturation mechanisms.5,6 However, collisionless damping
and saturation of ZF are still not well understood and satu-
rated ZF profiles cannot be accurately predicted. In linear
cylindrical plasma devices, due to their relatively smaller
size and simpler geometry, controlling the equilibrium pa-
rameters of the plasma is convenient. This facilitates a
close examination of the turbulence-ZF system, identifica-
tion of collisionless saturation mechanisms and investiga-
tion of the impact of such mechanisms on transport, in the
absence of toroidal effects.

In the fusion community, what mainly drives the interest
in ZFs is that such flows, as well as externally driven, mean
E$B flows, have been linked to triggering the formation of
transport barriers by reducing the turbulence and transport.
During or shortly after the formation of transport barriers,
net inward turbulent particle fluxes have been observed.7–10

This inward turbulent particle flux has also been observed in
the Large Plasma Device (LAPD)11,12 when a strong exter-
nally applied E$B flow shear was induced, and in the
CSDX13 linear machine with the spontaneous formation of
shear (zonal) flows. Hence, these observations motivate an

interest in the connection between E$B flow shear and the
physics of the inward particle pinch.

In a wide range of turbulent systems (e.g., biochemical
systems,14 atmospheric systems,15 magnetically confined
space plasmas,16–21 and controlled fusion systems22–26), the
down-gradient diffusive transport fluxes act to relax the sys-
tem towards an equilibrium state. Non-diffusive transport
fluxes, such as the turbulent particle pinch, the momentum
pinch, and the residual stress, can play a role in maintaining
non-equilibrium profile conditions.27,28 For some cases, the
turbulent particle pinch may be large enough such that it can
overcome outward diffusive transport and result in a net up-
gradient, inward turbulent particle flux.

This paper has three principal foci: inward particle flux,
shear flow generation, and their relation. Regarding inward
fluxes, for magnetic fusion confinement devices, there has
been an interest in the inward particle flux as a means for
possibly controlling the plasma density and thus controlling
the transport properties. Peaking of the density can result in
a significant enhancement of confinement quality and a sig-
nificant improvement of the fusion power (higher pedestal
pressure in H-mode). Coppi and Spight in Ref. 29 proposed
a theoretical model for driving an inward pinch generated by
ion mixing mode turbulence, resulting from neutral gas
injection. More recently, another mechanism was proposed
in Ref. 30, in which the instabilities driven by the parallel
shear flows along the magnetic field lines can drive and
inward pinch of particles. These parallel flow shears can be
driven by drift wave turbulence through the residual stress
resulting from broken parallel symmetry.27,31,32 However,
despite these analyses, comparisons of the CSDX data33,34

with models indicate the need for further studies.
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Regarding the ZF formation, Hasegawa and Wakatani
pointed out that this particularly simple system conserves
energy and potential vorticity, the latter which leads to the
spontaneous generation of ZF by turbulence (Reynolds
stress). The model that Hasegawa and Wakatani35,36(HW
model) presented is a simple 2D system describing the colli-
sional drift wave instability driven turbulence. This work
was an extension on the previous model of nonlinear electro-
static turbulence by Hasegawa and Mima,37 which is isomor-
phic to the quasi-geostrophic or Rossby wave equation first
derived by Charney.38,39 The pioneering work on ZF self-
generation in the HW system35,36 was followed by the obser-
vation of turbulence-driven ZF in the nonlinear simulations
of various fluid turbulence models.40–44

Residual stresses can also drive a flow by tapping into the
free energy sources of pressure or density gradient.27

Following the presentation of the theoretical model on residual
stress driven flow in Ref. 27, this work was successfully com-
pared to the experiments performed on the CSDX linear
plasma device in Ref. 28, demonstrating that the residual stress
at the plasma-wall boundary drives a shear azimuthal flow at
the plasma edge. Furthermore, the flow shear is spread to the
core region via the turbulent diffusion, resulting in a net
motion of plasma without an outside torque source. In this pa-
per, we develop the analytical theory of residual stress and also
discuss the relation of shear flow to the inward flux.

In this paper, we investigate the competition between
down and up gradient particle transport and its relation to
anomalous momentum transport in a linear plasma device
with a straight, uniform magnetic field. Moreover, we dis-
cuss the dependence of the particle and vorticity fluxes on
the background flow and density profiles. Naturally, in this
work, the complexities arising from the toroidal geometry,
i.e., magnetic curvature and magnetic shear have been
neglected. We present a mechanism for driving a local net
inward particle flux, based on a simple Modified Hasegawa-
Wakatani45 model with both the turbulent stress driven,
quasi-equilibrium background flow shear and a background
density gradient. Moreover, we derive quasilinear expres-
sions for the local particle flux and vorticity flux. The Taylor
identity relates the vorticity flux to the turbulent Reynolds
stress (see Eq. (46)). In fact, the negative of the vorticity flux
is simply the turbulent force exerted on the flow. The expres-
sions we obtain for both particle and vorticity flux are in gen-
eral complicated functions of the flow profile and contain
diffusive and non-diffusive flux terms, like convective parti-
cle pinch (in particle flux) and residual stress (in vorticity
flux). The pinch component of the particle flux is extremely
sensitive to local flow velocity, which significantly changes
with radius. This change in the flow velocity explains why
the particle flux is outward in some regions and inward in
other regions. More generally, the structure of the particle
and momentum fluxes highlights the strong and non-trivial
coupling between these two.

Here, we must mention that the traditional quasilinear
approach, although a very useful tool in the weak turbulence
regimes, has limitations and shortcomings. For example, such
phenomena as intermittency and coherent structures, which
result from spatial and temporal correlations in the turbulence,

cannot be recovered by the quasilinear method. Moreover,
nonlinear instabilities46,47 and the advection of turbulence
from unstable into linearly stable regions48,49 are excluded
from the traditional quasilinear approach.

In this minimal model, both axially symmetric (kk ¼ 0)
and non-axially symmetric (kk 6¼ 0) instabilities can be
driven (kk is the axial mode number). Axially symmetric
(kk ¼ 0) modes of this system are Kelvin-Helmholtz (KH)
instabilities which do not tap into the free energy in the den-
sity gradient and are only driven by the flow shear. The elec-
trostatic potential of the KH modes (kk ¼ 0) satisfies the
well known Rayleigh’s eigenvalue equation, which has been
extensively discussed in the fluid mechanics literature. The
non-axially symmetric (kk 6¼ 0) modes can be driven by both
the flow shear and the density gradient. Thus, we call these
(kk 6¼ 0) modes drift-KH instabilities.

We find that the particle flux related to KH modes
(kk ¼ 0) is always in the outward direction, and an inward
particle pinch can be carried by the drift-KH (kk 6¼ 0) modes.
The physical mechanism which can drive this inward pinch
is the flow enhanced pumping due to the Doppler effect,
which can locally overcome the relaxation-driven diffusive
outward flux for some conditions, which we will discuss in
this paper.

Moreover, we discuss the energetics of this model, and
specifically, we study the transfer of energy between turbu-
lence and flow shear, as a function of the parameters in the
system. Here, the energy transfer is quasilinear and does not
include higher order (three-wave) interactions. We observe
that the energy transfer is from the flow to the turbulence for
modes with long wave-lengths compared to the length scale
of the flow shear (k%1

m < q%1
x , where km is the azimuthal

wave number and qx ¼ 1=LZF is the characteristic ZF wave
number). For k%1

m & q%1
x , direction of energy transfer is from

the flow to the turbulence for small amplitude flows, and
changes sign as the flow amplitude passes a threshold. For
small wave-length modes, the direction of energy transfer is
from the turbulence to the flow (k%1

m > q%1
x ).

Figure 1(a) is a schematic diagram of the energy transfer
between rn0, ZF, KH modes (kk ¼ 0) and drift-KH modes
(kk 6¼ 0). The arrows in the diagram show the direction of
transfer of energy. Zonal flows (produced by rn0 driven by
drift waves) provide the free energy to drive linear, pure KH
modes. The direction of energy transfer is always from ZFs
to pure KH. Figure 1(b) is a schematic diagram showing the
growth rate (cgrowth) versus the inverse length-scale (wave-
number). Typically, growth rates of kk ¼ 0 modes are larger
than the growth rates of the drift-KH modes, since kk ¼ 0
modes are not screened by Boltzmann electrons and have
lower effective inertia than the drift-KH modes do.
However, the pure KH modes are not unstable for all flow
structures. For kk ¼ 0 modes, the direction of the turbulent
particle flux is always down the density gradient (outward).
Zonal flows can also drive linear drift-KH modes (kk 6¼ 0)
with smaller mode numbers (k? < qx). The direction of the
particle flux for these modes can be locally inward ðC < 0Þ
or outward ðC > 0Þ, depending on the mode frequency and
the radial structure of the flow (see Eq. (25)). The drift-KH
modes at larger mode numbers (k? > qx) can accelerate the
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ZF to larger flow amplitudes via modulational instability
(nonlinear) and residual stress (quasilinear). We must note
that extensive literature on the theory-numerical50,51 studies,
as well as experimental studies of ZF generation exists for
cylindrical, straight field plasmas devices. The direction of
the particle flux for these modes is in the outward direction.
We must also mention that the drift-KH modes can also drive
the generalized KH modes (not depicted in the diagram).
These are axially symmetric ðkk ¼ 0Þ modes which are gen-
erated via modulation instability and have growth rates simi-
lar to or smaller than those of ZF.52

The remainder of this paper is organized as follows: in
Section II, we describe the modified Hasegawa-Wakatani
model in a slab geometry with a magnetic field in the z direc-
tion. In Section III, we obtain relations for quasilinear fluxes
of particle and vorticity and the condition for net inward
flux. In Section IV, using the fact that the potential enstrophy
of the fluctuations is positive definite, we obtain a constraint
relation, which tightly links the fluxes of vorticity and parti-
cle. In Section V, we obtain the linear eigenvalue equation

for the modified Hasegawa-Wakatani system and study the
stability of the eigenmodes, using a given ZF profile, con-
stant in time. We calculate the quasilinear flux of particles
for the obtained eigenmode solutions and study their func-
tional dependence on flow amplitude and azimuthal mode
number. Moreover, we obtain the turbulence energy evolu-
tion equation and study the energy transfer between the tur-
bulence and the sources of free energy (i.e., the density and
the flow shear), using the linear solutions obtained.

II. MODIFIED HASEGAWA-WAKATANI MODEL

Here, we study a cold ion, quasi-neutral Hasegawa-
Wakatani model with temporally and spatially varying den-
sity n and electric potential / in the presence of an azimuthal
(i.e., along ŷ) flow velocity profile V0. Both the flow and the
density profile n0 vary only in the radial ðx̂Þ direction. The
geometry of the system is taken to be slab of cubic dimen-
sions 0 ' x ' Lx; 0 ' y ' Ly; 0 ' z ' Lz, with the mag-
netic field pointing in the axial (ẑ) direction. In the

FIG. 1. (a) Diagram of energy transfer
between rn0, zonal flow, KH modes
(kk ¼ 0), and drift-KH modes (kk 6¼ 0).
(b) Schematic distribution of the
growth rate (cgrowth) versus inverse
length-scale (wave number) for zonal
flows, drift-KH modes, and pure KH
modes.
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perpendicular plane, ŷ is the direction of symmetry. The
electric potential consists of a time dependent fluctuating
part d/ðx; y; z; tÞ, plus the quasi-equilibrium flow potential
/0ðxÞ

/̂ ¼ d/̂ðx; y; z; tÞ þ /̂0ðxÞ; (1)

where /̂ ¼ e/=Te is the non-dimensional electric potential.
The flow velocity is given by

V0ðxÞ ¼ @x/̂0ðxÞ: (2)

We scale the spatial dimensions to qs and time to x%1
ci

~x ¼ x=qs; ~y ¼ y=qs; ~z ¼ z=qs; ~t ¼ xcit: (3)

From here forward, we drop the tilde symbol from space and
time variables for notational convenience. The linearized
form of the evolution equations for the electric potential and
the density, in terms of fluctuations dn̂ and d/̂, is given by
Eqs. (A8) and (A9) in the Appendix. Furthermore, we make
the assumption that V0 is a zonal flow. Turbulence-driven ZF
have a broad range of radial scales, spanning the micro-scale
(coherence length of turbulence )several qs) through the
meso-scales (i.e., a fraction of Lx)

53

q2
s < L2

ZF ' Lxqs: (4)

As a result, neglecting the terms in Eqs. (A8) and (A9),
which vary over the macro-scale j@xn0=n0j ¼ Ln ) Lx in
comparison to the flow scaling, these equations are given by

ð@t þ V0@yÞr2d/̂ þ dv̂x@
2
x V0 ¼ Dkr2

kðdn̂ % d/̂Þ

% lr2r2d/̂; (5)

ð@t þ V0@yÞdn̂ % dv̂xvd ¼ Dkr2
kðdn̂ % d/̂Þ % Dnr2dn̂; (6)

where we defined dn̂ ¼ dn=n0 and the non-dimensional elec-
tron drift velocity is defined as

vdðxÞ ¼ %d lnn0=dx; (7)

l and Dn are viscosity related diffusion coefficients for vor-
ticity and density. From here forward, we neglect the viscous
diffusion terms and we will explore the effects of viscosity
on stability in a future paper. We assume unstable perturba-
tions of the form

dn̂m ¼ ~nmðxÞei½kmy%kjjn z%xmt+ þ c:c:; (8)

d/̂m ¼ ~umðxÞei½kmy%kjjn z%xmt+ þ c:c:; (9)

xm ¼ xr
m þ icm; cm > 0;

where we used the symbol m ¼ ðm; n; lÞ to represent a spe-
cific mode, with m, n, and l, respectively, being the azi-
muthal, axial, and radial mode numbers. km and kjjn are,
respectively, the azimuthal and the axial non-dimensional
wave numbers

km ¼ 2pmqs=Ly; kjjn ¼ 2pnqs=Lz: (10)

We assume that in the reference frame of interest, the flow
velocity has a zero radial average (at t¼ 0)

hV0ix ¼
ðLx

0

V0ðxÞdx ¼ 0: (11)

The above relation is a simplifying assumption. The ZF can
have a net rotation in the lab frame, as a result of its interac-
tion with the wall (see Ref. 28). Therefore, if one enforces
the boundary conditions on the flow, Eq. (11) must be
relaxed. Linear solutions of a system with nonzero radial av-
erage ðx0; y0; z0; t0Þ and dy0=dt0 ¼ hV00ix 6¼ 0, which satisfy
Eqs. (5) and (6), or equivalently the linear eigenvalue equa-
tion (62), are identical to the solutions of the system with
zero radial average hV0ix ¼ 0, except for a Doppler shift in
frequency ðxr

m ¼ x0rm % hV00ix=kmÞ. Moreover, the quasilin-
ear fluxes of these two systems (differing by a net azimuthal
flow velocity of hV00ix) are identical, as can be seen from the
relations for the turbulent particle and vorticity fluxes,
respectively, in Eqs. (22) and (39).

III. TURBULENT FLUXES

A. Quasilinear particle flux

For the mode m, the (non-dimensional) quasilinear tur-
bulent particle flux Cm is given by

Cm ¼ hdv̂m
x dn̂mi; (12)

where we represent the averaging over the directions of sym-
metry y and z as

h i ¼ 1

LyLz

ðLy

0

dy

ðLz

0

dz: (13)

In order to calculate Cm, using Eqs. (8) and (9), we obtain
~nm from the linear continuity Eq. (6)

~nm ¼
%kmvd xð Þ % ian

kmV0 xð Þ % xm % ian
~um; (14)

where we used dv̂x ¼ %@yd/̂ and we defined the parallel dif-
fusion rate as

an ¼ ðkknÞ
2Dk: (15)

Now, Cm is given by

Cm ¼ hdn̂mdv̂m
x i

¼ ~nm ~vm
x

" #, þ c:c: ¼ 2Re ikm ~u,m ~nm

$ %

¼ 2Re
%ik2

mvd xð Þ þ kman

kmV0 xð Þ % xm % ian

" #

j~umj
2

¼
vd xð Þ cm þ an½ + þ an V0 xð Þ % xr

m=km

" #

jV0 xð Þ % xm=km % ian=kmj2
hd/̂

2

mi ; (16)

where we used hd/̂
2

mi ¼ 2j~u2
mj. Equation (16) can be written

in terms of a diffusion flux, which is proportional to the local
value of the density gradient dn0ðxÞ=dx, and a convective
pinch term
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n0 xð ÞCm ¼ %Dm xð Þ
d

dx
n0 xð Þ þ Vpinch

m xð Þn0 xð Þ; (17)

Dm xð Þ ¼
cm þ an

jV0 xð Þ % xm=km % ian=kmj2
hd/̂

2

mi; (18)

Vpinch
m xð Þ ¼

an V0 xð Þ % xr
m=km

" #

jV0 xð Þ % xm=km % ian=kmj2
hd/̂

2

mi: (19)

Since cm > 0 (as defined in Eq. (10)), the diffusion coeffi-
cient defined in Eq. (18) is positive-definite. Thus, for a
monotonically decreasing density (i.e., dn0=dx < 0), the dif-
fusive particle flux is always in the outward direction. On the
other hand, the convective pinch term can be in the inward
or outward direction, depending on the structure of the flow.
We obtain the total particle flux resulting from all the modes
present in a turbulent system by summing over all the azi-
muthal (m) and axial (n) and radial (l) mode numbers

C ¼
X

m

n0ðxÞCm; (20)

where we used the following notation

X

m

¼
X1

m¼%1

X1

n¼%1

X1

l¼1

: (21)

The total particle flux C is obtained by summing over all the
modes

C ¼ n0

X

m

an
1þ cm=an½ +vd xð Þ þ V0 xð Þ % xr

m=km

jV0 xð Þ % xm=km % ian=kmj2
hd/̂

2

mi:

(22)

The above relation can be written in terms of diffusion and
convection fluxes as

C ¼ %DC xð Þ
d

dx
n0 xð Þ þ Vpinch xð Þn0 xð Þ; (23)

DCðxÞ ¼
X

m

DmðxÞ; VpinchðxÞ ¼
X

m

Vpinch
m ðxÞ: (24)

In Equation (22), the real and imaginary part of xm, and the
functional form of dum are determined from the linear eigen-
value equation Eq. (62).

In the expression for particle flux C given by Eq. (22),
the numerator of the argument of the sum has the form of a
competition between the local drift-diffusion relaxation rate
x,ðxÞ ¼ kmvdðxÞ, which for vd > 0 results in the diffusive
outward particle flux, and the local rate of pumping by waves
xr

m % V0ðxÞ=km, which is the mode frequency Doppler
shifted by the flow velocity. From the particle flux relation in
Eq. (22), we observe that for mode m, a net inward flux can
be driven if the following condition is satisfied:

xr
m > kmV0 xð Þ þ kmvd xð Þ 1þ cm

an

& '
: (25)

The right hand side of the inequality is explicitly dependent
on the flow profile V0ðxÞ and drift velocity profile vdðxÞ.
Moreover, the values of the eigenfrequency xr

m and growth

rate cm are implicitly dependent on the flow structure and
magnitude, as it can be seen from the linear eigenvalue equa-
tion (62). From the condition given by Eq. (25), we observe
that the flow shear can strengthen the anti-relaxation pump-
ing at some radii, while weakening the pumping at other
radii. For strong enough flow shear, flow-enhanced pumping
can defeat the relaxation, which will result in a net inward
flux of particles. The physical mechanism through which the
flow can cause the resistive drift waves to carry the particle
flux in the inward (up-gradient) direction is the flow
enhanced pumping (or the Doppler effect).

Observation of local inward particle flux was reported in
Ref. 54 in the direct numerical simulation of HW turbulence
using an implicit relaxation technique and allowing for non-
locality. Although direct comparison of the results in Ref. 54
to our quasilinear theory is only applicable to the limited
case of weak turbulence regime, both our theory and Ref. 54
share the belief that inward fluxes in the HW system are the
result of nonlocal effects, which in our theory is manifested
in the form of global pumping rate given by the drift wave
(DW) frequency. However, in Ref. 54, the relation to ZF
shearing and its effect on the particle flux have not been dis-
cussed or analyzed. The authors have related their observed
inward flux to large scale eddies with scales comparable to
background scale-length. This begs the question whether the
inward flux was driven by the flow shear. Moreover, the
mechanism by which the turbulence is responsible for this
inward flux has not been determined. In our quasilinear
model, only the drift-KH modes with kk 6¼ 0 can be responsi-
ble for driving this inward flux. However, in a fully nonlinear
simulation like in Ref. 54, it would be interesting to see if
nonlinear mechanisms such as generalized KH52 can drive
an inward flux of particles as well.

In order to better understand Eq. (25), we study two dif-
ferent cases: First is the classic drift waves example in which
V0 & 0. In the next case, vd is uniform and only the flow
shear can result in an inward flux. For the classical example
of resistive drift wave turbulence ðV0 & 0Þ, the turbulent par-
ticle flux from drift resistive waves for an arbitrary value of
an (assuming xr

m - cm) is given by

C ¼ n0

X

m

an
vd xð Þ % xr

m=km

jxm=km % ian=kmj2
hd/̂

2

mi; V0 & 0: (26)

The outward particle flux is due to relaxation of the density
gradient (diffusion), and the inward flux (working as anti-
relaxation) is due to the pumping by waves. Since drift waves
are global modes, this pumping rate is constant at all radii. For
a non-uniform vd, the relaxation rate x,ðxÞ ¼ kmvd can be
locally smaller than xr

m, which results in driving a flux of par-
ticles in the inward, up-gradient direction. The parameter range
of interest is the near-adiabatic regime in which the parallel
diffusion timescale is the smallest characteristic time scale of
the system: an - xm; kmV0. In this regime, the drift wave fre-
quency in the absence of flow shear and for a uniform vd is
obtained from the linear dispersion relation as

x0;r
m ¼

vdkm

1þ k2
?
; (27)
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where k2
? ¼ %r2

?/̂=/̂. Substituting from Eq. (27) in
Eq. (26), the local particle flux for uniform vd is given by

C ¼ %DC
dn0

dx
> 0; for constant vd and V0 & 0; (28)

DC ¼
X

m

k2
?

1þ k2
?

k2
m

an
hd/̂

2

mi > 0: (29)

Thus, for a uniform vd and in the absence of flow shear, the
net turbulent particle flux resulting from the resistive drift
waves is always outward. This is due to the fact that the finite
Larmor radius (FLR) correction of polarization current com-
pressibility reduces the mode frequencies (denominator of
the fraction on the right hand side of Eq. (27)), and conse-
quently at all radii x, > xr

m.
Now, we consider a system with uniform vd but with a

finite amplitude non-uniform flow V0ðxÞ. With the assump-
tion of a uniform vd, from Eq. (66), the mode frequency xm

has the following functional form:

xr
m ¼ kmvd c

Vmax
0

vd
; q,

( )
: (30)

In the limit where Vmax
0 =vd ! 0; xr

m is linearly propor-
tional to vd and is given by the classical electron drift
wave frequency given by Eq. (27). We define the change
in the mode frequency due to the presence of the flow
as Dxr

m

Dxr
m ¼ xr

m % xr;0
m : (31)

Dxr
m does not contain a linear vd dependence, and in the

limit of Vmax
0 =vd ! 0, we have Dxr

m ! 0. Therefore, we can
write the particle flux in the adiabatic regime as

C ¼ %DC
dn0

dx
þ "Vn0; (32)

"V ¼
X

m

k2
m

an
V0 xð Þ % Dxr

m=km

" #
hd/̂

2

mi: (33)

In Eq. (32), the first term on the right hand side is the diffu-
sive flux with the diffusion coefficient DC given in Eq. (29).
The second term is the convective pinch flux with the effec-
tive pinch velocity "V given in Eq. (33). "V can only be non-
zero because of the presence of flow velocity V0ðxÞ. In the
limit of Vmax

0 ! 0, since "V ! 0, we recover the result in Eq.
(28) for particle flux from drift resistive waves in the adia-
batic regime.

Hydrodynamic limit: In the pure hydrodynamic limit
for which an=km . V0;xm=km, continuity and vorticity
equations decouple and the electric potential / is the active
variable determining the dynamics of the system. Solutions
to the familiar Rayleigh’s eigenvalue equation (which is
introduced later in Eq. (63)) will determine the linear eigen-
functions, frequencies, and growth rates. In this limit, the
particle flux relation in Eq. (22) can be written as a diffu-
sion flux

C & %DC
dn0

dx
;

DC ¼
X

m

cm

jV0 xð Þ % xr
m=kmj2

hd/̂
2

mi : (34)

Note that in the above relation, cm is defined as positive defi-
nite in Eq. (10). Thus, in the hydrodynamic limit for a
monotonically decreasing density profile ðdn0=dx < 0Þ, the
particle flux is always diffusively driven in the outward
direction: C > 0. The pure KH modes (kk ¼ 0) for which
an ¼ 0 are also in the hydrodynamic regime, and as a result,
the quasilinear particle flux of the pure KH modes is strictly
outward.

Flat density profile regime ðrn0 ¼ 0Þ: From Eqs. (17)
through (19), we can see that in the case of a flat density pro-
file, non-zero turbulent particle flux can only come from the
convective pinch term with an 6¼ 0. In the regime where ini-
tially rn0 ¼ 0, flow shear (rV0) is the only source of free
energy which can drive an instability and a turbulent particle
flux.

We can perform the Rayleigh stability analysis for these
modes on the linear eigenvalue equation with vd¼ 0

@2
x % k2

m

" #
d/̂ % kmV000 xð Þ

kmV0 %x
þ ian

kmV0 xð Þ %x
kmV0 xð Þ % ian %x

& '
d/̂ ¼ 0:

(35)

Multiplying the above equation by d/̂
,
, integrating over x,

and taking the imaginary part of the equation, we obtain the
following condition for the instability:

xi ¼
an

ð
kmV0 % xr

jkmV0 % ian % xj2
jd/̂j2dx

ð
kmV000

jkmV0 % xj2
jd/̂j2dx

> 0: (36)

The above relation is the instability condition for these
resistive-KH modes, which is a generalized form of the
Rayleigh’s inflection point criterion for the pure KH modes.
Eq. (36) implies that unlike the pure KH modes, which are
also only driven by the flow shear, existence of an inflection
point in the flow profile is not a necessary condition for the
instability of these modes. Turbulent particle flux in this
limit can be obtained from Eq. (32) by setting dn0=dx ¼ 0.
Thus, the direction of the particle flux can be either inward
or outward, depending on the flow structure.

B. Quasilinear turbulent vorticity flux

For the mode m, the quasilinear turbulent vorticity flux
Pm is given by

Pm ¼ hdv̂m
x r

2d/̂mi: (37)

Total vorticity flux is obtained by summing over all the
mode numbers

P ¼
X

m

Pm: (38)
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We obtain the total vorticity flux from substituting Eq. (14)
in the vorticity equation (i.e., Eq. (5)), multiplying by dv̂m,
averaging over y and z, and summing over all mode numbers

P ¼
X

m

cmvd xð Þ þ an vd xð Þ þ V0 xð Þ % xr
m=km

" #

jkmV0 xð Þ % xm % ianj2

(

%cm
vd xð Þ þ V000 xð Þ
jkmV0 xð Þ % xmj2

)

h dv̂m
x

" #2i:

The above relation can alternatively be written as

P ¼ PR % vyV000; (39)

vy ¼
X

m

cmhd/̂
2

mi
jV0 xð Þ % xm=kmj2

; (40)

PR ¼
X

m

cmvd xð Þ þ an vd xð Þ þ V0 xð Þ % xr
m=km

" #

jV0 xð Þ % xm=km % ian=kmj2

$ hd/̂
2

mi% vyvd: (41)

Here, we define vy in the second term in Eq. (39) as the tur-
bulent viscosity, which directly relates the flow vorticity gra-
dient to the turbulent vorticity flux. The turbulent viscosity
term can be rewritten to obtain a proper flow velocity diffu-
sion form (divergence of a flux) as

%vyV000 ¼ %@x½vyV00+ þ v0yV00: (42)

On the right hand side of the above equation, the first term is
the turbulent viscous diffusion of flow velocity and the sec-
ond term is a flow advection term with Vadv ¼ v0y. When V0

and V000 are both zero, only the first term in Eq. (39) can
result in a non-zero turbulent vorticity flux. In analogy with
Ref. 27, we call this term the residual vorticity flux.

Vorticity flux for the pure KH modes (kk ¼ 0) is
obtained by setting a¼ 0, which gives

P ¼ %vyV000; kk ¼ 0; (43)

where vy is given by Eq. (40). Although the residual vorticity
of the pure KH modes is zero and density gradient cannot drive
these instabilities, in the regime which these modes unstable,
they relax the E$B flow profile via turbulent viscous diffu-
sion.55,56 The Reynolds stress for these instabilities has been
shown to be proportional to the tilting angle of the axis of vor-
tices with respect to the direction of the flow.55 Using Eq. (22),
the residual vorticity flux can be simply written as

PR ¼ C
n0
% vyvd: (44)

Through PR, the density gradient rn0 drives a stress on the
flow. In the adiabatic regime for which an - x, the particle
flux dependent term of the residual vorticity behaves as C

n0
/

1=an and is therefore negligible comparing to the second
term on the right hand side of Eq. (44). Hence, the C depend-
ent term in PR results from non-adiabaticity of the electrons.
For large flows, from Eq. (41), we can see that the residual
vorticity is also a function of the flow. Had the flow been

constant as a function of radius x, this functional dependence
would have been merely a trivial reference frame effect.
However, the dependence on x means that it is actually the
flow gradients which are at work in driving the turbulent vor-
ticity flux and can exert stress on the flow itself, resulting in
the self-reorganization of the flow. The equation for the time
evolution of the ZF is given by

@tV0 ¼ %@xhdv̂xdv̂yi% cdV0; (45)

where the first term on the right hand side is the Reynolds
force and the second term is a drag force due to the collisions
with neutrals. Using Eqs. (39) to (44) and the Taylor identity

hdv̂xr2d/̂i ¼ @xhdv̂xdv̂yi; (46)

we can write Eq. (45) as

@t þ v0y@x

h i
V0 ¼ vyvd %

C
n0
þ @x vy@xV0

$ %
% cdV0: (47)

In the above equation, the second term on the left hand side is
a turbulent advection of the flow velocity, with the advection
velocity given by v0y. The first term on the right hand side,
which comes from residual vorticity PR, is positive definite
for vd > 0 and drives a force on the flow in the direction of
electron diamagnetic velocity, i.e., positive y direction. The
second term on the right hand side, which also comes from
the residual vorticity, can drive a force on the flow in the posi-
tive or negative y direction, depending on the sign of the parti-
cle flux. The third term on the right hand side is the turbulent
viscous diffusion of the flow velocity with turbulent viscosity
given by vy, which acts to relax the flow shear. We can also
write the residual vorticity drive of the ZF in terms of the den-
sity diffusion and convection terms, using Eq. (23) for C

½@t þ v0y@x+V0 ¼ ðvy % DCÞvd % Vpinch þ @x½vy@xV0+ % cdV0;

(48)

where DC is the particle diffusion coefficient (defined in Eqs.
(18) and (23)), and Vpinch is the pinch velocity of the turbu-
lent particle flux (defined in Eqs. (19) and (23)). We can fur-
thermore obtain the evolution equation for the flow vorticity
V00 by taking a partial derivative of Eq. (45) with respect to
x, which results in

@tV
0
0 ¼ @x vyvd %

C
n0

& '
þ @x vy@xV00

$ %
% cdV0ð Þ0: (49)

IV. QUASILINEAR POTENTIAL ENSTROPHY
CONSTRAINT

The modified Hasegawa-Wakatani system of Equations
(5) and (6) has two classes of fluxes, turbulent particle flux
and turbulent vorticity flux, which we obtained, respectively,
in Eqs. (22) and (39). Here, we determine an overall con-
straint on the relaxation in the form of a relation between
these two classes of flux and the two sources of free energy,
which is required by positive definite turbulence enstrophy
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production. In order to obtain this relation, first we subtract
Eq. (5) from Eq. (6) and obtain

ð@t þ V0@yÞðdn̂ %r2d/̂Þ % dv̂xðvd þ @2
x V0Þ ¼ 0: (50)

The above relation is the linearized form of the conservation
relation for the total potential vorticity q ¼ q0 þ dq

d

dt
q ¼ 0; q ¼ lnn%r2/̂; (51)

q0 ¼ lnn0ðxÞ % V00ðxÞ; (52)

dq ¼ dn̂ %r2d/̂: (53)

Now, we multiply Eq. (50) by dn̂ %r2d/̂ and average over
the directions of symmetry (y and z) to obtain

@

@t

hdq2
mi

2
¼ Cm %Pmð Þ vd þ V000

" #
> 0: (54)

Equation (54) is the condition for the (positive definite)
growth of potential enstrophy of the fluctuations. On the
right hand side of Eq. (54), the sign of the difference
between the turbulent fluxes of particle and vorticity
ðCm %PmÞ is locally (at any radial location) bound to the
free energy sources of density and vorticity gradient.
According to the condition (54), at a radial location x
where ðvdðxÞ þ V000ðxÞÞ > 0, if the direction of the turbulent
particle flux is inward ðCm < 0Þ, then vorticity flux must
be also in the inward direction Pm < 0 and its amplitude
larger than Cm. Here, we remind the reader that the
turbulent vorticity flux Pm is related to Reynolds stress Pm

¼ hdv̂m
x dv̂m

y i via the Taylor Identity Eq. (46). Moreover, we
can multiply Eq. (50) by dv̂m

x and average over the symmet-
ric dimensions to obtain the PV flux as

hdv̂m
x dqmi ¼ Cm %Pm ¼ cm

h dv̂m
x

" #2i
jkmV0 % xmj2

vd þ V000
" #

:

(55)

Since cm is defined as positive definite in Eq. (10), the above
relation puts the same sign constraint between Cm %Pm and
vd þ V000 as Eq. (54) did. Moreover, by eliminating Cm %Pm

from Eqs. (54) and (55), we obtain

@

@t
hdq2

mi ¼ h dv̂m
x

" #2i cm vd þ V000ð Þ2

jkmV0 % xmj2
: (56)

For a near marginal stability mode ðxr
m - cmÞ, the above

equation can be expanded to obtain

@

@t
hdq2

mi ¼ lim
cm!0
h dv̂m

x

" #2i
cm vd þ V000
" #2

kmV0 % xr
mð Þ2 þ cmð Þ2

;

¼ pkmdðV0 % xr
m=kmÞðvd þ V000 Þ

2hd/̂
2

mi;

¼ pkm

X

j

d x% xc;jð Þ
vd þ V000
" #2

jV00j
hd/̂

2

mi;

V0 xcð Þ ¼ xr
m=km: (57)

The functional form of Eq. (57) implies that the interaction
between a near marginal mode and the ZF is in the form of a
resonant interaction at the critical radii xc, for which the flow
velocity is equal to the wave phase velocity.

Equations (54)–(56) were obtained based on the assump-
tion that the spatial length scale for the variation of the back-
ground density is large (of the order Lx) compared to the
flow and turbulence. For the general case, taking full account
of the spatial variation of the background density, we have
derived the equivalent relations (A13), (A15), and (A16), in
the Appendix.

We examine the Equations (54)–(56) for the special
case of the adiabatic regime an=x- 1, for which
dn=n0 & d/̂. From Eq. (62), the linear eigenvalue equation
to the zeroth order in x=an . 1 is given by

½kmV0 % x+ð@2
x % k2

m % 1Þd/̂ % km½V000ðxÞ þ vdðxÞ+d/̂ ¼ 0:

(58)

Performing Rayleigh’s inflection point analysis, we find that
a necessary condition for instability is that there must exists
a point "x such that

V000ð"xÞ þ vdð"xÞ ¼ 0: (59)

This result is identical to the necessary condition for the
inviscid instability of a barotropic flow, in the quasi-
geostrophic system, which states that the gradient of the
absolute vorticity must change sign somewhere in the flow.57

Moreover, from Equations (55) and (59), we see that at the
point "x, particle and vorticity fluxes balance

Cmð"xÞ ¼ Pmð"xÞ: (60)

Consequently, as can be seen from Eq. (54), there is no
potential enstrophy production at "x

@

@t
hdq2

mi "xð Þ ¼ 0: (61)

V. LINEAR STABILITY AND TURBULENCE
PRODUCTION

A. Eigenvalue equation

Eigenfrequencies and eigenfunctions are obtained by
solving the linear eigenvalue equation, obtained from substi-
tuting (6) in (5):

kmV0 % x½ + @2
x % k2

m

" #
d/̂ %

(
kmV000 xð Þ

% ian
kmV0 xð Þ þ kmvd % x
kmV0 xð Þ % ian % x

& ')
d/̂ ¼ 0: (62)

In the pure hydrodynamic limit an=x! 0, the eigenvalue
relation (62) turns into the Rayleigh’s eigenvalue equation

½kmV0 % x+ð@2
x % k2

mÞd/̂ % kmV000ðxÞd/̂ ¼ 0: (63)

Solving the Rayleigh’s eigenvalue equation gives the eigen-
functions, growth rates, and frequencies. Unstable solutions
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of the above equation are Kelvin-Helmholtz modes, which
are driven by the flow shear. The pure KH modes ðkjjn ¼ 0Þ
are a subset of these solutions. A necessary condition for the
existence of the KH modes is the presence of an inflection
point in the flow profile

V000ð"xÞ ¼ 0: (64)

Density perturbation is passively calculated from the conti-
nuity equation and is given by

~nm ¼
kmvd xð Þ

xm % kmV0 xð Þ
~um: (65)

We further simplify the linear eigenvalue equation (62) by
assuming a uniform drift velocity and eliminating vd. As a
result, we rewrite Eq. (62) as

U % c½ + @2
x % k2

m

" #
d/̂ %

 

U00 xð Þ % i
Qn

kmL̂x

$ U xð Þ þ 1% c

U xð Þ % iQn=kmL̂x % c

" #!

d/̂ ¼ 0; (66)

where we have defined

c ¼ x
kmvd

; U xð Þ ¼
V0 xð Þ

vd
; Qn ¼

an

vd=L̂x

;

L̂x ¼
1

q,
¼ Lx

qs
: (67)

For the drift-KH modes with phase velocities comparable to
vd, Qn=kmL̂x ¼ an=kmvd can be considered as the adiabaticity
parameter. Obviously, solutions of the above equation
depend on the structure of the scaled flow profile U(x). The
unitless parameters which determine the solutions are
q,; km;Qn, the amplitude of the flow Umax ¼ Vmax

0 =vd (taking
the flow structure as invariant and changing the amplitude),
and qx, the wave number describing the spatial variation of
the flow profile. We use a standard shooting method to solve
Eq. (66) for the complex eigenvlaue c and its related eigen-
function d/̂. We use Dirichlet boundary conditions for sim-
plicity: d/̂ð0Þ ¼ d/̂ðLxÞ ¼ 0. As a toy model for ZF, we use
a sinusoidal profile

U xð Þ ¼ Umax sin qx x% L̂x

2

( )& '
; (68)

where the non-dimensional wave number given by
qx ¼ qs=LZF. Spatial scaling of the ZF is in the meso range,
which is in accordance with Eq. (4).

Figure 2 shows the ZF profile given by the function
Uð~xÞ with q, ¼ 1=9 & 0:11, for Umax ¼ Vmax

0 =vd ¼ 1 and
spatial scale of qxL̂x ¼ p. These are parameters which are
typical for the CSDX device. This flow profile satisfies the
condition Eq. (4)

LZF ¼ 2:86qs '
ffiffiffiffiffiffiffiffiffi
qsLx

p
¼ 3qs: (69)

For the CSDX device, since q, ) 0:1 is relatively large, the
variation in the spatial scale of ZF is very limited

ðqs < LZF ' 3qsÞ. Figure 3(a) shows the growth rate of the
first radial eigenmode (l¼ 1) as a function of Umax for the ZF
with the form given in Fig. 2 and km=qx ¼ 0:3; 1; 2. The
choice of the first radial eigenmode is due to the convenience
of finding this mode as the parameters of the problem
change, compared to the higher l numbers. For km=qx ¼ 0:3; 1

FIG. 2. A toy model for the zonal flow, with q, ¼ 0:11;V0ð~xÞ ¼ vd sin
½qxð~x % L̂x

2 Þ+; qxL̂x ¼ p.

FIG. 3. Growth rate and frequency of (l¼ 1), km=qx ¼ 0:3; 1; 2 modes as a
function of the zonal flow amplitude Vmax

0 for q, ¼ 0:1; qxL̂x ¼ p, and
Qn ¼ 0:3.
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the growth rates increase with the ZF amplitude up to
Vmax

0 =vd ) 1 and to Vmax
0 =vd ) 0:5, respectively, and after

that decreases monotonically. For km=qx ¼ 2, the growth
rates decrease with the flow amplitude, and the flow always
has a destabilizing effect. For all the three values of
kmL̂x=qx ¼ 0:3; 1; 2, the mode frequency increases with the
flow amplitude. Although this increase appears to be of a lin-
ear form, changing the sign of the ZF amplitude does not
affect the mode frequency or growth rate. As the amplitude
of the flow is raised, the growth rate of the mode decreases,
and the mode frequency increases. At the critical value for
which Ucrit

max ¼ Vmax
0 =vd ¼ ccrit, the growth rate of the mode

goes to zero. Substituting ccrit in Eq. (66), we obtain the con-
dition for the radial position of the critical layer as

U00ðccritÞ ¼ %1: (70)

As we raise the amplitude of the ZF Umax, the above condi-
tion will be satisfied at the radial location, for which

Ucrit
max ¼ q%2

x : (71)

This critical radial location for the profile of Eq. (68) and for
qxL̂x ¼ p is at x ¼ L̂x and the critical flow amplitude is
Ucrit

max ¼ 8:2. For profiles which are more sheared, i.e., the
spatial variation scale of the flow is smaller (or equivalently
qx is larger), the critical amplitude for instability of the flows
is lower.

Here, we calculate the quasilinear turbulent flux of par-
ticles, using Eq. (16), for our numerically obtained modes.
Our goal is to see how big the net inward flux can be, com-
pared to the net outward flux, as a function of the parameters
of the system, such as the spatial scales of modes km, the spa-
tial scale of ZF qx, and also the amplitude of the ZF, Vmax

0 .
The real and imaginary parts of the first radial eigen-

function (l¼ 1) is shown in Fig. 4(a) (mode number indices
have been dropped), for km=qx ¼ 0:3;Qn ¼ 0:3; q, ¼ 0:11;
qxL̂x ¼ p, and Vmax

0 =vd ¼ 1, and the ZF given by Fig. 2.
Since the solutions are linear, the eigenfunction depicted in
Fig. 4(a) is normalized to its root mean square value given
by

d/̂rms ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

LxLyLz

ð
jd/̂

2
jdxdydz

s

: (72)

In Fig. 4(b), we have plotted the quasilinear particle flux for
the eigenmode of Fig. 4(a). The particle flux stagnation
points at which CðxstagÞ ¼ 0 are given by the solutions of

xr
m % kmV0 xstagð Þ % kmvd xstagð Þ 1þ cm

an

& '
¼ 0: (73)

In Fig. 5, we have plotted the ratio of the radially integrated
net inward flux (Cin) to the radially integrated outward flux
(Cout), as a function of the flow amplitude Vmax

0 , where Cin

and Cout are given by

Cin ¼
1

Lx

ðLx

0

CH %Cð Þdx;

Cout ¼
1

Lx

ðLx

0

CH Cð Þdx:

(74)

FIG. 4. (a) Real and imaginary part of the first radial eigenmode with eigen-
frequency x=kmvd ¼ 1:13þ 0:0012i for km=qx ¼ 0:3; Vmax

0 =vd ¼ 1;
q, ¼ 0:11; qxL̂x ¼ p, and Qn ¼ 0:3. (b) Quasilinear particle flux for the
l¼ 1 eigenmode depicted in Fig. 4(a), as a function of radial position.

FIG. 5. Ratio of the net inward flux to the net outward flux for the l¼ 1
mode, as a function of the ZF amplitude, for q, ¼ 0:11; qxL̂x ¼ p, and
Qn ¼ 0:3.
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In the above equations, HðxÞ is the Heaviside step func-
tion. In Fig. 5, qxL̂x ¼ p and km=qx ¼ 0:3; 1; 2, and the first
radial eigenmode is used (l¼ 1). We can make the following
observations in Fig. 5: (i) A minimum exists for the flow am-
plitude UL

max, below which the flow shear is too small to
drive a net inward flux. This minimum value increases with
the value of km=qx: for km=qx ¼ 0:3; 1; 2, respectively,
q2

xUL
max & 0:009; 0:03; 0:08. (ii) The value of the %Cin=Cout

decreases with kmL̂x. This implies that longer wavelength
modes (smaller values of km=qx) carry a larger local net
inward flux driven by ZF convection.

B. Turbulence energetics

We define Eðx; tÞ, which is the fluctuation energy den-
sity averaged over the directions of symmetry

E x; tð Þ ¼
1

2
hjrd/̂j2 þ jdn̂j2i > 0: (75)

Evolution of the total wave energy is given by integrating
Eðx; tÞ over the whole volume

@

@t
E ¼

ð
E x; tð Þds ¼ Pdiss þ Pn þ PZF;

Pdiss ¼ %
ð

ajdn̂ % d/̂j2ds; Pn ¼
ð

CvdðxÞds;

PZF ¼
ð

PV0ðxÞds;

where ds is the 3D volume element. The first term on the
right hand side is the rate of turbulence energy dissipated
due to resistive parallel diffusion, and is negative definite at
all x. The second term is the rate of energy released from the
density gradient to the turbulence. The third term is the rate
of work performed by the flow on the turbulence
(%Reynolds work). The argument of the last two integral
terms can be local sinks or sources, i.e., their signs depend
on the sign of their relative fluxes (particle flux or vorticity
flux) and the signs of the background velocities (electron dia-
magnetic drift velocity vd or flow velocity V0).

Figure 6 shows the ratio of the rate of energy transferred
from the flow to the turbulence (PZF) to the rate of energy
transferred from the density gradient to the turbulence (Pn),
as a function of flow amplitude Vmax

0 , for the same parame-
ters as in Fig. 5. Pn is always positive, which means the den-
sity gradient always drives the turbulence. For km=qx ¼ 0:3,
flow transfers energy to turbulence for all flow amplitudes
PZF > 0. The value of PZF=Pn remains relatively constant for
Vmax

0 ! vd. For km=qx ¼ 1, flow transfers energy to the turbu-
lence at flow amplitudes lower than a threshold amplitude
q2

xVmax=vd & 0:35, and for flow amplitudes greater than this
threshold, turbulence transfers energy to the flow. For
km=qx ¼ 2, the direction of energy transfer is always from
the turbulence to the flow. Therefore, we can see that the
direction of the energy transfer changes with the length scale
of the modes: for small wave number modes, flow drives the
turbulence. As the mode wave number becomes larger

compared to the ZF wave number, the direction of energy
transfer changes and the modes transfer energy to the flow.

In Ref. 12, Zhou et al. present experimental evidence of
an inward flux on the outer edge of the plasma. The authors
suggest that this inward flux is driven, due to the strong flow
shear driven at the edge of plasma cylinder through biasing
of the edge to amplitudes VE$B much larger than the electron
diamagnetic drift velocity vd. In comparison, the observation
of the inward particle flux reported by Cui et al. in Refs. 33
and 34 is for an un-biased system in which the flow is self-
generated with amplitudes VE$B ' vd. Moreover, Zhou et al.
present a linear analysis of the frequencies and growth rates
of different linear instabilities, which can cause the turbu-
lence, including drift-KH, pure KH, and interchange modes.
Comparing to their experimental results, they conclude that
since both drift-KH and pure KH frequencies are comparable
to the experimentally measured frequencies, then the E$B
both flow shear and density gradient must be both responsi-
ble for driving the fluctuations. In the analysis of the ener-
getics of our theory, this corresponds to the case where the
spatial scaling of the mode is small comparing to the spatial
scaling of the flow shear (e.g., the curve for km=qx ¼ 0:3 in
Fig. 6), for which both the flow shear and the density gradi-
ent drive the turbulence. However, Zhou et al. do not say
which of these unstable modes is directly responsible for
driving the inward flux. Our theoretical model determines
these modes to be the kk 6¼ 0 drift-KH modes and not the
kk ¼ 0 pure KH modes.

VI. CONCLUSION AND DISCUSSION

Self-generation of zonal flows has been the subject of
many theoretical studies,27,35 as well as numerical simulation
of fluid models,36,40–44 Some of the interesting aspects of the
aforementioned studies are flow formation mechanisms, tur-
bulence regulation and reduction by (zonal) flows, transport
of particles, heat and momentum, and the effect of zonal
flows on transport. However, there has been little work done
on the effect of locally varying fluxes of particles on the re-
organization of flow profiles and vice versa. Moreover,

FIG. 6. Ratio of the rate of energy transferred from the flow to the turbu-
lence PZF to the rate of energy transferred from the density gradient to the
turbulence Pn, as a function of the flow amplitude Vmax

0 , for the same param-
eters as in Fig. 5.
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quantitative study of zonal flow generation via residual stress
and the comparison to other flow generation mechanisms in
the same system have not gotten enough attention.

In this paper, we study the interplay between the trans-
port of particles, vorticity, the background density, and the
flow shear, using a simple, modified HW model. More spe-
cifically, we show how the competition between the terms
contributing to the particle flux, which are functions of the
global parameters of the system, and the terms which are de-
pendent on the local values can result in a local inward flux
of particles. Moreover, due to the conservation laws of this
system, we show that the vorticity flux is linked and con-
strained to the particle flux through the residual vorticity. As
a result, the variation of particle flux can directly change the
local value of vorticity flux.

The primary purpose of this paper is to explain the
theory, whereas the comparisons of the theory we discussed
here to the new experimental results are to be found in Ref.
33 by Cui et al. The following is a summary of our results:

(i) We derive the flow dependent quasilinear expression
for the particle flux, which consists of a diffusive
relaxation flux in the outward direction and a convec-
tive pinch, which can be either inward or outward,
depending on the zonal flow structure.

(ii) We identify a mechanism for driving an inward parti-
cle flux by the zonal flow: Flow enhanced pumping
(Doppler effect) by the waves can overcome the out-
ward diffusive relaxation flux, leading to a net inward
flux of particles. Moreover, we obtain the condition
for driving a net inward flux in Eq. (25). The free
energy for driving this up-gradient particle flux comes
from flow shear ðrV0Þ.

(iii) Quasilinear expression for the vorticity flux is
obtained. This transport flux consists of a viscous dif-
fusive term and a residual vorticity flux. The latter
can drive a flow shear from an initial state of zero
flow shear. The functional form of residual vorticity
is a sum of a positive definite term directly propor-
tional to rn0, and a term directly proportional to par-
ticle flux C, which can be locally positive or negative
and is driven by both rn0 and the flow shear (through
its convective pinch part).

(iv) Using the positive definite enstrophy production, we
obtain a constraint relation in Eq. (54), which links
the transport of particles and vorticity and also the
background gradients.

(v) We obtain the linear eigenvalue equation for this sys-
tem to study the effect of the flow on the eigenmodes,
as well as the quasilinear fluxes resulting from these
modes. Assuming a toy zonal flow profile, we observe
that the threshold flow amplitude for the instability of
the mode is Vcrit

max ¼ vdL2
ZF=q

2
s , where LZF is the char-

acteristic length scale of the zonal flow. As the flow
amplitude approaches Vcrit

max, the mode frequency
increases toward Vcrit

maxky, and mode growth rate
approaches zero.

(vi) Comparing the total inward fluxes to outward fluxes
as defined in Eq. (74), we observe that inward particle

fluxes of larger magnitude are driven for longer wave-
length modes compared to characteristic length scale
of the ZF ðky < L%1

ZF Þ. Moreover, for short wavelength
modes, there is a threshold flow amplitude below
which the inward fluxes does not exist at all.

(vii) While a monotonically decreasing density gradient
always performs positive work on the turbulence,
flow can (quasilinearly) transfer energy to the turbu-
lence or extract energy from turbulence. We observe
that for longer wavelength modes as compared to the
characteristic length scale of the ZF ðky < L%1

ZF Þ, the
flow drives the turbulence, whereas for ðky > L%1

ZF Þ,
the turbulence drives the flow.

(viii) This work is primarily analytical. Despite numerous
computer studies of this system, no specific tests of
the theory in this paper are available. Thus, we sug-
gest the following tests in a nonlinear numerical simu-
lation of this system:

(a) Can a C < 0 over a finite region be driven by a
self-consistent flow without biasing, given dif-
ferent initial background pressure profiles?

(b) How does the vorticity gradient for a saturated
zonal flow profile scale with 1=Ln ) dn

dx =n
and C and whether our theory is successful in
predicting the saturated vorticity structure (see
Eq. (49))?

(c) Can the theory predict the location of the sign
reversal of C based on the given background
quantities?

Regarding the numerical simulations, there have been
extensive studies of HW including flows. While Reynolds
stress driven flows and their effect on transport and confine-
ment improvement with shear layer are well known, little
has been done on the flow structure and its relation to trans-
port. This point has been amplified in (viii) above, which
suggested some numerical tests on theory.

An improvement to the current model is the inclusion of
finite ion temperature effects, which we intend to study in
our future work. The presence of a finite ion temperature
profile affects the stability of pure KH waves, as well as
drift-KH waves. Furthermore, introducing the additional
source of free energy in the ion temperature gradient can
drive another class of unstable modes which are the ion tem-
perature gradient (ITG) modes. In this multi-instability sys-
tem, the ion mixing modes can also drive transport fluxes of
particle, momentum, and energy, which can enhance or
reduce the transport driven by other types of turbulence.
Another interesting subject for future works, which further
adds to the complexity of this system, is the presence of a
parallel flow shear ðrVkÞ. This additional source of free
energy can drive parallel shear flow instabilities and can also
be a drive mechanism for an inward particle flux.30

Moreover, in our future works, we study a self-consistent
predator-prey type model, taking into account the finite am-
plitude effects of the flow. As we observed in this work, a fi-
nite size flow affects the diffusive relaxation transport fluxes,
as well as non-diffusive fluxes of particle and vorticity (mo-
mentum). A modified predator-prey model, in which the
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effect of finite amplitude zonal flows on the modes is more
accurately accounted for, will gives us the opportunity to
study the collisionless zonal flow saturation mechanisms and
to identify the pathways to shear flow relaxation.
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APPENDIX: DERIVATION OF THE EQUATIONS FOR
THE LOCAL DENSITY DEPENDENT, MODIFIED
HASEGAWA-WAKATANI SYSTEM

We begin from the ion force-balance relation

nmi
dvi

dt
¼ en %r/þ v

c
$ B

( )
%rpi %r:Pi; (A1)

where pi is the ion pressure and Pi is the stress tensor.
Assuming cold ions, Ti . Te, in the above relation, we will
have rpi & 0. With the smallness ordering parameter

1

xci

d

dt
) e. 1; (A2)

ion velocity to the first order in e is given by

vi ¼ vE þ vp þ vvisc

¼ %cr/$ B

B2
% c

xciB

dr/
dt
% 1

nmixci
r:Pi $ ẑ (A3)

xci ¼ eB=mic is the ion cyclotron frequency and ẑ is unit
vector pointing in the direction of magnetic field. Current
closure relation for a quasi neutral system gives

r:J? ¼ %rkJk: (A4)

The perpendicular current comes from the polarization drift
current and viscosity of ions J? ¼ envp þ envvisc

r:J? ¼ er:½n0ðvp þ vviscÞ+; (A5)

n0 is the background density profile (n ¼ n0 þ dn). For the
parallel current, we use the Ohm’s law

Jk ¼
e

me!e
rkpe þ eneEk
" #

¼ eTe

me!e
rk n% n0/̂
" #

; (A6)

where /̂ ¼ e/=Te. Now, from Eq. (A4), we have

q2
sr: n0

d

dt
r/̂

& '
¼ Te

me!e
r2
k n% n0/̂
" #

: (A7)

With the spatial dimensions scaled to qs and time scaled to
x%1

ci , we rewrite Eq. (A7) as

r: n0
d

dt
r/̂

& '
¼ Dkr2

k n% n0/̂
" #

; (A8)

where the non-dimensional parallel diffusion coefficient is
Dk ¼ Te=me!exci. From the electron continuity equation, we
obtain

d

dt
n ¼ Dkr2

k n% n0/̂
" #

: (A9)

The linearized form of Eqs. (A8) and (A9) in terms of fluctu-
ations dn̂ and d/̂ is given by

ð@t þ V0@yÞr:½n0ðxÞrd/̂+ þ dv̂x@x½n0@xV0+

¼ Dkr2
kðdn% n0d/̂Þ þ Dx (A10)

ð@t þ V0@yÞdnþ dv̂x@xn0 ¼ Dkr2
kðdn% n0d/̂Þ þDn; (A11)

where dv̂x ¼ %@yd/̂. Dx and Dn are viscosity related terms,
which for non-uniform viscosity coefficients are complicated
functions of radius.

Here, we obtain the relation for the positive definiteness
of the fluctuation potential enstrophy, for the density depend-
ent, inviscid system. From subtracting Eq. (A10) from Eq.
(A11), we obtain

ð@t þ V0@yÞðdn%r:½n0ðxÞrd/̂+Þ
þ dv̂xð@xn0 % @x½n0@xV0+Þ ¼ 0: (A12)

We assume unstable perturbations of the form given by Eqs.
(8) and (9). Now, multiplying Eq. (A12) by dn%r
:½n0ð~xÞrd/̂+ and averaging over the directions of symmetry,
we obtain

@

@t

hdq2
mi

2
¼ c Cm % @x n0Rm½ +ð Þ @xn0 % @x n0@xV0½ +ð Þ > 0;

(A13)

where we introduced the averaging

h i ¼ 1

LyLz

ðLy

0

dy

ðLz

0

dz; (A14)

Cm ¼ hdv̂m
x dnmi is the particle flux and Rm ¼ hdv̂m

x dv̂m
y i is

the Reynolds stress for mode mn. Moreover, we can multiply
Eq. (A12) by dv̂m

x and average over the symmetric dimen-
sions to obtain

Cm % @x n0Rm½ + ¼ %cm

h dv̂m
x

" #2i
jkmV0 % xmj2

@xn0 % @x n0@xV0½ +ð Þ:

(A15)

Above relation puts the same sign constraint between Cm % @x

½n0Rm+ and n00 % ½n0V00+
0 as Eq. (A13) did. Moreover, by elimi-

nating Cm % @x½n0Rm+ from Eqs. (A13) and (A15), we obtain

@

@t

hdq2
mi

2
¼ cm

@xn0 % @x n0@xV0½ +ð Þ2

jkmV0 % xmj2
h dv̂m

x

" #2i: (A16)
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