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Machine Learning for Medical Image Analysis and  

Compound-Target Interactions 

Garrett Gaskins 

 

ABSTRACT 

Though the title of my thesis infers a unifying theme via the application of machine learning, the 

two projects that form the bulk of my graduate degree are frankly more disparate than they are similar. 

Both endeavors provide novel methods to a field where ground truth is obscure and/or limited, and both 

apply machine learning techniques in their methodologies. Those similarities notwithstanding, the 

scientific domains, technical applications, experimental designs, and overall goals remain independent. 

While having a thesis comprised from two independent parts may not be conventional, this is, as they say, 

not a bug but a feature. Working within (and occasionally across) two research domains has helped me to 

acquire a diverse skillset and has provided me with a better and broader understanding of machine 

learning practices for scientific research. 

As this thesis is composed of two linked, but distinct projects, the abstract (and chapters) is 

divided in two. The first section details work related to large-scale predictions of purchasable chemical 

space, and the second summarizes a novel method for automating diagnosis of melanocytic atypia in 

human histopathological samples. 

 

I. Large-Scale Predictions for Purchasable Chemical Space 

There are now over 400 million compounds one can easily purchase from the ZINC database 

(zinc.docking.org). About 350 million (85%) of these compounds are affordable enough for the average 
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academic lab to conduct a ligand discovery project. However, the molecular targets (proteins) that these 

purchasable compounds bind and modulate—if any—are rarely known. Fewer than 1 million compounds 

(<0.25%) have been reported active in a target-specific assay according to public databases such as 

ChEMBL. In the absence of target activity information, the process of selecting compounds for general 

purpose screening will often be target-naïve.  

To facilitate access to new chemistry for biology, my collaborator John Irwin and I generated 

predictions for all purchasable compounds in ZINC at the time. I explored methods for optimizing 

predictive performance of compound-target associations using ChEMBL’s bioactivity dataset (version 21) 

as a benchmark. Comparisons on cross-validation sets of the bioactivity dataset against several methods 

such as multinomial naïve-Bayesian classifiers revealed that the combination of the Similarity Ensemble 

Approach (SEA) with the maximum Tanimoto similarity to the nearest bioactive yielded the best 

performance. I verified the utility for several of these predictions, quantified target prediction biases 

inherent to the dataset, and provided thresholding suggestions to the user for controlling sensitivity and 

specificity of the predictions, as well as novelty of target-associations allowed. 

 

II. Automating Diagnosis of Melanocytic Atypia: A Precursor to 

Melanoma in Situ 

Melanocytic atypia, a biological precursor to Melanoma, is histopathologically challenging. 

Pathologist interobserver agreement for melanocytic atypia in standard (H&E) histology images is low, 

ranging from 33-68%136-137, with melanoma in situ (MIS) in particular contributing to diagnostic 

discordance. A lack of agreement among experts presents a challenge to any supervised learning task, 

where the utility of a learned function depends on the accuracy and reliability of labels used.  

To circumvent the issue of discordance in labeling, I paired H&E histology images with 

contiguously cut tissue sections, immunohistochemically (IHC) stained for melanocytes. I developed a 
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deep-learning pipeline for automating diagnosis of melanocytic atypia using a custom dataset of paired 

whole slide images (WSIs) and trained convolutional neural networks to identify the presence of 

melanocytes in H&E sections, using information solely from paired tissue samples. Networks achieve 

strong performance on holdout patient datasets. For each network trained, I generated full-scale (20X 

magnification) high-resolution (pixel-wise) prediction heatmaps on holdout tissue sections (H&E), for 

pathological interpretation, and applied saliency mapping to show what networks attend to in H&E 

images. This pipeline aims to provide assistance to the clinical pathologist to reach better consensus 

regarding new MIS diagnoses in cutaneous biopsies. 
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1.1 Abstract 

Whereas 400 million distinct compounds are now purchasable within the span of a few weeks, the 

biological activities of most are unknown. To facilitate access to new chemistry for biology, we have 

combined the Similarity Ensemble Approach (SEA) with the maximum Tanimoto similarity to the nearest 

bioactive to predict activity for every commercially available molecule in ZINC. This method, which we 

label SEA+TC, outperforms both SEA and a naïve-Bayesian classifier via predictive performance on a 5-

fold cross-validation of ChEMBL's bioactivity data set (version 21). Using this method, predictions for 

over 40% of compounds (>160 million) have either high significance (pSEA ≥ 40), high similarity 

(ECFP4MaxTc ≥ 0.4), or both, for one or more of 1382 targets well described by ligands in the literature. 

Using a further 1347 less-well-described targets, we predict activities for an additional 11 million 

compounds. To gauge whether these predictions are sensible, we investigate 75 predictions for 50 drugs 

lacking a binding affinity annotation in ChEMBL. The 535 million predictions for over 171 million 

compounds at 2629 targets are linked to purchasing information and evidence to support each prediction 

and are freely available via https://zinc15.docking.org and https://files.docking.org. 

 

1.2 Introduction 

1.2.1 Purchasable Chemical Space 

The purchasable chemical space has roughly doubled every two and a half years since 1990, 

owing to steady progress in efficient parallel synthesis1−8 and the synthesis of new building blocks. There 

are now over 400 million compounds one can easily purchase using ZINC,9 which covers 204 commercial 

catalogs from 145 companies. Each catalog is categorized by ease of purchase, and each compound in 

turn inherits a purchasability level from its catalog membership. The growth in catalog size is impressive, 

particularly among the make-on-demand catalogs. Purchasable compounds in the favored lead-like10 and 

fragment-like11 areas have grown from 3 million and a half million in 2007 to 124 million and 9.2 million 
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today, respectively. Many vendors have incorporated the lessons of lead- and fragment-likeness in library 

design,47 often filtering for PAINS.48 About 340 million (85%) of these compounds are affordable enough 

for the average academic lab to conduct a ligand discovery project, retaining a price point around $100 

per sample or less. A further 60 million compounds are available at higher building-block prices, often 

$400 USD or more and are included here for completeness. We find that synthesis plus delivery of make-

on-demand screening compounds often takes little more than a month or so, just twice the time to source 

many in-stock compounds. 

 

1.2.2 Scarcity of Binding Information in Purchasable Chemical Space 

The molecular targets (proteins) that these purchasable compounds bind and modulate—if any—

are rarely known. Fewer than 1 million compounds—less than 0.25%—have been reported active in a 

target-specific assay according to public databases such as ChEMBL12 or other annotated collections 

indexed by ZINC.13 Investigators searching for testable ligands might not consider the remaining readily 

available compounds, as they are not annotated for targets and the sheer number of options can be 

daunting. In the absence of target activity information, the process of selecting compounds for general 

purpose screening will often be target-naïve, relying on chemical or physical-property diversity to sample 

chemical and property space, respectively.14 If information on target bias—the likelihood that a 

compound is more disposed to bind to a particular target or class of targets—were readily available, 

libraries more likely to cover biological targets of interest could be designed. 

 

1.2.3 Predicting Compound Bioactivity 

Systematically assaying every commercially available compound against every target is 

experimentally impractical, so prioritizing compounds through computational predictions is a pragmatic 

alternative. There are many methods for predicting biological activities by chemical similarity;15−36 here, 

we use two. The Similarity Ensemble Approach (SEA)37,38 predicts biological targets of a compound 
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based on its resemblance to ligands annotated in a reference database, such as ChEMBL.12 SEA relates 

proteins by their pharmacology by aggregating chemical similarity among entire sets of ligands. By 

leveraging extreme value statistics, SEA filters out unreliable signals and normalizes the aggregate results 

against a random chemical background to predict the significance of pharmacological similarity. SEA has 

successfully predicted targets of marketed drugs,37−39 toxicity targets,40 and mechanism of action targets 

for hits in zebrafish41 and C. elegans42 phenotypic screens. We also use the maximum Tanimoto 

coefficient43 at 0.4044 or better based on ECFP4 fingerprints45 to inform predictions. Neither method 

generates models incorporating discrete chemotypes as do Naïve Bayes classifiers, for instance, but 

instead consider the molecule holistically. This is advantageous because the method can suggest 

molecules that do not conform to what has been highly weighted by precedent. Other methods such as 

Naïve Bayes46 can explicitly weight for chemical substructures that are potentially important to 

bioactivity (“warheads”), and thus a future version might use such an approach to complement this work. 

 

1.2.4 Utility of Predictions 

To be useful for research, predictions should be accessible, searchable, and downloadable. An 

interface should allow access to predictions for each compound, as well as for each target, vendor, and 

gene. A mechanism to select more novel or more conservative predictions would cater to a wide range of 

requirements. And libraries should be downloadable in 2D formats for chemoinformatics as well as in 

popular 3D formats for docking screens. 

The prospective user of such a resource expects some way to evaluate the predictions. As one 

proxy to assess this data set, we performed a retrospective 5-fold cross-validation on the ChEMBL 

bioactivity data set for our method as compared to SEA and a naïve-Bayesian classifier, at a variety of 

threshold parameters (Figure 1.1; Supplementary Figures A.1.1 and A.1.2). Second, in assessing 

performance, we reencountered the observation that whereas the canonical targets of all but a few drugs 

are known,47 hundreds of established drugs and investigational compounds nonetheless lack their 
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respective target annotations in ChEMBL. We turned this deficit to our advantage, by testing the 

method’s prediction of targets for several such drugs, corroborating our predictions with the literature 

when available. Finally, as these predictions are based on protein−ligand annotations derived from 

ChEMBL, we expect that this method will be silent about chemotypes and targets not contained in this 

approximation of the public pharmacopeia. 

  

1.3 Results 

1.3.1 Prediction Database 

The ZINC database contains 400 million commercially available organic molecules with 

molecular weight between 50 and 1000 Da, sourced from 204 commercial catalogs published by 145 

companies. We have created a database of predicted biological activities for the 171 million compounds 

that had predictions and have made it freely accessible via ZINC (https://zinc15.docking.org) and our file 

server (https://files.docking.org). All predictions were computed using a combination of the Similarity 

Ensemble Approach (SEA)37 and Tanimoto similarity calculations based on compound annotations 

derived from ChEMBL Version 2112 (see Methods). We refer to this combinatorial approach as SEA+TC 

throughout the text. 

 

1.3.2 Sensitivity and Specificity of Predictions 

To enhance this resource’s applicability to a broad audience, we sought to increase the specificity 

of predictions by using more stringent criteria for what constitutes an annotated ligand. In prior work we 

had used a 10 μM affinity cutoff, but at this scale, we encountered flawed predictions that appeared to 

arise from similarity to weak binders, possible PAINS, or promiscuous aggregator compounds. Based on 

our experience with these encounters, we changed the baseline affinity threshold to 1 μM and further 
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required activities of at least 100 nM for compounds containing PAINS patterns or being Tc 0.70 to any 

compound observed to aggregate.48−50 

We adopted a statistical significance threshold of negative log SEA p-value54 (pSEA) ≥ 40 and a 

MaxTc cutoff ≥0.40 guided by the work on belief theory from the Abbvie group.34 MaxTc is 

complementary to pSEA as it provides a single-nearest-neighbor-molecule view of similarity, compared 

to SEA’s global view arising from the ensemble of annotated ligands. To quantify how this bivariate 

threshold improves predictive capability, we evaluated the performance of SEA, SEA+TC, and a Naïve-

Bayesian classifier (NBC) via 5-fold cross-validation of ChEMBL’s bioactivity data set (version 

21; Figure 1.1). SEA+TC’s ability to correctly predict compound−target interactions as either positive 

(does bind) or negative (does not bind) outperformed both SEA and the NBC, as measured by the area 

under the receiver operating characteristic (AUROC) curve, (AUROC = 0.995, Figure 1.1A). Further, 

when predicting a compound−target interaction as positive, SEA+TC was correct in its prediction more 

often than SEA or the NBC, as indicated by its area under the precision-recall (AUPRC) curve (AUPRC 

= 0.684, Figure 1.1B). In performing this analysis, we additionally identified a more stringent bivariate 

threshold, which some users may wish to adopt. At a threshold of MaxTc ≥ 0.80 with pSEA ≥ 80, the 

retrospective analyses achieve higher precision than the baseline threshold (Figure 1.1A and B, blue 

circle) at acceptable recall (pink circle). Users of the ZINC interface may choose thresholds to suit their 

needs. 

 

1.3.4 Controlling Novelty of Predictions 

In addition to controlling the sensitivity and specificity of predictions, the significance threshold 

(i.e., pSEA and MaxTc values)17 also influences the novelty of the predictions. Novel compounds can be 

desirable because they likely have unrelated off-target effects, which can help establish the signaling and 

toxicity role of a receptor, as well as selectively activate downstream signaling, which is important for 

many receptors such as GPCRs.38 Accordingly, we designed the ZINC interface to help users rapidly 
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identify predictions with their desired precision. The user can control the MaxTc and pSEA limits, and 

each prediction can be compared with the most similar annotated actives (Figure 1.2) allowing side-by-

side comparison. Each SEA prediction is accompanied by a pSEA to the set of actives and MaxTc to the 

nearest active. Clicking on the MaxTc value in the interface performs a real-time search for the most 

similar ligands annotated at 10 μM or better for that target. 

 

1.3.5 Accessing Predictions by Target of Interest 

To find predictions for a given target using ZINC15 (zinc15.docking.org), the user may 

select Genes from the Biological dropdown menu to browse a listing of all genes and predictions (Figure 

1.3A). In this work, we use genes and their identifiers as convenient shorthand for their protein 

products—or molecular targets. To find a specific gene, the user may type part of the gene name in the 

top right search bar, here SLC6, and click the blue search button on the top right. To display predictions 

for this gene, the user clicks on the link in the predictions column, here for SLC6A1 (Figure 1.3B). The 

user may for example use the subset selector to specify strong predictions (which we chose to mean pSEA 

= 80) and purchasability (Figure 1.3C). Some advanced features are currently only accessible by hand-

editing the URL. Here, the user adds table.html?sort=-maxtc and &maxtc-between=40+45 to display the 

information in a tabular format, to sort by decreasing MaxTc, and to select only predictions between 

MaxTc of 40 and 45, respectively (Figure 1.3D). We plan to make these API-level features available via 

a point and click interface soon. Documentation is available via the help pages 

https://zinc15.docking.org/genes/help and https://zinc15.docking.org/predictions/help. 

 Predictions are available for 2629 genes51 (Figure 1.4). The number of predictions per gene 

varies substantially, reflecting both the diversity of annotated ligands for the target as well as how well 

these chemotypes are represented in current vendor catalogs. For example, natural products and their 

analogs are often difficult to access synthetically and are therefore generally sparsely represented. At the 

high end of predictions per gene, the eukaryotic GPCRs D4 dopamine receptor (DRD4), C−C chemokine 
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receptor type 3 (CCR3), and the voltage gated ion channels KCNK3 and KCNK9 each have over 4.8 

million purchasable predicted ligands. The number of strong predictions (pSEA ≥ 80) varies from over 

500 000 for KCNK3 to as few as 9181 for DRD4. Filtering at MaxTc ≥ 0.60 instead, corresponding to a 

precision exceeding 0.334 using ECFP4 fingerprints,44 the predictions for these four genes varied from as 

many as 25,728 for DRD4 to as few as 8912 for KCNK9. At the other extreme of predictions per gene, 

fungal laccase-2 precursor (LCC2), human C−C chemokine receptor type 6 (CCR6), voltage-gated 

sodium channel Nav1.9 (SCN11A), and fruit fly DNA topoisomerase 2 (TOP2) each had fewer than 50 

predicted commercially available ligands. The small number of predicted ligands can often be explained 

by a paucity of reference ligands; here, SCN11A and CCR6 have only 1 ligand each at 10 μM or better. 

Another reason for the lack of ligands is that the knowns are in an area of chemical space that is difficult 

to access synthetically, such as natural products for both SCN11A and CCR6. 

 

1.3.6 Access by Gene Groupings 

In addition to individual genes, predictions may also be accessed by groups of genes. This could 

be helpful if the investigator is looking for new aminergic GPCR ligands or ligands for voltage gated ion 

channels or simply wishes to ensure balanced coverage of major target classes in a library. The interface 

offers convenient ways to access gene groupings based on a protein classification scheme inherited from 

ChEMBL. There are 15 major target classes (Figure 1.5A) further organized into 42 target subclasses 

(Figure 1.5B). Thus, there are 67 million predictions for membrane proteins, of which 1 million are 

strong (pSEA ≥ 80). Considered separately, there are 873,000 less chemically novel predictions having a 

Tanimoto coefficient ≥0.60 to an annotated active. At a higher level of granularity, there are 4.7 million 

predictions for epigenetic reader proteins, of which 2.4 million are strong predictions (pSEA ≥ 80) and 

38 000 are highly similar (Tc ≥ 0.60). At the organism level (Figure 1.5C), 18 million ligands are 

predicted for specific bacterial targets, 1.0 million of which are stronger (pSEA ≥ 80) and 92 000 of which 

are highly similar (Tc ≥ 0.60). The user may select purchasable compounds based on this classification. 
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These compounds will resemble precedented bacterial protein inhibitors far more strongly than 

compounds selected at random. Ligands predicted for specific bacterial targets are available to browse 

interactively at https://zinc15.docking.org/organisms/bacteria/genes/ or to download by gene 

at https://files.docking.org/predictions/current/. A plot of predictions per gene vs annotated ligands per 

gene shows a general trend toward more predicted ligands when more known ligands are available 

(see Supplementary Figure A.1.3). 

 

1.3.7 Benchmarks 

We predicted the targets of established drugs that nonetheless lack a protein binding affinity annotation in 

ChEMBL to benchmark our approach. We found hundreds of drugs, withdrawn drugs, and investigational 

compounds with target predictions that agreed with the literature. Fifty of these were selected and 

tabulated as illustration of our predictions (Table 1.1). Thus, the beta blocker bufetolol52 (ZINC101) is 

predicted to be a β2 adrenergic receptor ligand with pSEA = 47 and MaxTc = 0.46 and to be a β1 

adrenergic receptor ligand with pSEA = 51and MaxTc = 0.44. Aranidipine53 (ZINC600803) is predicted 

for the calcium voltage-gated ion channel CACNA1C with pSEA = 121 and MaxTc = 0.75. Ancarolol 

(ZINC39) illustrates the discriminatory value of the SEA prediction, with pSEA = 59 and MaxTc = 0.43 

for ADRB1: 255,656 purchasable ligands have higher MaxTc than ancarolol to this target while only 

46,753 have a higher pSEA score. 

Among the 535 million predictions of protein−ligand affinity we expect numerous false positives 

and false negatives. These errors stem from three major classes of problem. (1) Issues with target 

annotation: annotated ligands may not be representative for a gene, such as curcumin (ZINC100067274), 

which is annotated for 32 genes and is probably artifactual for many of them.54 Annotated ligands may 

also be mis-annotations in ChEMBL, leading to false positives. For instance, nicotinamide 

(CHEMBL1140) is annotated for fatty-acid amide hydrolase 1 (FAAH), because it shares an abbreviation 

(NAM) with the actual ligand, N-arachidonylmaleimide.55 (2) Errors with the SEA method: We use 
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ECFP4 fingerprints, which have little specificity for certain classes of molecules, such as peptides and 

sterols, which share many common features and thus are not well discriminated using this fingerprint. 

SEA also has high variance for small ligand sets and low sensitivity for large, diverse ligand sets. For 

instance, SEA fails to predict the well-known antihistamine drugs chlorcyclizine and propiomazine for 

histamine H1 receptor (HRH1), despite their having Tc values of 0.79 and 0.69, respectively, to the most 

similar HRH1 ligands. The pSEA values of 11 in each case have been diluted by the 9000 diverse ligands 

annotated to this target. A remedy might be to split targets with large number of ligands, perhaps by 

chemical clusters, mode of action, or binding site, if known. Note that Naïve Baysian classifiers can be 

trained to correctly predict these activities, as can be seen on ChEMBL’s ligand detail pages for these 

compounds. (3) No explicit model of promiscuity for SEA: We have made some progress here by 

stringent filtering of ligands we suspect are promiscuous (both PAINS and aggregator-like), but we fail to 

handle frequent hitters such as staurosporine (ZINC3814434, hits 365 targets in ChEMBL) and its ilk. 

Our current approach also performs poorly on sigma nonopioid intracellular receptor 1 (SIGMAR1) and 

cytochromes P450-3A4 (CYP3A4), because the ligands annotated to it are highly diverse. To remedy this 

problem for targets with many ligands, we could cluster by chemotype. 

 

1.3.8 Genes Lacking Commercially Available Ligands 

When a target has purchasable ligands, they can be used to rapidly probe its biological function 

without requiring synthetic chemistry expertise. Yet there are 69 targets with 20 or more annotated 

ligands in ChEMBL where none is readily purchasable (Table 1.2). To fill these holes in “target space”, 

we have identified purchasable compounds that are predicted to be active. In one example, voltage 

dependent calcium channel subunit alpha-2/delta-2 (CACNA2D2) has 26 ligands in ChEMBL, none of 

which is for sale, such as CHEMBL1801206 with a pKi of 7.7. The compound ZINC36664273, however, 

is sold by Specs as AO-476/43421055 and has a pSEA of 132 and a MaxTc of 0.72. Looking at these 

compounds side by side (Table 1.2) and without detailed experimental knowledge of this target, the 
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Specs compound may be reasonable to try against this target. If successful, such compounds could 

become a purchasable control for these targets. 

 

1.3.9 Dark Chemical Matter 

Intriguingly, 229 million purchasable compounds have no prediction at all by either pSEA ≥ 40 or 

Tanimoto similarity Tc ≥ 0.40. Some of these will have just missed our cutoffs, wherever the cutoffs may 

be drawn. A few will be known actives, or analogs of actives, that simply lack a direct binding annotation 

in ChEMBL. Still, these compounds are generally interesting because they do not much resemble any 

direct binding actives in ChEMBL. Should they be found to be active in an assay, they are more likely to 

have fewer off-targets, at least against well-studied targets, and are less likely to be encumbered by 

patents. A substantial body of literature explores the strengths and pitfalls of dark chemical matter.56−59 To 

illustrate what a user of this resource can expect to find in this underexploited yet commercially available 

space, we have highlighted ten compounds (Table 1.3). For each commercially available molecule, we 

show the nearest precedented bioactive from public sources available to ZINC, which may also include 

compounds not in ChEMBL. Dark chemical matter56−59 may be browsed online at 

zinc15.docking.org/substances/having/no-predictions and downloaded at scale by physical property 

tranches (https://files.docking.org/dark-matter/current), by vendor catalogs (e.g., for ChemBridge 

at https://files.docking.org/catalogs/50/chbr/chbr.predict.txt.gz) and by the genes they are predicted to 

bind (https://files.docking.org/genes/<genesymbol>/<genesymbol>.predictions.txt.gz). 

 

1.4 Use Cases 

A new research tool is now available within ZINC15 for public use. We demonstrate the use of 

these new tools in four use cases, which illustrate how to access predictions both interactively and via 

static downloads, below. 
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1.4.1 Use Case One 

The user is interested in a well-studied target such as the serotonin 2A receptor (HTR2A) and 

seeks compounds to purchase that are likely to work but have not been reported active in ChEMBL21. 

The user first checks how many ligands are annotated active at 10 μM or better (5031, interactively 

at https://zinc15.docking.org/genes/HTR2A/substances or statically downloaded 

at https://files.docking.org/genes/current/HTR2A/HTR2A.smi). The user then queries how many 

commercially available ligands have SEA predictions at an exceptionally strong statistical significance, 

with pSEA = 80 (30,952 at 

https://zinc15.docking.org/genes/HTR2A/predictions/subsets/strong+purchasable). For instance, 

ZINC462039162 available from Enamine, catalog number Z1269906839, with a pSEA = 82 and MaxTc 

= 0.63 (https://zinc15.docking.org/substances/ZINC000462039162/predictions/table.html). Millions of 

other commercially available molecules can be obtained in a similar way. All predictions are downloaded 

immediately using https://files.docking.org/genes/current/HTR2A/HTR2A.predictions.txt.gz, from which 

compounds may be selected. 

 

1.4.2 Use Case Two 

The user wishes to obtain a screening library for projects involving several voltage-gated ions 

channels. The user wishes to find purchasable compounds that do not seem too similar, yet are more 

likely to be ligands than purely random compounds, i.e., having a high MaxTc between 0.65 and 0.70, 

corresponding to an expected precision of 0.35−0.40. The library should be downloaded in 2D for 

chemoinformatics and 3D for docking. In ZINC, there are 14 849 already annotated ligands for any such 

channel in ChEMBL21 at 10 μM or better (https://zinc15.docking.org/subclasses/vgic/substances). Of 

these, 1108 (7.5%) are purchasable and may be a good starting point for the library. A further 21 242 

purchasable predicted ligands also are available, such as ZINC629100 
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(https://zinc15.docking.org/substances/ZINC000000629100/predictions/table.html), which is Tc 0.69 to 

the nearest annotated active CHEMBL1097858, active at pKi of 7.7. To obtain the first 1000 ZINC codes 

for these molecules, the user accesses: 

https://zinc15.docking.org/subclasses/vgic/predictions/subsets/purchasable.txt?maxtc-

between=65+70&count=1000. To download 3D models of these compounds, please see Obtaining 3D 

Models, below. A second approach to download predicted compounds for voltage gated ion channels 

would be to first obtain the names of all the genes: 

https://zinc15.docking.org/subclasses/vgic/genes.txt:name. Then, the user would use this list to download 

the static predictions by gene. For example, for the sodium channel protein type 5 subunit alpha 

(SCN5A), the predictions are in https://files.docking.org/genes/SCN5A/SCN5A.predictions.txt.gz. 

 

1.4.3 Use Case Three 

The user would like to know all predictions for a particular vendor catalog. Vendors may be 

interested to know possible targets of their compounds for marketing purposes. Vendors may also wish to 

know which of their make-on-demand compounds might be prioritized for synthesis based on possible 

activity. Academic centers that screen vendor libraries may be interested in individual vendors because 

they have negotiated special pricing, or because the vendor makes plates available at a discount to 

facilitate the mechanics of screening. We have been precomputed searches to enable such investigations 

to save time. To access them, the user would complete the following steps: 

 

1. Browse to https://files.docking.org/catalogs to select the catalog of interest. 

2. Download the file of predictions. For instance, for ChemBridge, the code is chbr and the URL 

is https://files.docking.org/catalogs/50/chbr/chbr.predict.txt.gz. Each row contains the vendor 

code, ZINC ID, InChIKey, predicted gene, MaxTc, and pSEA: one molecule per row. 
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3. Break the downloaded files into subsets using Unix command-line tools to filter by MaxTc, 

pSEA, and predicted gene. 

 

To download these in 3D for docking, please see Obtaining 3D Models, below. 

 

1.4.4 Use Case Four 

The user wishes to download dark chemical matter screening libraries in 2D or 3D formats. To do 

so, the user browses to https://files.docking.org/dark-matter. The compounds have been binned into 

tranches by physical property using our standard scheme 

(http://wiki.docking.org/index.php/Physical_property_space). The 2D files are available as compressed 

text files organized by purchasability. Each row contains one molecule with its SMILES, ZINC ID, 

physical property tranche, purchasability, and reactivity. The 3D files will likewise be prepared in future 

but are meanwhile available as described in Obtaining 3D Models, below. 

 

1.4.5 Obtaining 3D Models 

To download 3D models for a set of molecules in bulk for one of the above use cases, here is a general 

approach that will work for any arbitrary set of ZINC IDs: 

1. Obtain the codes of the molecules to download using the previous use cases or otherwise and 

store the codes in zinc-codes.txt. 

2. Select mol2, db, or db2 file formats. mol2 may be converted to other formats as required. The 

latter two are used by the UCSF DOCK 3.x programs only. 

3. Download the script getfiles.csh from https://files.docking.org/catalogs/getfiles.csh. 

4. Edit the file by hand following the instructions within. 

5. Run the script, with the list of ZINC codes in the same directory. The 3D files will be 

downloaded. 
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Please note that 3D models are currently available for about 120 million of the 400 million compounds in 

ZINC. We are continually building and rebuilding them, prioritizing the popular lead-like and fragment-

like areas best suited to docking. If a 3D model is not available, the molecule detail page contains a 

“Request Generation” button in the 3D representations section. If a 3D model does not exist, it is either 

because it fails to build or because it is still on our action list. 

 

1.5 Discussion 

1.5.1 Summary of Results 

Four major results emerge in this work. First, using ZINC and ChEMBL, we predict molecular 

target activities for 171 million commercially available compounds at 2629 targets and store them in an 

accessible database. Second, we create an interface to search, access, and download the predictions 

(https://zinc15.docking.org and https://files.docking.org). Predictions can be accessed individually or 

downloaded in bulk, and are available in a range of formats ready for both docking and 

chemoinformatics, or for purchase. To demonstrate the utility of these predictions, we perform a 

retrospective 5-fold cross-validation of the ChEMBL bioactivity data set. Further, we identify likely 

targets of drugs known in the literature where direct binding annotations are not available in ChEMBL. 

Finally, this new tool allows us to quantify predicted target biases of purchasable chemical space. Target 

bias predicted by this model is substantial—some genes are represented by millions of purchasable 

compounds, others have very few. Nearly 60% of purchasable compounds in ZINC have no prediction at 

all, allowing us to offer purchasable “dark chemical matter”. We take up each of these results in turn. 

We predict targets for over 40% of the 400 million compounds currently for sale in ZINC. The number is 

admittedly arbitrary, as we were obliged to choose pSEA and Tanimoto similarity cutoffs. Knowing that 

this approach would produce false positives and false negatives, we attempted to strike a useful balance, 
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and equip the user to apply further constraints. Many compounds with MaxTc as low as 0.40 to the 

nearest active may not bind the predicted target−previous work suggests 18% precision might be a good 

estimate44 and this is consistent with the results we found in Figure 1 (blue circle). Likewise, those with a 

pSEA near our chosen threshold of pSEA = 40 may not be active against the predicted target. Should such 

chemically novel predictions be confirmed experimentally, they may represent new starting points for 

optimization and could lead to new biology. If the user wishes higher confidence hits, more stringent 

cutoffs in pSEA or MaxTc are easily applied. We refer the reader to the set of thresholds examined in our 

cross-validation of the ChEMBL bioactivity data set (Supplemntary Figure A.1.1) for guidance in 

choosing pSEA and MaxTc values to optimize the desired output. For the highest rates of precision at an 

acceptable recall, we recommend threshold values at pSEA ≥ 80 and MaxTc ≥ 80 (Figure 1.1, pink 

circle), noting this may reduce the number of novel compound−target associations that pass the cutoff. 

For those wishing to buy a compound that works, the user might only consider the most similar 

compounds, having high Tc to a precedented bioactive. For those seeking chemical novelty against a 

target, where testing 10 or even 50 more novel compounds to find new chemical matter is acceptable, 

more novel compounds may be sought. Users of virtual screening methods such as docking may want 

particularly novel (low MaxTc) compounds, because their screening method makes an independent 

assessment of each prediction. Some will prefer to pursue the most novel—and potentially most 

interesting—the purchasable chemical dark matter, those compounds that do not seem similar to any of 

the annotated compounds used to make these predictions. Whatever the appetite for risk, investigators are 

empowered by these tools to select predictions that are right for their project. 

 

1.5.2 Summary of Interface 

Interfacing the prediction database through ZINC allows predictions to be searched, grouped, 

filtered, compared, and downloaded using the extensive ZINC machinery. Thus 3D models of predicted 

compounds may be accessed for molecular docking screens, while SMILES strings or molecular 
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properties may be downloaded for ligand-based methods. Predicted compounds for any of 2629 genes 

may be accessed and downloaded in any of eight formats. Results may be filtered by prediction statistics 

(pSEA, MaxTc), molecular properties (e.g., molecular weight, calculated logP, polar surface area, fraction 

sp3) and purchasability (in stock, make-on-demand, or by vendor). Both 2D and 3D results can be 

organized by gene (e.g., ADRB2, SRC), minor class (e.g., GPCR Class B, voltage-gated ion channel), 

major class (e.g., transcription factor or membrane protein), Kingdom (bacterial, eukaryotic, viral), 

vendor, and physical property tranche. Attributes of predictions may be downloaded in tabular form for 

analysis. A REST API, exemplified in this work, described previously9 and documented online,60 allows 

automated queries and machine-readable results, so that this database may be incorporated into third-party 

software applications. 

 

1.5.3 Prediction Relevance and Target Bias 

We examined drugs and investigational compounds without an established molecular target 

annotation in ChEMBL to assess the relevance of the predictions. The 50 we highlighted exemplify 

typical results that can be expected using our approach for the millions of molecules that have never been 

assayed (Table 1.1). Whereas an exhaustive analysis is impractical, this result supports the view that our 

predictions are often consistent with experimentally observed binding. 

A global picture of target bias in commercially available libraries emerges. Of the 535 million 

compound−target predictions, over 500 000 predictions on 400 000 compounds have a MaxTc better than 

0.60 (ECFP4) to a ligand annotated for that target; a level of similarity that suggests 35% precision.44 A 

further 1.6 million predictions on 1.4 million compounds with MaxTc between 50 and 59 are also strong 

candidates for experimental testing. Many of these two million compounds could have been predicted by 

pairwise Tanimoto similarity alone, without the help of SEA. The pSEA adds most value below MaxTc 

0.50, where it provides a global similarity measure to the set of annotated ligands as a group instead of a 

single pairwise one. This becomes even more acute below MaxTc of 0.40, where we only retain 
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predictions with pSEA ≥ 40 as the Tanimoto coefficient alone becomes too untrustworthy, with precision 

falling rapidly below 10%. 

 

1.5.4 New Starting Points 

Our analysis provides additional resources. We have predicted compounds for 69 targets61 for 

which none of the 20 or more actives is commercially available (Table 1.2). If confirmed experimentally, 

these genes could now be represented in screening panels of commercially available compounds, and 

these new ligands used as controls or perhaps even starting points for design. For each of 2629 genes, a 

range of commercially available compounds from high-confidence, having high MaxTc, to more-novel-

yet-intriguing at lower MaxTc are now available. For the most studied targets, there is a deep bench of 

predictions running into the millions of compounds each. Massive biases for some targets, such as the 

dopamine D2 (DRD2) and beta-2 adrenergic (ADRB2) receptors for instance, echoes our earlier 

work62 that commercial libraries are heavily biased toward long-studied, important biological targets. 

Correspondingly, less-well-studied targets with few ligands often have sparse representation in 

commercial libraries, which can occur when the known actives are natural products or their derivatives. 

We have also assembled a database of “dark chemical matter”, 229 million purchasable compounds that 

received no target prediction and that generally do not resemble known bioactives, which is available 

from our website in 2D and 3D formats. If these compounds were active in a screen, they would likely 

represent new starting points for optimization. 

 

1.5.5 Liabilities and Limitations 

Our approach has other liabilities. Our cutoffs in MaxTc and pSEA inevitably exclude sensible 

predictions. Some classes of compounds such as sterols, peptides, and nucleotides suffer from higher mis-

prediction rates, a subject of continuing research. pKa and explicit charge are poorly treated in our current 

protocol based on stereochemistry-naïve ECFP4 fingerprints, making amide nitrogens and basic amines 
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too much alike, for instance, leading to some obviously wrong predictions. Massive turnover in the 

chemical marketplace means stored predictions may lag the appearance of new compounds in ZINC. 

ChEMBL contains artifacts and errors, which this approach can magnify. The SEA and MaxTc 

approaches quantify whole-molecule similarities and are thereby naïve of critical chemical moieties (often 

called warheads). 

 

1.5.6 Conclusion 

Notwithstanding these limitations, our database of predicted biological activities for purchasable 

chemical space is a pragmatic tool that should be useful to a broad audience. It affords both a retail 

view—buy this compound for this target—as well as a wholesale one—this target is well represented, and 

here are some compounds for it. Our predictions can be rapidly tested because the compounds are 

purchasable. We intend to continue to update the database as purchasable chemical space evolves and 

ChEMBL is enhanced. This database is provided in the hope that it will be useful, but you must use it at 

your own risk. 

 

1.6 Methods 

1.6.1 Library Preparation 

We used CHEMBL21 compounds annotated for targets better than 10 μM and grouped by 

Uniprot gene symbol across eukaryotes, as previously described in ZINC15.9 Thus in this scheme, 

DRD2_HUMAN, DRD2_RAT, and DRD2_MOUSE are all grouped into a single gene annotation DRD2, 

and predictions are made against the unified collection for the gene and not the individual orthologs. In 

situations where the target is composed of several gene products, as in some ion channels for instance, we 

used the ChEMBL name. When no gene has been formally assigned by Uniprot, we use the Uniprot 

accession code itself as the gene name, as in ZINC15. 
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1.6.2 SEA Reference Library Construction 

We grouped ligands by affinity. We computed an affinity bin as the negative log of the molar 

affinity, which is variously expressed as Ki, IC50, and EC50 among others in ChEMBL21 and which we 

refer to as pKi in this work for simplicity. Thus in this scheme, bin 6 contains all compounds with 1 μM 

affinity or better. Lower affinity bins were inclusive of compounds from all higher affinity bins. We built 

three SEA libraries as follows. In the first library, we only proceed if there are at least five distinct 

compounds active against a single gene, we only accept activities of 1 μM or better. We found 1382 such 

genes, which we defined as being well described by their ligands. In the second library, we only predict 

for those single gene targets that did not qualify for the first pass, accepting activities as weak as 10 μM, 

and as few as one good ligand. We found 1347 of these less-well-described genes. The third library was 

an attempt to overcome a statistical weakness, which diluted the signal of genes having many diverse 

ligands. We clustered ligands to describe individual chemotypes of 302 genes having 300 ligands or more 

each. For each library we computed a statistical background for SEA based on the 410,624 annotated 

compounds. We computed the pSEA based on an extreme value distribution and the maximum Tanimoto 

similarity of the prediction to the annotated compounds (MaxTc). Throughout we suppressed from the 

libraries compounds with PAINS patterns or similarity to a precedented aggregator by 0.70 (ECFP4) 

having an affinity worse than 100 nM.48 This was likely too conservative, but earlier, more permissive 

attempts at this library often suffered from excessive erroneous predictions, likely owing to these fraught 

compounds. 

 

1.6.3 Database Loading 

Predictions were loaded into ZINC. To minimize ligands whose charge differed sharply from 

precedent, we computed the mean and the standard deviation of the average microspecies charge using 

ChemAxon’s CXCALC program for each gene. When loading each prediction, if the charge of a 3D 

representation at pH 7.4 (reference model) was available, we suppressed loading if the charge on the 
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molecule fell outside 1.5 standard deviations from the mean charge for ligands annotated to that gene. 

This remains an area of ongoing research. The result was to suppress predictions that we likely would 

have thrown out on inspection, in a scalable if incomplete and imperfect way. 

 

1.6.4 ChEMBL Cross-Validation 

We evaluated the predictive performance of SEA+TC using ChEMBL’s bioactivity data set 

(version 21). Receiver operating characteristic curves were generated from independent 5-fold cross-

validation runs for each method examined (SEA, SEA+TC, NBC). For SEA and NBC cross-validation 

sets, each point on the curve represents the average true-positive rate (TPR) and false-positive rate (FPR) 

from all 5 folds. TPRs and FPRs along the curve were determined by stepping a decision threshold across 

the range of possible SEA p-values (0.0−1.0), for all predicted compound-target interactions. To examine 

the sensitivity of these results to how well the target is described by ligands, we ran the analysis using 

targets with a minimum of 5 ligands and also with 50 ligands. 

For SEA+TC cross-validation sets, TPRs and FPRs along the curve were determined by two 

separate decision thresholds; one for the SEA p-value and another for the maximum Tanimoto coefficient 

(MaxTc). As ROC curves evaluate a binary classifier using a single discrimination threshold, assessing 

performance by simultaneously stepping across both metrics was not ideal. To account for this, we 

generated ROC curves by stepping across all possible values of MaxTc, while holding the pSEA decision 

threshold constant (Figure 1.1). Predicted compound−target associations are therefore positive if their 

pSEA or MaxTc passes either of the respective cutoffs. A consequence of this bivariate thresholding is 

that the static pSEA threshold prevents the TPR and FPR from ever reaching zero. To highlight this, the 

distance between a fully stratified classifier (TPR = 0; FPR = 0) and the minimum point at which both 

decision thresholds begin to affect performance is shown in dashed lines (Figure 1.1). Performance 

metrics for a range of pSEA decision thresholds are shown in Supplementary Figure A.1.1, A and B. 
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Complementary curves stepping across pSEA while holding a separate MaxTc decision threshold 

constant are shown in Supplementary Figure A.1.1, C and D. 

 

1.6.5 Interface 

We added support for SEA predictions to the user interface on the Molecule Detail, Target Detail 

and Gene Detail pages of ZINC. The interface classifies each gene by one of 15 major target classes (e.g., 

membrane receptor, ion channel, transporter) and by one of 42 subclasses (e.g., Class A GPCR, voltage 

gated ion channel, etc) whose pages also allow access to the SEA predictions. The results are 

downloadable in eight formats: SMILES, mol2, SDF, pdbqt, json, xml, txt, and xls. The predictions may 

be accessed visually via a web browser or programmatically using an application program interface, both 

located at https://zinc15.docking.org/predictions/home. Static files are accessible 

via https://files.docking.org/predictions, https://files.docking.org/genes, https://files.docking.org/catalogs, 

and https://files.docking.org/dark-matter. 

 

1.6.6 Caveats to 3D Models 

Vendors often advertise stereochemically ambiguous molecular descriptions and thus the number 

of compounds and predictions strongly depends on how these are treated. Since ZINC is a 3D focused 

database, we are obliged to commit to a 3D representation. Where there is ambiguity, we enumerate up to 

a maximum of four possible stereoisomers (R/S and E/Z) and readily admit that this inflates the numbers 

in this work. 
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1.8 Figures 

  

Figure 1.1 - Comparative performance of SEA, SEA+TC, and a multinomial naive-Bayesian classifier (NBC) 
on ChEMBL cross-validation sets. Receiver operating characteristic (ROC) curves from independent 5-fold cross-
validation runs for each method. Methods are evaluated on independent cross-validation sets filtered for >5 ligands 
per ChEMBL protein target (equivalent analyses at >50 ligands per target reported in Supporting Information Figure 
S2). Overall performance is gauged by the area under the ROC curve (AUROC). Note, for SEA+TC cross-
validation sets, ROC curves are the result of stepping a decision threshold across MaxTc values, while holding a 
separate pSEA decision threshold at 40 (yellow curve) or 80 (cyan curve) (see Methods). Complementary curves 
stepping across SEA p-values are available in Supporting Information Figures S1 and S2. Dotted lines span the 
distance between a fully stratified classifier (TPR = 0; FPR = 0) and the minimum point at which both SEA+TC 
decision thresholds begin to affect performance. Pink and blue circles indicate the recommended upper and lower 
bounds for MaxTc thresholding on their respective pSEA-threshold curves, respectively (upper = 0.80; lower = 
0.40). (B) Corresponding precision-recall curves (PRCs) for cross-validation runs described in part A. Positive-class 
prevalence (dashed red line) indicates the chance of selecting a positive association from the data set at random 
(0.0014). Performance is measured by the area under the PRC (AUPRC).  
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(B)  

 

Figure 1.2 - Predictions supported by evidence. (A) Here, Bucumolol (ZINC100) is shown with a SEA prediction 
for ADRB2 at a pSEA = 33 and MaxTc to the nearest annotated compound of 0.44. The user may click on the “44” 
to go to the URL shown, which lists bucumolol’s closest-match known ADRB2 ligands in decreasing order of 
similarity (the first four are shown). The user may also click on “Run SEA” to rerun a SEA calculation on the 
molecule, providing comprehensive statistics. 
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Figure 1.3 - Tools to display predictions for a gene and filter and sort them by MaxTc and pSEA. 
 (A) Gene page showing predictions, with search bar to locate genes by name, top 
right. https://zinc15.docking.org/genes. (B) Gene listings for genes matching “SLC6” 
https://zinc15.docking.org/genes/search?q=SLC6. (C) Strongly predicted ligands for SLC6A11, showing the popup 
for subset selections https://zinc15.docking.org/genes/SLC6A11/predictions/subsets/strong. (D) Individual 
predictions, showing MaxTc and pSEA for each prediction, sorted by pSEA, with a MaxTc (novelty/similarity) limit 
specified https://zinc15.docking.org/genes/SLC6A1/predictions/subsets/strong/table.html?sort=-pvalue&maxtc-
between=40+45. 
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Figure 1.4 - Predictions available for 2629 genes. (A) The web interface allows genes and their predictions to be 
found by name or gene symbol: https://zinc15.docking.org/genes. Enter the gene name in the search field (1). Click 
on the predictions link (2) to display the predicted ligands. (B) Predictions and purchasable compounds for 2629 
genes. The horizontal axis is genes, sorted by number of predictions. The vertical axis is number of compounds, log 
scale, labeled by exponent. Dark gray circles indicate the number of predicted purchasable compounds for a gene. 
Green triangles represent the number of purchasable annotated compounds for the same gene. 
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Figure 1.5 - Prediction counts and purchasable compounds. The gray line indicates the number of predictions, 
and the green line represents the number of annotated compounds. (A) By major target class. Data 
from https://zinc15.docking.org/majorclasses. (B) By target subclass. Most target predictions have a maximum 
tanimoto coefficient between 0.30 and 0.39 and 0.40−0.49. Percent of predictions for each target subclass relative to 
MaxTc are plotted in the inset to show the full spread of prediction across bins. (C) By Kingdom, called organism 
class in ChEMBL and ZINC. Data from https://zinc15.docking.org/organisms. 
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Supplementary Figure A.1.1 - Performance metrics for SEA+TC on ChEMBL cross-validation sets filtered 
for >5 ligand annotations per target. All curves are derived from independent 5-fold cross-validation runs. Overall 
performance is measured by either the AUROC (A, C) or the AUPRC (B, D). (A) ROC curves for ChEMBL cross-
validation sets at a variety of threshold values. Each curve is the result of stepping the decision threshold across 
MaxTC values, while holding the SEA p-value decision threshold constant. Inset shows a zoomed-in version of 
ROC curves, with the FPR (x-axis) in log units to emphasize low-FPR behavior. (B) Corresponding PRCs for cross-
validation runs described in (A). Pink and blue circles indicate the recommended upper and lower bounds for 
MaxTC thresholding, respectively (MaxTC = 0.80; 0.40). (C) Complementary ROC curves to section (A); each 
curve is the result of stepping across all SEA p-values, while holding the MaxTC decision threshold constant. (D) 
Corresponding PRCs for cross-validation runs described in (C). Pink and blue circles indicate the recommended 
upper and lower bounds for the SEA p-value decision threshold, respectively (pSEA = 80; 40). 
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Supplementary Figure A.1.2 - Performance metrics for SEA+TC on ChEMBL cross-validation sets filtered 
for >50 ligand associations per target. All analyses replicate those undertaken in Supplementary Figure A.1.1. 
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Supplementary Figure A.1.3 – Prediction bias. Plot shows predictions per gene vs annotated ligands per gene, 
highlighting a general trend toward more predicted ligands when more known ligands are available. 
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1.9 Tables 

Table 1.1 - Drugs with No Binding Data in ChEMBL, Predicted by SEA or MaxTC, 

Corroborated by the Literature 

drug(ref) ZINC ID target pSEA MaxTc 
Acemetacin63 601272 PTGS2 40 0.76 
Afeletecan64 150339966 TOP1 69 0.41 
Alclometasone65 4172330 NR3C1 15 0.58 
Alminoprofen66 22 PTGS2   0.47 
Amisulpride67 1846088 DRD3 22 0.66 
Ancarolol68 39 ADRB2 42 0.44 

ADRB1 59 0.43 
ADRB3 29 0.44 

Aranidipine53 600803 CACNA1C 121 0.75 
CACNA1D 132 0.51 

Azasetron69 4132 HTR3A 25 0.61 
Azelnidipine70 38141706 CACNA1C 91 0.56 

CACNA1D 124 0.57 
Azetirelin71 3804057 TRHR 95 0.59 

TRHR2   0.61 
Besifloxacin72 3787097 PARC   0.46 
Bevantolol73 1542891 ADRB1 89 0.51 

ADRB2 73 0.58 
ADRB3 73 0.53 

Bilastine74 3822702 HRH1 48 0.51 
Binospirone75 1999423 HTR1A   0.48 
Bufetolol52 101 ADRB1 51 0.44 

ADRB2 47 0.46 
Bunazosin76 601249 ADRA1B 52 0.61 
Bupranolol77 106 ADRB2 45 0.44 

ADRB1 19 0.45 
Butofilolol78 112 ADRB1 50 0.40 

ADRB2 34 0.46 
Calcifediol79 12484926 VDRA   0.79 

GC   0.79 
Camazepam80 2008504 GABARA5 25 0.53 

GABARA2 15 0.53 



 

36 

 

drug(ref) ZINC ID target pSEA MaxTc 
Cellcept81 21297660 IMPDH1   0.70 

IMPDH2   0.70 
Ciprokiren82 8214528 REN 178 0.68 
Dasotraline83 2510873 SLC6A3 25 0.63 

SLC6A2 29 0.63 
Demecarium84 3875376 ACHE   0.71 
Dienesterol85 4742540 ESR1 26 0.46 

ESR2 15 0.46 
Edaglitazone86 1483899 PPARG 83 0.66 

PPARA 83 0.65 
Efonidipine87 38139973 CACNA1C 81 0.51 

CACNA1D 118 0.51 
Eptazocine88 1846076 OPRD1 30 0.42 

OPRK1 30 0.46 
OPRM1 32 0.46 

Etanterol89 263 ADRB1 23 0.47 
ADRB2 47 0.40 

Ethylmorphine90 3629718 OPRD1 28 0.62 
OPRK1 24 0.62 
OPRM1 32 0.75 
OPRL1   0.57 

Etomoxir91 1851171 CPT1   0.47 
Fiduxosin92 29747110 ADRA1A 30 0.53 

ADRA1B 45 0.53 
ADRA1D 38 0.46 

Floxacillin93 4102187 BLAACC-4   0.80 
Flurazepam94 537752 GABARA5 28 0.50 

GABARA1 17 0.49 
Granisetron95 347 HTR3A 25 0.75 
Halobetasol96 4214603 NR3C2 20 0.60 
Hexoprenaline97 3872806 ADRB2 77 0.52 
Ketobemidone98 1600 OPRD1 49 0.46 

OPRK1 45 0.48 
OPRM1 44 0.55 

Lercanidipine99 19685790 CACNA1B   0.49 
CACNA1C 107 0.70 
CACNA1D 146 0.63 
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drug(ref) ZINC ID target pSEA MaxTc 
Lexacalcitol100 4474609 VDR 144 0.62 
Meptazinol101 854 OPRD1 44 0.48 

OPRK1 39 0.60 
OPRM1 38 0.55 

Metipranolol102 494 ADRB1 27 0.45 
ADRB2 31 0.52 

Ormeloxifene103 5104028 ESR1 86 0.51 
ESR2 58 0.44 

Paroxypropione104 1890 ESR1 38 0.58 
ESR2 30 0.58 

Pipenzolate105 601314 CHRM1   0.47 
CHRM2 30 0.43 
CHRM3 57 0.53 
CHRM4 35 0.53 
CHRM5 40 0.53 

Pozanicline106 6562 CHRNA2 33 0.57 
CHRNA4   0.57 
CHRNA10 53 0.55 

Propiverine107 1530934 CHRM2 24 0.42 
CHRM3 50 0.57 

Revatropate108 4214265 CHRM1 55 0.53 
CHRM2 33 0.53 
CHRM3 59 0.57 
GPM3   0.57 

Temazepam109 740 GABA5 28 0.59 
Udenafil110 13916432 PDE5A 74 0.61 
Unoprostone111 8214703 PTGER1 45 0.57 

PTGER2 30 0.40 
PTGER3   0.57 
PTGDR 52 0.40 
PTGFR 85 0.51 

Valategrast112 72190226 ITGA4 60 0.32 
Verubulin113 35978229 TUBB3 62 0.51 
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Table 1.2 - Selected Plausible Predictions of Purchasable Compounds for Genes with No 

Purchasable Ligands in ChEMBL 
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Table 1.3 - Compounds with No Predictions: “Chemical Dark Matter” 
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2.1 Abstract 

Melanocytic atypia is histopathologically challenging. Pathologist interobserver agreement for 

melanocytic atypia in standard (H&E) histology images is low, ranging from 33-68%, with melanoma in 

situ (MIS) in particular contributing to diagnostic discordance. A lack of agreement among experts 

presents a challenge to any supervised learning task, where the utility of a learned function depends on the 

accuracy and reliability of labels used. To circumvent the issue of discordance in human labeling, we pair 

H&E histology images with contiguously cut tissue sections, immunohistochemically (IHC) stained for 

melanocytes via one of three antibodies: Melan-A, SOX10, or MITF. We develop a deep-learning 

pipeline for automating diagnosis of melanocytic atypia using a custom dataset of 172 (81 H&E, 81 IHC) 

paired, whole slide images (WSIs). Networks are trained to identify the presence of melanocytic atypia in 

H&E sections using information from paired samples possessing either one (Melan-A; SOX10) or 

multiple (Melan-A + SOX10: MESX) IHC stains. Networks trained on sample pairs possessing a single 

IHC stain achieve strong performance on a holdout patient dataset, as assessed by the area under the 

receiver-operating characteristic (AUROC) and area under the precision-recall curve (AUPRC), 

respectively (Melan-A: 0.940, 0.836; SOX10: 0.901, 0.831). To visualize model predictions, we generate 

full-scale (20X magnification) high-resolution (pixel-wise) prediction heatmaps on holdout tissue sections 

(H&E) for pathological interpretation. Additionally, saliency mapping shows what features activate the 

network most, and that saliency profiles vary based on IHC stain used to extract labels. This finding 

indicates different antibodies may provide alternate but complimentary information for solving this 

classification problem. We hope this pipeline will provide assistance to the clinical pathologist to reach 

better consensus regarding new MIS diagnoses in cutaneous biopsies. 
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2.2 Introduction 

2.2.1 Deep Learning in Medical Image Analysis 

Recently, deep learning has made strides in the field of medical image analysis125-127. 

Convolutional neural networks128 have proven to be effective at identifying and diagnosing a wide range 

of pathologies129, including skin disease130-133, and diagnostic performance on trained networks 

approaches, or in some cases surpasses, that of the average pathologist134-135. Most of these achievements 

rely on a paradigm of supervised learning, in which networks are trained from a corpus of well labeled, 

human curated images. Though new techniques are emerging to alter the resolution of labeling 

required130, for the majority of cases, a pathologist must manually provide ground-truth labeling. If there 

is little consensus regarding what the ground-truth label should be, the classification task becomes more 

difficult and the model less generalizable. 

 

2.2.2 Melanocytic Atypia is Histopathologically Challenging 

Such is the case with melanocytic atypia, an early stage precursor to melanoma that is 

histopathologically challenging to identify. Pathologist interobserver agreement for melanocytic atypia in 

standard (H&E) histology images is low, ranging from 33-68%, with melanoma in situ (MIS) in particular 

contributing to diagnostic discordance136-137. A lack of agreement among experts presents a challenge to 

any supervised learning task, where the utility of a learned function is dependent upon the accuracy and 

reliability of the labels used to train it. To circumvent the issue of diagnostic discordance negatively 

contributing to our ground-truth labels, we apply a novel, pathologist-agnostic method to identify 

melanocytic atypia in patient tissue sections. 
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2.2.3 Circumventing the Necessity for Pathologist Manual Labeling 

Our method utilizes tissue sections immunohistochemically (IHC) stained for melanocytes to 

create and label a corpus of corresponding H&E tissue sections for CNN training (see Methods). While 

IHC staining of patient biopsies is less common, additionally invasive, and more expensive than standard 

H&E staining, it provides a biomarker detailing where melanocytes reside. This biomarker is useful for 

identifying melanocytic atypia, as melanocytic atypia is inherently restricted to where melanocytes exist. 

However, due to the low prevalence of IHC stains within the clinic as well as the limitations mentioned 

above, it is impractical to train a CNN on IHC-tissue samples directly. To account for this, we assemble a 

custom dataset comprised of adjacently sliced and paired tissue sections. Each set of paired tissues 

consists of one slice that is IHC-stained and a complimentary slice that is H&E-stained. We refer to both 

slices, collectively, as a “sample pair”.  

The IHC-stain information from each sample pair is extracted and serves to label that pair’s H&E 

image. This allows the method to incorporate information regarding melanocyte locations while still 

training a CNN on (labeled) H&E data. Ideally, the CNN learns features indicative of melanocytic atypia 

that are generalizable to new H&E images. Figure 2.1 details the methodology pipeline. This method 

relies on a critical assumption: that contiguously sliced tissue sections are similar enough in morphology 

and location that IHC staining from one slice can serve as a proxy label for its adjacent (H&E) pair. To 

maximize this assumption and to ensure optimal morphological congruence among paired H&E and IHC 

images, we align sample pairs at their native 40X resolution (see Methods). We then train a convolutional 

neural network (CNN) to identify melanocytic atypia in H&E images, at the tile level. 

We assess performance of our (H&E) trained networks by their ability to classify tiled images 

from holdout H&E patient tissue sections as either melanocyte-containing, or non-melanocyte-containing, 

using the holdout’s unseen IHC-stained tissue as ground truth. To provide pathological interpretation, we 

generate full-scale (20X magnification) high-resolution (pixel-wise) prediction heatmaps on holdout 
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tissue sections (H&E). We also perform saliency mapping to highlight which image (tissue) regions 

activate the network most. 

Teaching a supervised model to learn where atypical melanocytes are present in an H&E slice, 

solely from information from a corresponding IHC section, helps to reduce the necessity, cost, and time 

of manual dermatopathologist labeling, and circumvents the issue of noisy labeling136-137.  We hope this 

method will assist the clinical pathologist in reaching better consensus regarding new MIS diagnoses for 

cutaneous biopsies. 

 

2.3 Methods 

2.3.1 Ethics Approval 

All materials used are obtained either through pre-approved teaching slides from UCSF’s or 

Stanford’s dermatology programs, or from patients that gave informed consent for the distribution and use 

of their samples. Approval is overseen by the Institutional Review Board (IRB) at the University of 

California, San Francisco and Stanford University. Access to data follows current laws, regulations, and 

IRB guidelines. Patient samples used (WSIs) are de-identified, and do not contain any personal health 

information. 

 

2.3.2 Sample Cohort 

Patient histology sections are obtained from either UCSF’s Dermatopathology and Oral 

Pathology Service or the dermatopathology service at Stanford’s Anatomic Pathology and Clinical 

Laboratories. All samples obtained across both institutions are originally gathered between 2011-2015, 

with patients ranging in age between 43-73.  Each patient sample contains a pair of WSIs: the first WSI 

consists of H&E-stained tissue sections and the second contains corresponding IHC-stained sections. 
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Samples are extracted from a variety of biopsies, including excisional/incisional, shave, and punch 

biopsies, but each pairing of H&E and IHC WSIs is extracted from the same patient biopsy. 

 

2.3.3 Sample Preparation 

Tissue sections from patient biopsies are sequentially sliced and prepared for one of two 

conditions: H&E staining or IHC staining. For H&E staining, patient samples are formalin fixed, paraffin 

embedded, and stained with hematoxylin and eosin (H&E). For IHC staining, tissue samples are similarly 

prepared, but treated with one of four antibodies for staining melanocytes: Melan-A, SOX10, MITF, or 

MelPro (Melan-A+Ki-67). Sample preparation alternates between H&E and IHC staining after each slice 

to ensure regional similarity between contiguous, paired sections. All H&E and IHC sections from a 

biopsy are placed onto two separate glass slides and scanned to generate a pair of WSIs. Whole slide 

images are digitized at 40X magnification, corresponding to a resolution of 0.25 microns per pixel (MPP), 

using an Aperio scanscope (AxioVision; Leica Biosystems) and stored as compressed pyramidal TIFF 

files (.SVS images). 

 

2.3.4 Dataset Split 

Table 2.1 (SOX10), Table 2.2 (Melan-A), and Table 2.3 (MITF) detail the composition of our 

histology dataset, which consists of 81 patient sample pairs (172 WSIs), including 690 individual tissue 

sections. Each sample pair is composed of a WSI containing H&E-stained histology sections, and an 

independent but complimentary WSI containing IHC stained histology sections (see above). Patient 

samples from both institutions (UCSF: 41/81 samples;  Stanford: 40/81 samples) were grouped by their 

IHC stain to form three training sets: A “Melan-A” training set, composed of samples possessing either 

Melan-A or Melpro IHCs (combined: 32/81 samples), a “SOX10” training set (30/81 samples), and an 

“MITF” training set (19/81 samples), with the latter two consisting of samples containing their respective 

IHCs. We train three stain-specific convolutional neural networks (CNNs) using the subset of samples 
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from each training set (Melan-A: 15/32; SOX10: 12/30; MITF: 8/19) that pass all preprocessing stages 

(extraction, filtering, and alignment; see below). While the CNN trained on MITF samples does not 

perform well enough to use for prediction purposes, the MITF samples are used to help calibrate 

thresholds for stain extraction (see below; Figure 2.2). To incorporate multiple stains into a single model, 

we train an additional hybrid model using the combined set of Melan-A and SOX10 training samples 

(27/62).  

 

2.3.5 Tissue Extraction and Filtering 

To automate tissue extraction, we use a custom toolkit created in Python (Supplementary Figure 

A.2.1). The toolkit first identifies the HSV color-space of a WSI’s background. Using this information, it 

then selects candidate tissue regions in the foreground that meet a size requirement. Thresholds for 

chroma, size, and degree of region-enclosing are manually adjustable, allowing for optimal tissue 

extraction. Once tissue regions are refined for both the H&E WSI and its corresponding IHC WSI, tissue 

sections from each pair are matched. Matching occurs automatically based on tissue locations in the WSI 

and can be manually adjusted by the user if necessary. Cases where either the matched H&E or IHC 

section are digitally corroded, have excessive tissue damage, are missing, are too small, or are 

indistinguishable from background, are filtered out. Post matching and filtering, successfully extracted 

tissue sections are individually cropped and background masked.  Our toolkit employs the open-source 

libraries Pyvips138, OpenCV139, and IpyWidgets140.  

 

2.3.6 Stain Threshold Calibration 

The design of our study incorporates multiple IHC stains that generate different biomarkers of 

melanocyte presence. The presence of these biomarkers dictates the labels a tile receives. Therefore, it is 

important to set decision thresholds that retain similar boundaries for positive and negative classes, 

independent of stain type or stain location (e.g., nucleus, cytoplasm). To ensure equity in thresholding 
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choices, we rely on the assumption that the average number of melanocytes across a sufficiently large 

number of tissue sections should fit a normal distribution. Under this assumption, we test and calibrate 

thresholds for each stain type, such that when the decision threshold is applied, the resulting distribution 

of positively labeled tiles for one stain, is no different from the distribution of positively selected tiles for 

another stain. To measure distribution similarity across stains, we perform, for each threshold, a Mann-

Whitney U-Test for all stain combinations (Figure 2.2). We conduct Mann-Whitney U-Tests for all 

thresholds in the range of 0.4 to 6.0, with a step size of 0.1, and optimize for the thresholds that maximize 

similarity melanocyte distributions across all stain combinations. The optimal thresholds identified 

(Melan-A: 3.9%; SOX10: 0.8%, MITF:3.7%) are used for all analyses in this body of work. 

 

2.3.7 Image Alignment and Tiling 

A key feature of our analysis utilizes IHC stained tissue sections as proxy labels for matched 

H&E sections. This method rests on the assumption that contiguous slices are morphologically similar, 

and that a proxy label from one slice can relay information about the other (i.e., at the local level, the 

density of IHC staining for melanocytes is correlated with the probability of melanocytes being present 

within the same region of the preceding H&E slice). As feature extraction during model training is 

assessed at the pixel level, alignment between H&E and IHC tissue sections ensures optimal 

morphological congruence.  

Matched H&E and IHC tissue sections are aligned at the slice level, at native resolution (40X 

magnification; 0.25 MPP), using the open-source alignment algorithm bUnwarpJ141. Briefly, the 

algorithm performs image registration using 2D elastic deformations (B-splines) to minimize the 

difference between two images, as calculated by an energy function. Matching tissue sections often vary 

in shape and size after extraction from WSIs. To align images properly, the smallest section from each 

matched pair is 0-padded to the size of the larger section before alignment. Additionally, matched 

sections too large to align (>5GB) are cropped to create 2 smaller pairs in place of one large pair. 
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Alignments are manually curated and given a score by the user, in addition to assessment by coefficients 

returned from the alignment algorithm. Alignment scores and manual scores exhibit a similar trend 

(Supplementary Figure A.2.5). Sample pairs that are unalignable or receive a low alignment score are 

discarded from the dataset. 

Following alignment, matched H&E and IHC tissue sections are down sampled to 20X 

magnification and both images are identically partitioned into tiles of 256x256 pixels. Tiles with more 

than 80% of their pixels accounting for background are discarded. Additionally, several regions of tissue 

are marked in blue ink to delineate damaged tissue by an expert pathologist. Tiles containing blue ink 

(HSV color range [98, 56, 74], [116, 199, 252]) are removed from analysis if the ratio of foreground 

pixels to blue tinted pixels is less than 1.5X. 

 

2.3.8 Denoising IHC Sections 

 Several tissue sections contain regions of damaged tissue and discoloration. This discoloration, at 

times, overlaps with the pigmentation of our IHC stain, thereby contributing false positives to our ground-

truth IHC signal. We sought to denoise our dataset to remove these false positive regions. As tiles 

containing noisy, damaged tissue are easily identifiable to the human eye, we set up a web application 

through Amazon Web Services, similar to Tang et al., 2019, that allows users to label tiled images as 

either “noisy” or “not-noisey”. The web application is fed positively labeled IHC tiles from tissue sections 

harboring noisy regions, and the user is shown the tiled images along with tile location within the tissue.  

A graduate student familiar with the IHC stains in question labeled ~6000 tiles as either noisy (2631) or 

not-noisy (3639). Using these labeled images, we train a separate CNN to identify noisy tiles across all 

tiles in the dataset. Tiles highly predicted to contain noise (>.80) are removed from the dataset before 

training. 
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2.3.9 Performance Assessment 

A substantial portion of the dataset was discarded during the preprocessing stages, forcing us into 

a lower data regime. As such, we could only afford to exclude a single patient from training for each of 

the stain-specific models. For each holdout patient, the combined set of tissue sections from the respective 

WSIs (Melan-A: 5/6 sections; SOX10: 3/3 sections) constitutes the holdout for each stain. Performance is 

assessed on the network’s ability to predict H&E tile labels derived from the unseen IHC counterpart, for 

all tissue samples that comprise the holdout patient dataset. We measure performance by the AUROC and 

AUPRC for classification of tiles. To account for bias in selecting only one holdout patient, we conduct a 

leave-one-out analysis, that would ordinarily be a supplementary figure, but for sake of this thesis 

deadline, and as this analysis is not finalized, it is not included in this body of work. In order to reduce the 

substantial computational time a full round-robin leave-one-out analysis would take (>2 months), we 

reduce the ratio of negatives examples used for training from 10X to 3X for each iteration of the analysis. 

 

2.3.10 Prediction Heatmaps 

 Prediction heatmaps (Figure 2.3, Supplementary Figure A.2.2) provide a visual representation 

of the CNN’s confidence in melanocyte presence across the entirety of an H&E tissue section. Heatmaps 

are generated at the full 20X resolution using a custom multiprocessing script in combination with 

pytorch142. To generate predictions, every 6th pixel in the image serves as the center to a 256x256 pixel 

window. Windows are zero-padded to reach the appropriate size when near the edges of the image. Each 

window is passed to the trained CNN to obtain a prediction score. Prediction scores are converted and 

normalized to RGB values in the viridis color space, and filled into the original image using python. This 

process is done independently for each trained CNN (Melan-A; SOX10; MESX). Each heatmap generated 

involves millions of predictions, which we are able to process in the span of only few hours using a small 

number of GPUs. 
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2.3.11 Saliency Mapping  

 Saliency mapping methods attempt to provide intuition regarding what features a CNN finds 

important about an image. To examine which aspects of H&E tissues sections are differentially activating, 

we performed the guided gradients and integrated gradients techniques, as provided by 

https://github.com/utkuozbulak/pytorch-cnn-visualizations. Supplementary Figure A.2.4 shows an 

example where tissue sections of the slice are differentially activated (preferred) by the network. 

 

2.4 Results 

2.4.1 Stain Calibration 

 Labeling tiles requires setting a pixel threshold on the amount of IHC stain necessary to assign a 

(H&E) tile as positive. Because the design of our study incorporates multiple IHC stains, and therefore 

different biomarkers for melanocytes, it is important to set decision thresholds that retain similar 

boundaries for positive and negative classes, independent of stain type or stain location (see Methods). 

We find that the thresholds that maximize the similarity of distributions by U-Test comparison scores 

(max-score; most similar = 1.0) are 3.9% for Melan-A staining, 0.8% for SOX10, and 3.7% for MITF 

(Figure 2.2B). We use these thresholds for all analyses in the study.  

Additionally, we cross predict on datasets using CNNs trained on data labeled from a stain 

different than the dataset under evaluation (and therefore, labeled under a different threshold). As all 

information passed to CNNs come from H&E images, cross-predictions highlight the biases inherent to 

the dataset a CNN was trained on, as well as whether the features learned from one form of labeling 

overlap or generalize to the ground-truth of another form of labeling. Cross-prediction performance scores 

for independently trained Melan-A and SOX10 CNNs perform well, albeit worse than on their own 

datasets (Figure 2.2C), achieving respectable classification performance values, while taking a significant 
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hit to precision-recall scores (Melan-A vs SOX10; 0.930, 0.617; SOX10 vs Melan-A, 0.912, 0.576 as 

determined by the AUROC and AUPRC, respectively). 

 

2.4.2 Melan-A Model 

 We train a CNN on tiled images labeled from sample pairs containing Melan-A or MelPro IHC-

stains. Tiled images consist of ~68,000 positive tiles and ~170,000 negative tiles derived from tissue 

sections. As negative examples from H&E samples are morphologically different, and therefore 

potentially trivial to learn to separate, we also inject an additional 170,000 negative tiles that are randomly 

sampled from tissue sections derived from TCGA’s WSI image database. These negative TCGA 

injections serve to improve generalization, and to ensure our network does not simply evolve to be a 

“purple stain finder”. To visualize TCGA tissue diversity and to interrogate model accuracy after training, 

predictions on a holdout subset of 50,000 randomly selected TCGA tiles are designated as either false-

positive or true-negative, based on a prediction threshold of .50. Of the 50,000 tiles predicted, only 21 

tiles (0.00042%) were False Positives (Supplementary Figure A.2.3), indicating the CNN is robust to 

morphologically similar images. 

We examine performance on a holdout patient consisting of 5 separate tissue sample pairs. 

Performance is assessed by the AUROC and AUPRC, for the classification task of identifying the 

presence of melanocytes (via presence of stain). Ground-truth is determined by labels derived from the 

paired, IHC-stained slice. The Melan-A model achieves respectable performance metrics of 0.940 

AUROC and 0.831 AUPRC on the holdout patient samples (Figure 2.3A). Whole tissue prediction 

heatmaps appear visually similar to the unseen IHC-stained images, despite never having direct access to 

this information (Figure 2.3B).  

All tile predictions are assigned truth-table values based upon the comparison of the predicted 

label to the ground-truth label. Predicted labels are assigned based on a prediction threshold of .50 (>.50: 

positive prediction). Figure 2.4A shows randomly selected cases from each class. We observe that several 
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images falling into the False Negatives category have blurry H&E inputs (Figure 2.4B), potentially 

contributing to the error in prediction.  

To visualize what the model found salient, we perform guided gradients on a strip of tissue 

comprised of seven overlapping tiles (Supplementary Figure A.2.4), stitch the tiles together, and color 

pixels according to the outcome by which they are most activated. Blue/purple regions indicate pixels 

have more activations when the prediction is positive, while red/green regions are activated more when 

the prediction is negative. Together, this image shows areas of the tissue with cellular morphologies are 

activated most when the image is predicted to be positive.  

 

2.4.3 SOX10 Model 

 Similar to the Melan-A model above, we train a CNN tiled images labeled from sample pairs 

containing SOX10 IHC-stains. Tiled images consist of ~48,000 positive tiles and ~1430,000 negative tiles 

derived from tissue sections. An additional ~143,000 negative tiles from TCGA were injected, for reasons 

clarified in section 2.4.2. We assess performance of this model on a single patient holdout, consisting of 

three separate tissue sample pairs. Initial performance metrics were lower than expected, as this staining 

mechanism is often regarded in the field as more specific to melanocyte location. Upon further 

examination, we found several of the sample pairs used for training contained large regions of False 

Positives within our ground-truth labels, due to noise from tissue damage. Following our denoising 

procedure (see Methods), performance for the SOX10 network improved, with metric scores near that of 

the Melan-A model (AUROC: 0.907, AUPRC: 0.831, Supplementary Figure A.2.2).  Whole tissue 

prediction heatmaps for SOX10 H&E holdout sections also elicited similar profiles to their unseen IHC-

stained counterparts. 
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2.5 Discussion 

 The method we develop attempts to address a problem at the heart of all supervised learning 

techniques – that outputs are only as good as their inputs. Typically, this is in reference to the saying, 

“trash in, trash out”, when data quality is poor. Conversely, the idea applies to the other end of the 

spectrum as well. Training on the highest quality data available achieves the very best results possible. 

The real world issue arises when the very best result, say for the task of identifying melanocytes, remains 

unsatisfactory, due to humans (even professional ones) being fundamentally error-prone to the task at 

hand.  

 Rather than champion human subjectivity as an appropriate arbiter, we attempt to solve our task 

by exploiting biology as a surrogate for ground truth. We take only the low resolution human input that 

melanocytic atypia exists somewhere, within the huge space of a whole slide image, and use 

immunohistochemical staining as a labeling mechanism for adjacent H&E sections to train a CNN. 

 We show our models are able to learn features indicative of melanocyte presence, within H&E 

images, and perform well on holdout patient samples. Models are robust to similar looking morphologies 

that do not contain melanocytic atypia, and can utilize information from different stains in alternative but 

complimentary ways. We are able to map our predictions back onto tissue samples to provide an 

interpretable view for pathologists to consider, and we observe what morphological features trained 

networks are activated by.  

Creating a working model that is able to adequately identify melanocytic atypia is the first step 

towards the more complicated task of automating diagnosis of Melanoma, the more deadly form of the 

skin disease. These models have been successful in a wide wage of other projects, and have been a joy to 

create; it is my aim to publish this work and the work that was not shown here in a manuscript within the 

next coming months. 
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2.6 Figures 

 
Figure 2.1 - Image processing pipeline. A) Matching tissue sections from separate H&E and IHC-stained whole-
slide images are extracted and masked, forming a pair. Tissue sections are aligned to each other using Image-J’s b-
spline alignment algorithm (BunwarpJ) in order to ensure optimal congruence at the tile-level. Following alignment, 
tissue sections are independently tiled. B) Labels for H&E tiles are determined by thresholding a color-mask of the 
corresponding tile’s IHC stain. C) Training and validation is conducted on only H&E images, with loss calculated 
by the difference between model output and H&E label, as determined in section B. Once the model is fully trained, 
predictions for individual tiles from holdout patient tissue form a heatmap.  
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Figure 2.2 - Stain threshold calibration for cross-stain performance metrics. A) A pixel threshold based on the 
extracted IHC stain is used to label tiles as either likely to contain melanocytes (positive) or unlikely (negative). 
When comparing across tissue samples stained with different antibodies, the pixel thresholds for each stain should 
be calibrated so that the average number of melanocytes, across stains, fit a similar distribution. To calibrate pixel 
thresholds, for each stain, the d for all tissues related to a particular stain were calculated, and a Mann-Whitney U-
test was performed to determine distribution similarity. B) Similarity values for distributions, across a range of 
thresholds. C) Performance metrics for cross-stain predictions, after choosing the thresholds that were most similar 
across each coupling of stains (red squares, B). 
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Figure 2.3 – Melan-A Melanocyte-detector performance. A) Performance metrics for the model trained on H&E 
images labeled using a Melan-A or MelPro IHC stain. Performance metrics are evaluated on a holdout patient 
dataset. The AUROC (left) and AUPRC (right) curves for all runs from a 5-fold cross-validation split are shown. B) 
Melanocyte prediction heatmap. Top panels show the original H&E image, resulting prediction heatmap, and 
corresponding ground-truth IHC label-map, respectively. Bottom panels show the inset in blue, representing a 3x3 
tile region, at higher resolution. The green square represents the size of a single 256x256 tile. 
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Figure 2.4 - Truth Table Prediction Examples. A) Predictions for each tile from a single-patient holdout dataset 
consisting of ~26000 tiles were assigned to a truth table category. Category membership is based on a 50 percent 
threshold for positive/negative assignment, and agreement with the ground-truth IHC color-threshold for True/False 
assignment. Twelve examples were randomly selected from each category. Each example shows the predicted H&E 
tile as well as its unseen IHC pair, for visual comparison. B) Scanning Defaults. While examples from each category 
provide insight into the model’s decision making, a portion of decisions are the (unavoidable) result of damaged 
tissue or corrupted data during the scanning process. Examples with similar tissue morphologies and localizations 
highlight the impact blurred regions have on category assignment. 
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Supplementary Figure A.2.1 – Automated Tissue Extraction Toolkit. An example of a sample pair extracted 
using our automated toolkit. The toolkit visualizes both the H&E (top, left) and IHC (middle, left) WSIs, and 
extracts tissue regions according to threshold values set for each of the ipywidgets provided. Matching occurs 
automatically based on tissue locations in the WSI, and can be manually adjusted by the user if necessary (bottom). 
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Supplementary Figure A.2.2 – SOX10 Melanocyte-detector performance. A) Performance metrics for the model 
trained on H&E images labeled using a SOX10 IHC stain. Performance metrics are evaluated on a holdout patient 
dataset. The AUROC (left) and AUPRC (right) curves for all runs from a 5-fold cross-validation split are shown. B) 
Melanocyte prediction heatmap. Top panels show the original H&E image, resulting prediction heatmap, and 
corresponding ground-truth IHC label-map, respectively. Bottom panels show the inset in blue, representing a 3x3 
tile region, at higher resolution. The green square represents the size of a single 256x256 tile. 
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Supplementary Figure A.2.3 - Truth table predictions from TCGA holdout dataset. To improve generalization 
of the model, melanocyte-negative tissue samples (pancreas, kidney, and lung) were extracted from TCGA and a 
random subset of tiles were injected into training and validation datasets. To visualize TCGA tissue diversity and to 
interrogate model accuracy after training, predictions on a holdout subset of 50,000 randomly selected TCGA tiles 
were designated as either false-positive or true-negative, based on a prediction threshold of .50. A) Of the 50,000 
tiles predicted, only 21 tiles (0.00042%) were false-positive retaining a prediction score larger than .50, indicating 
the models is robust to visually similar features. B) Sample true-negative predictions across the negative threshold 
range are shown. 
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Supplementary Figure A.2.4 – Saliency Mapping. Saliency mapping highlights, for each tile, which pixels 
differentially affect the network prediction the most, as indicated by the summed direction of change in their 
gradients after changes to each pixel value. Individual tiles from a strip of holdout patient tissue are shown on top, as 
well as a stitched version (middle) where the overlapping regions between tiles have been merged. The bottom 
image shows the stitched result of applying guided gradients to H&E tiles, and coloring pixels according to the 
outcome by which they are most activated. Blue/purple regions indicate pixels have more activations when the 
prediction is positive, while red/green regions are activated more when the prediction is negative. 
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2.7 Tables 

Table 2.1 – SOX10 Whole Slide Image Dataset Overview 
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Table 2.2 – Melan-A Whole Slide Image Dataset Overview 
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