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Abstract 

The current study asks when children begin to understand that 
when an object is added to a set, the numerosity of the set has 
increased regardless of set size. This knowledge can be 
expressed algebraically as ‘x + 1 > x’. In Experiment 1, 3- to 
5-year-old children were asked to reason about 
transformations (i.e., addition, subtraction, rearrangement) 
performed on a visible set of objects. We found that 5-year- 
olds were able to reason about how each transformation 
affected numerosity, and 4-year-olds showed limited 
understanding. In Experiment 2, children were asked to 
reason about transformations performed on a hidden set of 
objects. Similar results were found. Together, we showed that 
the ability to reason about number algebraically develops 
gradually between the ages of 3 and 5. Implications for 
number word acquisition were discussed. 

Keywords: algebraic reasoning, preschoolers, number 
concept, numerical transformations 

Introduction 
In the last few decades, research on the development of 
numerical cognition has focused mostly on the 
representation and reasoning about particular numbers such 
as ‘two’, ‘five’, and ‘fifty’. For example, researchers have 
examined how the Approximate Number System (ANS) 
represents numbers (Dehaene, 1997; Xu & Spelke, 2000), 
the role of counting in children’s concept of number (Fuson, 
1988; Gelman & Gallistel, 1978; Wynn, 1990, 1992), and 
how Parallel Individuation, an object tracking system, may 
be involved in number word learning (Carey, 2009; Le 
Corre & Carey, 2007). However, our knowledge of number 
is not restricted to particular numbers; it also involves 
knowledge about number that applies to all possible 
numbers. For example, for any given set of objects with 
numerosity x, x changes whenever an object is added to or 
subtracted from the set; this knowledge applies regardless of 
what numerosity x refers to. Thus, whether the set contains 
1, 5, or 100 objects, when an object is added to the set, the 
numerosity has increased. We can represent this with 
algebraic expressions ‘x + 1 > x’. The present studies 
investigate the developmental trajectory of children’s 
understanding of algebraic number.  

Previous research has shown that sometime between the 
preschool and kindergarten years, children begin to show 
signs of knowledge that adding one element to a set 
increases its numerosity. In one study, 5-year-olds were 
shown a box of objects labelled with a number word. The 
experimenter then performed a transformation that changed 
the numerosity (e.g., taking away one object; a numerical 

transformation) or a transformation that did not change the 
numerosity (e.g., shaking the box; a non-numerical 
transformation), and asked whether there was still the same 
number of objects in the box (Lipton & Spelke, 2006). 
Crucially, the researchers used numbers that were beyond 
children’s counting range (e.g., 127) to ensure that children 
could not recruit particular facts about number words to 
succeed on the task. They found that children correctly 
responded with the original number word after non-
numerical transformations, but a different number word 
after numerical transformations. This finding shows that 5-
year-olds understand the circumstances under which a 
change in number word is licensed. On the assumption that 
children understand how number words represent 
numerosities, this suggests that they understand when the 
numerosity has changed. 

Some studies suggest that younger children have similar 
knowledge; however, the evidence is weaker. Sarnecka and 
Gelman (2004) presented older 2- and 3-year-olds with one 
set of objects placed in an opaque box and labeled it with a 
large (e.g., five, six) number word that was outside the 
counting range of children. Then, the experimenter 
performed a numerical (adding one object, subtracting one 
object) or a non-numerical (shaking) transformation. 
Children were asked whether the original or a new, 
alternative number word applied, e.g., “Now how many 
moons – is it five or six?” They found that children correctly 
chose the alternative number word after the numerical 
transformation and the original number word after the non-
numerical transformation.  

However, in another study with a slightly different 
paradigm, the experimenter used two sets of objects rather 
than one, and labelled one of the two sets with a number 
word (e.g., “This tray has [five] sheep”; Condry & Spelke, 
2008). Children between the ages of 3 and 3 ½ were tested, 
and number words that were outside of their known number 
word range (e.g., five, seven) were used. A numerical or 
non-numerical transformation was performed on the 
labelled set, and the experimenter asked children to point to 
the tray that was labelled by either the original number word 
(e.g., five) or a different number word (e.g., six). Using the 
two-set task, 3-year-olds were equally likely to choose the 
labelled and the unlabelled tray regardless of the type of 
transformation, suggesting that they may not understand 
how transformation affects number word meanings. Some 
have proposed that the success on the one-set task could be 
explained by domain-general pragmatic reasoning, rather 
than domain-specific numerical reasoning (Brooks, Audet, 
& Barner, 2013). Despite the factors that may explain these 
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conflicting findings, most previous studies on children’s 
understanding of number require them to interpret number 
words in the tasks. Children’s apparent difficulty in 
mastering the logic of number words may reflect a lack of 
knowledge of how number words represent number, and 
might not constitute evidence for a lack of numerical 
knowledge per se. Moreover, studies on children’s verbal 
numerical comparison have found that 4-year-olds may not 
understand that “ten” is more than “six” (Le Corre & Carey, 
2007; Schaeffer, Eggleston, & Scott, 1974). Thus, even if 
children apply a different, larger number word after the 
addition of one object, this does not necessarily show that 
they understand the numerosity has increased as a result of 
addition.  

The current experiments investigate the developmental 
trajectory of children’s understanding of algebraic number – 
specifically, the knowledge that when an object is added to a 
set, it necessarily follows that the numerosity has increased. 
In two experiments, children’s reasoning about changes in 
numerosities of visible sets (Experiment 1) and hidden sets 
(Experiment 2) was investigated. Given that in previous 
studies, children demonstrate conflicting behaviour in tasks 
involving number words, the current experiments did not 
require children to interpret or use number words. 

Experiment 1 – Visible Sets 
To investigate when children begin to understand that 
adding one element to a set of objects increases its 
numerosity regardless of set size, children were asked to 
reason about numerical and non-numerical transformations 
of visible sets of objects that differed in set size – small and 
large. Small number trials always began with a set of 2 
objects, and large number trials always began with a set of 
15 objects. For both small and large sets, children observed 
four kinds of transformation: addition of an object (‘Plus 
1’), subtraction of an object (‘Minus 1’), addition and 
subtraction of the same object (‘Minus A Plus A’), and 
moving one object (‘Move 1’). After the transformation, 
children were asked whether there were more objects in the 
set.  

Given that children cannot rely on the ANS for reasoning 
about large sets because a numerical ratio of 15:14 (in the 
case of subtraction) or 15:16 (in the case of addition) is 
beyond the range of ratio discrimination that preschoolers 
can perform (see Halberda & Feigenson, 2008), their 
performance on large number trials is critical for 
determining whether children are capable of reasoning about 
algebraic number. However, if they fail at reasoning about 
large sets, it could be due to task demands. To ensure that 
task demands are not an issue, small sets were included. 
Given that children can recruit Parallel Individuation to 
reason about small sets, if they succeed with small sets but 
fail with large sets, this provides evidence that they do not 
reason about number algebraically. However, if they fail 
with both small and large sets, this suggests that their failure 
may be due to a difficulty in understanding the task. 
Importantly, children were prevented from counting.  

Method 
Participants Forty-eight children between the ages of 3 and 
5 participated. There were 19 3-year-olds (range = 3;1 to 
3;11; mean = 3;6), 14 4-year-olds (range = 4;0 to 4;11; 
mean = 4;3), and 15 5-year-olds (range = 5;0 to 5;11; mean 
= 5;6). They were recruited at daycare centres in Kitchener-
Waterloo and nearby areas.  

 
Design and Procedure At the beginning of the session, 
children were introduced to two puppets – Winnie the Pooh 
and Giraffe. Children first completed two familiarization 
trials, followed by 16 experimental trials. The purpose of the 
familiarization trials was to test whether children can reason 
about changes made to a single object. During 
familiarization, Winnie the Pooh took out a ball that could 
be made bigger and smaller (Hoberman’s Sphere), and 
asked Giraffe to make it bigger. On one trial, Giraffe made 
it bigger; on another trial, Giraffe made it smaller. The 
direction of the change was counterbalanced across 
participants. After each trial, children were asked, “Does 
Winnie the Pooh have a bigger ball now?” A ‘yes’ or ‘no’ 
response was recorded. If children answered incorrectly, 
feedback was given. Almost all children succeeded on the 
two familiarization trials with no feedback. One child failed 
one of the trials but succeeded on a second attempt, and was 
included in the analyses.  

The experimental trials began with a dialogue between 
Winnie the Pooh and Giraffe.  

 
Winnie the Pooh: Giraffe, I have some toys to show you. 

Do you want to see? 
Giraffe: Yeah, sure! 
Winnie the Pooh: Look, here are my [blocks] and I want 

more [blocks]. Can you help me? 
Giraffe: Yeah, let me help you. (Giraffe performs the 

transformation). 
 
Then the experimenter asked, “Does Winnie the Pooh 

have more [blocks] now?” Children gave a ‘yes’ or ‘no’ 
response. Stimuli included eight different kinds of objects – 
pom poms, bows, buttons, red Lego blocks, yellow Lego 
blocks, bells, rocks, and hearts. Real objects were used. All 
objects were presented on a coloured sheet of letter-sized 
paper (see Figure 1). 

 
Figure 1: An illustration of the experimental set-up. 

 
Children received both small and large number trials, 

which were conducted in blocks. The order of the blocks 
was counterbalanced between children. For each number 
block, the experimenter transformed the set in one of four 
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ways: (a) by moving one object (‘Move 1’); (b) by adding 
one object (‘Plus 1’); (c) by removing one object (‘Minus 
1’); and (d) by moving one object outside of the sheet and 
then putting it back into the set of objects (‘-A+A). There 
were two trials for each transformation, making a total of 16 
trials for each child. There were two possible item orders, 
and the order of trial type was randomized such that no two 
consecutive trials were of the same trial type. 

Results 
Overall proportion correct Participants received a score of 
1 for each trial that they answered correctly. The maximum 
score is 8 for both the small and large number trials. 

Preliminary analyses found no order or gender effects (p’s 
> .49), so these variables were not included in subsequent 
analyses. First, to examine the performance on small and 
large number trials, a repeated measures ANOVA using 
proportion correct as the dependent variable, with Set Size 
(Small and Large) as a within-subjects factor, and Block 
Order (Small first vs. Large first) and Age Group (3-year-
olds vs. 4-year-olds vs. 5-year-olds) as between-subjects 
factors was conducted. There was a main effect of Age 
Group, F(2,42) = 8.33, p < .001. Tukey HSD revealed that 
3-year-olds (57.6%) did not differ significantly from 4-year-
olds (58.9%), but both groups performed significantly worse 
than the 5-year-olds (85.8%). There was a significant main 
effect of Set Size, F(1,42) = 36.02, p < .001. Children were 
better at reasoning about small sets (78.0%) than large sets 
(57.0%). No interactions were found. There was also a main 
effect of Block Order, F(1,42) = 8.25, p = .027, indicating 
that children performed better overall when they were tested 
on small number trials first (small block first 74.6%; large 
block first: 60.4%).  

To examine children’s ability to reason about algebraic 
number, their performance on large number trials was tested 
against chance (50%). Separate analyses were conducted for 
each of the three age groups. One-sample t-tests showed that 
only 5-year-olds (79.2%) performed significantly above 
chance on large number trials, t(15) = 3.95, p <.001. Both 
the 3- and the 4-year-olds were not different from chance, M 
= 46.1%, t(18) = -.71, p = .49, M = 45.5%, t(13) = -.66, p 
=.52, respectively.  

However, one may argue that 3-year-olds simply do not 
understand the task (e.g., difficulty of reasoning about the 
puppet’s intentions). To address this, one-sample t-tests 
were performed for small number trials. Results showed that 
children from all age groups demonstrated above chance 
performance: 3-year-olds: M = 69.1%, t(18) = 3.27, p = 
.004; 4-year-olds: M = 72.3%, t(13) = 2.96, p  = .011; 5-
year-olds: M = 92.5%, t(14)=9.38, p < .001.  

 
Proportion of ‘yes’ responses on large number trials To 
further explore the development of children’s algebraic 
reasoning, we analyzed whether children’s responses 
differed on the four different transformation types for the 
large number trials. Friedman’s ANOVA with the four 
transformation types as within-subject variables was 

computed separately for each age group. The dependent 
variable was proportion of ‘yes’ responses. If children can 
reason about number algebraically, they should understand 
that ‘Plus 1’ is the only transformation that increases 
numerosity, and respond ‘yes’ only in the case of ‘Plus 1’. 
Thus, for this analysis, we asked whether children were able 
to differentiate ‘Plus 1’ from the other transformation types 
that do not increase the numerosity of a set. A Bonferroni 
correction (adjusted alpha = .017 for each age group) was 
applied. Figure 2 displays the proportion of ‘yes’ responses 
for each transformation type for large number trials. 

For 3-year-olds, responses did not vary across the four 
transformation types (χ2 (3) = 7.34, p = .062). For 4-year-
olds, responses varied across the four transformation types 
(χ2 (3) = 24.3, p < .001). Wilcoxon signed rank tests 
revealed that 4-year-olds were sensitive to the difference 
between ‘Plus 1’ and ‘Minus 1’ (p = .009), but not between 
‘Plus 1’ and ‘-A+A’ and ‘Move 1’ (p’s > .038). For 5-year-
olds, responses varied across the four transformation types 
(χ2 (3) = 30.2 p < .001). Wilcoxon signed rank tests 
revealed that 5-year-olds were able to differentiate between 
all the transformation types (all p’s < .003).  

 
 

 
Figure 2: Proportion of ‘yes’ responses for each 

transformation type for large number trials by age group. To 
facilitate comparison, responses on ‘Minus 1’, ‘-A+A’, and 
‘Move’ trials were plotted on top of responses on the ‘Plus 

1’ trial.  

Discussion 
Using the visible-set experiment, we found that 3-year-olds 
can reason about the effects of transformations on small 
sets, but not on large sets, suggesting that they lack the 
ability to reason about algebraic number. By age 4, children 
are capable of differentiating between addition and 
subtraction, but they fail to recognize that taking away an 
individual and returning it back to the set does not result in a 
change of numerosity of the set. Five-year-olds are able to 
recognize that addition increases the numerosity of the set, 
but other transformations do not. Results from this 
experiment show that the ability to reason about algebraic 
number begins to emerge by age 4, and is fully in place by 
age 5. 

*  *  *  * 
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The current results raise interesting questions about why 
4-year-olds understand the effects of addition and 
subtraction, but fail to understand that the addition of one 
element and subtraction of one element does not increase 
the numerosity. There are two possible explanations. First, 
children may succeed on the ‘Plus 1’ and ‘Minus 1’ trials, 
but fail on the ‘-A+A’ trial because the latter type of 
transformation involves two steps – i.e., the subtraction and 
addition of an individual, whereas the former 
transformations only involve one step. Thus, reasoning 
about the effect of ‘-A+A’ may be computationally more 
complex than ‘Plus 1’ and ‘Minus 1’. Another possibility is 
that 4-year-olds may be responding based on a ‘last-action’ 
heuristic. For example, whenever the last action is adding an 
object, children respond that there are ‘more’, and whenever 
the last action is taking away an object, they respond that it 
is ‘not more’. However, this possibility does not explain 
children’s failure to differentiate between ‘Plus 1’ and 
‘Move’. Nevertheless, to examine these two possibilities, 
we added another type of transformation in Experiment 2. 
Specifically, we included a transformation that involved the 
removal of 3 individuals and addition of 1 individual (‘-
3+1’). If children’s difficulty with the ‘-A+A’ trial is due to 
the fact that this transformation involves two steps, then 
they should also fail on ‘-3+1’. If they are responding based 
on a ‘last-action’ heuristic, then they should respond that 
there are more objects after the ‘-3+1’ trial.   

Experiment 2 – Hidden Sets 
Experiment 1 suggests that the capacity to reason about 
numerical transformations without representing any 
particular numerosities may begin to emerge around age 4, 
and is fully in place at age 5. However, the visible-set 
experiment could underestimate children’s ability to reason 
about algebraic number because some of the transformations 
required children to resolve a conflict between perception 
and their conceptual understanding of numerical 
transformations. For example, in the case of moving one 
object, children may experience conflict between their 
perceptual reasoning (i.e., the set of objects takes up more 
space) and conceptual reasoning (i.e., the numerosity has 
not changed even though objects are moved). And this may 
explain why 3- and 4-year-olds responded that there were 
more elements around 50-70% of the time after one object 
was moved. Nevertheless, children’s performance on the ‘- 
A+A’ trial in Experiment 1 suggests that the reasoning 
conflict explanation does not fully explain the results. On 
the ‘-A+A’ trial, the pre- and post-transformation sets 
looked perceptually the same, yet 3- and 4-year-olds said 
there were more elements post-transformation 80% of the 
time. Moreover, 3-year-olds performed poorly on the 
‘Minus 1’ trials, despite the fact that perceptual and 
conceptual reasoning coincide. This makes it unlikely that 
such a conflict can account for all of the results in the 
previous experiment. Nevertheless, to ensure that the 
perceptual aspect of sets does not interfere with children’s 
numerical judgments, in Experiment 2, objects were 

presented in an opaque box. Then a numerical or a non-
numerical transformation was performed, and the 
experimenter asked if there were more objects in the box. 
This also provides another test for children’s reasoning 
about algebraic number. 

Method 
Participants Fifty-two children between the ages of 3 and 5 
participated. There were 21 3-year-olds (range = 3;0 to 3;11; 
mean = 3;7), 17 4-year-olds (range = 4;1 to 4;11; mean = 
4;5), and 14 5-year-olds (range = 5;0 to 6;1; mean = 5;8). 
They were recruited at daycare centres in Kitchener-
Waterloo and nearby areas. An additional three children 
were excluded from the analyses for failing twice on a 
familiarization trial (n = 2) and object trials during the test 
phase (n = 1; see below).  

 
Design and Procedure The design of the hidden-set 
experiment was similar to the visible-set experiment except 
that the sets children had to reason about could not be seen. 
This experiment began with the same familiarization phase 
using Hoberman’s Sphere, followed by experimental trials. 
Twelve kinds of objects were used in the study: buttons, 
rocks, Lego blocks, bows, sticks, pom poms, flowers, 
leaves, stars, beads, shells, bells.  

After familiarization, children were told that they were 
going to play a game with a box and some objects. The 
experimenter first showed that the box was empty, then she 
transferred objects from an opaque cup into the box, and 
said, “I’m going to put [bells] into the box”. The 
experimenter closed the box, and asked, “Are there more 
[bells] in the box now?” The experimenter then performed a 
transformation, and asked again, “Are there more [bells] in 
the box now?” The purpose of repeating the same test 
question twice is that in piloting, we found that some 
children had difficulty parsing the event into appropriate 
time points for comparison. For example, it appeared that 
they sometimes compared the initial state of the box (i.e., an 
empty state) to the post-transformation state. To scaffold 
children into comparing the post-transformation state to the 
state of the box that was immediately before transformation, 
we asked the test question directly before and after 
transformation. Responses to the first question were not 
analyzed. 

Five kinds of transformation were performed: adding one 
object (‘Plus 1’), removing one object (‘Minus 1’), taking 
away one object and putting it back (‘-A+A’), taking away 
three objects and putting another one back (‘-3+1’), and 
knocking on the box (‘Knock’). For ‘Plus 1’, the 
experimenter added an identical object to the box. For 
‘Minus 1’, the experimenter removed an object and hid it 
under the table. For ‘–A+A’, the experimenter took an 
object out of the box, put it in front of the child, and put it 
back into the box. For ‘-3+1’, the experimenter took out 3 
objects, put them in front of the child, quickly showed 
him/her that the box was not empty, and added an identical 
object.  
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The purpose of the ‘-3+1’ trial was to examine if 
children’s difficulty with reasoning about the effects of 
transformation is specific to a change of one individual 
object. Children’s performance on ‘-3+1’ trial also 
addresses the question of whether their difficulty with the ‘-
A+A’ trial in the visible-set experiment can be explained by 
the ‘two-step’ processing account or the ‘last-action’ 
heuristic account.  

There were three trials for each transformation type. The 
type of transformation was pseudo-randomized such that no 
two consecutive trials were of the same transformation type. 
Children received one of two randomized orders of trials. 

In addition to trials that required children to judge 
whether there were more elements, children were given 
three object trials as control trials. These trials were 
designed to ensure that children understood the task 
instructions. They involved the addition of a pen, the 
removal of a pen, and knocking on the box. The 
experimenter asked, “Is there a red pen in the box now?” 
after each trial. For addition, the experimenter first put a 
blue pen, and then a red pen into the box; for the removal of 
a pen, the experimenter put both the blue and the red pens 
into the box, and then removed the red pen; for knocking, 
the experimenter put the blue pen in the box, and knocked 
on the box. Children were allowed to make one error across 
the three trials. Altogether, only four children made an error; 
they were included in the analyses. One child made two 
errors and was excluded.  

Results and Discussion 
Preliminary analyses found no order or gender effects (p’s > 
.31), so these variables were not included in subsequent 
analyses.  
 
Proportion of ‘yes’ responses Similar to the visible-set 
experiment, we analyzed whether children’s responses 
differed on the five different transformation types using 
Friedman’s ANOVA, followed by Wilcoxon signed rank 
tests. The dependent variable was proportion of ‘yes’ 
responses. A Bonferroni correction (adjusted alpha = .0125 
for each age group) was applied. Figure 3 displays the 
proportion of ‘yes’ responses for each transformation type. 

For 3-year-olds, responses did not vary across the five 
transformation types (χ2 (4) = 8.87, p = .064). An inspection 
of Figure 3 suggests an overall ‘yes’ bias for 3-year-olds. 
For 4-year-olds, responses varied across the five 
transformation types (χ2 (4) = 23.43, p < .001). Wilcoxon 
signed rank tests revealed that 4-year-olds were able to 
differentiate ‘Plus 1’ from ‘Minus 1’ and from ‘-3+1’ (all 
p’s < .007). The results also revealed that they were 
marginally able to differentiate between addition and 
‘Knock’ (p = .018). However, they did not recognize that ‘-
A+A’ does not increase the numerosity of the set. For 5-
year-olds, responses varied across the five transformation 
types (χ2 (4) = 31.35, p < .001). 5-year-olds can distinguish 
‘Plus 1’ from most transformation types (all p’s < .009), 
except for ‘-A+A’ (p = .18).  

 
 

 
Figure 3: Proportion of ‘yes’ responses for each 

transformation type by age group in Experiment 2. 
 

Consistent with the previous experiment, the current 
experiment showed that 3-year-olds fail to reason about 
algebraic number, and this ability emerges at age 4. It is 
important to note that 4-year-olds in this experiment 
distinguish between addition and ‘-3+1’ but continue to 
have difficulty with reasoning about ‘-A+A’. This suggests 
that children’s difficulty with reasoning about the effect of 
‘-A+A’ in the previous experiment cannot be explained by 
the fact that ‘-A+A’ involves two steps, because ‘-3+1’ also 
involves two steps. Given that the last action of ‘-A+A’ and 
‘-3+1’ both involve the addition of an individual, these 
results also suggest that children are likely not relying on a 
‘last-action’ heuristic. 

Nevertheless, the current experiment showed that 5-year- 
olds have trouble reasoning that ‘-A+A’ does not affect the 
numerosity of a set. This was somewhat inconsistent with 
findings from the previous experiment, which showed that 
5-year-olds understand how adding and removing the same 
individual does not change the numerosity of visible sets. 
One possibility is that children were unwilling to answer 
‘no’ to the question, “Are there more [bells] in the box 
now?” when the numerosity of a set remains the same (as in 
‘-A+A’). For example, a handful of children responded “the 
same” to the test question about ‘more’ on the ‘–A+A’ trial, 
but these same children had no difficulty answering yes/no 
for addition and subtraction. We speculate that this 
difficulty may be related to the semantics of adjectives. For 
example, pairs of adjectives such as tall/short have different 
entailment patterns than pairs of adjectives such as 
dead/alive. A person who is not tall does not entail that the 
person is short, but a person who is not dead does entail that 
the person is alive. This difference in meaning highlights a 
distinction that is documented in the semantics literature: 
tall/short are gradable adjectives and dead/alive are absolute 
adjectives. It is possible that children are interpreting ‘more’ 
as if it is an absolute adjective, when in fact it behaves more 
similarly to gradable adjectives. 

General Discussion 
Two experiments explored the development of children’s 

*         *   *    * *   
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capacity to reason about algebraic number – i.e., that the 
addition of one object necessarily increases the numerosity 
of a set regardless of set size. In each of the experiments, 
children were asked to reason about how different types of 
transformation changed the numerosity of a set of objects. 
To assess when children begin to show a capacity to reason 
about algebraic number, set size (Experiment 1) and the 
presentation of the set of objects (Experiment 2) was 
manipulated such that children could not recruit 
representations of particular numbers to conclude whether 
the numerosity increased as a result of the transformation. In 
both experiments, we found that 3-year-olds were not able 
to reason about algebraic number, and this ability emerges 
at around age 4, and is fully in place by age 5. 

What might account for the developmental differences 
between ages 3 to 5? One possibility is the experience of 
schooling. Being in a school environment with structured 
activities may enhance children’s numerical reasoning 
abilities. However, both 4- and 5-year-olds in our sample 
received the same amount of schooling, but they 
demonstrated a different level of understanding of the 
effects of numerical transformations. Thus, it seems 
unlikely that schooling alone can explain the developmental 
differences.  

The developmental differences raise important questions 
regarding the nature of algebraic reasoning. It is possible 
that children have algebraic representations all along, but 
they have to learn about particular generalizations. For 
example, understanding ‘x + 1 > x’ does not grant one the 
knowledge that ‘x – 1’ is less than 1. Thus, one could argue 
that what is developing is not the representation of algebraic 
number per se, but children’s ability to apply numerical 
principles to algebraic representations. Alternatively, 
children may have to construct a new type of 
representations sometime between ages 3 and 5. As the 
current findings suggest, children are capable of reasoning 
about small sets (1-3) before reasoning about large sets (14-
16) and hidden sets. On the constructivist account, children 
know that small sets of objects have a particular numerosity, 
and that there is an order for small sets, i.e., a set of three is 
more than a set of two, and a set of two is more than a set of 
one. Moreover, it has also been shown that infants can 
perform addition over small sets of individuals (Wynn, 
1992). Thus, the analogies children observe in the small 
number range may be powerful enough to allow them to 
make a crucial induction: any sets of objects will have a 
numerosity x, which is different from ‘x  + 1’.  

Lastly, the current study has implications for the literature 
on number word acquisition. As noted in the Introduction, 
much previous research on children’s understanding of 
number words is motivated by the assumption that 
children’s understanding of numerical symbols may reveal 
the nature of their numerical knowledge. The present 
experiments adopted a different strategy in examining 
children’s numerical knowledge. In particular, children were 
asked to reason about changes in numerosity, and not how 
number words change their application in the context of 

numerical and non-numerical transformations. We found a 
similar pattern of results – i.e., by 5, children understand 
how rearranging objects, addition, and subtraction affect the 
numerosity of sets. This converges with findings from 
Lipton and Spelke (2006), who showed that 5-year-olds 
understand that an unknown number word changes when 
objects are removed from or added to the set, but it remains 
the same when objects are simply rearranged. This 
converging result tentatively suggests that 5-year-olds begin 
to reason about algebraic number at the same time that they 
understand the meanings of number words outside of their 
count list.  

To sum up, the current experiments are the first to show 
that children are able to reason about particular numbers 
much earlier than they can reason about number 
algebraically.  
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