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ABSTRACT OF THE DISSERTATION

Sparse Recovery and Representation Learning

by

Jingwen Liang

Doctor of Philosophy in Mathematics

University of California San Diego, 2020

Professor Rayan Saab, Chair

This dissertation focuses on sparse representation and dictionary learning, with three

relative topics. First, in chapter 1, we study the problem of low-rank matrix recovery in the

presence of prior information. We first study the recovery of low-rank matrices with a necessary

and sufficient condition, called the Null Space Property, for exact recovery from compressively

sampled measurements using nuclear norm minimization. Here, we provide an alternative

theoretical analysis of the bound on the number of random Gaussian measurements needed for the

condition to be satisfied with high probability. We then study low-rank matrix recovery when prior

information is available. We analyze an existing algorithm, provide the necessary and sufficient

conditions for exact recovery and show that the existing algorithm is limited in certain cases.
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We provide an alternative recovery algorithm to deal with the drawback and provide sufficient

recovery conditions based on that.

In chapter 2, we study the problem of learning a sparsifying dictionary of a set of data, fo-

cusing on learning dictionaries that admit fast transforms. Inspired by the Fast Fourier Transform,

we propose a learning algorithm involving O(N) unknown parameters for a N×N linear transfor-

mation matrix. Empirically, our algorithm can produce dictionaries that provide lower numerical

sparsity for the sparse representation of images than the Discrete Fourier Transformation (DFT).

Additionally, due to its structure, the learned dictionary can recover the original signal from the

sparse representation in O(N logN) computations.

In chapter 3, we study the representation learning problem in a more complex setting.

We use the concept of dictionary learning and apply it in a deep generative model. Motivated

by an application in the computer gaming industry where designers needs to have an urban

layout generation tool that allows fast generation and modification, we present a novel solution

to synthesize high quality building placements using conditional generative latent optimization

together with adversarial training. The capability of the proposed method is demonstrated in

various examples. The inference is nearly in real time, thus it can assist designers to iterate their

designs of virtual cities quickly.
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Chapter 1

Introduction and Background

1.1 Compressed Sensing and low-rank matrix recovery with

prior informations

In signal processing, we often assume that there is a map f mapping from the representa-

tion space to the space of signals that we interested:

y = f (x) (1.1)

In this dissertation, we study three topics relevant to signal representation. First, define the

sparsity of a vector as number of non-zero elements of it, we consider sparsity and compressed

sensing. For a k-sparse vector x ∈ RN , let its measurements y ∈ Rm be given by

y = Ax (1.2)

where A ∈ Cm×N is a linear measurement matrix. When m ≤ N, (1.2) is an underdetermined

system with infinitely many solutions (provided that there exists at least one). Nevertheless,
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compressed sensing theory shows that it is possible to exactly recover all such x from y by solving

the `1 minimization problem

minimize
x

‖x‖1 subject to y = Ax

if the measurement matrix A satisfies certain properties [Don06] [CT06] [CRT06a] and if x is

sparse enough. These conditions are satisfied with high probability by many classes of random

matrices, for example, matrices with i.i.d. random Gaussian entries with m≥Ck log(N/k) for

some constant C.

In compressive sensing, we wish to recover sparse signals from compressed measurements.

Generalizing the unknown sparse vector x to an unknown low rank matrix X , we have the following

problem of recovering matrix X ∈ RN1×N2 from

y = A (X)

where A : RN1×N2 → Rm. It is been shown that we can successfully recover all low-rank matrices

with rank at most r, by solving optimization problem

minimize
X

‖X‖∗ subject to y = A (X), (1.3)

if A satisfies certain properties [RFP10], [CR09], [Rec11], [CT10], [Gro11], where ‖X‖∗ is the

nuclear norm defined as sum of singular values of X .

Define the support of a sparse vector x as the index set indicating non-zero elements of x,

and the support of a low-rank matrix X by matrices whose columns are basis vectors that span X’s

column and row spaces: {U,V}. While it is shown that `1 minimization is suitable for recovering

all k-sparse signals with arbitrary support set, and the nuclear norm minimization can recover

all rank r low-rank matrices with arbitrary support, it is often the case that in many applications,
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there is useful (but possibly imperfect) prior knowledge about the signals and matrices – for

example, as an estimate of the support. In such cases, with more information, one may modify

the optimization problem and hopefully weaken the exact recovery conditions.

We will study the problem of solving X from undetermined linear system y =A (X) given

X is a sparse vector or low-rank matrix, as well as a prior estimate of the support. This is the first

topic of this dissertation.

1.2 Learning Dictionary with Fast Transforms

The first topic considers the problem of recovering x from y = f (x) assuming that f is

a linear transformation A that is given. We consider optimization problems for accomplishing

this task, and study the recovery conditions that guarantee exact recovery. However, in some

applications, we are only given several instances of y without knowing a transform with which

y admits a sparse representation. Our goal here is not signal recovery, but rather learning a

sparsifying transform D such that y = Dx and x is sparse. Thus in 2nd topic, we will study the

problem of learning a linear transformation (often called dictionary) that can make a set of signals

have sparse representation.

Here, we assume that the signal y ∈ CN can be described as

y = Dx,

where D ∈ CN×n is a linear mapping called a dictionary, x ∈ Cn is the representation of the signal

y under the dictionary D, and is assumed to be sparse.

When applying the transformation that leads to spare representation, we can either choose

a pre-specified set of functions or use the dictionary that is learned from the given set of sig-

nals that need to be sparsified. Choosing from pre-constructed dictionaries such as wavelet

basis[ABMD92], curvelet basis [DD00] and Fourier basis [BB86] often leads to fast algorithms
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for the computation of the sparse representation and original signal recovery. For example

Fast Fourier Transform (FFT) [Nus81] computes the discrete Fourier Transform (DFT) of a

n-dimensional signal with O(n logn) complexity instead of O(n2) and the fast Wavelet Transform

(FWT) takes only O(n) in certain cases [Cod92].

Another route of choosing dictionaries is to design a learning algorithm and find that

dictionary that fit for the given set of signals. Unlike those pre-constructed dictionaries that may

be limited in their ability to sparsify the signals they are designed to handle and often restricted to

signals or images of a certain type, a dictionary learned from data can potentially be trained to fit

arbitrary family of signals of interest and gain better sparsity results. Indeed, it has been shown

that using a learned dictionary from training data rather than fixed frames like Fourier or Wavelets

basis derives better results in many practical applications such as face recognition [HDRL16],

[ZL10], image de-noising [DLZS11], [EA06], image super-resolution [YWL+12], [ZZX+12]

and image segmentation [ZZM12]. On the other hand, dictionaries learned from data usually do

not exhibit the kind of structure that yields a fast transform. Thus, applying these dictionaries to a

vector will usually require O(n2) operations, which when n is large can be prohibitive, especially

if the dictionary needs to also be applied to a large data-set.

Thus in the second topic, we will introduce an approach to dictionary learning which

combines the computational efficiency of certain model-based sparsifying transforms – such

as the Discrete Fourier Transform, with the advantages of data-driven dictionaries. Similar to

traditional dictionary learning algorithms, we will modify the optimization problem

minimize
D∈CN×n,xi∈Cn

p

∑
i=1
‖yi−Dxi‖`2 +λ‖xi‖`1. (1.4)

by factorizing D into product of a sequence of matrices and learn those factors together with the

sparse representation. Our algorithm is based on alternating minimization, where we minimize a

sequence of convex functions, and find n×n dictionaries that can be applied in O(n logn) time.
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That is, we use data to learn dictionaries that admit a fast algorithm for the corresponding linear

transform. This is the second topic of this dissertation.

1.3 Deep Generative Model Using Representation Learning

Techniques

After we learn the dictionary, we can apply them to new data which is assumed to have the

same distribution of the training data that we used when learning the dictionary and find the sparse

representation. In some applications, however, it is not enough to assume that the relationship

between signals and their representations is linear. For example, if we have a dictionary that

can sparsely represents natural images. We cannot expect that feeding a random sparse signal to

the learnt dictionary can return us a natural image. For applications such as image generation,

we need more complex assumptions to model the relationship between the given signal and its

representation.

In the last topic, we will study the topic that apply the representation learning techniques in

deep learning. We will propose a conditional generative model using representation learning and

its application of generating building placement of a certain neighborhood given the information

about its environment such as road networks, waterbodies and vegetations. Our work is motivated

by the fact that practitioners in the gaming industry often encounter the issue that building layouts

on most available maps are largely missing especially in remote areas. We are aiming at training

a conditional generative model that can take simple inputs conditions as we listed above and

generate the possible placement of buildings around them under different styles given the same

input.

In our model, we assume that we have a set of samples {(Xi |Ci)}, i = 1, · · · ,N, where

Xi ∈ Rn×n is the i-th sample of n× n building placement and Ci ∈ R5×n×n is the associated

input condition, each of it contains 5 n× n channels i.e. the highways, arterial streets, local

5



roads, waterbodies and vegetations. We are going to train a generator Gω that takes inputs C

and generates a building placement X . Besides this, we also train the model to learn an lower

dimensional representation zi for each training samples Xi, zi are called latent representation

that suppose to encode informations about the building layout of example i and can be used as

style source (after training) in the inference for generating the new examples. Thus the generator

should have from

Gω(z |C) = (X |C)

The generator it self can be trained separately by doing the following optimization

minimize
ω,z

N

∑
i=1

`(Gω(zi|Ci),(Xi|Ci)),

where ω ∈ Ω represents the parameters of the generator Gω, and `(x,x′) is some predefined

distance metric measures the difference between the generative example and the ground truth. In

order to enhance the training we also introduce the discriminator. The job of the discriminator

is to learn an efficient classifier so that it can tell whether its input is a real data or a generated

fake data. In this way, the discriminator can help the generator to learn the map from conditional

latent space to the data space bater and faster.

1.4 Contributions

In chapter 2, we study the problem of recovering matrix X from compressed linear

sampling

y = A (X)

given that X is low-rank matrices as well as the problem when extra prior information about

support of interested matrix is provided. First, we study the nuclear norm minimization for

low-rank matrix recovery and provide an alternative proof for sampling complexity in regular
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low-rank matrix recovery without prior information with Random Gaussian Matrix. Then, we

studied the low-rank matrices recovery with prior information using weighted nuclear norm

minimization with random Gaussian Matrix. We analyze an existing algorithm, provide the

necessary and sufficient conditions for exact recovery and show that the existing algorithm is

limited in certain cases. We provide an alternative recovery algorithm to deal with the drawback

and provide sufficient condition for exact recovery based on that. We show that when using correct

prior information, we can dramatically reduce the number of measurements need for exactly

recovery. Finally, we present the numerical experiment about the low-rank matrix recovery with

prior information to support our analysis.

In chapter 3, we propose an algorithm which can learn the fast factorization of a linear

dictionary as well as the approximate sparse representation from the given training data. In our

proposed algorithm, we learned a N×N linear transformation matrix use O(N) degree of freedom.

Besides, the output of the algorithm forms a factorization of the dictionary which can obtain fast

recovery by O(N logN) calculations instead of O(N2). We also provide numerical experiments

on image data and show that our algorithm can successfully learn a fast transform that achieves

sparse representation that outperform the 2D Discrete Fourier Transform in terms of sparsity.

In chapter 4, firstly, we propose conditional generative model to control the generation

on user-specified maps while training representations of given examples. Then we enhance the

generator by adversarial training in order to learn more realistic and generic neighborhood styles,

and decouple the representation of the target examples from associated input conditions. Last but

not least, we formulate the problem of building placements in the scope of image synthesis and

format the map data in individual channels. In this way, the data set can also be used for other

tasks such as road generation.
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Chapter 2

Signal Recovery with Prior Information

2.1 Introduction

Classical data compression as used in such standards as MP3 and JPEG, starts from

the characteristics of the data itself, then finds and eliminates redundancy. A signal is called

sparse if most of its elements are zero, similarly, a signal is called compressible if it can be well

approximated by sparse signals. Suppose one want to compress a signal x ∈ RN . A common

procedure is to acquire the samples y ∈ RN of the signal, and convert them to some representation

where the signal is sparse or compressible, then sort all the samples after the quantization and keep

the largest k elements if the signal is k-sparse or approximately k-sparse in that representation. In

this procedure, the compression occurs after the data has been collected, N measurements are

made (sensing), but only k� N coefficients are kept in the compression, which is a waste of

resources. Thus one wonders if there is a better way which can compress at the time of sensing.

The problem becomes how can we design the sampling and recovery so that one can use less

measurements to (simultaneously) compress a signal without losing too much information.

8



2.1.1 Compressive Sensing

Consider the signal z ∈ RN , that is sparse under some representation system (e.g., a basis),

so that z = Φx, and x is sparse. We sample the data z from y = Ãz, where y ∈ Rm is the linear

measurement of z. Knowing Φ, we can rewrite our equation as y = ÃΦx =: Ax. Then, if we can

recover x from y, we can simply recover z as z = Φx. In compressed sensing, we can only collect

m� N measurements and recover x from y exactly by solving the under-determined system

y = Ax. Since the system usually has infinitely many solutions, one common way to solve it is

through “zero norm” minimization:

minimize
z

‖z‖0 subject to Az = Ax, (2.1)

where ‖x‖`0 norm defined as number of non-zero elements of the vector x. However, `0 norm

minimization is a NP-hard problem. Instead, one often uses `1 norm (sum of the absolute value

of the vector) minimization as a convex relaxation:

minimize
z

‖z‖1 subject to Az = Ax (2.2)

The problem (2.2) can then be written as linear programming and be solved efficiently in

polynomial time complexity [BV04]. It is shown by [CRT06b] and [Don06], that `1 minimization

can stably and robustly recover x from “incomplete” and inaccurate measurements y = Ax+ e,

when A satisfies certain properties which hold for certain random matrices with high probability,

for example, matrices with entries as i.i.d. Gaussian random variables when m & k log(N/k)

(where k is the sparsity of the target signal).

One of the above properties of the measurement matrix A that we are interested in this

dissertation is called Null Space Property (NSP):

Definition 1 (Null Space Property of order k [CDD09]). A matrix A ∈ Rm×N is said to have the

9



Null Space Property of order k and constant 0 <C < 1 if for any vector h ∈ Null(A)\{0}, and

for every index set T ⊂ {1,2, · · · ,N} with |T | ≤ k, we have

‖hT‖1 ≤C‖hT c‖1.

The NSP requires every vector in null space of A is non-sparse. It is a necessary and

sufficient condition for the recovery of all k-sparse vector x from y = Ax [CDD09].

2.1.2 Low-rank matrix recovery

Besides vectors, we are also interested in low-rank matrices measurement and recovery.

Low-rank matrices have wide usage in applied mathematics and scientific research, including

famously in the Netflix prize problem [Kor09], collaborative filtering [RYRD15], MRI [LHDJ11]

and quantum state tomography [KRT17]. With the growth of the size of data, fully observing or

sampling the matrix become harder. In this case, we either have highly incomplete observation

or we need a more efficient method to compress the matrix. Recovering the full matrix from

incomplete data or insufficient data become very important.

In low-rank matrix recovery, we are aiming at finding a low-rank matrix X ∈ Rn1×n2 ,

rank(X)= r�min{n1,n2}, from y=A (X). We can write X =∑
r
i=1 σiuivT

i where σ1, · · · ,σr≥ 0

are the singular values of X and vectors u1,u2, · · · ,ur ∈ Rn1 and v1,v2, · · · ,vr ∈ Rn2 are the left

and right singular vectors of X respectively. The collection of all these matrices constitutes a

union of subspaces in Rn1×n2: each set of {{ui}r
i=1,{vi}r

i=1} defines a r-dimensional subspace,

and the {σi}’s are the coefficients corresponding to an element in that subspace. The union

contains uncountably many such subspaces since the {ui} and {vi} can vary continuously.

When we count the degrees of freedom in a rank r matrix, it can be represented by

O(r(n1 +n2)) parameters, which is much smaller than O(n1n2) when r is relative small. It has

been shown that it is possible to exactly recover X from fewer measurements in [RFP10] [CR09]
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[Rec11] [CT10] [Gro11] through y = A (X).

Here again, one approach to recover the full matrix from the incomplete measurements is

through optimization. The task is to recover the matrix X ∈ Rn1×n2 with rank r�min{n1,n2},

from linear measurements y with y = A (X), where A is a linear measurement mapping from Rm

to Rn1×n2 [Faz02], A (X) = ∑
m
i=1〈Ai,X〉ei. This usually lead to non-convex formulations:

minimize
X

rank(Z) subject to A (Z) = A (X), (2.3)

which are NP hard in general. Researchers have developed convex relaxations that succeed with

high probability under appropriate assumptions, to deal with this issue [CP11], [Gro11], [DR16].

Define the nuclear norm ‖Z‖∗ as the sum of singular values of a matrix Z. In particular, one can

exactly recover all rank r matrices X from y by solving the nuclear norm minimization problem

minimize
Z

‖Z‖∗

subject to A (Z) = A (X),

(2.4)

if A satisfies certain conditions. For example, A satisfying the Null Space Property (i.e. for

every matrix H ∈ Null(A ) and H 6= 0,

r

∑
i=1

σi(H)<
n

∑
i=r+1

σi(H),

where σi represents the ith singular value of H, and n = min{n1,n2}), is the necessary and

sufficient condition for recovering all matrix with rank no larger than r from the nuclear norm

minimization (2.4). Moreover, random Gaussian measurement with m = O(r(n1 +n2)) satisfies

the Null Space Property with high probability [FR13].
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2.1.3 Prior Information for Compressive Sensing and Low-rank matrix

recovery

Define the support of a sparse vector x as the index set indicating non-zero elements of

x, and the support of a low-rank matrix X by matrices whose columns are basis vectors that

span X’s column and row spaces: {U,V}. In fact, in the compressive sensing problem and the

low rank matrix recovery problem, the most challenging part is to identify the support of the

target. If the support of a sparse vector is known, one can solve for x directly by least square

minimization restricted to the known support, which then only needs k measurements; if the

support of a low-rank matrix is known, than one can only search over the space of the row and

column span using at most r2 linear measurements.

In real application, it is often the case that there is useful (but possibly imperfect) prior

knowledge about the signals and matrices – for example, as an estimate of the support. In wireless

sensor networks [BHSN06], the information of one of the sensors in the network, can be used as

an estimate of the support for another sensor. In real time video reconstruction [WLD+06], the

support of previous frames can be used as prior information of next frame. In medical imaging

processing [LDSP08], MRI imaging information from one slice can be used as prior information

for an adjacent slice. In recommender system, similar users share similar interest in products

and knowing prior information of a subset of user ratings of a particular item may provide prior

subspace information about the ground truth rating matrix. In this case, with more information,

we are interested in modifying (2.2) and (2.4) to hopefully weaken the exact recovery conditions.

In this chapter, we analyze the recovery methods for low-rank matrices that incorporate

support information. To modify the nuclear norm minimization (2.4), we first define the column

space and row space of X by U and V , and the estimate of column space and row space as Ũ

and Ṽ , let P(·) be the orthogonal projection onto the corresponding subspace. We study two
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modifications

minimize
Z

‖(wPŨ +PŨ⊥)Z(λPṼ +PṼ⊥)‖∗ subject to A (Z) = A (X), (2.5)

and

minimize
Z

‖(wPŨ +PŨ⊥)Z‖∗+‖Z(λPṼ +PṼ⊥)‖∗ subject to A (Z) = A (X). (2.6)

In both optimization problems, we penalize the subspace orthogonal to our support estimate more

when 0 < w < 1, 0 < λ < 1.

2.1.4 Related Work

Compressive Sensing

As we discussed before, compressive sensing appears as an alternative to the traditional

sampling theory, endeavoring to reduce the required number of samples for successful signal

reconstruction. It studies the recovery algorithms and the conditions for successful recovery

of the original signal when taking far fewer measurements then its ambient dimension. We’ve

mentioned that solving `1 minimization:

minimize
z

‖z‖1 subject to Az = Ax

can stably and robustly recover x from compressed sampled measurements, when the measurement

A satisfies certain properties.

For example, for A ∈ Cm×N with `2 normalized columns a1,a2, · · · ,aN , the coherence,

defined as

µ := max
j 6=k
|〈a j,ak〉|
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can be used to measure the quality of A. Compressive Sensing using the incoherence of the

measurement matrix [DE03],[CR07] gives a verifiable sufficient condition for the recovery of all

k-sparse x from y = Ax:

(2k−1)µ≤ 1. (2.7)

On the other hand, coherence suffers from a bottleneck, namely that if A ∈ Rm×n then µ & m−1/2

[FR13], which means that the sparsity of the signals that we can guarantee recovery of scales

only like
√

m, where m is the number of measurements.

Restricted isometric property (RIP) is another common tool for the performance analysis

of Compressive Sensing recovery algorithms. The restricted isometry constant of a matrix A is

defined as the smallest non - negative δk such that

(1−δ)‖x‖2
2 ≤ ‖Ax‖2

2 ≤ ‖(1+δ)‖x‖2
2,

for all k - sparse x.

Candès and Tao showed in [CT05] that the condition δk +δ2k +δ3k < 1 guarantees exact

k - sparse recovery through `1 minimization. Further in [CRT06b], Candès et al. showed that

to have stable and robust k - sparse recovery via `1 - minimization, the sufficient condition is

δ3k +3δ4k < 2. Later in [Can08], Candès further refined the sufficient condition for stable and

robust k - sparse signal recovery as δ2k <
√

2−1≈ 0.414. Then this result was improved in a

series of papers, e.g., [AS14], [CWX10], [CWX09], [Fou10], [FL09], [ML11]. Many random

constructions of measurement matrices satisfy these RIPs with very high probability when

m & k logn [FR13], [BDDW08], [MPTJ08], [Rau10], so the number of measurements now scales

linearly with the sparsity, which is better than it was with coherence.

The null space property of order k [CDD09] we mentioned before is a necessary and

sufficient condition on the measurement matrix A for the success of exact recovery of all k -

sparse vectors x from linear measurement y = Ax via `1 minimization. Basically, it requires that
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every vector in the null space of A is not sparse.

Compressive Sensing with prior information

While initially assuming sparsity of the target signal as the only characteristic during

recovery, researchers have more recently also studied other forms of prior information to enhance

the reconstruction in Compressed Sensing. Several works have studied the recovery of compres-

sively sampled signals using prior information. Chen, Tang, and Leng proposed a method that

utilized prior information in the form of a similar signal [CTL08]. Their method, the Prior Image

Constrained Compressed Sensing (PICCS) algorithm, introduce the prior information as a known

similar signal. They modify the objective function of the optimization into two parts, one for

measuring the sparsity of the target signal, the other term is for measuring the sparsity of the

difference between the prior information signal and the target signal. PICCS is implemented by

solving the following constrained minimization

minimize
x

[α‖D1(x− xp)‖1 +(1−α)‖D2x‖1] , such that Ax = Y

where D1 and D2 are the sparsifying transforms, and A is the linear measurement matrix, xp

represents the prior signal. Similarly, Mota, Deligiannis and Rodrigues also investigated the

problem with the prior information as a known similar signal [MDR17]. The given similar signal

is been integrated into the algorithm via minimizations as below:

minimize
x

‖x‖1 +β‖x− xp‖1 subject to Ax = y

or

minimize
x

‖x‖1 +
β

2
‖x− xp‖2 subject to Ax = y
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where xp represents the the prior known similar signal and β > 0 is an estimate of the trade-

off between signal sparsity and reliability of the prior information xp. With the similar prior

information, Weizman, Eldar and Bashat proposed a optimization that is close to that of previous

two algorithms but with weights in both terms of the objective function [WEBB15]:

minimize
x

‖W1D1x‖1 +λ‖W2(x− xp)‖1 subject to ‖Ax− y‖ ≤ ε

Where Wk is a diagonal matrix, Wk = diag([w1
k ,w

2
k , · · · ,wN

k ]), and wi
k controls the weight given to

each element of term 1 or term 2. Adding W1 to term 1 relaxes the demand for sparsity on the

elements in the support of the signal in its sparse transform domain. Adding W2 to term 2 controls

the demand for similarity between x and xp, enforcing sparsity only in signal regions where x and

xp are similar [WEBB15]. They use the algorithm on longitudinal Magnetic Resonance Imaging

(MRI) and assuming that the prior information coming from a previous MRI scan.

Other than using a similar signal as prior information, the work of Khajehnejad, Xu,

Avestimehr and Hassibi [KXAH09], [KXAH11], assigns a probability of being zero or nonzero

to each entry of the target signal. They assume a non-uniform sparsity model and analyze the

weighted `1 - minimization while allowing for non-uniform weights in noise-free case. In their

algorithm, the entries of the target signal are divided into two sets K1 and K2 with size n1 and n2

that partition {1,2, · · · ,N}, the elements in the first and the second set are assigned with probability

P1 and P2 to be nonzero respectively, P1 6= P2. The authors proposed a weighted `1 - minimization

where the `1 norm for different sets are given different weights W1 and W2. The weights are chosen

according to the prior probability information. Later in, [KOH12], Khajehnejad et al. extend

their result for prior information with more than two sets and provide a heuristic for estimating

the optimal weights. They further show that their weighted `1 - minimization is substantially

better than regular `1 - minimization. Based on the same kind of prior information, the work

of [MP15] shows that when the measurements are obtained using a matrix with independent
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identically distributed Gaussian entries, weighted `1 - minimization successfully recovers the

sparse signal from its measurements with high probability. While in [SED12], Scarlett, Evans

and Dey proposed the prior information as the probability of being non zero for each entry. The

authors provide the theoretical limits on the number of measurements needed to recover the

support set perfectly, and show that significantly fewer measurements can be used if the prior

distribution is sufficiently non-uniform.

Another type of prior information that have been studied is in the form of the support

estimate. Weighted `1 minimization, with zero weights on the known support, was proposed by

Vaswani and Lu in [VL10] and [LV10]. In their work, they assume to have a support estimate T̃ ,

and solve the minimization problem

minimize
x

‖xT̃‖1 subject to Ax = y

where xT̃ denotes the vector x restricted on T̃ . In the noise-free setting, they derive sufficient

conditions on exact recovery that are weaker than the analogous `1 minimization conditions when

T̃ is an appropriate estimate of the real support. In [FMSY11], Friedlander, Mansour, Saab and

Yilmaz study the weighted `1 - minimization:

minimize
z ∑

i
wi|zi| subject to ‖Az− y‖2 ≤ ε where wi =


w ∈ [0,1], i ∈ T̃

1, i ∈ T̃ c
, (2.8)

under the Resiticted Isometry Property (RIP) of the sensing matrix, which generate the result of

[CRT06b] to weighted `1 - minimization. They show that if at least 50% of the partial support

information is accurate, then weighted `1 - minimization is stable and robust under weaker

sufficient conditions than the analogous conditions for standard `1 minimization. They also

proved that weighted `1 - minimization provides better upper bounds on the reconstruction error

in terms of the measurement noise and the compressibility of the signal to be recovered. Mansour
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and Saab analyzed

minimize
z ∑

i
wi|zi| subject to Az = y where wi =


w ∈ [0,1], i ∈ T̃

1, i ∈ T̃ c
, (2.9)

and derive necessary and sufficient conditions i.e. the weighted Null Space Property (NSP),

for exact signal recovery from compressively sampled measurements using weighted `1 norm

minimization [MS17]. They shows that this condition can guarantee recovery even when standard

`1 - minimization fails. They also derive bounds on the number of Gaussian measurements for

these conditions to be satisfied, and show that weighted `1 - minimization requires significantly

fewer measurements than standard `1 - minimization when the support estimate is relatively

accurate. Bah and Ward study the minimal number of Gaussian measurement needed for robust

recovery from weighted `1 - minimization using weighted sparsity and weighted NSP in [BW16].

The work of Mansour and Yilmaz in [MY11] extends the result from [FMSY11], study the

weighted `1 - minimization problem with multiple support estimate with distinct weights. In

[NSW17], Needell, Saab and Woolf study weighted `1 norm minimization with completely

arbitrary weights under RIP.

Low rank matrix recovery

Similar to compressive sensing, when we study low-rank matrix recovery, we are interested

in conditions on the linear measurement matrix A : Rn1×n2 so that we can successfully recovery

all rank - r matrices X ∈ Rn2×n2 from y = A (X).

For every r with 1≤ r ≤min{n1,n2}, the r-restricted isometry constant(RIC) is defined

to be the smallest constant δr such that the following holds for all rank r matrix X ∈ Rn1×n2:

(1−δ)‖X‖2
F ≤ ‖A (X)‖2

2 ≤ (1+δ)‖X‖2
F . (2.10)
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where ‖X‖F :=
√
〈X ,X〉 is the Frobenius norm of X . Recht, Fazel, and Parrilo show that

δ5r ≤ 1
10 is a sufficient condition for recovering all rank r matrix exactly from the nuclear norm

minimization (2.4) [RFP10]. They also prove that the nuclear norm minimization succeeds with

high probability when the number of available measurements exceeds a constant times 2nr logn

for n×n matrices. Further in [CP10], Candès and Plan show that if δ4r ≤
√

2−1 then nuclear

norm minimization can recovery all matrices with rank no larger than r. Further more, they show

that if A is a random measurement ensemble obeying the following condition: for any given

X ∈ Rn×n and any fixed 0 < t < 1,

P(|‖A (X)‖2
2−‖X‖2

F |> t‖X‖2
F)≤Ce−cm

for fixed constant C, c, then if m & O(nr) then A satisfies the condition with high probability.

Cai and Zhang [CZ13] show δr < 1/3 as the sharp RIP bound in the noiseless case for low rank

matrix recovery.

Besides RIP, recovery conditions based on Null Space Property for low-rank matrix re-

covery have also been studied. Oymak, Mohan, Fazel and Hassibi show how recovery conditions

can be extended from Compressive Sensing to low-rank matrix recovery [OMFH11]. Kabanava,

Kueng, Rauhut and Terstiege provide a necessary and sufficient condition for low-rank matrix

recovery by analyzing the Null Space Property [KKRT16]. They show that O(r(n1 +n2)) mea-

surements are enough to uniformly and stably recover all n1×n2 matrix of rank at most r. The

authors of [DF10] give sufficient conditions for the exact recovery of all matrices up to a certain

rank, and show that these conditions hold with high probability for operators generated from

random Gaussian ensembles by analyzing spherical section property.
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Low rank matrix recovery with prior information

We can get prior information about the target low-rank matrices. For example, in [XJZ13]

the authors study the case when prior information are in forms of column and row vectors

when using nuclear norm minimization to solving matrix completion problem, they assume that

two matrices A = (a1,a2, · · · ,ara) ∈ Rn1×ra , and B = (b1,b2, · · · ,brb) ∈ Rn2×rb with orthonormal

columns are the side information matrices. The column vectors in X lie in the subspace spanned

by the column vectors in A, and the row vectors in X lie in the subspace spanned by the column

vectors in B. They proposed the optimization problem

minimize
Z∈r1×r2

‖Z‖∗ subject to RΩ(AZBT ) = RΩ(X) (2.11)

where RΩ is the sampling operator in matrix completion problem. They showed that with the side

information A and B, the number of measurements required can be reduced to O(r(ra+ rb) ln(ra+

rb) ln(n1 +n2)). However their work requires having exact column and row vector information

about the target matrix, which is not always the case in real application. In [CDH18], the authors

further extended the results from prefect prior information[XJZ13] to noisy prior information and

noisy observed low-rank matirx X = X0 +S0, where X0 is the underlying low-rank matrix and S0

is the sparse noise; they proposed to recover X0 jointly in two parts, one part captures information

from the side information space as AZBT , and the other part N captures the information outside

the prior information space.

In [AKM+14], the authors propose a weighted extension of nuclear norm minimization:

minimize
Z

‖(wPŨ +PŨ⊥)Z(λPṼ +PṼ⊥)‖∗ subject to A (Z) = A (X), (2.12)

that allows known subspace information to improve the results of matrix completion formulations.

Later, Eftekhari, Yang and Wakin study the optimization (2.12) in [EYW18] for both matrix
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recovery and matrix completion, and provided that reliable prior knowledge reduces the sample

complexity of matrix completion and recovery by a logarithmic factor. In [DAH18] Daei and his

co-authors studied the same optimization with prior information and provided an algorithm to

find the unique optimal weights that minimize the required number of measurements, and show

that with optimization (2.12) and the reliable prior information, the proposed convex program

with optimal weights requires substantially fewer measurements than the regular nuclear norm

minimization in numerical experiments. However, we show that the optimization problem (2.12)

is limited when one side of subspace information is perfectly known. In our work, we first analyze

the optimization (2.12), provide a necessary and sufficient condition for exact recovery based

on that optimization and then analyze why it is limited when one side of prior support estimate

is given. Then we propose a new optimization (2.6) problem when partial information about

the column and row subspace of the target matrix is known or estimated and show that sample

complexity is reduced when the prior information is reliable.

2.1.5 Contributions

For this topic, we provide 3 main contributions: First, we provide an alternative proof

for sampling complexity in regular low-rank matrix recovery without prior information with

Random Gaussian Matrix. Then, we study low-rank matrices recovery with prior information

by modifying the nuclear norm minimization. We consider two optimization problems and the

corresponding weighted rank Null Space Property, analyze and compare the sampling number

required for random Gaussian measurements when having correct support estimates. We provide

necessary and sufficient recovery condition for the first optimization (2.5) and show that it is

limited when support estimate is exact. We provide sufficient condition on the second optimization

(2.6). Finally, we present numerical experiments illustrating the performance of low-rank matrix

recovery with prior information to augment our analysis.
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2.1.6 Overview

The rest of this chapter is organized as followed: Section 2.2 introduced the low-rank

matrix recovery and provides an alternative proof on the sampling complexity for Random

Gaussian measurements; Section 2.3 considers low-rank matrices recovery with prior information,

in terms of the null space property, and discusses sampling complexity in the case of knowing the

correct prior information. Section 2.4 is dedicated to the numerical experiments.

2.2 Low-rank Matrices Recovery

2.2.1 Problem Setting and Notation

For low-rank matrix recovery, we want to recover a matrix X ∈ Rn1×n2 with rank r,

r�min{n1,n2}, from linear measurements

y = A (X),

where A : Rn1×n2 → Rm is an linear operator and A (X) = ∑
m
i=1〈Ai,X〉ei. Here, ei represents i-th

standard basis for Rm. To recover the matrix X , we looking for the lowest rank X in an affine

space. The naive approach of solving this problem

minimize
Z∈Rn1×n2

rank(Z) subject to A (Z) = y

is NP-hard. Instead, a heuristic method in the spirit of Compressive Sensing is usually used.

Consider the Singular Value Decomposition of X :

X =
n

∑
i=1

σiuiv∗i .
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Here, n = min{n1,n2}, σ1 ≥ σ2 ≥ ·· · ≥ σr > 0 = σr+1 = · · ·= σn are the singular values of X ,

and ui ∈ Rn1 , vi ∈ Rn2 are the left and right singular vectors of X , respectively. Introduce the

nuclear norm of X as sum of singular values:

‖X‖∗ =
n

∑
i=1

σi(X)

We consider the most common convex relaxation of rank minimization problem, nuclear norm

minimization:

X∗ = argmin
Z
‖Z‖∗ subject to A (Z) = y (2.13)

In this section, we will study the condition on measurement matrices, such that the nuclear norm

minimization (2.13) can return the exact result, i.e. X∗ = X . The condition will be determined by

the null space of the measurement matrices A .

2.2.2 Null Space Property of Low-rank Matrix Recovery

Define the Null Space Property for nuclear norm minimization (2.13) as follows (in

analogy with the Null Space Property of compressive sensing).

Definition 2 (Null Space Property with rank r [FR13]). Given a linear map A : Rn1×n2 → Rm,

we say that A satisfies the Null Space Property with rank r if for all H ∈A \{0} with singular

values σ1(H)≥ σ2(H)≥ ·· · ≥ σn ≥ 0, n := min{n1,n2},

r

∑
i=1

σi(H)<
n

∑
i=r+1

σi(H) (2.14)

Then the following theorem states that the Null Space Property with rank r is the necessary

and sufficient condition for uniform exact recovery.

Theorem 1. [FR13] Given a linear map A : Rn1×n2 → Rm, every matrix X ∈ Rn1×n2 of rank at
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most r is the unique solution of

minimize
Z

‖Z‖∗ subject to A (Z) = y

if and only if A satisfies the Null Space Property with rank r

However, the null space property is not easy to be verified by a direct computation as

it requires checking all the vectors in the null-space. One might be curious about what kind

of linear measurement satisfies it. Kabanava, Kueng, Rauhut and Terstiege [KKRT16] show

that if m = O(r(n1 + n2)), then with high probability, random Gaussian measurement with m

measurements satisfies Null Space Property with rank r.

Our first contribution for this topic is a new proof of the theorem states that Gaussian

Random Measurements satisfies Null Space Property with high probability using the technique

different from [KKRT16].

Theorem 2. Let A : Rn1×n2 → Rm be a linear operator such that A (X) = ∑
m
i=1〈Ai,X〉ei, where

ei is the i-th standard basis of Rm, and Ai is the random Gaussian matrices with i.i.d. standard

Gaussian entries. Than with probability exceeding 1− ε, A satisfies Null Space Property for

rank r providing
m√

m+1
& 2
√

r(
√

n1 +
√

n1)+
√

2ln(ε−1). (2.15)

Define the set H := {H : ∑
r
i=1 σi(H)≥ ∑

n
i=r+1 σi(H),‖H‖F = 1}. In order to show that

A satisfies the Null Space Property, we need to show infH∈H ‖A (X)‖2 > 0. In other words no

matrices from H are in the null-space. Introduce Gorden’s Escape Through the Mesh Theorem

[Gor88]:

Theorem 3 (Escape Through the Mesh[Gor88]). Let Em be the expectation of the `2 norm of m
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dimensional standard Gaussian random vector. Define the Gaussian width of set H by

`(H) := E sup
h∈H
〈h,g〉, (2.16)

where g ∈ RN is a standard Gaussian random vector. For an m×N random Gaussian matrix with

zero-mean and unit-variance entries and for an arbitrary set H ⊂ SN−1,

P

(
inf
h∈H
‖Ah‖2 ≤ Em− `(H)−a

)
≤ e−a2/2. (2.17)

The theorem leads us to estimate the Gaussian width `(H ):

`(H ) = E sup
H∈H
〈H,G〉HS,

where G represents the matrix with i.i.d. standard Gaussian entries, and 〈·, ·〉HS is the Hilbert -

Schmidt inner product defined as 〈X ,Y 〉HS := Tr(X∗Y ).

Kabaneva et.al. bound the gaussian width by seeking a simpler set D, such that H ⊂ cD,

with some constant c, then bound the gaussian width of D and hence bound the gaussian width

of H . Our proof techniques on the other hand, is a direct estimate of the Gaussian width of H ,

based on the proof for the Null Space Property of Compressive Sensing using `1 minimization

(Theorem 9.29 [FR13]), with modifications to account for the matrix structure:

Proof. We are aiming at estimate the gaussian width of the set

H := {H :
r

∑
i=1

σi(H)≥
n

∑
i=r+1

σi(H),‖H‖F = 1}.

To begin with, we will estimate the supremum supH∈H 〈H,G〉HS given G, and then

evaluate the expectation with respect to G. Do the singular value decomposition of H as H =
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UΣV ∗, we have

sup
H∈H
〈H,G〉HS = sup

U,Σ,V ∗
UΣV ∗∈H

〈UΣV ∗,G〉

= sup
U,Σ,V ∗

UΣV ∗∈H

〈Σ,U∗GV 〉.

Let Un be the set of n× n unitary matrices. Since H is the set of matrices whose singular

values satisfy ∑
r
i=1 σi(H) ≥ ∑

n
i=r+1 σi(H), it is invariant over the unitary matrices. The opti-

mization over H =UΣV ∗ ∈H is equivalent to it over Σ ∈H and U,V ∈Un. Thus to estimate

sup
U,Σ,V ∗

UΣV ∗∈H

〈Σ,U∗GV 〉, we can fix U and V , let G̃ :=U∗GV , and bound the supremum sup
σ∈H
〈Σ, G̃〉

over Σ given G̃ first, then optimize the result with respect to U and V over the set of unitary

matrices Un:

sup
U,Σ,V ∗

UΣV ∗∈H

〈Σ,U∗GV 〉= sup
U,V∈Un

sup
Σ∈H
〈Σ,U∗GV 〉

= sup
U,V∈U

G̃=U∗GV

sup
Σ∈H
〈Σ, G̃〉.

Now we bound the inner supremum sup
Σ∈H
〈Σ, G̃〉:

Define K = {σ ∈ Rn : ∑
r
i=1 σi ≥ ∑

n
i=r+1 σi,σi ≥ 0,‖σ‖2 = 1}, then Qt = {z ∈ Rn : zi =

t for i = 1, · · · ,r; zi >−t for i = r+1, · · · ,n} is a subset of K’s dual cone K∗ := {z∈Rn : 〈z,σ〉>
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0,∀σ ∈ K}. Because ∀z ∈ Qt , ∀σ ∈ K, we have

〈z,σ〉=
r

∑
i=1

ziσi +
n

∑
i=r+1

ziσi

=
r

∑
i=1

tσi−
n

∑
i=r+1

tσi

= t

(
r

∑
i=1

σi−
n

∑
i=r+1

σi

)

≥ 0

By duality (e.g.[FR13](B.40)), we have:

sup
Σ

〈Σ, G̃〉= sup
Σ

n

∑
i=1

ΣiiG̃ii = sup
σ∈K
〈σ,

#              »

diag(G̃)〉

≤min
z∈Qt
‖z+

#              »

diag(G̃)‖2

≤min
z∈Qt

√
r

∑
i=1

(t + G̃ii)2 +

√
n

∑
i=r+1

(zi + G̃ii)2

≤

√
r

∑
i=1

(G̃ii)2 + t
√

r+

√
min
zi≥−t

n

∑
i=r+1

(zi + G̃ii)2

≤

√
r

∑
i=1

(G̃ii)2 + t
√

r+

√
n

∑
i=r+1

St(G̃ii)2.

where St : R→ R denotes the the soft-thresholding operator with St(y) := argminx∈R{1
2(x−y)2 +

t|x|} Next, we go back to optimize the supremum over U,V ∈Un. Let UGΣGVG
∗ be the SVD of

G. Since the objective function is the Hilbert - Schmidt inner product, we should choose U,V as

left and right singular matrices of G, i.e. UG,VG to minimize the “loss of energy”,
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sup
U,V∈U

G̃=U∗GV

sup
Σ∈H
〈Σ, G̃〉

= sup
Σ∈H

sup
U,V∈U

〈Σ,U∗UGΣGV ∗GV 〉

≤ sup
Σ∈H
〈Σ,U∗GUGΣGV ∗GVG〉

= sup
Σ∈H
〈Σ,ΣG〉.

Thus the supremum is bounded by
√

∑
r
i=1 σi(G)2 + t

√
r+
√

∑
n
i=r+1 St(σi(G))2. Then,

`(H )≤ E

(√
r

∑
i=1

(σi(G))2 + t
√

r+

√
n

∑
i=r+1

St(σi(G))2

)

≤ E

√
r

∑
i=1

(σi(G))2 + t
√

r+E

√
n

∑
i=r+1

St(σi(G))2

≤ E
√

rσ1(G)2 + t
√

r+E
√
(n− r)St(σr+1(G))2

≤
√

rE(σ1(G))+ t
√

r+
√

(n− r)ESt(σr+1(G))2

For the first term in the equation above, the expectation of the largest singular value of G of

random gaussian n1×n2 matrix, Eσ1(G).
√

n1+
√

n2 up to an absolute constant factor([RV10]).

Now we want to bound the soft-thresholding term ESt(σr+1(G))2
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ESt(σr+1(G))2 ≤ E[St(σ1(G))2]

= E[(0 ·1(σ1(G)< t)+E[(σ1(G)− t)1(σ1 > t)]2

= E[(σ1(G)− t)1(σ1 > t)]2

≤ E[(σ1(G)− t)]2E[1(σ1 > t)]2(Cauchy Schwarz inequality)

= E[σ2
1(G)−2tσ1(G)+ t2]E[1(σ1 > t)]2

=
(
E[σ2

1(G)]−2tE[σ1(G)]+ t2)E[1(σ1 > t)]2

.
(
(
√

n1 +
√

n2)
2−2t(

√
n1 +
√

n2)+ t2)P(1(σ1 > t))

Notice that the expectation of a random variable X can also been written as
∫

∞

0 −t2dS(t), where

S(t) is the survival function of X (by Darth Vader Rule[MOW12]). The last inequality is bounded

as followed:

Eσ
2
1(G) = E‖G‖2 =

∫
∞

0
−t2

φ(t)dt

= lim
R→∞

∫ R

0
−t2

φ(t)dt

= lim
R→∞

(
−R2F(R2)+0+

∫ R

0
2tF(t)dt

)
=

∫
∞

0
2tF(t)dt

=
∫ E‖G‖

0
2tF(t)dt +

∫
∞

E‖G‖
2sF(s)ds

≤ (E‖G‖)2 +
∫

∞

0
2(E‖G||+ s)exp(

s2

π2 )ds

≤ (E‖G‖)2 +2E‖G‖
∫

∞

0
exp(− s2

π2 )ds+
∫

∞

0
2sexp(− s2

π2 )ds

≤ (E‖G‖)2 +C12E‖G‖+C2

(2.18)

where φ(t) = d
dsP(‖G‖ ≥ s)

∣∣
s=t and F denotes its antiderivative. The third equation is due
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to integration by parts. The fifth row is because of F(t)≤ 1 and P(‖G‖> E‖G||+ s)≤ exp(− s2

π2 )

(Gaussian Concentration [Ver18])

Now we have

`(H )≤
√

rE(σ1(G))+ t
√

r+
√

(n− r)ESt(σr+1(G))2

≤
√

rE(σ1(G))+ t
√

r+
√

n− r
√(

E[σ2
1(G)]−2tE[σ1(G)]+ t2

)
E[1(σ1 > t)]2

.
√

r(
√

n1 +
√

n2)+ t
√

r

+
√

n− r
(
((
√

n1 +
√

n2)
2−2t(

√
n1 +
√

n2)+ t2)P(1(σ1 > t))
)1/2

where P(1(σ1 > t)) decays exponentially.

let t =
√

n1 +
√

n2, we have `(H ) . 2
√

r(
√

n1 +
√

n2). Let e−a2/2 = ε, since Em ≥

m/
√

m+1,
m√

m+1
& 2
√

r(
√

n1 +
√

n2)

ensures that

Em− `(H )−a > 0

Apply Gordon’s Escape Through the Mesh Theorem,

P

(
inf
h∈H
‖Ah‖2 > 0

)
≥P

(
inf
h∈H
‖Ah‖2 > Em− `(H )−a

)
≥1− e−a2/2 = 1− ε

(2.19)

This bound is optimal since the O(r(n1 +n2)) corresponds to the number of degrees of

freedom required to describe an n1×n2 matrix of rank r. In contrast to the vector case, there is

no logarithmic factor involved.

30



2.3 Low-rank Matrix Recovery with Prior Information

Consider a matrix X that lives in a union of row and column subspaces denoted by T .

Suppose that we are given a subspace T̃ that is slightly mis-aligned with T . Now the question

is: Can we weaken the recovery conditions and reduce the number of measurements needed by

penalizing the orthogonal complement of T̃ ?

2.3.1 Support of low rank matrices

Every rank r solution X∗ of

minimize
Z

‖Z‖∗ subject to A (Z) = A (X)

lives in a lower dimension subspace of Rn1×n2 spanned by the n1× r column and n2× r row basis

vectors corresponding to the nonzero singular values of X∗. In some situations, it is possible to

obtain prior information.

In the vector case, it was shown that prior information on the support (nonzero entries) can

be incorporated in the `1-recovery algorithm by solving the weighted-`1-minimization problem.

In this case, the weights are applied such that solutions with large nonzero entries on the support

estimate have a lower cost (weighted-`1 norm) then solution with large nonzeros outside of the

support estimate [MS17], [MY11].

In the matrix case, we first define the support of a low-rank matrix formally. If X is an

n1×n2 matrix with rank r, then its full Singular Value Decomposition(SVD) can be written by

X =UX ΣXV ∗X

=

[
U U⊥

]Σ 0

0 0


V ∗

V ∗⊥
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where UX =

[
U U⊥

]
is a n1× n1 unitary matrix, ΣX =

Σ 0

0 0

 = diag(σ1,σ2, · · · ,σn) is a

n1×n2 diagonal matrix with σ1 ≥ σ2 ≥ ·· · ≥ σr > 0 = σr+1 = · · ·= σn = 0 for n = min{n1,n2},

and V ∗X =

V ∗

V ∗⊥

 is a n2×n2 unitary matrix.

In the following of this chapter, we define the reduced Singular Value Decomposi-

tion(rSVD) of X as

X =UΣV ∗, (2.20)

where U is n1×r matrix with orthonormal columns; Σ= diag(σ1, · · · ,σr) is r×r diagonal matrix;

and V ∗ is r×n2 matrix with orthonormal columns.

Definition 3 (Support of a low-rank matrix). We define the support of a low-rank matrix X by

matrices whose columns are basis vectors that span X’s column and row spaces: {U,V}. In

particular {U,V} is the unique support of the matrix X if and only if X = PU XPV , with PU and

PV be the orthogonal projections onto X’s column and row space respectively, PU =UU∗ and

PV =VV ∗.

2.3.2 Weighted Nuclear Norm Minimization

In this section, we will introduce the first modified optimization problem when we have

prior support estimate. Now the support estimate can be replaced by Ũ ∈ Rn1×r and Ṽ ∈ Rn2×r

that estimate the row and column subspaces bases U ∈ Rn1×r and V ∈ Rn2×r of X . Denote Ũ⊥

and Ṽ⊥ as orthogonal complement of Ũ and Ṽ , respectively. Let PŨ = ŨŨ∗ and PṼ = ṼṼ ∗ be

the orthogonal projection matrices project onto the subspaces spanned by Ũ and Ṽ , same for PŨ⊥

and PṼ⊥
.

Let QŨ ,w = wPŨ +PŨ⊥
, QṼ ,λ = λPṼ +PṼ⊥

be the weighted projection with respect to
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the support estimate. Define the weighted nuclear norm of X as ‖QŨ ,wXQṼ ,λ‖∗, with 0≤ w≤ 1,

0≤ λ≤ 1; the Weighted Nuclear Norm Minimization can be formulated as follows [AKM+14]:

minimize
Z

‖QŨ ,wZQṼ ,λ‖∗ subject to A (Z) = A (X) (2.21)

Where

minimize
Z

‖QŨ ,wZQṼ ,λ‖∗

=minimize
Z

‖(wPŨ +PŨ⊥
)Z(λPṼ +PṼ⊥

)‖∗

=minimize
Z

‖wλPŨ ZPṼ +wPŨ ZPṼ⊥
+λPŨ⊥

ZPṼ +PŨ⊥
ZPṼ⊥

‖∗.

Thus minimizing ‖(wPŨ +PŨ⊥
)Z(λPṼ +PṼ⊥

)‖∗ penalizes solutions that live in the subspace

which orthogonal to support estimate more when 0 ≤ w < 1, 0 ≤ λ < 1. If we take w = 1 and

λ = 1 the optimization becomes the regular nuclear norm minimization (2.4), and if we have

the prefect estimate of support, i.e. Ũ = U , Ṽ = V , then we can set the weights as 0, then the

optimization problem becomes

minimize
Z

‖PU⊥ZPV⊥‖∗ subject to A (Z) = A (X). (2.22)

Null Space Property for Weighted Nuclear Norm Minimization

Our task is to find out when it is possible to reconstruct the rank r matrix X exactly by

solving (2.21)

Definition 4. (Null Space Property for weighted nuclear norm minimization) Given a linear

operation A : Rn1×n2 → Rm, we say that A satisfies the Null Space Property for Weighted
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Nuclear Norm Minimization (2.12) if for every matrix H 6= 0 such that A (H) = 0,

r

∑
i=1

σi(QŨ ,wHQṼ ,λ)<
n

∑
i=r+1

σi(QŨ ,wHQṼ ,λ), (2.23)

where n = min{n1,n2}.

Theorem 4. Given a linear operation A : Rn1×n2 → Rm, every matrix X with rank at most r, can

be exactly recovered through optimization

minimize
z

‖QŨ ,wZQṼ ,λ‖∗ subject to A (Z) = A (X)

if and only if A satisfies Null Space Property for Weighted Nuclear Norm Minimization (2.12).

Proof. First, assume A : Rn1×n2 satisfies Null Space Property for Weighted Nuclear Norm

Minimization. i.e. ∀H ∈ Null(A)\{0},∑r
i=1 σi(QŨ ,wHQṼ ,λ)< ∑

n
i=r+1 σi(QŨ ,wHQṼ ,λ), Let X ∈

Rn1×n2 has rank ≤ r, and Z ∈ Rn1×n2 and Z 6= X . Suppose A (Z) = A (X). Set H = X −Z ∈

Null(A )\{0}, then by the assumption,

‖QŨ ,wZQṼ ,λ‖∗ = ‖QŨ ,w(X−H)QṼ ,λ‖∗ = ‖QŨ ,wXQṼ ,λ−QŨ ,wHQṼ ,λ‖∗

≥
n

∑
j=1
|σi(QŨ ,wXQṼ ,λ)−σi(QŨ ,wHQṼ ,λ)|

=
r

∑
j=1
|σ j(QŨ ,wXQṼ ,λ)−σ j(QŨ ,wHQṼ ,λ)|+

n

∑
j=r+1

σ j(QŨ ,wHQṼ ,λ)

≥
r

∑
j=1

σi(QŨ ,wXQṼ ,λ)−
r

∑
j=1

σi(QŨ ,wHQṼ ,λ)+
n

∑
j=r+1

σ j(QŨ ,wHQṼ ,λ)

>
r

∑
j=1

σi(QŨ ,wXQṼ ,λ)

= ‖QŨ ,wXQṼ ,λ‖∗.

The first inequality uses the lemma 11 in [OMFH11].
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Conversely, suppose every X of rank r is the unique solution of

minimize
Z∈Rn1×n2

‖QŨ ,wZQṼ ,λ‖∗ subject to A (Z) = A (X),

∀H ∈ null(A )\{0}, write QŨ ,wHQṼ ,λ = ∑
n
i=1 σiuiv∗i , Decompose H = H1 +H2 where

H1 = Q−1
Ũ ,w

r

∑
i=1

σiuiv∗i Q−1
Ṽ ,λ

H2 = Q−1
Ũ ,w

n

∑
i=r+1

σiuiv∗i Q−1
Ṽ ,λ

,

Then A (H) = 0 implies that A (H1) =A (−H2). By assumption, H1 has the minimized weighted

nuclear norm

r

∑
i=1

σi(QŨ ,wHQṼ ,λ) = ‖QŨ ,wH1QṼ ,λ‖∗< ‖QŨ ,wH2QṼ ,λ‖∗ =
n

∑
i=r+1

σi(QŨ ,wHQṼ ,λ)

2.3.3 Drawback of the weighted nuclear norm optimization (2.21)

Let X ∈ Rn×n be a rank-r matrix, and X =UΣV be its reduced Singular Value Decomposi-

tion, where U,V ∈Rn×r have orthonormal columns that corresponding to the largest r singular val-

ues of X . Ũ ∈ Rn×r and Ṽ ∈ Rn×r are the estimates of U ∈ Rn×r and V ∈ Rn×r, respectively. Con-

sider A : Rn1×n2 → Rm being a random Gaussian measurement operator, A (X) := ∑
m
i=1〈Gi,X〉ei,

where Gi ∈ Rn1×n2 whose entries are i.i.d. N (0,1) (zero-mean, unit variance Gaussian). We will

see that the optimization (2.21) is limited when we have support estimate being exact.
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When the row or column space estimate is perfectly accurate

Since the support estimate Ṽ is exact, we set λ = 0. This means that as long as there

exist a feasible matrix Z =UZΣZV ∗Z with correct row space VZ =V , then it will be a solution of

problem (2.21). Also we can show that in this case, to make the problem have the unique solution,

we must have m = rn random Gaussian measurements.

Corollary 1. Let A : Rn1×n2 → Rm being a random Gaussian measurement operator, i.e.

A (X) := ∑
m
i=1〈Gi,X〉ei, where Gi ∈ Rn1×n2 whose entries are i.i.d. N (0,1). If Ṽ =V , and λ = 0.

Then every rank r matrix is the unique solution of optimization (2.21) if m = O(rn).

Proof. let X = UX ΣXV ∗ and Z = UZΣZV ∗. Thus ‖(wPŨ +PŨ⊥)X(PV⊥)‖∗ = 0, and ‖(wPŨ +

PŨ⊥)Z(PV⊥)‖∗ = 0. Let A (Z) = A (X), then we have



〈G1,UZΣZV 〉

〈G2,UZΣZV 〉

〈G3,UZΣZV 〉
...

〈Gm,UZΣZV 〉


=



〈G1,UX ΣXV 〉

〈G2,UX ΣXV 〉

〈G3,UX ΣXV 〉
...

〈Gm,UX ΣXV 〉


.

The system has O(nr) degrees of freedom, so the number of measurement m should be at least

O(nr) to make the solution unique.

When both the row and column space estimates are perfectly accurate

Corollary 2. Let A : Rn1×n2 → Rm be a random Gaussian measurement operator, i.e. A (X) :=

∑
m
i=1〈Gi,X〉ei, where Gi ∈ Rn1×n2 whose entries are i.i.d. N (0,1). If Ũ =U and Ṽ =V , every

rank r matrix is the unique solution solution of optimization (2.21) with w = 0 and λ = 0 if

m = O(rn), n = min{n1,n2}.
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Proof. Suppose the Z∗ = X +H is the minimizer of the optimization problem

minimize
Z

‖PU⊥ZPV⊥‖∗ subject to A (Z) = A (X),

Then we should have ‖PU⊥(X +H)PV⊥‖∗ = 0, i.e.

PU⊥HPV⊥ = 0,

this means that H belongs to the space

T := {H ∈ Rn2×n2 : H = PU H +HPV −PU HPV} (2.24)

which is a O(n× r) dimensional subspace, n = min{n1,n2}. To make Z feasible, H must be the

only solution to A (H) = 0, i.e. H = 0, implies that A has at least O(n× r) measurements.

The analysis above means that having correct subspace estimates doesn’t help us on

reducing number of measurement needed for exact recovery, which means that the optimization

problem (2.21) is perhaps not ideal when we have partial support information on X .

2.3.4 Sum of Two Weighted Nuclear Norm Minimization

Let us consider a new optimization problem, based on Minimizing the Sum of Two

Weighted Nuclear Norms:

minimize
Z

‖(wPŨ +PŨ⊥)Z‖∗+‖Z(λPṼ +PṼ⊥)‖∗ subject to A (Z) = A (X) (2.25)

This optimization will allow us to penalize solutions that live in the orthogonal comple-

ment spaces of our estimates when w and λ smaller than 1. Also it will allow us to separately

consider correctness of estimates of row and column spaces. For example, if we have a correct
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estimate for the row space: Ṽ =V , thus we can set λ = 0. And even though λ is zero, when doing

the optimization, we still need to consider the column space.

Most importantly, as we will cover in detail later, it prevents the case where having the

prefect subspace estimate requires more measurements by minimizing

minimize
Z

‖PU⊥Z‖∗+‖ZPV⊥‖∗ subject to A (Z) = A (X). (2.26)

Null Space Property for Minimizing the Sum of Two Weighted Nuclear Norms

In this section, we propose a sufficient condition for exact recovery base on the null space

of the linear measurement A for Sum of Two Weighted Nuclear Norm Minimization. Our proof is

based on the technique that were first proposed by Eftekhari, Yang and Wakin [EYW18]. In the

following analysis, we consider X ∈ Rn×n for convenience, i.e. n1 = n2 = n.

Lemma 1. [EYW18] Consider a rank r matrix X ∈ Rn×n, let U ∈ Rn×r be the matrix with

orthonormal columns such that span(U) = span(X). Let Ũ ∈ Rn×r be the estimate of U, such

that U∗Ũ = cosΘL, where

cosΘL =



cosθr

cosθr−1

. . .

cosθ1


∈ Rr×r
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for 1≥ cosθr ≥ cosθr−1 ≥ ·· · ≥ cosθ1 ≥ 0 with {θi} being the principle angles between U and

Ũ. Then there exist U ′,Ũ ′ ∈ Rn×r and U ′′ ∈ Rn×(n−2r), such that

BL =

[
U U ′ U ′′

]
∈ Rn×n

B̃L =

[
Ũ Ũ ′ U ′′

]
∈ Rn×n

(2.27)

are both orthonormal bases for Rn, where U ′ =−(I−UU∗)Ũ sin−1
ΘL and

Ũ ′ = (I−ŨŨ∗)U sin−1
ΘL, with sin−1

ΘL denotes the inverse of the matrix sinΘL Moreover, it

holds that

B∗LB̃L =


cosΘL sinΘL

−sinΘL cosΘL

In−2r

 . (2.28)

A similar construction exists for V such span(V ) = span(X∗) where we form the orthonormal

bases BR and B̃R such that

B∗RB̃R =


cosΘR sinΘR

−sinΘR cosΘR

In−2r

 . (2.29)

As before, the diagonal of ΘR ∈ Rr×r contains the principal angles between V and Ṽ in non-

increasing order.
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Using such decomposition, we have

Ũ = BL


cosΘL

sinΘL

0(n−2r)×r


and thus,

PŨ = Ũ∗Ũ

= BL


cos2 ΘL −sinΘL · cosΘL

−sinΘL · cosΘL sin2
ΘL

0n−2r

B∗L,

PŨ⊥
= Ũ∗⊥Ũ⊥ = In−PŨ

= BL


sin2

ΘL sinΘL · cosΘL

sinΘL · cosΘL cos2 ΘL

In−2r

B∗L.

It follows that

QŨ ,w = wPŨ +PŨ⊥
(2.30)

= BL


wcos2 ΘL + sin2

ΘL (1−w)sinΘL · cosΘL

(1−w)sinΘL · cosΘL wsin2
ΘL + cos2 ΘL

In−2r

B∗L (2.31)
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Define the orthonormal basis OL ∈ Rn×n as

OL :=


(wcos2 ΘL + sin2

ΘL)∆
−1
L −(1−w)sinΘL · cosΘL ·∆−1

L 0r×(n−2r)

(1−w)sinΘL · cosΘL ·∆−1
L (wcos2 ΘL + sin2

ΘL)∆
−1
L 0r×(n−2r)

0(n−2r)×r 0(n−2r)×r In−2r


where

∆L := (w2 cos2
ΘL + sin2

ΘL)
1
2 (2.32)

∆L is invertible because w > 0, by assumption. (It is easily verify that indeed O∗LOL = In.) We

then rewrite (2.31) as

QŨ ,w = BL(OLOL∗)


wcos2 ΘL + sin2

ΘL (1−w)sinΘL · cosΘL

(1−w)sinΘL · cosΘL wsin2
ΘL + cos2 ΘL

In−2r

B∗L

= BLOL


∆L (1−w2)sinΘL · cosΘL ·∆−1

L

w∆
−1
L

In−2r

B∗L

= BLOLLBL∗ (2.33)
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where L ∈ Rn×n is an upper-triangular matrix with blocks L11,L22,L12 ∈ Rr×r and defined as

L :=


L11 L12

L22

In−2r



=


∆L (1−w2)sinΘL · cosΘL ·∆−1

L

w∆
−1
L

In−2r

 . (2.34)

Perform the same calculations for the row spaces and, in particular, define R ∈ Rn×n as

R :=


R11 R12

R22

In−2r



=


∆R (1−λ2)sinΘR · cosΘR ·∆−1

R

λ∆
−1
R

In−2r

 , (2.35)

with ∆R = (λcos2 ΘR + sin2
ΘR)

1
2 ∈ Rr×r

Definition 5 (rank Null Space Property for Sum of Two Weighted Nuclear Norm Minimization).

Let U,V ∈ Rn×r be the support of a rank - r matrix X . Let Ũ 6=U,Ṽ 6=V ∈ Rn×r with orthonormal

columns being the support estimate. Let the principal angle between Ũ ,U , and Ṽ ,V be ΘL and

ΘR and u1, v1 be the largest of them, respectively. Define BL and BR such that the columns of

them form an orthonormal bases for Rn respectively s.t
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Ũ = BL


cosΘL

sinΘL

0(n−2r)×r

 , and Ṽ = BL


cosΘR

sinΘR

0(n−2r)×r


Define the subspace

T := {Z ∈ Rn×nZ = PU Z +ZPV −PU ZPV}. (2.36)

Let (Z) = B∗LZBR, define the subspace

T̃⊥ :=

Z ∈ Rn×n : Z = BL


0r

Z22 Z23

Z32 Z33

BR∗

 . (2.37)

Let A be a linear operator maps from Rn×n to Rm. A is said to satisfy the Null Space

Property for Sum of Two Nuclear Norm Minimization relative to (U,V ) and (Ũ ,Ṽ ) if any matrix

H ∈ Null(A )\{0} it holds that

√w4 cos2 u1 + sin2 u1

w2 cos2 u1 sin2 u1
+

√
λ2 cos2 v1 + sin2 v1

λ2 cos2 v1 + sin2 v1

‖PT (H)‖∗

+

√ 2(1−w2)sin2 u1

w2 cos2 u1 + sin2 u1
+

√
2(1−λ2)sin2 v1

λ2 cos2 v1 + sin2 v1

‖PT̃⊥
(H)‖∗+2‖PT (H)‖∗

< 2‖PT⊥(H)‖∗

(2.38)

Theorem 5. Given a linear operator A : Rn×n→ Rm, a support (U,V ), and a support estimate

(Ũ ,Ṽ ), every matrix X supported on (U,V ) is the unique solution of (2.6) if A satisfies the Null

Space Property for Sum of Two Nuclear Norm Minimization with respect to (U,V ) and (Ũ ,Ṽ )
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Proof. Let Z = X +H be the optimizer of (2.25), where H ∈ Null(A )\{0}. Thus we have

‖QŨ ,w(X +H)‖∗+‖(X +H)QṼ ,λ‖∗ ≤ ‖QŨ ,wX‖∗+‖XQṼ ,λ‖∗ (2.39)

the right hand side of (2.39) follows by

‖QŨ ,wX‖∗+‖XQṼ ,λ‖∗

=‖BLOLLB∗LX‖∗+‖XBRR∗O∗RB∗R‖∗

=‖BLOLLB∗LXBR‖∗+‖B∗LXBRR∗O∗RB∗R‖∗

=‖LB∗LXBR‖∗+‖B∗LXBRR∗‖∗

(2.40)

And the left hand side of (2.39) gives us

‖QŨ ,w(X +H)‖∗+‖(X +H)QṼ ,λ‖∗

=‖BLOLLB∗LX +BLOLLB∗LH‖∗+‖XBRR∗O∗RB∗R +HBRR∗O∗RB∗R‖∗

=‖LB∗LXBR +LB∗LHBR‖∗+‖B∗LXBRR∗+B∗LHBRR∗‖∗.

(2.41)

B∗LXBR =

U∗

U∗⊥

UX ΣXV ∗X

[
V V⊥

]
=

U∗UX ΣXV ∗XV∗ 0

0 0

 (2.42)

Thus

LB∗LXBR =


L11 L12

L22

In−2r


U∗UX ΣXV ∗XV 0

0 0n−r

=

L11U∗UX ΣXV ∗XV 0

0 0n−r

 (2.43)

Similarly,

B∗LXBRR∗ =

U∗UX ΣXV ∗XV R11 0

0 0n−r

 (2.44)
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Let

T :=
{

Z ∈ Rn×n : Z =
[

Z11 Z12
Z21 0

]}
then for any Z =

[
Z11 Z12
Z21 Z22

]
, where Z11 ∈ Rr×r and Z22 ∈ R(n−r)×(n−r) the orthogonal projection

onto T and its complement are defined as PT (Z) =
[

Z11 Z12
Z21 0

]
and PT⊥(Z) =

[
0

Z22

]
. Denote

B∗LHBR as H, decompose H by B∗LHBR = PT (H)+PT⊥(H) Thus the last term in (2.41) become

‖LB∗LXBR +LB∗LHBR‖∗+‖B∗LXBRR∗+B∗LHBRR∗‖∗

=‖LB∗LXBR +LPT (H)+LPT⊥(H)‖∗+‖B∗LXBRR∗+PT (H)R∗+PT⊥(H)R∗‖∗

=‖LB∗LXBR +LPT (H)+LPT⊥(H)−PT⊥(H)+PT⊥(H)‖∗

+‖B∗LXBRR∗+PT (H)R∗+PT⊥(H)R∗−PT⊥(H)+PT⊥(H)‖∗

=

∥∥∥∥∥∥∥∥∥∥
LB∗LXBR +LPT (H)+L


0

H22 H23

H32 H33

−


0

H22 H23

H32 H33

+PT⊥(H)

∥∥∥∥∥∥∥∥∥∥
∗

+

∥∥∥∥∥∥∥∥∥∥
B∗LXBRR∗+PT R∗(H)+


0

H22 H23

H32 H33

R∗−


0

H22 H23

H32 H33

+PT⊥(H)

∥∥∥∥∥∥∥∥∥∥
∗

:=‖LB∗LXBR +LPT (H)+LH⊥−H⊥+PT⊥(H)‖∗

+‖B∗LXBRR∗+PT (H)R∗+H⊥R∗−H⊥+PT⊥(H)‖∗

≥‖LB∗LXBR +PT⊥(H)‖∗−‖LPT (H)‖∗−‖LH⊥−H⊥‖∗

+‖B∗LXBRR∗+PT⊥(H)‖∗−‖PT (H)R∗‖∗−‖H⊥R∗−H⊥‖∗,

=‖LB∗LXBR‖∗+‖PT⊥(H)‖∗−‖LPT (H)‖∗−‖LH⊥−H⊥‖∗

+‖B∗LXBRR∗‖∗+‖PT⊥(H)‖∗−‖PT (H)R∗‖∗−‖H⊥R∗−H⊥‖∗,

(2.45)
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where the last inequality uses the triangle inequality. Above, we define

H⊥ :=


0

H22 H23

H32 H33


and the last equation is because

LB∗LXBR =

L11U∗UX ΣXV ∗XV 0

0 0

 and B∗LXBRR∗ =

U∗UX ΣXV ∗XV R11 0

0 0


as well as ‖A+B‖∗ = ‖A‖∗+ ‖B‖∗ when AB∗ = A∗B = 0 [RFP10] Thus combine (2.41) and

(2.45), we have

‖PT⊥(H)‖∗+‖PT⊥(H)‖∗

≤‖LPT (H)‖∗+‖LH⊥−H⊥‖∗+‖PT (H)R∗‖∗−‖H⊥R∗−H⊥‖∗
(2.46)

Next, we simplify the terms above. First notice that


0

L22

In−2r

PT (H)


0

Ir

In−2r



=


0

L22

In−2r




H11 H12 H13

H21 0r

H31 0n−2r




0

Ir

In−2r

= 0n

(2.47)

Then the first term in the right hand side is simplified as
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‖LPT (H)‖∗

=

∥∥∥∥∥∥∥∥∥∥


L11 L12

L22

In−2r

PT (H)In−


0

L22

In−2r

PT (H)


0

Ir

In−2r


∥∥∥∥∥∥∥∥∥∥
∗

=

∥∥∥∥∥∥∥∥∥∥


L11 L12

0r

0n−2r

PT (H)In +


0

L22

In−2r

PT (H)


Ir

0r

0n−2r


∥∥∥∥∥∥∥∥∥∥
∗

≤‖[L11 L12]‖‖PT (H)‖∗+max{‖L22‖,1}‖PT (H)‖∗

≤‖[L11 L12]‖‖PT (H)‖∗+‖PT (H)‖∗

(2.48)

The first inequality above used the fact that ‖AB‖∗ ≤ ‖A‖‖B‖∗ for all matrix A,B ∈ Rn×n.

The second inequality is obtained by ‖L22‖ ≤ ‖L‖= ‖QŨ ,w‖= 1, and the second equation used

the polarization identity:

AZC−BZD = (A−B)ZC+BZ(C−D) (2.49)

for matrices A,B,C,D,Z ∈ Rn×n.

‖PT (H)R∗‖∗ ≤ ‖[R11 R12]‖‖PT (H)‖∗+‖PT (H)‖∗ (2.50)
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The second term on the right-hand size of (2.46) may also be bounded as:

‖LH⊥−H⊥‖∗

=

∥∥∥∥∥∥∥∥∥∥
LH⊥I−


L11

Ir

In−2r

H⊥I

∥∥∥∥∥∥∥∥∥∥
∗

=

∥∥∥∥∥∥∥∥∥∥


0r L12

L22− Ir

0n−2r

H⊥I−


L11

Ir

In−2r

H⊥0n

∥∥∥∥∥∥∥∥∥∥
∗

≤‖[L12 L22− Ir]‖‖H⊥‖∗

(2.51)

The inequality uses ‖AB‖∗ ≤ ‖A‖‖B‖∗. The second equation uses (2.49). In the same way,

‖H⊥R∗−H⊥‖∗ ≤ ‖[R12 R22− Ir]‖‖H⊥‖∗ (2.52)

Then we have

2‖PT⊥(H)‖∗ ≤‖LPT (H)‖∗+‖LH⊥−H⊥‖∗+‖PT (H)R∗‖∗−‖H⊥R∗−H⊥‖∗

≤(‖[L11 L12]‖+‖[R11 R12]‖)‖PT (H)‖∗

+(‖[L12 L22− Ir]‖+‖[R12 R22− Ir]‖)‖H⊥‖∗+2‖PT (H)‖∗

≤

√w4 cos2 u1 + sin2 u1

w2 cos2 u1 sin2 u1
+

√
λ2 cos2 v1 + sin2 v1

λ2 cos2 v1 + sin2 v1

‖PT (H)‖∗

+

√ 2(1−w2)sin2 u1

w2 cos2 u1 + sin2 u1
+

√
2(1−λ2)sin2 v1

λ2 cos2 v1 + sin2 v1

‖H⊥‖∗+2‖PT (H)‖∗

(2.53)
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In the third inequality above, we applied Lemma 4 in [EYW18]. Since we know that

‖PT (H)‖= ‖PT ((H)),‖PT⊥(H)‖ = ‖PT⊥((H))‖∗, (2.54)

Since the linear subspace T̃⊥ ⊂ T⊥ ⊂ Rn×n as

T̃⊥ :=

Z ∈ Rn×n : Z = BL


0r

Z22 Z23

Z32 Z33

BR∗

 (2.55)

then we can write ‖H⊥‖∗ = ‖BLH⊥B∗R‖∗ = ‖PT̃⊥
(H)‖∗ since nuclear norm is invariant under

orthonormal matrices. Thus we have

2‖PT⊥(H)‖∗ ≤

√w4 cos2 u1 + sin2 u1

w2 cos2 u1 sin2 u1
+

√
λ2 cos2 v1 + sin2 v1

λ2 cos2 v1 + sin2 v1

‖PT (H)‖∗

+

√ 2(1−w2)sin2 u1

w2 cos2 u1 + sin2 u1
+

√
2(1−λ2)sin2 v1

λ2 cos2 v1 + sin2 v1

‖PT̃⊥
(H)‖∗+2‖PT (H)‖∗

(2.56)

This implies that if every matrix H 6= 0 s.t. A (H) = 0 satisfies

√w4 cos2 u1 + sin2 u1

w2 cos2 u1 sin2 u1
+

√
λ2 cos2 v1 + sin2 v1

λ2 cos2 v1 + sin2 v1

‖PT (H)‖∗

+

√ 2(1−w2)sin2 u1

w2 cos2 u1 + sin2 u1
+

√
2(1−λ2)sin2 v1

λ2 cos2 v1 + sin2 v1

‖PT̃⊥
(H)‖∗+2‖PT (H)‖∗

< 2‖PT⊥(H)‖∗

(2.57)

Then Z = X , i.e. the optimizer is the unique solution.
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2.3.5 Minimum number of measurements given a prefect support estimate

Let f (Z) = ‖(wPŨ +PŨ⊥)Z‖∗+ ‖Z(λPṼ +PṼ⊥)‖∗. Suppose that we have the perfect

estimate, i.e. PŨ = PU , PṼ = PV , and we set w = λ = 0 accordingly. Then X is the matrix that

minimize the function f , because f (X) = ‖PU⊥X‖∗+ ‖XPV⊥‖∗ = 0. Let Z = H +X , where

H ∈ Null(A ), then Z is feasible. Consider

f (Z) = ‖(wPŨ +PŨ⊥)(X +H)‖∗+‖(X +H)(λPṼ +PṼ⊥)‖∗

= ‖PU⊥(X +H)‖∗+‖(X +H)PV⊥‖∗

= ‖PU⊥H‖∗+‖HPV⊥‖∗.

Let Z be another minimizer of f , i.e. f (Z) = 0. Then H must satisfy:


PU⊥H = 0

HPV⊥ = 0

A (H) = 0

(2.58)

To find the condition of “X being the unique minimizer of (2.25), we need (2.58) to have the

unique solution H = 0. Let A =



−→
A1

T

−→
A2

T

· · ·
−→
Am

T


and rewrite (2.58) as


I⊗PU⊥

PV⊥⊗ I

A

−→H =
−→
0 (2.59)
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For this system to hold, H must satisfy

PU HPV = H,

i.e. H lives in the space spanned by {U,V}. Thus we can write H as

H =URV ∗,

for some R ∈ Rr2
, Thus to make A

−→
H =

−→
0 , A must have exactly m = r2 measurements.

2.4 Numerical experiments

In this section, we present numerical simulatiosn designed to evaluate the algorithms

covered in this chapter. All simulations were performed using CVX[GB14].

First, we construct rank r matrix X ∈ R n1×n2 with n = n1 = n2 , X =UΣV ∗, we draw U

and V by orthogonalizing the columns of a standard random Gaussian matrix G ∈ Rn×r, and draw

singular values of X from uniform distribution. We construct the prior information by adding a

perturbation to the original U , V , i.e. Ũ =U +δG, where G is the random Gaussian matrix with

i.i.d N (0,1) entries, δ is the perturbation factor. Thus the perturbation matrix has independent

random Gaussian entries with mean zero and variance δ. Ṽ is obtained by doing the same kind of

perturbation.

We sample without noise using random Gaussian measurement matrix, for various number

of total measurements. Figure 2.1 shows the relative recovery error of Weighted Nuclear Norm

Minimization (the first modification we studied) compared with standard nuclear norm mini-

mization for n = 25, r = 3,w = w = λ, and with support estimate as Ũ =U +δG, Ṽ =V +δG,

where G is random Gaussian matrix with i.i.d. N (0,1) entries, and δ are chosen as follows: (a)

δ = 0.01, (b) δ = 0.1, (c) δ = 0.5, (d) δ = 0.9.
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(a) (b)

(c) (d)

Figure 2.1: Relative recovery error of Weighted Nuclear Norm Minimization and original
nuclear norm minimization δ, (a) δ = 0.01, (b) δ = 0.1, (c) δ = 0.5, (d) δ = 0.9
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(a) (b)

(c) (d)

Figure 2.2: Relative recovery error of Sum of Two Weighted Nuclear Norm Minimization and
the original nuclear norm minimization (a) δ = 0.01, (b) δ = 0.1, (c) δ = 0.5, (d) δ = 0.9
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Figure 2.3: Phrase transition curves for the nuclear norm minimization and the two modified
optimizations that we proposed, when the subspace estimate are perfectly correct

Figure 2.2 shows the relative recovery error associated with Minimizing the Sum of Two

Weighted Nuclear Norms (the second modification we proposed) compared with the original

nuclear norm minimization for n= 20, r = 3, w=w= λ, and with support estimate as Ũ =U+δG,

Ṽ =V +δG, where G is random Gaussian matrix with i.i.d. N (0,1) entries, and δ are choosing

as follows: (a) δ = 0, (b) δ = 0.1, (c) δ = 0.5, (d) δ = 0.9.

Figure 2.3 shows the phrase transition curves for prefect prior information. In this case

for the two modified optimizations, w = λ = 0. We can see that the Sum of Two Weighted Nuclear

Norm Minimization outperforms the other two.

Figure 2.4 show the recovery of Sum of Two Weighted Nuclear Norm Minimization with

Ũ =U +0.005G and Ṽ =V , λ = 0 and for different w.

Figure 2.5 show the recovery of Sum of Two Weighted Nuclear Norm Minimization with

Ũ =U +0.005G and Ṽ =V +0.005G, λ = w for different w.

We can see from the above result that the alternative Sum of Two Nuclear Norm Mini-
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Figure 2.4: Phrase transition curves for the Sum of Two Nuclear Norm Minimization when one
side of subspace estimate is correct with different choice of weight on the other side.

mization helps reduce the number of Gaussian measurements needed for exact recovery when

providing proper prior information.

2.5 Conclusion and Future Work

In this chapter, we studied the problem of recovering a low-rank matrix X from compressed

linear measurements

y = A (X).

We first study the null space property of the original nuclear norm minimization by analyzing

the sampling complexity of random Gaussian measurements. We proposed an alternative proof

technique to show that when m & r(n1 + n2) the random Gaussian measurement satisfies the

Null Space Property with high probability. Then we focused on the case when prior information

about the support of the target matrix are provided. We proposed two optimization problems
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Figure 2.5: Phrase transition curves for the Sum of Two Nuclear Norm Minimization when both
column and row subspace estimate has perturbations
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i.e. the Weighted Nuclear Norm Minimization and the Sum of Two Weighted Nuclear Norm

Minimization. We gave null space based conditions for exact recovery for both optimizations.

Next, we analyze the sampling complex of the two optimizations when the support estimates

are correct. We shows that when having correct estimates on both column and row space, the

Weighted Nuclear Norm Minimization still needs O(nr) measurements for exact recovery where

as the Sum of Two Weighted Nuclear Norm Minimization only need O(r2) measurements. Finally,

we present the numerical experiment to support our analysis. We leave the work of analyzing the

number of Gaussian measurements needed to satisfy the corresponding NSP and the optimum

weight choosing for different optimizations as future work.
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Chapter 3

Learning Dictionaries with Fast

Transforms

3.1 Introduction

The exponential growth of data has dramatically increased the interest in finding sparse

signal representations in recent years. As we will discuss shortly, with sparse representation,

we can not only store information more efficiently [Wal92] but also process the signals faster,

and even collect measurements more efficiently [Don06]. One can benefit from using sparse

representations to generate the signals [YWHM10], or use them in other applications [CNT11],

[CYL13]. Applications that can benefit from the sparsity concepts include denoising [DJ94],

[CD95], [SCD02], compression [MGBB00], compressive sensing [Don06], [GKSA11], [LDP07]

and more.

When measuring signals, noise is often measured together with the underlying true signals.

The goal of denoising is to separate the true signals from the noise. Due to the fact that lots of

signals of interest are sparse under certain basis (e.g. images are sparse under wavelet basis)

while noise is not (e.g. white noise), we can remove the noise by approximating the measured
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signals using sparse representation. Wavelet methods and shift-invariant variations that exploit

over-complete representation are some of the the best algorithms for this task [DJ94], [CD95],

[SCD02].

Applications such as data storage, information backup, signal processing, transmission

and communication require large volumes of memory, operations and computational resources

if the signals are large. Data compression can significantly reduce the size of a file, so that the

time and memory cost for processing it can be decreased accordingly. One of the most commonly

used compression algorithms, JPEG2000 coding system, is successful due the fact that natural

images are sparse under the wavelet basis [MGBB00].

Compressed sensing allows acquiring and reconstructing signals more efficiently by

solving an undetermined linear system when we have structural informations about the target

signals [Don06], [GKSA11], [LDP07]. This decreases the number of measurements required

and therefore reduces the storage and transmission resources needed. Specialized equipment is

usually involved like “Rice single pixel camera” [DDT+08], and the machines used in sparse

MRI [LDP07]. In these examples the signal can be compressed in a more efficient way at the

time of sampling.

3.1.1 The Dictionary

We assume that the signal y ∈ CN can be described as y = Dx, where D ∈ CN×n is a linear

mapping called a dictionary, x ∈ Cn is the representation of the signal y under the dictionary D,

and is assumed to be sparse. The columns of the dictionary D are often called atoms [DH01]

[AEB06]. A dictionary that leads to sparse representations can either be chosen as a pre-specified

set of functions or designed by learning to fit a given set of signal examples through learning

algorithms.

When choosing a dictionary that fits a particular application, one can consider pre-

constructed dictionaries, such as undecimated wavelets [SFM07], contourlets [DV05], curvelets
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[SCD02], etc. Many of these are specifically designed for images, especially when dealing with

cartoon-like image content, given that they are piecewise smooth and with smooth boundaries

[Ela10]. The choice of using a pre-specified transform matrix is appealing as it is simple. It

also often leads to fast algorithms for the computation of the sparse representation and original

signal recovery. For example, Fast Fourier Transform (FFT) and Inverse Fast Fourier Transform

(IFFT) algorithms [Nus81] compute the discrete Fourier transform (DFT) and its inverse for

a n-dimensional signal with O(n logn) complexity instead of O(n2). When choosing the pre-

defined dictionaries, tight frames that are easy to invert are usually preferred. In applications the

performance of these dictionaries rely on how well they can sparingly represent the target signals.

While pre-constructed (model driven) dictionaries like the Fast Fourier Transform (FFT)

can lead to fast transforms, they can be limited in their ability to sparsify the signals they are

designed to handle. Furthermore, most of those dictionaries are restricted to signals or images of

a certain type, and cannot be used for a new and arbitrary family of signals of interest. To handle

these potential short-comings, we turn to a learning-based (i.e., data driven) approach for obtaining

dictionaries. This route is to design a dictionary from data based on learning technique. Indeed,

it has been shown that using a learned dictionary from training data rather than fixed frames

like Fourier or Wavelets basis derives better results in many practical applications such as face

recognition [HDRL16], [ZL10], image de-noising [DLZS11], [EA06], image super-resolution

[YWL+12], [ZZX+12] and image segmentation [ZZM12]. On the other hand, dictionaries

learned from data usually do not exhibit the kind of structure that yields a fast transform. Thus,

applying these dictionaries to a vector will usually require O(n2) operations, which when n is

large can be prohibitive, especially if the dictionary needs to also be applied to a large data-set.

In this chapter, we will introduce an approach to dictionary learning which combines the

computational efficiency of certain model-based sparsifying transforms – such as the Discrete

Fourier Transform, with the advantages of data-driven dictionaries. That is, we use data to learn

dictionaries that admit a fast algorithm for the corresponding linear transform. Our algorithm is
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based on alternating minimization, where we minimize a sequence of convex functions, and finds

n×n dictionaries that can be applied in O(n logn) time.

3.1.2 Related Work

Dictionary learning is a branch of signal processing and machine learning. Its goal is

to find the dictionary which makes a class of signal admit sparse representations. Given the

input dataset of p signals, Y = [y1,y2, · · · ,yp], yi ∈ CN , we wish to find the dictionary D =

[d1,d2, · · · ,dn] ∈ CN×n and a representation X = [x1,x2, · · · ,xp], xi ∈ Cn, such that ‖Y −DX‖F is

minimized and such that xi’s are sparse for each i.This leads, for example, to the optimization

problem:

minimize
D∈CN×n,xi∈Cn

p

∑
i=1
‖yi−Dxi‖`2 +λ‖xi‖`1. (3.1)

The `1 norm, defined as the sum of absolute values of all elements of a vector, is the convex

envelop of the “`0 norm” (the number of non-zero entries in a vector) and has been shown to lead

to sparse results [DE03]. One may also add constraints on columns of D so that they have unit `2

norm to ensure that the values of di does not going arbitrary large which leads to the values of xi

being arbitrary small but not zero [MPS+09].

The above optimization problem is convex with respect to either the dictionary D or the

sparse representation x while fixing the other one of the two. Thus, it is common in dictionary

learning to solve the problem using iterative methods that alternate between sparse coding of the

signals based on the current dictionary and an update process for the dictionary atoms so as to

better fit the data [AEB06].
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Sparse coding algorithms

Sparse coding is the process of recovering the representation coefficients x based on the

given signal y and the current dictionary D. The task is to solve the optimization problem

minimize
x
‖x‖0 subject to y = Dx (3.2)

or

minimize
x
‖x‖0 subject to ‖Dx− y‖2 ≤ ε, (3.3)

As we discussed in Chapter 2, looking for sparsest representation by minimizing `0 norm

from linear measurement is NP-hard. Instead, we consider the algorithms that look for the sparse

approximation of y. To find x in (3.2) we noticed that the unknown x is composed by two parts to

be found: the support which indicates the location of non-zero coefficients and the coefficients on

the support. Thus there are two different ideas to find the solution. One way to solve x is to find

the support first and then simply use Least-Square to calculate the values on the support. This

leads to family of greedy algorithms. The simplest greedy algorithm is the Orthogonal Matching

Pursuit (OMP) algorithm [PRK93], [DMA97]. It is an iterative method that selects at each step

the column which is most correlated with the current residuals [CW11]. The algorithm is simple

and easy to implement.

An alternative route of solving x is to ignore the support, try to smooth the `0 penalty

function and solve the problem by optimizing a continuous function instead. The common used

algorithm for this perspective is called Basic Pursuit (BP) [CDS01], [DE03]. It uses `1 norm as

convex relaxation of `0 norm. Theoretical analysis on those pursuit algorithms show that those

algorithm can successfully solve x exactly given x is sparse or approximately sparse [DH01]

[EB02], [TG07], [Fuc04]. Further results about stable recovery in sparse approximations is

established in [DET05], [Tro04].
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Training of the dictionaries

The method of optimal directions (MOD) [EAH99] is presented by Engan et al. in

1999. Here the whole dictionary learning algorithm alternates between sparse coding stage

using Orthogonal Matching Pursuit (OMP) and the dictionary updating stage by applying Moore-

Penrose pseudo-inverse. Fixing the sparse coding for each signal, define the error by ei = yi−Dxi.

Then the sum of square errors over all the signals is

‖E‖2
F = ‖[e1,e2, · · · ,ep]‖2

F = ‖Y −DX‖2
F

Since at the nth iteration, the estimate X (n) of X is fixed, we can seek D by minimizing the error

above:

D(n+1) = argmin
D
‖Y −DX (n)‖2

F

= Y X (n)T
(X (n)X (n)T

)−1

= Y X (n)†
.

One then renormalize D(n+1) to fit the unit norm constrain.

K-SVD is another algorithm proposed by Aharon et al.[AEB06], it also alternates sparse

coding and dictionary updating. The algorithm is flexible and works in conjunction with any

pursuit algorithm [ZL10]. In K-SVD, the atoms in D are handled sequentially. Only one column

of D is updated each time. In l-th step, the algorithm keeps all the columns fixed except the l-th

one, dl . It iteratively update the l-th column of D by minimizing

‖Y −DX‖2
F =

∥∥∥∥∥Y − p

∑
j=1

d jxT
j

∥∥∥∥∥
2

F

=

∥∥∥∥∥
(

Y −∑
j 6=l

d jxT
j

)
−dlxT

l

∥∥∥∥∥
2

F

= ‖El−dlxT
l ‖2

F , (3.4)
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where xT
l denotes the l-th row of X . In last equation of (3.4) we denoted

El = Y −∑
j 6=l

d jxT
j , (3.5)

The multiplication DX has been decomposed to the sum of rank-1 matrices. Among those,

l− 1 terms are assumed fixed, and the l-th is assumed to be known. The matrix El stands for

the error for all the examples when the l-th atom is removed. Then it is natural to use singular

value decomposition(SVD) to find the best rank-1 approximation of El which give us the dl and

xT
l that minimize the equation (3.4). However, the new solution of vector XT

l is very likely to be

non-sparse as we desired, because the sparsity constraint is not enforced.

Algorithm 1: The K-SVD Algorithm for Dictionary Learning
Input: Y = [y1,y2, · · · ,yp]
Output: dictionary D
Initialization: Set the dictionary matrix D to have unit `2-norm columns, i = 1

1 while not converge do
2 Step 1: For each given example y1, employing the classicial sparse representation

with `0-norm regularization to solve problem
argmin

X
‖Y −DX‖2

F s.t. ‖xi‖0 ≤ k, i = 1,2, · · · , p for further estimating X i, set

l = 1
3 while l 6= k do
4 Step 2: Compute the overall representation residual El = Y −∑ j 6=l d jxT

j
5 Step 3: Extract the column items of El which corresponds to the nonzero

elements of xT
l and obtain ER

l .
6 Step 4: SVD decomposes ER

l into ER
l =UΛV T

7 Step 5: Update dl to the first column of U and update corresponding
coefficients in xT

l by Λ(1,1) times the first column of V
8 Step 6: l = l +1

In order to maintain the sparsity of xT
l , only the non-zero elements of xT

l should be

preserved. Define ωl as the group of indices that pointing to examples {yi}N
i=1 that use the atom

dl ,

ωl = {i|1≤ i≤ N,xT
l (i) 6= 0}.
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Define Ωl as matrix of size N×|ωl| with ones on the (ωl(i), i) entries and zeros elsewhere. Let

ER
l = ElΩl , and the previous optimization can be rewritten as

‖ElΩl−dlxT
l Ωl‖2

F = ‖ER
l −dlxR

l ‖2
F

Then, SVD decomposes ER
l into ER

l = UΛV T , and then updates dictionary dl . The algorithm

of K-SVD algorithm is summarized to Algorithm 1, and more information can be found in the

literature [AEB06]. It may be worth mentioning that we can also use stochastic gradient descent

method to update the dictionary [AE08], we first update the dictionary D by stochastic gradient

descent and then project the solution into the constrain set

{D = [d1, · · · ,dn] ∈ RN×n : ‖di‖ ≤ 1,∀i = 1,2, · · · ,n}. (3.6)

3.1.3 Content

The rest of this chapter is structured as follows: In section 3.2, we describe our algorithm

in details. The numerical experiment involving real image data are given in section 3.3. We

conclude and discuss future possible research direction in section 3.4.

3.2 Methodology

3.2.1 DFT and the Fast Fourier Transform (FFT) Algorithms

For a input signal x = [x0, · · · ,xN−1] ∈ CN , the Discrete Fourier Transform (DFT) trans-

forms it into another vector X = [X0,X1, · · · ,XN−1], by put the vector into exponential basis:

Xk =
N−1

∑
n=0

xne−
2πi
N kn. (3.7)
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Let

FN =



ω0·0
N ω0·1

N ω0·2
N · · · ω

0·(N−1)
N

ω1·0
N ω1·1

N ω1·2
N · · · ω

1·(N−1)
N

ω2·0
N ω2·1

N ω2·2
N · · · ω

2·(N−1)
N

...
...

...

ω
(N−1)·0
N ω

(N−1)·1
N ω

(N−1)·2
N · · · ω

(N−1)·(N−1)
N


, (3.8)

where ωN = e−
2πi
N is a primitive N-th root of unity. Then the Discrete Fourier Transform can be

written as matrix multiplication by the DFT matrix FN ∈ CN×N :

X = FNx. (3.9)

For the Cooley-Tukey Fast Fourier Transform algorithm, we first compute the DFTs of the even

indexed inputs xeven = [x0,x2, · · · ,xN−2] and the odd indexed inputs xodd = [x1,x3, · · · ,xN−1, and

then combines those two results to produce the DFT of the whole sequence.

Xk =
N/2−1

∑
m=0

x2me−
2πi
N/2 mk

+ e−
2πi
N k

N/2−1

∑
i=0

x2m+1e−
2πi
N/2 mk

Xk+N/2 =
N/2−1

∑
m=0

x2me−
2πi
N/2 mk− e−

2πi
N k

N/2−1

∑
i=0

x2m+1e−
2πi
N/2 mk
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In matrix form:

FNx =

FN/2xeven +ΩN/2FN/2xodd

FN/2xeven−ΩN/2FN/2xodd

 (3.10)

=

IN/2 ΩN/2

IN/2 −ΩN/2


FN/2 0

0 FN/2

PNx (3.11)

Where ΩN/2 is the diagonal matrix with entries 1,ω1
N ,ω

2
N , · · · ,ω

N/2−1
N , and PN is the permutation

matrix that splits and sorts the even and odd indices. This idea can then be performed recursively,

let

BN :=

IN/2 ΩN/2

IN/2 −ΩN/2

 (3.12)

then,

FN = BN

BN/2 0

0 BN/2




FN/4 0 0 0

0 FN/4 0 0

0 0 FN/4 0

0 0 0 FN/4


PN/2 0

0 PN/2

PN

= · · ·

=

BN

BN/2 0

0 BN/2

 · · ·


B2 · · · 0
... . . . ...

0 · · · B2






P2 · · · 0
... . . . ...

0 · · · P2

 · · ·
PN/2 0

0 PN/2

PN

 .

We call BN/2k , k = 0, · · · , log2(N)− 1 butterfly factors, each of them is a 2× 2 block matrix.

In the rest of this chapter, we define butterfly factors BN/2k as 2× 2 block matrices of size

(N/2k)× (N/2k), where each of its block is a diagonal matrix of size (N/2k+1)× (N/2k+1). i.e.
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BN/2k =


× 0

. . .
0 ×

× 0
. . .

0 ×

× 0
. . .

0 ×

× 0
. . .

0 ×

 ,
where each block is of size (N/2k+1)× (N/2k+1),

and each ‘×’ can be arbitrary number
(3.13)

3.2.2 Learning Dictionaries that Admit Fast Transforms

Inspired by the FFT algorithm, we propose an algorithm to learn a sparse representation

and fast transform given a matrix of data points.

We assume that we have p signals y1, · · · ,yp ∈ CN that can be sparse represented under

some dictionary. Thus for each yi we have

yi = Dxi,

where xi ∈ CN is the sparse representation of yi. In matrix form, concatenating all p signals, we

have

Y = DX

where Y ∈ CN×p, D∈ CN×N , X ∈ CN×p, i.e. each column of Y represents a given N - dimensional

signal and each column of X represents the corresponding sparse representation of the signal. We

will use our algorithm to find D and X such that X is sparse, and D can be applied with complexity

O(n logn).

The idea is to solve the following optimization problem to obtain a sparse X , and a

dictionary D that has a factorization for D such that the recovery of each y can be calculated in a

lower complexity:

minimize
D,X

‖Y −DX‖F .
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Now let

D =

BN

BN/2 0

0 BN/2

 · · ·


B2 · · · 0
... . . . ...

0 · · · B2






P2 · · · 0
... . . . ...

0 · · · P2

 · · ·
PN/2 0

0 PN/2

PN


We will solve the below optimization instead:

minimize
BN/2k ,PN/2k ,X

∥∥∥∥∥∥∥∥∥∥
Y −

BN

BN/2 0

0 BN/2

 · · ·


B2 · · · 0
...

. . .
...

0 · · · B2






P2 · · · 0
...

. . .
...

0 · · · P2

 · · ·
PN/2 0

0 PN/2

PN

X

∥∥∥∥∥∥∥∥∥∥
F

subject to BN/2k are butterfly factors, for k = 0,1,2, · · · , log2(N)−1

PN/2k are permutation matrices, for k = 0,1,2, · · · , log2(N)−1

X is sparse.
(3.14)

This problem is highly non-convex; however, if we only focus on one variable (i.e., one unknown

matrix) and fix all the others, the problem becomes convex in that variable. Thus as in standard

dictionary learning, we can approach it by solving a sequence of convex optimization problems.

In each iteration, we will alternatively solve one of the unknown matrices from X , PN , PN/2, PN/4

· · · , P2, B2, B4,· · · ,BN/2, BN and fix all the others.

In order to accelerate the optimization we exploit the structure in our problem. Denoting

In as the identity matrix with size n×n, we can rewrite the objective function as:

∥∥∥∥∥∥∥∥∥∥
Y −

BN

BN/2 0

0 BN/2

 · · ·


B2 · · · 0
... . . . ...

0 · · · B2






P2 · · · 0
... . . . ...

0 · · · P2

 · · ·
PN/2 0

0 PN/2

PN

X

∥∥∥∥∥∥∥∥∥∥
F

=
∥∥Y − ((I1⊗BN)

(
I2⊗BN/2

)
· · ·
(
IN/2⊗B2

))((
IN/2⊗P2

)
· · ·
(
I2⊗PN/2

)
(I1⊗PN)

)
X
∥∥

F .

(3.15)
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Here ⊗ represents the Kronecker product, i.e. if A is a m× n matrix, and B is a p× q

matrix, A⊗B is a pm×qn matrix:

A⊗B =


a11B · · · a1nB

... . . . · · ·

am1B · · · anmB


Next we introduce the details of how to solve each unknown in our algorithm.

Optimizing for the butterfly factors

First, we introduce how we solve for BN/2k . In this step, we are aiming to solve the

following optimization problem for each k = 1,2, · · · , log2(N)−1:

B̂N/2k = argmin
BN/2k

‖Y−
(
(I1⊗BN)

(
I2⊗BN/2

)
· · ·
(
IN/2⊗B2

))
((

IN/2⊗P2
)
· · ·
(
I2⊗PN/2

)
(I1⊗PN)

)
X
∥∥

F

(3.16)

The matrix I2k⊗BN/2k =


BN/2k · · · 0

... . . . ...

0 · · · BN/2k

 in the optimization have fixed structure, thus can

be easily optimized. For each k, i.e. for each unknown BN/2k , we denote the fixed part “to its left”

as

L =
(
(I1⊗BN) · · ·

(
I2k−1⊗BN/2k−1

))
and the fixed part “to its right” as

R =
((

I2k+1⊗BN/2k+1

)
· · ·
(
IN/2⊗B2

))((
IN/2⊗P2

)
· · ·
(
I2⊗PN/2

)
(I1⊗PN)

)
X .
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Then, our optimization problem is

minimize
BN/2k

‖Y −L(I2k⊗BN/2k)R‖F

subject to BN/2k is a butterfly factor.

In turn, this can be written as a least square problem by vectorizing BN/2k .

Notice that

L(I2k⊗BN/2k)R = L



BN/2k

BN/2k

. . .

BN/2k


R

=
2k−1

∑
i=0

L:,i(N/2k)+1:(i+1)(N/2k)BN/2kRi(N/2k)+1:(i+1)(N/2k),:

For a matrix m×n matrix A,
−→
A denotes the vectorization of A, i.e. the mn×1 column

vector obtained by stacking the columns of the matrix A on top of one another, since we know

that
(
BT ⊗A

)−→
X =

−−→
AXB ([HHJ94]), we have

−−−−−−−−−−→
L(I2k⊗BN/2k)R =

2k−1

∑
i=0

((
RT

i(N/2k)+1:(i+1)(N/2k),:⊗L:,i(N/2k)+1:(i+1)(N/2k)

)−−−→
BN/2k

)
=

(
2k−1

∑
i=0

(
RT

i(N/2k)+1:(i+1)(N/2k),:⊗L:,i(N/2k)+1:(i+1)(N/2k)

))−−−→
BN/2k .
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Our optimization can be written as

−−−→
BN/2k

∗ =argmin
−−−→
BN/2k

∥∥∥∥∥−→Y −
(

2k−1

∑
i=0

(
RT

i(N/2k)+1:(i+1)(N/2k),:⊗L:,i(N/2k)+1:(i+1)(N/2k)

))−−−→
BN/2k

∥∥∥∥∥
2

subject to BN/2k is a butterfly factor.
(3.17)

Notice that the butterfly factors are defined as 2 by 2 blocks with diagonal matrix as its block

(3.13). the sparsity pattern of BN/2k is fixed, we only need to solve for the non-zero entries. In

other words, we can only solve the system with 2×2k = 2k+1 non-zero unknowns instead of all

N2, which can easily be done. In the end, we transfer the optimal vector
−−−→
BN/2k

∗ back to matrix

form according to the sparse pattern of BN/2k to get B̂N/2k .

Optimizing for permutations – convex relaxation

In this section, we introduce our method for solving PN/2k from

P̂N/2k = argmin
PN/2k

‖Y−
(
(I1⊗BN)

(
I2⊗BN/2

)
· · ·
(
IN/2⊗B2

))
((

IN/2⊗P2
)
· · ·
(
I2⊗PN/2

)
(I1⊗PN)

)
X
∥∥

F .

Unlike the butterfly factors, the permutation factors that we want to optimize form a discrete

set. In this case, for the k-th unknown factor PN/2k , we need to choose the best permutation that

minimizes the objective function from among the set of N
2k ! permutation matrices. Of course

a brute-force works but it is too slow. Instead we provide a convex relaxation to solve for the

permutation matrix.

A nonnegative matrix A of size n×n, A = [a]i j is called a doubly stochastic matrices if

∑
n
i=1 ai j = 1 and ∑

n
j=1 ai j = 1. The set of doubly stochastic matrices of size n×n is the convex

hull of all permutation matrices of size n×n ([Bru06]). Thus, for the permutation matrix, we can
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use a convex relaxation:
minimize

PN/2k

∥∥∥Y −L(I2k⊗PN/2k)R
∥∥∥

F

subject to 1
T PN/2k = 1

T

1
T PT

N/2k = 1
T

0≤ PN/2k ≤ 1,

where 1 denotes the vector of all ones, and 0,1 denotes of matrix of all zeros and all ones respec-

tively. Using the same trick we used for butterfly factors, we can also rewrite this optimization

problem into:

−−−→
PN/2k

∗ =argmin
−−−→
PN/2k

∥∥∥∥∥−→Y −
(

2k−1

∑
i=0

(
RT

i(N/2k)+1:(i+1)(N/2k),:⊗L:,i(N/2k)+1:(i+1)(N/2k)

))−−−→
PN/2k

∥∥∥∥∥
2

subject to 1
T PN/2k = 1T

1T PT
N/2k = 1T

0≤ PN/2k ≤ 1.
(3.18)

We can then solve this problem as a linear constraint least-square problem, and then reshape
−−−→
PN/2k

∗ to matrix P̂N/2k . Of course, since this is only a convex relaxation, there will be instances

when the optimal
−−−→
PN/2k

∗ is not the vectorization of a permutation matrix. In these cases, we

round the solution P̂N/2k by making the largest element for each column to be 1 and the rest of

the elements to be 0.

Solving for X

When solving X , we use `1 norm regularization for each xi, to promote sparsity. For each

iteration, we first calculate D̂, our current estimate of the dictionary using the updated B’s and
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P’s, then solve

x∗i = argmin
xi

‖xi‖`1 subject to ‖D̂xi− yi‖2 ≤ σi. (3.19)

for i = 1,2,3, · · · , p with some hyper-parameters σi.

After solving for each xi, we concatenate them into X̂ .

Let D̂(l) and X̂ (l) denote the updated dictionary and the sparse representations in l-th

iteration. We define the error after each iteration as

E(l) = ‖Y − D̂(l)X̂ (l)‖F (3.20)

In l-th iteration, we choose σi = αl‖yi‖2, 0 < α < 1. Here α can be chosen to control the trade

off between the speed of error decreasing and the sparsity of X̂ , as the closer α is to 1, the slower

the error E(l) decrease and the more sparse result we can get.
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The whole algorithm can be described as below:
Algorithm 2: Dictionary Learning with fast transform

Input: Y

Output: BN/2k ,PN/2k ,X for k = 0,1,2, · · · , log2(N)−1

1 Random initial BN/2k ,PN/2k for k = 0,1,2, · · · , log2(N)−1

2 Optimizing over X by solving (3.19) for each i and concatenating the results.

3 while error E defined in (3.20) is not small enough do

4 for k = 0,1,2, · · · , log2(N)−1 do

5 Fix X , all BN/2k’s and PN/2log2N−1, · · · ,PN/2k+1,PN/2k−1, · · · ,PN/20 . Optimizing

over PN/2k by solving (3.18) and then reshape the result into permutation

matrix.

6 for k = log2(N)−1, · · · ,2,1,0 do

7 Fix X , all PN/2k’s and BN/2log2N−1, · · · ,BN/2k+1 ,BN/2k−1, · · · ,BN/20 .

Optimizing over BN/2k by solving (3.17) and then transfer the result into

butterfly factor.

8 Normalize BN/2k into matrix with unit `2 norm columns.

9 Optimizing over X by solving (3.19) for each i and concatenating the results.

3.3 Numerical Experiment

3.3.1 Datasets

In this section we illustrate our algorithm – on a stylized example – by applying it to

real image data obtained from the CIFAR-10 dataset [KNH]. The CIFAR-10 dataset consists of

60000 32x32 color images. We uniformly sample 1000 of them as training data for our algorithm.

We merge the RGB channels into one channel by forming a weighted sum of the R, G, and B

components using the “rgb2gray” function in matlab[”Ma] , and normalize the image so the
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pixels’ range is in [0,1].

3.3.2 Implementation details

The natural images are approximately sparse under the 2D Discrete Fourier Transform

(DFT) [Lim90], i.e. for each image Yi, we have

Xi = 2D-FFT(Yi) = DYiDT ⇐⇒ −→Xi = (D⊗D)
−→
Yi ,

where D is the transformation matrix of Discrete Fourier Transform, and Xi is the sparse rep-

resentation matrix of the image Yi under the 2D-DFT. Our task is to learn, from the images,

a sparsifying transform that hopefully competes with the DFT in terms of the sparsity of the

resulting coefficients. Note that the 2-D DFT is a separable transformation, i.e., it can be im-

plemented by first applying the 1-D DFT to the columns of Y and then applying it again to the

rows of the result. We will also assume that the sparsifying transform that we learn is separable,

however we allow the factors to be different. Thus we will approximately minimize the objective

∑i ‖Yi−D−1
1 XiDT

2
−1‖2

F .

Since the inverse of the Discrete Fourier Transform has the same Fast Transform structure

as the DFT itself, but with the opposite sign in the exponent and a 1/N factor[AH05],[Wik], any

FFT algorithm can easily be adapted for it. We use the same factorization that we introduced

before.

Denote B(N/2k);1 and P(N/2k);1 as the butterfly factors and the permutation matrices for

D−1
1 , we write

D−1
1 =

(
(I1⊗BN;1) · · ·

(
IN/2⊗B2;1

))((
IN/2⊗P2;1

)
· · ·(I1⊗PN;1)

)
, (3.21)

The factorization for D−1
2 has the same form , but with possibly different values for the
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butterfly factors and permutation matrices, which we denote as B(N/2k);2 and P(N/2k);2,

D−1
2 =

(
(I1⊗BN;2) · · ·

(
IN/2⊗B2;2

))((
IN/2⊗P2;2

)
· · ·(I1⊗PN;2)

)
. (3.22)

Note that for any nonsingular matrix (DT )−1 = (D−1)T , we have

Yi =
(
(I1⊗BN;1) · · ·

(
IN/2⊗B2;1

))((
IN/2⊗P2;1

)
· · ·(I1⊗PN;1)

)
·Xi

·
((
(I1⊗BN;2) · · ·

(
IN/2⊗B2;2

))((
IN/2⊗P2;2

)
· · ·(I1⊗PN;2)

))T
.

When solving B(N/2k);1 and P(N/2k);1, D−1
2 (i.e. B(N/2k);2 and P(N/2k);2 for each k) and Xi are

treated as known matrices. We can first calculate

Xi ·
((
(I1⊗BN;2) · · ·

(
IN/2⊗B2;2

))((
IN/2⊗P2;2

)
· · ·(I1⊗PN;2)

))T
, (3.23)

and denote it as Zi;2 for i-th training example (since it is calculated by fixing D−1
2 ). Then each

image Yi can be written as:

Yi =
(
(I1⊗BN;1) · · ·

(
IN/2⊗B2;1

))((
IN/2⊗P2;1

)
· · ·(I1⊗PN;1)

)
·Zi;2.

Concatenate Yi’s and Zi;2’s by stacking the matrices on right of one another to get Yconcat and

Zconcat;2 respectively. Now we have the following problem with the same form of the highly

non-convex optimization (3.14) that we introduced at the beginning of Section 3.2.2:
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minimize
X ,B

(N/2k);1,P(N/2k);1

‖Yconcat−
(
(I1⊗BN;1) · · ·

(
IN/2⊗B2;1

))
((

IN/2⊗P2;1
)
· · ·(I1⊗PN;1)

)
·Zconcat;2‖F ,

subject to P(N/2k);1 are permutation matrices, for k = 0,1,2, · · · , log2(N)−1

B(N/2k);1 are butterfly factors, for k = 0,1,2, · · · , log2(N)−1.

(3.24)

For each unknown BN/2k;1, we denote the fixed part “to its left” as

L =
(
(I1⊗BN;1) · · ·

(
I2k−1⊗B(N/2k−1);1

))

and the fixed part “to its right” as

R =
((

I2k+1⊗B(N/2k+1);1

)
· · ·
(
IN/2⊗B2;1

))((
IN/2⊗P2;1

)
· · ·(I1⊗PN;1)

)
Zconcat;2.

Let

A =

(
2k−1

∑
i=0

(
RT

i(N/2k)+1:(i+1)(N/2k),:⊗L:,i(N/2k)+1:(i+1)(N/2k)

))
,

we solve the following optimization

−−−−−→
B(N/2k);1

∗ =argmin
−−−−−→
B
(N/2k);1

∥∥∥−−−→Yconcat−A
−−−−−→
B(N/2k);1

∥∥∥
2

subject to BN/2k is a butterfly factor.

(3.25)

restricted on non-zero elements of
−−−−−→
B(N/2k);1, and then transfer the optimal result back to matrix.

For each unknown PN/2k;1, we denote the fixed part “to its left” as

L = ((I1⊗BN;1) · · ·(I2k−1⊗B2;1))
((

IN/2⊗P2;1
)
· · ·
(

I1⊗P(N/2k−1);1

))
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and the fixed part “to its right” as

R =
((

I(N/2k+1);1⊗P2;1

)
· · ·(I1⊗PN;1)

)
Zconcat;2,

and let

A =

(
2k−1

∑
i=0

(
RT

i(N/2k)+1:(i+1)(N/2k),:⊗L:,i(N/2k)+1:(i+1)(N/2k)

))
then solve the following convex relaxation:

−−−−−→
P(N/2k);1

∗ =argmin
−−−−−→
P
(N/2k);1

∥∥∥−−−→Yconcat−A
−−−−−→
P(N/2k);1

∥∥∥
2

subject to 1T P(N/2k);1 = 1T

1T PT
(N/2k);1 = 1T

0≤ P(N/2k);1 ≤ 1.

(3.26)

After we update all B(N/2k);1’s and P(N/2k);1’s, we then fix them and calculate

(
(I1⊗BN;1) · · ·

(
IN/2⊗B2;1

))((
IN/2⊗P2;1

)
· · ·(I1⊗PN;1)

)
·Xi, (3.27)

for each Xi, and denote it as Zi;1. For each example, we have

Yi = Zi;1 ·
((
(I1⊗BN;2) · · ·

(
IN/2⊗B2;2

))((
IN/2⊗P2;2

)
· · ·(I1⊗PN;2)

))T
. (3.28)

Transpose the system

Y T
i =

((
(I1⊗BN;2) · · ·

(
IN/2⊗B2;2

))((
IN/2⊗P2;2

)
· · ·(I1⊗PN;2)

))
·ZT

i;1. (3.29)

and concatenate Y T
i and ZT

i;1, the optimization can again be rewritten into the same form as (3.14).

B(N/2k);2’s and P(N/2k);2’s can then be solved sequentially.
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After solving all the B(N/2k);1’s, P(N/2k);1’s, B(N/2k);2’s and P(N/2k);2’s, we can calculate

D−1
1 and D−1

2 respectively. Then X can be updated by solving

−→
Xi
∗ = argmin

−→
Xi

∥∥∥−→Xi

∥∥∥
`1

subject to
∥∥∥(D−1

2 ⊗D−1
1

)−→
Xi −−→yi

∥∥∥
2
≤ σi. (3.30)

The algorithm for image data can be find in (Alg 3). In our experiment, we use “lsqlin”

function [Mat] built in MATLAB to solve the convex relaxation of permutation problem (3.18).

And the spgl1 [vdBF19] to solve X from (3.19), with σi = αl‖yi‖2, α = 0.99.

3.3.3 Numerical Sparsity

We use `0 norm of x, number of nonzero elements in x, to represent the sparsity of a

signal. Although the `0 norm plays significant role in many aspect of theoretical signal processing

analysis, practically it has clear disadvantage when the signal is approximately sparse instead of

strictly sparse i.e. when there are many coefficients close to 0 but not exactly equal to 0. In this

case the function ‖x‖0 is no longer a very meaningful description of the number of significant

coefficients (the estimate of the sparsity) of the signal. Instead, we use numerical sparsity, the

ratio between square of the `1 and `2 norm of the signal, to estimate the sparsity of a given signal

x:

s(x) =
‖x‖2

1

‖x‖2
2
. (3.31)

s(x) always satisfies 1 ≤ s(x) ≤ ‖x‖0, and it is a sharp lower bound of ‖x‖0 for any nonzero x

[Lop13]. For example, if a vector x ∈ RN has only s large coefficients and N− s small coefficients,

‖x‖`0 = N but s(x) is close to s, which reflects the real “sparsity” i.e. number of significant

coefficients.
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Algorithm 3: Dictionary Learning with fast transform for images
Input: images Yi, i = 1,2, · · · , p
Output: B(N/2k);1, P(N/2k);1, B(N/2k);2, P(N/2k);2 and X for k = 0,1,2, · · · , log2(N)−1

1 Random initial B(N/2k);1, P(N/2k);1, B(N/2k);2, P(N/2k);2 for k = 0,1,2, · · · , log2(N)−1
2 Find the sparse representation Xi by solving (3.30) for each i
3 while error is not small enough do
4 Calculate D−1

2 using B(N/2k);2 and P(N/2k);2 according to equation (3.22)

5 Calculate Zi;2 = XiD−1
2

T
for each i

6 Concatenate Yi into Yconcat , Zi;2 into Zconcat;2 by stacking the matrices on the right
of one another.

7 for k = 0,1,2, · · · , log2(N)−1 do
8 Fix all B(N/2k);1’s and P(N/2log2N−1);1, · · · ,P(N/2k+1);1,P(N/2k−1);1, · · · ,P(N/20);1.

Optimizing over P(N/2k);1 by solving (3.26) and then reshape the result into
permutation matrix.

9 for k = log2(N)−1, · · · ,2,1,0 do
10 Fix all P(N/2k);1’s and B(N/2log2N−1);1, · · · ,B(N/2k+1);1,B(N/2k−1);1, · · · ,B(N/20);1.

Optimizing over B(N/2k);1 by solving (3.25) and then transfer the result into
butterfly factor.

11 Normalize B(N/2k);1 into matrix with unit `2 norm columns.

12 Calculated D1−1 using B(N/2k);1, P(N/2k);1 according to equation (3.21)
13 Calculate Zi;1 = D−1

2 Xi for each i
14 Concatenate Y T

i into Yconcat , ZT
i;2 into Zconcat;1 by stacking the matrices on right of

one another.
15 for k = 0,1,2, · · · , log2(N)−1 do
16 Fix all B(N/2k);2’s and P(N/2log2N−1);2, · · · ,P(N/2k+1);2,P(N/2k−1);2, · · · ,P(N/20);2.

Optimizing over P(N/2k);2 by solving the convex relaxation similar as (3.26)
and then reshape the result into permutation matrix.

17 for k = log2(N)−1, · · · ,2,1,0 do
18 Fix all P(N/2k);2’s and B(N/2log2N−1);2, · · · ,B(N/2k+1);2,B(N/2k−1);2, · · · ,B(N/20);2.

Optimizing over B(N/2k);2 by solving the optimization similar as (3.25) and
then transfer the result into butterfly factor.

19 Normalize B(N/2k);1 into matrix with unit `2 norm columns.

20 Calcuate D−1
2 using B(N/2k);2, P(N/2k);2

21 Find the sparse representation Xi by solving (3.30) for each i.
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Figure 3.1: Examples of approximately sparse representation

3.3.4 Results

Denote the learned approximately sparse representation for each training image as X̂i, the

learned butterfly factors as ̂B(N/2k);1, ̂B(N/2k);2 and the learned permutation matrix as P̂(N/2k);1,

P̂(N/2k);2. To recover the image from X̂i, We simply do the calculation

Ŷi =
(

I1⊗ B̂N;1

)(
I2⊗ B̂(N/2);1

)
· · ·
(

IN/2⊗ B̂2;1

)(
IN/2⊗ P̂2;1

)
· · ·
(

I2⊗ P̂(N/2);1

)(
I1⊗ P̂N;1

)
· X̂i

·
((

I1⊗ B̂N;2

)(
I2⊗ B̂(N/2);2

)
· · ·
(

IN/2⊗ B̂2;2

)(
IN/2⊗ P̂2;2

)
· · ·
(

I2⊗ P̂(N/2);2

)(
I1⊗ P̂N;2

))T

In our result, the average numerical sparsity of the learned representation over the training

data is 30.5143. We post-process the learned sparse representations X̂i by keeping the largest

120 (approximately 4 times numerical sparsity for each image) coefficients of X̂i to make the

representation sparse, and denote the post-processed sparse representation as X̂i;post .

The experiments shows that our algorithm can successfully find a fast factorization of

the dictionary as well as the “sparse” representation of the images under the dictionary. Figure

3.1 shows several examples of the approximated sparse representation of our training data. We

can see from the plot that, in the whole 1024 coefficients of the images, only several of them are

significant large in the representations that we found.

Figure 3.2 shows examples of the recovery from sparse representation of the training
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Figure 3.2: Recovered images of examples from training images

data. For each example, we plot the original image, the image recovered from the post-processed

representation X̂i;post and the recovered image directly from the learned representation X̂i. For

each column, the 1st row prints the original image Yi, the 2nd row shows the recovery image from

the post-processed sparse representation X̂i;post , and the last row shows the recovery image from

the learned representation X̂i.

Furthermore, to test if our learned dictionary can be applied to unknown examples to

sparsify them, we tried our learned dictionary on test images (randomly selected from CIFIR10

dataset excepting the 1000 training images). We apply

X̂i;test =
((

I1⊗ B̂N;1

)
· · ·
(

IN/2⊗ B̂2;1

)(
IN/2⊗ P̂2;1

)
· · ·
(

I2⊗ P̂(N/2);1

)(
I1⊗ P̂N;1

))−1
·Yi;test

·
(((

I1⊗ B̂N;2

)
· · ·
(

IN/2⊗ B̂2;2

)(
IN/2⊗ P̂2;2

)
· · ·
(

I2⊗ P̂(N/2);2

)(
I1⊗ P̂N;2

))−1
)T

on each testing image Yi;test to get the approximately sparse representation X̂i;test . We also post-

process X̂i;test in the same way of trained representation to get X̂i;test;post . Figure 3.3 shows the

result of applying the dictionary on testing data. Figure 3.3 shows recovered images of examples
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Figure 3.3: Recovered images of examples from testing images

from testing data. For each column, the 1st row prints the original image Yi;test , the 2nd row shows

the recovery image from the post-processed compressed sparse representation X̂i;test;post , and the

last row shows the corresponding sparse representation by directly applying D1 and D2 that we

learned to the testing data. The average numerical sparsity over the 100 random selected testing

data is 34.5797, the dictionary generalized well to unknown examples.

We compared the numerical sparsity of the trained sparse representation X̂i from our

algorithm with it of the 2-D DFT and 2-D DCT transformation. Figure 3.4 and Figure 3.5

shows the comparison of sparsity. For each dots represents an training example, its x coordinate

represents the numerical sparsity of its 2-D DFT or 2-D DCT coefficients, respectly, where as

the y coordinates represents the numerical sparsity of its learned sparse representation from our

algorithm. Since for both polots, the “dots” are mostly below that line y = x, it means that our

results is better. Our learned dictionary outperforms the coefficients of 2D-DFT transform and is

slightly better than 2D-DCT result.

Figure 3.6 shows the learned dictionaries obtained from our algorithm. Combined with
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Figure 3.4: Comparison of sparsities of our result with it of 2D-DCT

Figure 3.5: Comparison of sparsities of our result with it of 2D-DFT
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Figure 3.6: D̂1 and D̂2

figure 3.7, which shows the columns of D̂2, we can see that the some columns of our learned

dictionary is acting somewhat like sin/cosine basis with different amplitude and period, some of

them are acting like combinations of wavelet basis, and the dictionaries has some clear pattern

especially D2 who looks like a DCT matrix.

3.4 Conclusion

We proposed an algorithm which can learn the fast factorization of a linear dictionary

as well as the approximate sparse representation from the given training data. In our proposed

algorithm, we learned a N×N linear transformation matrix use O(N) degree of freedom. Besides,

the output of the algorithm forms a factorization of the dictionary which can obtain fast recovery by

O(N logN) calculations instead of O(N2). We leave it to future work to show that the sequence of

optimization problems leads to a stationary point of the original highly non-convex optimization.
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Figure 3.7: Columns of D̂2 (only show every 4 of them)
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Chapter 4

Conditional Generative Latent

Optimization

4.1 Introduction

We introduced traditional dictionary and representation learning in previous chapters.

Dictionary learning shows promising results in reconstruction since the basis is learned adaptively

from a data-set of training signals that are representative of the class of signals of interest. The

dictionaries we introduced above are linear transformations which can be interpreted as single

layer neural networks (also known as shallow neural networks). We learn the dictionary and the

sparse representation by assuming that

x = Dz

But in some applications, it is not enough to just have the linear dictionaries. For example, in

image generation, even though we know that natural images are approximately sparse under

wavelet basis, when you feed a random sparse vector to a wavelet basis, it is not necessary that you

get a “natural image”. Thus we may assume that images have more complex structure. In recent

years, deep learning based techniques have replaced shallow networks for representation learning.
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Nevertheless, the fundamental idea is the same. One assumes that the signals encountered in

some application follow a similar distribution, therefore the model learned from training data can

be applied to unknown examples. In this chapter, motivated by a specific application, we will

propose a deep generative model using representation learning technique.

4.1.1 Generative model

Generative models learn a target distribution that generates a class of data. For example,

[RMC15] uses a generative model to learn the distribution of facial images and use the learned

model to draw new samples to generate fake facial images. Generative Adversarial Nets (GANs)

[GPAM+14] is one of the major breakthroughs in the area of generative modeling in the machine

learning community.

In generative adversarial nets, two neural networks are learned, the generator G and the

discriminator D. The generator G can be modeled as a differentiable function that takes random

input z from a latent space Z following a distribution pz(z) and outputs data x that should follow

(after training) the targeted probability distribution pdata(x):

G : Z→ Rn,

where Z is the latent space and n is the dimensionality of the data space. Its adversary, the

discriminator network D, is a simple classifier neural network that takes an input data x that can

be a “real” one drawn from the data set or a “fake” one whose density is induced by pz(z) going

through the generator G, and that returns a probability D(x) indicating the likelihood of x being

“real” data:

D : Rn→ [0,1]. (4.1)

Learning the generative adversarial networks model can be regarded as a zero-sum game in which

the generator and adversary networks must compete against each other. We use V (D,G) to model
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Figure 4.1: Generative Adversarial Nets architecture

the probability of assigning the correct label to both real training examples and samples generated

from G:

V (D,G) = Ex∼pdata(x)[log(D(x))]+Ez∼pz(z)[log(1−D(G(z)))]

The goal of the discriminator is to detect fake generated data, so the discriminative neural

network is trained to maximize the probability. Conversely, the goal of the generator is to fool

the discriminator, so the generative neural network is trained to minimize V (D,G). So that at

convergence,

G∗ = argmin
G

max
D

V (D,G)

Ideally, the generated samples are indistinguishable from the real data, and the discriminator

outputs 1
2 everywhere. The discriminator may then be discarded.

Generative adversarial nets can be extended to a conditional model if both the generator

and discriminator are conditioned on some extra information y. y could be any kind of auxiliary

information, such as class labels or data from other modalities. The model is then trained to

sample from a conditional distribution p(x | y) rather than simply sampling from a marginal

distribution p(x). [MO14] proposes conditional generative adversarial nets by combining the

prior input noise z∼ pz(z) with the condition y into a joint latent representation, and then inputing
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Figure 4.2: Conditional adversarial net [MO14]

y together with the data to the discriminator and do the following optimization:

min
G

max
D

V (D,G) = Ex∼pdata(x)[log(D(x | y))]+Ez∼pz(z)[log(1−D(G(z | y)))]

Fig 4.2 illustrates the structure of a simple conditional adversarial net.

While the generative adversarial net learns the distribution of data by applying the adver-

sarial game between the generator and the discriminator, Generative Latent Optimization (GLO)

[BJLPS18] maps one learnable noise vector to each of the data in the training set by minimizing

a simple reconstruction loss:

min
ω,z

`(x,Gω(z)),

where ω represents the parameters of the generator G and `(x,x′) is some deterministic loss
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function. Thus the model can also be interpreted as a representation learning model, where the

latent representation for each training sample and the generator network are learned adaptively

from the training data.

4.1.2 Contributions

In this chapter, we will propose a deep conditional generative neural network structure

inspired by dictionary learning and Generative Latent Optimization (GLO), and focused on a

specific application that arises in the computer gaming industry. Our work is motivated by the

fact that practitioners in the gaming industry often encounter the issue that building layouts

on most available maps are largely missing especially in remote areas. Our goal is to train a

conditional model that can take simple inputs conditions such as the locations of roads, natural

areas (e.g., vegetation, bodies of water) and generate the possible placement of buildings around

them under various styles. We built our model based on Generative Latent Optimization (GLO)

[BJLPS18], and extend the framework to a conditional version, which we call conditional GLO

(cGLO). cGLO framework allows us to not only learn a generator network, but also learn a latent

representation of each building layout sample hinting a style. Note that style refers to details like

building size and density that could differentiate between neighborhoods, e.g. residential area

and commercial areas. The trained latent representation can then be used as style reference of a

specific building layout example in generating new examples with arbitrary input conditions.

We provide three main contributions:

• We propose conditional GLO (cGLO) to control the generation on user-specified maps

while training latent representations of various neighborhood styles.

• We enhance the generator in cGLO by adversarial training and crossing latent vectors,

in order to learn more realistic and generic neighborhood styles, and decouple the latent

variable from associated conditions.
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• We formulate the problem of building placements in the scope of image synthesis and

format the map data in individual channels. In this way, the dataset can also be used for

other tasks such as road generation.

The rest of the paper will be organized as follows: section 4.3 introduced the technical

details of our generative model. Implementation details and the experiment results are presented

in section 4.4, section 4.5 gives the conclusion and summaries the future works.

4.2 Related Work

4.2.1 Generating Building Placements

Modeling a virtual city is important for a number of applications such as mapping, urban

planning, video games [KM07], etc.

Procedural techniques [STBB14] are widely used to create urban space with a few steps,

including generating road network [CEW+08], placing buildings and other objects [VKW+12],

and creating geometries for single objects [MWZ+14]. In [PM01], Parish and Muller proposed a

method to generate extensive street layouts and buildings using L-systems. Kelly and McCabe

proposed an interactive system named Citygen [KM07]. They generate building layouts by

calculating all the enclosed areas between secondary roads and then subdividing them into lots.

The buildings are then placed within the lots and the relevant materials are applied to the generated

geometry. However, such procedural methods rely on manually designed grammar and rules that

require substantial expertise. Instead, we propose a data-driven method that can automatically

generate building placements according to given input road placements, natural obstructions, as

well as a specific style example.
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4.2.2 Deep Dictionary Learning and Latent Representation Learning

Wu, Rosca, and Lillicrap propose “deep dictionary learning” (DDL) which combines deep

learning with a dictionary learning task using a greedy algorithm [TMSV16]. Tariyal, Aggarwal

and Majumdar shows that greedy DDL outperforms deep belief network (DBN) and stacked

autoencoder (SAE) based techniques for hyperspectral image classification[TAM16]. It proceeds

by learning a single layer of the dictionary in each stage where the coefficients from the previous

layer act as inputs to the subsequent layer as a greedy algorithm. Singhal and Majumdar propose

an alternative solution to DDL whereby all the layers of dictionaries are solved simultaneously

[SM18]

Latent Representation provides higher data qualities, as it is trained by mathematical

models to reduce the data dimension or filter out the noise. These data representation plays an

important role in the results in detection or classification tasks [WYG+08] [CNT11]. Probabilistic

graphical models (PGMs) [KF09] learn the latent representation z of the input data x by formulat-

ing the joint distributions p(z,x). Autoencoders (AE) [Ng11], [LCLL14] are neural networks that

aims to copy the inputs to the outputs. They work by compressing the input into a latent-space

representation, and then reconstructing the output from this representation. Autoencoders can be

combined with different constraints and embed vectors in various applications.

The Generative model in Generative adversarial nets(GANs) [GPAM+14] learns to map

points in the latent space to generated images. However, training GANs requires carefully balanc-

ing updates to Discriminator and Generator and is sensitive to both architecture and algorithm

choices [SGZ+16]. Inspired by compressed sensing [Don06] [CT06], Wu et al. [WRL19] and

Bojanowski et al.[BJLPS18] introduce latent optimization for GANs to improve the stability of

training. [WDB+19] provides theoretical analysis from the perspectives of differentiable games

and stochastic approximation for [WRL19].
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4.2.3 Deep Generative Models

Generative adversarial nets [GPAM+14] provide a novel way to generate images of high

quality, and the conditional extension [MO14] learns the relationship between a pair of images

so that users have more control over the input. The non-adversarial version, GLO [BJLPS18],

was proposed to embed training images in a latent space which is optimized with the generator

simultaneously. While these techniques have great success in image synthesis, the potential has

also been investigated in computer graphics [LW16] [YM16]. The first attempt in urban modeling

using GAN was road networks synthesis [HWWK17]. To fill the gap of building placements, we

propose a conditional extension of GLO to learn the intrinsic style of building distribution from

single images. In addition, we leverage adversarial training from GAN to learn a better latent

representation of an urban neighborhood, that encodes the style of placing buildings towards

surrounding environments. The technique that is most relative to our work is ArtGAN [TCAT17]

which trains cGAN while feeding labels into the generator. Different from ArtGAN, we train a

latent vector for each image and back propagate errors in both generator and discriminator. To

the best of our knowledge, there is no method generating buildings and placements following an

example style. Therefore, we evaluate our method through comparison with ArtGAN, and also

demonstrate the effect of adversarial training in section 4.4.

4.3 Conditional Generative Latent Optimization

In this section we describe our framework in detail. Our data set are acquired from

google map api [Goo], we preprocessed the data into 6 channels, each of which is a binary

image, representing highways, arterial, local roads, waterways, vegetation and buildings. The

first 5 channels serve as input condition, and the building channel as target. Fig 4.3 shows

an example of our data. We aim to train the generator to learn the conditional distribution of

building layout channel condition on the informations given by the highways, arterial, local roads,
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Figure 4.3: Data format. The left image shows a sample neighborhood. The other three images
are example channels after preprocessing, which are local roads, waterways and buildings from
left to right.

waterways, vegetation channel. To enhance the learning, we combine the cGLO framework with

an adversarial training [GPAM+14], where we use two discriminators to differentiate between

real and fake samples, along with trainable latent vectors. We detailed our network structure in

Figure 4.4.

In order to simplify the notations, we use C to denote input channels, i.e., local roads,

arterial, highways, vegetation and waterways. We use z to refer to the latent representations, and

X the scattering of buildings.

4.3.1 Generator

First, we introduce our generator, Conditional Generative Latent Optimization (cGLO).

In our case, the generator is a neural network that takes in the condition channels and the latent

representation, and try to generate building layouts. We denote the generator network by Gω,

where ω ∈Ω represents the parameters of the generator to be learned.

Conditional GLO

Our training data consists of a set of samples (Xi |Ci), i = 1, · · · ,N, where Xi ∈ Rn×n is

the i-th sample of n×n building placement and Ci ∈ R5×n×n is the associated input condition,

each of it contains 5 n×n channels In order to apply cGLO, we assign a latent vector to each
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sample, resulting in a set of triplets (Xi,zi |Ci), i = 1, · · · ,N. The objective of cGLO is to optimize

a reconstruction loss

min
ω,z1,··· ,zN

`g(ω,z1, · · · ,zN) (4.2)

=
1
N

N

∑
i=1

`(Gω(Ci | zi),Xi |Ci) (4.3)

over the network parameters for the generator as well as the latent representations.

The generator architecture Gω is inspired by the U-net [RFB15], which is mainly used in

image segmentation. U-net is comprised of two sub-networks, the contracting sub-network and the

expansive sub-network. While U-net looks similar to the popular encoder-decoder architectures,

the main difference is the use of skip connections between corresponding layers in the contracting

and expansive sub-networks [RFB15]. Fig 4.5 shows the detail design of our generator.

Latent Space and style transfer

Our proposed architecture differs from the other popular uses of the U-net architecture

in that we also concatenate a unique trainable latent vector into each input. In cGLO we jointly

optimize the input latent vectors {z1, · · · ,zN} and the model parameters ω. In this way, our trained

generative model and the latent representation can both be more adaptive to the training data. For

each training sample, our model can offer a latent representation optimized for the generating

task. Thus we can use each trained latent vector zi as a style embedding, together with the input

conditions, to perform style transfer at inference.

4.3.2 Discriminators

To help the generator learn the details of the ground truth, we add two discriminators in

our training.
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General Discriminator

The general discriminator network takes input channels and the building layouts either

coming from the ground truth training data or generated by the generator, and produces a soft score

in [0,1] indicating the probability that the building scattering is faked from the input conditions.

Hence, all the true buildings should get low scores while the fake buildings get high scores.

We first feed the input channels and the latent vector into our cGLO to generate fake building

scatterings. Then we train the general discriminator using those fake building scatterings together

with the corresponding real building scatterings. We use multiple convolutional layers with

Spectral Normalization [MKKY18] and batch normalization [IS15] followed by down-sampling

to obtain a vectorized representation of the input tuple. In the end, we use a fully connected layer

with sigmoid activation to produce the predicted probability.

Cross Discriminator

The cross discriminator differ from the general one by taking the latent vector z as input

as well. This discriminator could help the model to enhance the style embedding with the latent

vector z. We want to let the latent vectors to learn the style information from the training sample,

i.e. the number of buildings, the average size, and the density with respect to surrounding

environment. However, we observed that the latent vectors can overfit too much road information

during training, that the scattering of buildings exhibit the shapes of roads from the reference style.

To deal with this situation, we proposed a special procedure to our training in both generator

and discriminator. For each iteration in the training, we randomly decided whether we are going

to feed the generator with matched input channels i and the latent vector i or mismatched input

channels i and latent vector j. By doing this, we can update both zi and z j to produce better results

for input condition i, which reduce the overfitting for each z j.
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4.3.3 Training Loss

The overall training losses of our generative model is comprised by several different

components.

The first component is the loss that we use to increase the fidelity of our synthetic building

levels, we use a distance function to compare the difference between real and fake scattering of

buildings. Although the squared-loss function `2(x,x′) = ‖x− x′‖2
2 is a simple choice, it leads to

blurry (average) reconstructions of natural images. Instead, we use Laplacian pyramid Lap1 loss:

Lap1(x,x
′) = ∑

j
22 j ∣∣L j(x)−L j(x′)

∣∣
1 , (4.4)

where L j(x) is the j-th level of the Laplacian pyramid representation of x [LO06]. The Lap1 loss

weights the details at fine scales more heavily, so that the model can learn to fit details in the

target.

The second and third components are the adversarial losses for the two discriminators.

Ladv1(G,Dgeneral) = ∑
i
[logDgeneral(Ci,Xireal)]+∑

i
[log(1−Dgeneral(Ci,Xi f ake))], (4.5)

and

Ladv2(G,Dcross,z) = ∑
i
[logDcross(zi,Ci,Xireal)]+∑

i
[log(1−Dcross(zi,Ci,Xi f ake))]. (4.6)

One can view the adversarial loses as the negative of the cross entropy between the scores of

discriminator and the true real/fake labels. Thus, it is natural for the discriminators to adversarially

increase the adversarial losses, whereas the generator wants to decrease them. It is important to

note that the X f ake = Gω(C,z) in the second terms of the two losses both depend on the Generator

Gω.
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4.4 Implementations and Results

4.4.1 Datasets

The training data are collected from Google Maps API. We queried three cities, i.e. San

Francisco, Los Angeles and London as these cities contain rich information on road networks

and buildings. We trained a model for each city. We observed that all the models exhibit similar

performance since the neighborhoods from metropolitan areas share similar patterns at the level of

building scattering. For example, a residential area has dense buildings, while suburban areas are

sparse. We take Los Angeles area (LA) as example to present our experiment results. We query 6

channels of data for each sample/neighborhood, i.e., highway, arterial, local roads, vegetation

area, waterways and buildings. Each channel is a 512×512 binary image. The building channel

serves as our ground truth and all the other 5 channels as input channels. There are in total 5732

training samples in LA data set. In our experiments, instead of using [0, 1] for the building

channel, we set the labels with 0.05 (non-building) and 0.95 (building), so that it is easier for the

network to generate target values. The reason is that generating 0 and 1 as outputs of sigmoid

requires the input to go to −∞ and +∞ respectively.

4.4.2 Implementation details

The latent vectors z and weights ω are updated by Stochastic Gradient Descent (SGD).

The loss that we use to train z and ω is

LGω
= Lap1(Xreal,Gω(C,z))+λ1Ladv1 +λ2Ladv2, (4.7)

where λ1 and λ2 are non-negative hyper-parameters that balance the influence of different

components of the loss function. The gradient of the loss function with respect to z and ω can be

obtained by back propagation through the loss [BJPD17]. Our model is trained up to 200 epochs
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Figure 4.8: An example of building generations under iterative design

with learning rate 0.5 on generator, 0.00001 on discriminator, and 800 on Z. The dimension of

our latent vector is 8192 for we found that lower dimensions could not capture enough style

information. We train our model alternatively with 5 updates of Z and 1 update of the generator’s

weight for each iteration, and 1 update of discriminator’s weight every 3 iterations.

4.4.3 Experiments of building layout generation

Our trained model has been used to generate buildings to fill the gaps on a game map

where buildings are missing. Users can pick a trained example/style from training data and input

either a real world map or self designed map to generate buildings in 2 seconds for a 512×512

meters map. We choose commercial and residential neighborhood as examples since these two

have distinct styles, i.e., residential area has dense and small size buildings, and commercial area

has larger buildings. Our method is robust to local changes of maps, so that artists can freely

tune their design of maps and regenerate buildings in real time. Figure 4.8 show an example that

starting from a map having a road network and vegetation area, we can iteratively edit the input

and our model can adapt building placements to the changes. The left image is the source input

map and the second one shows the synthesized building placements. A lake is then added in the

third image and the roads are changed in the fourth image, while building placements are adjusted

automatically. The advantage of our method is that users do not need to tune any parameters and

the generation is fully automatic.
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4.4.4 Comparison with state-of-the-art methods

We evaluate our method by comparing with ArtGAN [TCAT17] which is the closest

technique to ours. As mentioned earlier, we propose cGLO with two discriminators on top of

that. We will show how adversarial training helps cGLO. Given two example inputs, Fig. 4.9

demonstrates the generated buildings corresponding to the three methods under two different

styles, i.e., residential and commercial. To train ArtGAN accordingly, we assign the two style

classes to the training data. When we retrieved map data we also acquired the information that if

a building is commercial or not, thus we can determine the category for each sample by checking

if the area of commercial buildings exceeds half of the total building area. The result shows that

ArtGAN averages the style and generates fuzzy building areas. It could not distinguish one style

from the other, either. One observation is that some neighborhoods exhibit multiple styles, for

example, a residential area is next to commercial or industrial districts. Therefore, it is unrealistic

to label accurate semantic styles to each sample which leads to poor performance for ArtGAN.

However, by learning a latent representation for each sample, cGLO can generate buildings with

clear boundaries of the buildings adjacent to each other. Additionally, the generated buildings

from our method exhibit significant variability of size, aspect ratios and irregularity. While large

buildings dominate in the example commercial style, cGLO failed to capture such features (see

Fig. 4.9). However, with adversarial training, cGLO is able to generate more buildings that

resemble the given style.

We use the metric proposed in [VKW+12] to measure how much the distribution of

building sizes deviates from the expected style. We use the three models (ArtGAN, cGLO and

cGLO+Adv) to generate the building layout with the same input condition channels. We transfer

the style from the two references used in Fig. 4.9. Fig. 4.10 plots the probability density function

of each output sample for comparison. To quantitatively measure the difference, we calculated the

Kullback–Leibler divergence for measuring the distance between the distribution of each result

sample and the reference style. We can see that the proposed cGLO outperforms both styles while
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Figure 4.9: The comparion of style transfer using ArtGAN [TCAT17], cGLO and cGLO + Adv
we proposed.
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Figure 4.10: We compare the distributions graph of single building area generated by CCGAN
[TCAT17], and our proposed methods, CGLO and CGLO + Adv.
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adversarial training enhances the commercial style.

4.5 Conclusion and Future Work

We presented a novel solution to synthesize high quality of building placements using

conditional generative latent optimization together with adversarial training. The capability of the

proposed method is demonstrated in various examples. The inference is nearly in realtime, thus it

can assist designers to iterate their designs of virtual cities quickly. A limitation of the work is that

we did not consider the exact orientations of buildings to the streets, which can be incorporated in

future work. A simple solution is to assume buildings are aligned to the nearest roads. We believe

the work can be extended to other applications, for example, it would be interesting to learn the

land use of each building which is important for real world urban planning.
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[MY11] Hassan Mansour and Özgür Yilmaz. Weighted-l1 minimization with multiple
weighting sets. In Wavelets and Sparsity XIV, volume 8138, page 813809. Interna-
tional Society for Optics and Photonics, 2011.

117

https://www.mathworks.com/help/optim/ug/lsqlin.html
https://www.mathworks.com/help/optim/ug/lsqlin.html


[Ng11] Andrew Ng. Sparse autoencoder. CS294A Lecture notes, 2011.

[NSW17] Deanna Needell, Rayan Saab, and Tina Woolf. Weighted-minimization for sparse
recovery under arbitrary prior information. Information and Inference: A Journal
of the IMA, 6(3):284–309, 2017.

[Nus81] Henri J Nussbaumer. The fast fourier transform. In Fast Fourier Transform and
Convolution Algorithms, pages 80–111. Springer, 1981.

[OMFH11] Samet Oymak, Karthik Mohan, Maryam Fazel, and Babak Hassibi. A sim-
plified approach to recovery conditions for low rank matrices. arXiv preprint
arXiv:1103.1178, 2011.

[PM01] Yoav IH Parish and Pascal Müller. Procedural modeling of cities. In Proceedings
of the 28th annual conference on Computer graphics and interactive techniques,
pages 301–308. ACM, 2001.

[PRK93] Yagyensh Chandra Pati, Ramin Rezaiifar, and Perinkulam Sambamurthy Krish-
naprasad. Orthogonal matching pursuit: Recursive function approximation with
applications to wavelet decomposition. In Proceedings of 27th Asilomar conference
on signals, systems and computers, pages 40–44. IEEE, 1993.

[Rau10] Holger Rauhut. Compressive sensing and structured random matrices. Theoretical
foundations and numerical methods for sparse recovery, 9:1–92, 2010.

[Rec11] Benjamin Recht. A simpler approach to matrix completion. Journal of Machine
Learning Research, 12(Dec):3413–3430, 2011.

[RFB15] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional
networks for biomedical image segmentation. In International Conference on
Medical image computing and computer-assisted intervention, pages 234–241.
Springer, 2015.

[RFP10] Benjamin Recht, Maryam Fazel, and Pablo A Parrilo. Guaranteed minimum-rank
solutions of linear matrix equations via nuclear norm minimization. SIAM review,
52(3):471–501, 2010.

[RMC15] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation
learning with deep convolutional generative adversarial networks. arXiv preprint
arXiv:1511.06434, 2015.

[RV10] Mark Rudelson and Roman Vershynin. Non-asymptotic theory of random ma-
trices: extreme singular values. In Proceedings of the International Congress of
Mathematicians 2010 (ICM 2010) (In 4 Volumes) Vol. I: Plenary Lectures and
Ceremonies Vols. II–IV: Invited Lectures, pages 1576–1602. World Scientific, 2010.

118



[RYRD15] Nikhil Rao, Hsiang-Fu Yu, Pradeep K Ravikumar, and Inderjit S Dhillon. Col-
laborative filtering with graph information: Consistency and scalable methods. In
Advances in neural information processing systems, pages 2107–2115, 2015.

[SCD02] Jean-Luc Starck, Emmanuel J Candès, and David L Donoho. The curvelet transform
for image denoising. IEEE Transactions on image processing, 11(6):670–684, 2002.

[SED12] Jonathan Scarlett, Jamie S Evans, and Subhrakanti Dey. Compressed sensing
with prior information: Information-theoretic limits and practical decoders. IEEE
Transactions on Signal Processing, 61(2):427–439, 2012.

[SFM07] Jean-Luc Starck, Jalal Fadili, and Fionn Murtagh. The undecimated wavelet
decomposition and its reconstruction. IEEE transactions on image processing,
16(2):297–309, 2007.

[SGZ+16] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford,
and Xi Chen. Improved techniques for training gans. In Advances in neural
information processing systems, pages 2234–2242, 2016.

[SM18] Vanika Singhal and Angshul Majumdar. Majorization minimization technique for
optimally solving deep dictionary learning. Neural Processing Letters, 47(3):799–
814, 2018.

[STBB14] Ruben M Smelik, Tim Tutenel, Rafael Bidarra, and Bedrich Benes. A survey on
procedural modelling for virtual worlds. In Computer Graphics Forum, volume 33,
pages 31–50. Wiley Online Library, 2014.

[TAM16] Snigdha Tariyal, Hemant Aggarwal, and Angshul Majumdar. Greedy deep dic-
tionary learning for hyperspectral image classification. In 2016 8th Workshop
on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing
(WHISPERS), pages 1–4. IEEE, 2016.

[TCAT17] Wei Ren Tan, Chee Seng Chan, Hernán E Aguirre, and Kiyoshi Tanaka. Artgan:
Artwork synthesis with conditional categorical gans. In 2017 IEEE International
Conference on Image Processing (ICIP), pages 3760–3764. IEEE, 2017.

[TG07] Joel A Tropp and Anna C Gilbert. Signal recovery from random measurements
via orthogonal matching pursuit. IEEE Transactions on information theory,
53(12):4655–4666, 2007.

[TMSV16] Snigdha Tariyal, Angshul Majumdar, Richa Singh, and Mayank Vatsa. Deep
dictionary learning. IEEE Access, 4:10096–10109, 2016.

[Tro04] Joel A Tropp. Just relax: Convex programming methods for subset selection and
sparse approximation. ICES report, 404, 2004.

119



[vdBF19] E. van den Berg and M. P. Friedlander. SPGL1: A solver for large-scale sparse
reconstruction, December 2019. https://friedlander.io/spgl1.

[Ver18] Roman Vershynin. High-dimensional probability: An introduction with applications
in data science, volume 47. Cambridge university press, 2018.

[VKW+12] Carlos A Vanegas, Tom Kelly, Basil Weber, Jan Halatsch, Daniel G Aliaga, and
Pascal Müller. Procedural generation of parcels in urban modeling. In Computer
graphics forum, volume 31, pages 681–690. Wiley Online Library, 2012.

[VL10] Namrata Vaswani and Wei Lu. Modified-cs: Modifying compressive sensing for
problems with partially known support. IEEE Transactions on Signal Processing,
58(9):4595–4607, 2010.

[Wal92] Gregory K Wallace. The jpeg still picture compression standard. IEEE transactions
on consumer electronics, 38(1):xviii–xxxiv, 1992.

[WDB+19] Yan Wu, Jeff Donahue, David Balduzzi, Karen Simonyan, and Timothy Lillicrap.
Logan: Latent optimisation for generative adversarial networks. arXiv preprint
arXiv:1912.00953, 2019.

[WEBB15] Lior Weizman, Yonina C Eldar, and Dafna Ben Bashat. Compressed sensing for
longitudinal mri: an adaptive-weighted approach. Medical physics, 42(9):5195–
5208, 2015.

[Wik] Wikipedia. Fast fourier transform. https://en.wikipedia.org/wiki/Fast_
Fourier_transform.

[WLD+06] Michael B Wakin, Jason N Laska, Marco F Duarte, Dror Baron, Shriram Sarvotham,
Dharmpal Takhar, Kevin F Kelly, and Richard G Baraniuk. An architecture for
compressive imaging. In 2006 International Conference on Image Processing,
pages 1273–1276. IEEE, 2006.

[WRL19] Yan Wu, Mihaela Rosca, and Timothy Lillicrap. Deep compressed sensing. arXiv
preprint arXiv:1905.06723, 2019.

[WYG+08] John Wright, Allen Y Yang, Arvind Ganesh, S Shankar Sastry, and Yi Ma. Robust
face recognition via sparse representation. IEEE transactions on pattern analysis
and machine intelligence, 31(2):210–227, 2008.

[XJZ13] Miao Xu, Rong Jin, and Zhi-Hua Zhou. Speedup matrix completion with side
information: Application to multi-label learning. In Advances in neural information
processing systems, pages 2301–2309, 2013.

[YM16] M Ersin Yumer and Niloy J Mitra. Learning semantic deformation flows with
3d convolutional networks. In European Conference on Computer Vision, pages
294–311. Springer, 2016.

120

https://en.wikipedia.org/wiki/Fast_Fourier_transform
https://en.wikipedia.org/wiki/Fast_Fourier_transform


[YWHM10] Jianchao Yang, John Wright, Thomas S Huang, and Yi Ma. Image super-resolution
via sparse representation. IEEE transactions on image processing, 19(11):2861–
2873, 2010.

[YWL+12] Jianchao Yang, Zhaowen Wang, Zhe Lin, Scott Cohen, and Thomas Huang. Cou-
pled dictionary training for image super-resolution. IEEE transactions on image
processing, 21(8):3467–3478, 2012.

[ZL10] Qiang Zhang and Baoxin Li. Discriminative k-svd for dictionary learning in face
recognition. In 2010 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, pages 2691–2698. IEEE, 2010.

[ZZM12] Shaoting Zhang, Yiqiang Zhan, and Dimitris N Metaxas. Deformable segmenta-
tion via sparse representation and dictionary learning. Medical Image Analysis,
16(7):1385–1396, 2012.

[ZZX+12] Jian Zhang, Chen Zhao, Ruiqin Xiong, Siwei Ma, and Debin Zhao. Image super-
resolution via dual-dictionary learning and sparse representation. In 2012 IEEE
International Symposium on Circuits and Systems, pages 1688–1691. IEEE, 2012.

121


	Signature Page
	Dedication
	Table of Contents
	List of Figures
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction and Background
	Compressed Sensing and low-rank matrix recovery with prior informations
	Learning Dictionary with Fast Transforms
	Deep Generative Model Using Representation Learning Techniques
	Contributions

	Signal Recovery with Prior Information
	Introduction
	Compressive Sensing
	Low-rank matrix recovery
	Prior Information for Compressive Sensing and Low-rank matrix recovery
	Related Work
	Contributions
	Overview

	Low-rank Matrices Recovery
	Problem Setting and Notation
	Null Space Property of Low-rank Matrix Recovery

	Low-rank Matrix Recovery with Prior Information
	Support of low rank matrices
	Weighted Nuclear Norm Minimization
	Drawback of the weighted nuclear norm optimization (2.21)
	Sum of Two Weighted Nuclear Norm Minimization
	Minimum number of measurements given a prefect support estimate

	Numerical experiments
	Conclusion and Future Work
	Acknowledgements

	Learning Dictionaries with Fast Transforms
	Introduction
	The Dictionary
	Related Work
	Content

	Methodology
	DFT and the Fast Fourier Transform (FFT) Algorithms
	Learning Dictionaries that Admit Fast Transforms

	Numerical Experiment
	Datasets
	Implementation details
	Numerical Sparsity
	Results

	Conclusion
	Acknowledgements

	Conditional Generative Latent Optimization
	Introduction
	Generative model
	Contributions

	Related Work
	Generating Building Placements
	Deep Dictionary Learning and Latent Representation Learning
	Deep Generative Models

	Conditional Generative Latent Optimization
	Generator
	Discriminators
	Training Loss

	Implementations and Results
	Datasets
	Implementation details
	Experiments of building layout generation
	Comparison with state-of-the-art methods

	Conclusion and Future Work
	Acknowledgement

	Bibliography

