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Abstract

Various regression methods have been proposed for analyzing recurrent event data. Among them,

the semiparametric additive rates model is particularly appealing because the regression

coefficients quantify the absolute difference in the occurrence rate of the recurrent events between

different groups. Estimation of the additive rates model requires the values of time-dependent

covariates being observed throughout the entire follow-up period. In practice, however, the time-

dependent covariates are usually only measured at intermittent follow-up visits. In this paper, we

propose to kernel smooth functions involving time-dependent covariates across subjects in the

estimating function, as opposed to imputing individual covariate trajectories. Simulation studies

show that the proposed method outperforms simple imputation methods. The proposed method is

illustrated with data from an epidemiologic study of the effect of streptococcal infections on

recurrent pharyngitis episodes.

Keywords

Kernel smoothing; recurrent events; time-dependent covariates; additive rates models; estimating
equations

1 Introduction

Recurrent event data are frequently encountered in clinical and epidemiological studies,

where each subject can experience events of interest repeatedly. Examples of recurrent
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events include infections after hematopoietic cell transplantations,1 repeated cardiovascular

events,2 and rehospitalizations of patients with psychiatric disorders.3 In such studies, data

on time-dependent covariates are often collected during the course of follow-up. Regression

methods that can handle time-dependent covariates have been an important tool as

investigators are often interested in evaluating the effect of variables that are evolving over

time such as in studies of personalized medicine. Researchers may also be interested in

utilizing updated information on risk factors during follow-up in dynamic prediction of event

risk.

The motivating example of this research is an observational study conducted in India

between 2002 and 2004 which aimed to evaluate the effects of time-varying streptococcal

infections, including group A, C, G streptococcus, on the risk of the recurrent pharyngitis.4

In this study, participants were examined weekly for the symptoms of pharyngitis and throat

swabs were obtained to identify the status of streptococcal infections in symptomatic

patients. In addition, monthly visits were scheduled to determine the carriage rate of

streptococcal infections in this population. In the analysis, the infections of streptococcal

groups were regarded as time-varying risk factors of the recurrent pharyngitis occurrence.

Regression methods for recurrent events are usually formulated based on either the

conditional intensity or the marginal rate function of the counting process of recurrent

events. Andersen and Gill5 and Prentice et al.6 proposed a proportional intensity model,

which postulates a multiplicative covariate effect on the intensity function of the underlying

counting process, that is the instantaneous risk of recurrent event conditional on the event

history and covariate history. Alternatively, Pepe and Cai7 and Lin et al.8 proposed

proportional rates models which are based on the marginal rate function. Although the

proportional intensity or rate models have gained great popularity in applications, they

assume the covariates to have multiplicative effects on the recurrent event risk. In

applications, it is possible that the covariate effects add to, instead of multiplying, the

baseline event risk. In this case, it would be more appropriate to use additive models such as

the semiparametric additive rates model by Schaubel et al.9 and the additive intensity model

by Liu and Wu.10 Moreover, the additive models can provide the risk difference estimates

which are especially relevant and desired in epidemiological and clinical studies.

Although the aforementioned recurrent event models can naturally accommodate time-

dependent covariates, their model estimation procedures require the values of time-

dependent covariates to be continuously observed throughout the entire follow-up period for

all subjects. In practice, however, the time-dependent covariates are often intermittently

measured, rendering the existing model estimation procedures not readily applicable. A

number of approaches to handle intermittently measured covariates have been discussed and

reviewed in Andersen and Liestøl.11 The first type of methods is a two-stage approach where

the values of time-dependent covariates are estimated in the first stage and then the

estimated covariate values are used in the regression model in the second stage. Simple

methods for the first stage include carrying forward the last observed value or imputing the

missing values between two observation times by linear interpolation. More complex

methods such as parametric or non-parametric smoothing techniques,12 random effects

model,13 and stochastic models14,15 have also been considered.
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The second type of methods involves jointly modeling longitudinally measured covariates

and event times. When the event time is univariate, various joint models have been proposed

including selection models, pattern mixture models, and shared parameter models. Readers

are referred to Tsiatis and Davidian16 and Rizopoulos17 for comprehensive reviews. When

the event time is recurrent, Henderson et al.18 modeled the covariate and recurrent event

processes jointly via a latent bivariate Gaussian process, whereas Li19 considered a joint

model of the recurrent event process and the longitudinal process for binary covariate

specifically. Others considered joint models in the presence of a terminal event.20-22 The

estimation of the joint models could be computationally intensive, especially when the

longitudinal covariates are multi-dimensional or include categorical variables. In addition,

the validity of joint modeling relies on certain assumptions about the covariate model and

the dependence structure of the repeatedly measured covariates, which may be difficult to

verify. Misspecification of the model for longitudinal measurements will result in biased

estimation of the event time model.

Recently, Cao et al.23 and Li et al.24 proposed kernel-weighted estimation procedures for the

proportional hazards/rates models with time-dependent covariates. Specifically, Cao et al.23

considered the case where data on covariates are not collected at failure times and proposed

to smooth the partial likelihood to derive a consistent estimator with a convergence rate

slower than root-n. Li et al.24 focused on the setting of recurrent event data where, in

addition to regular follow-up visits, covariate values are usually collected when an event

occurs. As pointed out by these authors, measurements at event visits give a biased

representation of the underlying covariate process of an individual. Hence, in the

construction of kernel-smoothed pseudo-partial score functions, only covariate values

measured at regular visits, whose timing is noninformative of the underlying recurrent event

risk, are used to estimate the expected covariate value of individuals in a risk set. The

estimated score function gives a consistent estimator with a root-n convergence rate.

In this paper, we propose a semiparametric estimator for the additive rates model with

intermittently observed time-dependent covariates. Specifically, we kernel smooth functions

of time-dependent covariates across subjects instead of smoothing individual covariate

trajectories. Our proposed method is demonstrated to have better performance than simple

covariate imputation methods such as the last covariate carried forward (LCCF) method

through simulation studies. We also discuss a few practical issues including the situation

when both time-dependent and time-independent covariates are present and the case when

different time-dependent covariates are measured at different times.

The remainder of this paper is organized as follows. In Section 2, we first review the additive

rates model and the estimation procedure9 in the ideal case where time-dependent covariates

are monitored continuously, then we present the proposed kernel smoothed estimator for the

case where covariates are time-dependent and intermittently observed. Some extensions of

the proposed method are discussed in Section 3. Section 4 compares the performance of the

proposed estimator to the two simple approaches including the LCCF and linear

interpolation methods with simulation studies. In Section 5, we present a real data analysis

using the Indian pharyngitis data. Some concluding remarks are included in Section 6.
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2 Model and the proposed estimator

Let i = 1, …, n index the n subjects in a study. Let Ni
∗(t) denote the number of events that

subject i has experienced at or prior to time t in the absence of censoring. Denote by Zi(t) =
(Zi1(t),…, Zip(t))⊤ a p × 1 vector of possibly time-dependent covariates. The semiparametric

additive rates model assumes that the rate function of Ni
∗(t) conditioning on the covariates at

time t is

λ{t ∣ Zi(t)} = λ0(t) + β𝖳Zi(t)

where λ0(t) is an unspecified baseline rate function and β = (β1, …, βp)⊤ is a p × 1 vector of

regression parameters, whose jth component βj is interpreted as the rate difference

associated with one unit difference in Zij(t). Let Ci denote the follow-up time for subject i

and define Yi(t) = I(Ci ≥ t). Let Ni(t) = Ni
∗(t ∧ Ci), where t ∧ Ci = min(t, Ci) be the number of

observed events up to Ci. Let τ be a pre-specified time point such that the recurrent event

process could potentially be observed beyond τ with a non-zero probability. The observed

data {Ni(·), Zi(·), Yi(·)}, i = 1,…, n, are assumed to be independent and identically

distributed.

For model estimation, following Lin and Ying,25 Schaubel et al.9 considered the estimating

function

U(β) = n−1 ∑
i = 1

n ∫
0

τ
{Zi(t) − Z̄(t)}{dNi(t) − Y i(t)β𝖳Zi(t)dt}

= n−1 ∑
i = 1

n ∫
0

τ
{Zi(t) − Z̄(t)}dNi(t)

− n−1 ∑
i = 1

n ∫
0

τ
{Zi(t) − Z̄(t)} ⊗ 2 Y i(t)dt β

(1)

where Z̄(t) = {n−1∑i = 1
n Y i(t)Zi(t)} ∕ {n−1∑i = 1

n Y i(t)}, z ⊗ 0 = 1, z ⊗ 1 = z, z ⊗ 2 = zz𝖳. Solving

U(β) = 0 gives a simple closed-form solution

β = n−1 ∑
i = 1

n ∫
0

τ
{Zi(t) − Z̄(t)} ⊗ 2 Y i(t)dt

−1
n−1 ∑

i = 1

n ∫
0

τ
{Zi(t) − Z̄(t)}dNi(t) (2)

It is easy to see that the estimator in equation (2), in particular the denominator, requires the

time-dependent covariates to be continuously observed throughout the follow-up period. In

practice, however, time-dependent covariates are often only observed intermittently. For

example, in the pharyngitis data that motivates this research, the bacterial infection status of

patients was only identified monthly. In such case, the estimator in equation (2) is not

evaluable with the observed data.
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A simple method for handling intermittently observed time-dependent covariates is to

impute unobserved values using the LCCF approach. Under LCCF, the last known value of

the covariate of a subject is used forward in time until a new value is measured or the

observation of this subject is censored. This method has been shown to yield biased

estimation under the proportional rates model.24 Another simple approach is to use linear

interpolation to estimate covariate values between two observations within each subject.

Instead of imputing missing values in the individual covariate trajectories, we propose a

method focusing on smoothing the estimating function using the observed covariate

information across subjects.

We first consider the simple case where all covariates in the model are time-dependent and

observed at the same regular visits. More general cases such as when both time-dependent

and -independent covariates are present in the model or when multiple time-dependent

covariates are measured at different regular visits are discussed in Section 3. Let O(·) denote

the counting process for the regular visits, where regular visits are referred to as

prescheduled follow-up visits, and when a regular visit occurs, O(·) jumps by 1. In the

Indian pharyngitis study, O(t) is a function with unit steps at the monthly visits. Since the

participants may be sick at a regular visit, we allow O(·) and N(·) to jump at the same time.

We assume that the process O(·) is independent of Z(·) and C. The rate function of O(·) is

denoted by m(t), that is, E{dO(t)} = m(t)dt.

Let S(k)(t) = n−1∑i = 1
n Y i(t)Zi(t)

⊗ k, k = 0, 1, 2. It is easy to show that the estimating function

in equation (1) can be re-expressed as

U(β) = n−1 ∑
i = 1

n ∫
0

τ
Zi(t)dNi(t) − ∫

0

τ S(1)(t)
S(0)(t)

n−1 ∑
i = 1

n
dNi(t)

− ∫
0

τ
n−1 ∑

i = 1

n
Y i(t)

S(2)(t)
S(0)(t)

− n−1 ∑
i = 1

n
Y i(t)

S(1)(t)
S(0)(t)

⊗ 2
dt β

(3)

Thus, β can be expressed as

β = ∫
0

τ
n−1 ∑

i = 1

n
Y i(t)

S(2)(t)
S(0)(t)

− n−1 ∑
i = 1

n
Y i(t)

S(1)(t)
S(0)(t)

⊗ 2
dt

−1

× n−1 ∑
i = 1

n ∫
0

τ
Zi(t)dNi(t) − ∫

0

τ S(1)(t)
S(0)(t)

n−1 ∑
i = 1

n
dNi(t)

(4)

As can be seen from equation (4), the estimator β is a functional of the empirical processes

n−1∑i = 1
n Zi(t)dNi(t), n

−1∑i = 1
n dNi(t), and S(k)(t), k = 0, 1, 2. We assume that the covariates

of subject i, Zi(t), are observed at this subject’s event times (that is, where Ni(t) jumps),

which is typically satisfied in recurrent event data, such as in the Indian pharyngitis data

example. Hence, the empirical processes n−1∑i = 1
n Zi(t)dNi(t) and n−1∑i = 1

n dNi(t) can be
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computed based on the observed data. However, we note that the processes S(k)(t)/S(0)(t), k =

1, 2 cannot be evaluated when the time-dependent covariates are not continuously observed.

In what follows, we show how to approximate the ratios S(k)(t)/S(0)(t), k = 1, 2, using

intermittently observed time-dependent covariate data. Let s(k)(t) denote the expectation of

S(k)(t): s(k)(t) ≡ E{S(k)(t)} = E{Yi(t)Zi(t)⊗k}. We aim to find a consistent estimator of s(k)

(t)/s(0)(t) to approximate S(k)(t)/S(0)(t). We propose to apply the kernel smoothing method to

estimate s(k)(t)/s(0)(t) as follows. Define the kernel smoothed process

Sh
(k)(t) = n−1 ∑

i = 1

n ∫0
τ
Kh(t − u) Yi(u)Zi(u) ⊗ kdOi(u), t ∈ [h, τ − h]

for k = 0, 1, 2, where Kh(t) = K(t/h)/h, h is the bandwidth, 0 < h < τ/2, and K(t) is a second-

order kernel function with support [−1, 1]. In order to avoid the bias in the boundary region,

we let Sh
(k)(t) = Sh

(k)(h) for t ∈ [0, h), Sh
(k)(t) = Sh

(k)(τ − h) for t ∈ (τ − h, τ]. One can prove that

Sh
(k)(t) converges in probability to the limit s(k)(t) · m(t), where m(t) = E{dOi(t)}/dt is the rate

function of the observation process and usually considered as a nuisance. Therefore, by

kernel smoothing all S(k)(t), including S(0)(t), we can construct ξh
(k)(t) ≡ Sh

(k)(t) ∕ Sh
(0)(t), which

converges in probability to {s(k)(t)m(t)}/{s(0)(t)m(t)} = s(k)(t)/s(0)(t) as n → ∞. Note that

although S(0)(t) can be calculated directly from the observed data, we apply the same kernel

smoothing technique on it as for S(1)(t) and S(2)(t) to circumvent the estimation of the

nuisance m(t). We also note that, in the construction of the kernel smoothed estimator ξh
(k)(t),

we only utilize the covariate values measured at regular visits (through Oi(t)). The covariate

values measured at the event times (i.e. when dNi(t) = 1) are only used in the evaluation of

n−1∑i = 1
n Zi(t)dNi(t) in the estimating function (3).

Now, we replace S(k)(t)/S(0)(t) with ξh
(k)(t) in equation (3) to obtain the following kernel

estimating function

Uh(β) = n−1 ∑
i = 1

n ∫
0

τ
Zi(t)dNi(t) − ∫

0

τ
ξh

(1)(t) n−1 ∑
i = 1

n
dNi(t)

− ∫
0

τ
n−1 ∑

i = 1

n
Y i(t)ξh

(2)(t) − n−1 ∑
i = 1

n
Y i(t)ξh

(1)(t) ⊗ 2 dt β
(5)

Solving Uh(β) = 0 leads to the proposed estimator of β

βh = ∫
0

τ
n−1 ∑

i = 1

n
Y i(t)ξh

(2)(t) − n−1 ∑
i = 1

n
Y i(t)ξh

(1)(t) ⊗ 2 dt
−1

× n−1 ∑
i = 1

n ∫
0

τ
Zi(t)dNi(t) − ∫

0

τ
ξh

(1)(t) n−1 ∑
i = 1

n
dNi(t)

(6)
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We summarize the large sample property of βh in the following theorem. The detailed proof

is given in Appendix 1.

Theorem 1. Let β0 denote the true parameter. Under regularity conditions (1) to (9) in

Appendix 1, as n → ∞, n(βh − β0) converges in distribution to a normal random variable

with zero mean and variance Σ, where Σ is defined in Appendix 1, on the condition that h =

O(n−v), 1/4 < v < 1/2.

The asymptotic variance of β involves unknown nuisance functions such as s(1)(t), s(2)(t),
and m(t). To estimate the variance based on the asymptotic variance formula, these unknown

functions need to be nonparametrically estimated using kernel smoothing. Hence, bootstrap

is recommended for variance estimation because of its better finite-sample performance.

For the estimation of the baseline mean function μ0(t) = ∫ 0
t λ0(u)du, following Schaubel et al.,

9 we have

μ0(t, β) = ∫0
t ∑i = 1

n Yi(u){dNi(u) − β𝖳Zi(u)du}

∑i = 1
n Yi(u)

= ∑
i = 1

n ∫0
t 1
Y⋅(t)

Yi(u)dNi(u) − ∫0
t
β𝖳S(1)(u)

S(0)(u)
du

with Y⋅(t) = ∑i = 1
n Y i(t). As discussed before, S(1))(t)/S(0)(t) cannot be evaluated directly with

observed data. We consider the following estimator

μ0, h(t, βh) = ∑
i = 1

n ∫0
t 1
Y⋅(u) Yi(u)dNi(u) − ∫0

t
βh

𝖳ξh
(1)(u) du

Note that μ0, h(t, βh) may not give a nondecreasing function because the increment could be

negative, especially for the time interval without observed recurrent events. To ensure

monotonicity, we propose to estimate the baseline mean function by

μ0, h(t, βh) = max0 ≤ u ≤ tμ0, h(u, βh).

3 Extensions of the proposed estimator

3.1 Estimation when both time-dependent and -independent covariates are present

Thus far, our discussions focus on the estimation of models with time-dependent covariates

only. In practice, however, it is common to collect data on both time-dependent and time-

independent covariates. One may be interested in the effect of a time-dependent covariate

adjusting for baseline variables or vice versa, for example, the effect of a time-varying

biomarker adjusting for sex or the effect of a randomized treatment adjusting for a time-

varying adjuvant treatment. Note that the proposed method in Section 2 can be applied to the

scenario where both time-dependent and -independent covariates are present. However,
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instead of kernel smoothing, it is more natural to estimate the mean covariate processes that

only involve time-independent covariates with their simple empirical averages. In this

section, we present a more appropriate method to deal with the two types of covariates.

Let Zi(t) = (Zi1(t),…, Zip(t))⊤ denote the vector of time-dependent covariates and Wi = (Wi1,

…, Wiq)⊤ the vector of time-independent covariates. Then the additive rates model can be

expressed as

λ{t ∣ Zi(t), Wi} = λ0(t) + β𝖳Zi(t) + γ𝖳Wi

where β and γ are p × 1 and q × 1 vectors of parameters for the time-dependent covariates

and the time-independent covariates, respectively.

The estimating function for (β, γ) is given by

U(β, γ) = n−1 ∑
i = 1

n ∫0
τ
(Zi(t)

𝖳, Wi
𝖳)𝖳dNi(t) − ∫0

τ
(Z̄(t)𝖳, W̄(t)𝖳)𝖳 n−1 ∑

i = 1

n
dNi(t)

− ∫0
τ
n−1 ∑

i = 1

n
Yi(t)

n−1∑i = 1
n Yi(t)(Zi(t)

𝖳, Wi
𝖳)𝖳 ⊗ 2

S(0)(t)
− Z̄(t)𝖳, W̄(t)𝖳 𝖳 ⊗ 2

dt (β𝖳, γ𝖳)𝖳

where W̄(t) = {n−1∑i = 1
n Y i(t)Wi} ∕ {n−1∑i = 1

n Y i(t)}. For k = 1, 2, define

Sz
(k)(t) = n−1∑i = 1

n Y i(t)Zi(t)
⊗ k, Sw

(k)(t) = n−1∑i = 1
n Y i(t)Wi

⊗ k, and

S(2)(t) =
Sz

(2)(t) Szw
(2)(t)

Swz
(2)(t) Sw

(2)(t)

where Szw
(2)(t) = n−1∑i = 1

n Y i(t)Zi(t)Wi
𝖳, and Swz

(2)(t) = n−1∑i = 1
n Y i(t)WiZi(t)

𝖳. The estimating

function can be reexpressed as

U(β, γ) = n−1 ∑
i = 1

n ∫
0

τ
(Zi(t)

𝖳, Wi
𝖳)𝖳dNi(t)

− ∫
0

τ Sz
(1)(t)𝖳

S(0)(t)
, W̄(t)𝖳

𝖳

n−1 ∑
i = 1

n
dNi(t)

− ∫
0

τ
n−1 ∑

i = 1

n
Y i(t)

S(2)(t)
S(0)(t)

−
Sz

(1)(t)𝖳

S(0)(t)
, W̄(t)𝖳

𝖳 ⊗ 2

dt (β𝖳, γ𝖳)𝖳

(7)

Note that when the time-dependent covariates Zi(t) are observed intermittently, a few

quantities in equation (7) are not evaluable: Sz
(k)(t) ∕ S(0)(t), k = 1, 2, Swz

(2)(t) ∕ S(0) and
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Szw
(2)(t) ∕ S(0), whereas the values of Sw

(k)(t), k = 1, 2, and W̄(t) are known for all time t since Wi

are time-independent. We can use the kernel smoothed processes Sh
(k)(t) defined in Section 2

to replace Sz
(k)(t) for k = 1, 2 and the same Sh

(0)(t) to replace S(0)(t). Further, we propose the

kernel smoothed processes Szw, h
(2) (t) = n−1∑i = 1

n ∫ 0
τ Kh(t − u) Y i(u)Zi(u)Wi

𝖳dOi(u) and

Swz, h
(2) (t) = n−1∑i = 1

n ∫ 0
τ Kh(t − u) Y i(u)WiZi(u)𝖳dOi(u), t ∈ [h, τ − h]. Similar boundary

corrections as described in Section 2 are applied. Then, we propose the estimating function,

Uh(β, γ), by replacing the non-observable quantities in equation (7) specified above with

their kernel smoothed counterparts.

3.2 Estimation when multiple time-dependent covariates are measured on different
schedules

In the previous sections, we assume that multiple time-dependent covariates are observed

simultaneously at the same visits (i.e. synchronized). In practice, it is possible that these

covariates are measured on different schedules. For example, in social behavioral studies, in

order to prevent survey fatigue and maintain a high retention rate, different surveys may be

delivered at different visits. In this section, we discuss how to extend the proposed method to

accommodate multiple time-dependent covariates measured on different schedules. For ease

of discussion, we assume that there are two time-dependent covariates (p = 2), Zi1(t) and

Zi2(t). The proposed method can be easily extended to the case where p > 2.

Let Oi1(t) and Oi2(t) denote the bivariate observation process that counts the cumulative

number of measurements of Zi1(t) and Zi2(t), respectively. We assume that {O1(·), O2(·)} is

independent of {Z(·), C} , E{dOi1(u)dOi2(w)} = m12(u, w)dudw, E{dOig(u)} = mg(u)du for

g = 1, 2. For k = 0, 1, 2, define Sg, h
(k) (t) = n−1∑i = 1

n ∫ 0
τ Kh(t − u) Y i(u)Zig(u)kdOig(u), which

consistently estimate E{Y(t)Zg
k(t)}mg(t). It is easy to see that S(1)(t)/S(0)(t) in equation (4) can

be replaced by S (1)(t) ∕ S (0)(t) = S1, h
(1) (t) ∕ S1, h

(0) (t), S2, h
(1) (t) ∕ S2, h

(0) (t)
𝖳
. Moreover, the matrix S(2)

(t)/S(0)(t) in equation (4) is

∑
i = 1

n
Yi(t)Zi1(t)2 ∕ ∑

i = 1

n
Yi(t) ∑

i = 1

n
Yi(t)Zi1(t)Zi2(t) ∕ ∑

i = 1

n
Yi(t)

∑
i = 1

n
Yi(t)Zi1(t)Zi2(t) ∕ ∑

i = 1

n
Yi(t) ∑

i = 1

n
Yi(t)Zi2(t)2 ∕ ∑

i = 1

n
Yi(t)

As before, for g = 1, 2, the diagonal entries ∑i = 1
n Y i(t)Zig(t)2 ∕ ∑i = 1

n Y i(t) can be replaced by

the kernel type estimators Sg, h
(2) (t) ∕ Sg, h

(0) (t). The off-diagonal entries involve both Z1(t) and

Z2(t), and thus we consider the following bivariate kernel type estimator S12, h
(2) (t) ∕ S12, h

(0) (t),

where
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S12, h
(2) (t) = n−1 ∑

i = 1

n ∫0
τ∫0

τ
Kh(t − u) Kh(t − w) Yi(u ∨ w)Zi1(u)Zi2(w)dOi1(u)dOi2(w),

and

S12, h
(0) (t) = n−1 ∑

i = 1

n ∫0
τ∫0

τ
Kh(t − u) Kh(t − w) Yi(u ∨ w)dOi1(u)dOi2(w)

We note that S12, h
(2) (t) consistently estimates E{Y(t)Z1(t)Z2(t)}m12(t, t) and S12, h

(0) (t)

consistently estimates E{Y(t)}m12(t, t). Thus the off-diagonal entries can be replaced by

S12, h
(2) (t) ∕ S12, h

(0) (t), which consistently estimates the population level quantity

E{Y(t)Z1(t)Z2(t)}/E{Y(t)}. To sum up, define

S (2)(t) ∕ S (0)(t) =
S1, h

(2) (t) ∕ S1, h
(0) (t) S12, h

(2) (t) ∕ S12, h
(0) (t)

S12, h
(2) (t) ∕ S12, h

(0) (t) S2, h
(2) (t) ∕ S2, h

(0) (t)

then β can be consistently estimated by

βh = ∫0
τ

n−1 ∑
i = 1

n
Yi(t)

S (2)(t)
S (0)(t)

− n−1 ∑
i = 1

n
Yi(t)

S (1)(t)
S (0)(t)

⊗ 2
dt

−1

× n−1 ∑
i = 1

n ∫0
τ
Zi(t)dNi(t) − ∫0

τ S (1)(t)
S (0)(t)

n−1 ∑
i = 1

n
dNi(t)

4 Simulation

We conducted simulation studies to evaluate the performance of the proposed method.

Under each simulation scenario, we generated 1000 data replicates with sample size 300 and

600. The resampling size was set to be 100 in the bootstrap method for variance estimation.

The recurrent events were generated based on the following additive intensity model where

the intensity of the recurrent event process for subject i is

λ{t ∣ Zi(t), γi} = λ0(t) + βZi(t) + γi (8)

The frailty variable γi was generated from a gamma distribution with mean 0.02 and

variance 0.004. The baseline intensity function λ0(t) = 0.1I(t ≤ 10) + 0.3I(10 < t ≤ 20). Note

that the intensity model in equation (8) implies the additive rates model

λ{t ∣ Zi(t)} = λ0
∗(t) + βZi(t), where the baseline rate function λ0

∗(t) = 0.02 + λ0(t).

In the first set of simulations, we considered a continuous time-dependent covariate defined

by Zi(t) = b0i + b1it, where the random intercept b0i was generated from a normal
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distribution with mean 1.5 and variance 0.05. The random slope b1i was generated from

either a zero mean or a non-zero mean (−0.05) normal distribution with variance 5 × 10−4.

The two cases are referred to as without time trend and with time trend, respectively. The

regression coefficient β is set at 0.2.

In the second set of simulations, we considered a binary time-dependent covariate. First, we

generated the baseline value, Zi(0) from a Bernoulli distribution with probability 0.2. Then

the binary covariate process was generated from a multistate process which consists of two

states, 0 and 1. The duration of state 0 of subject i was generated from an exponential

distribution with rate function 1/{ξig(t)}, and the duration of state 1 was generated from an

exponential distribution with rate 1/ξi, where the subject-specific random effect ξi followed

a gamma distribution with mean 1 and variance 0.25 and the function g(t) was set such that

the covariate was either with a time trend: g(t) = 4I(t ≤ 10) + 6I(10 < t ≤ 20) or without a
time trend: g(t) = 4 for t ∈ [0, 20]). The regression coefficient is set at β = 0.5.

In all settings, we let the covariates of a subject be observed at its own event times and each

subject has a baseline visit at time 0. For each subject, the time of 20 follow-up visits (if

there is no censoring) was generated based on a uniform distribution within each of 20 unit

time intervals, (0, 1], (1, 2],…, (19, 20]. We allowed each visit to have a certain probability

to be missing, pm = 0%, 20%, 40%, and 60%. The censoring time was simulated from a

uniform distribution on the interval [0, 20].

We applied the proposed method and two simple approaches, the LCCF method and the

linear interpolation method, to the simulated data. For the proposed method, we used the

Epanechnikov kernel function and a bandwidth selection procedure as follows. First, we

define the averaged squared error as ASE(h) = n−1∑i = 1
n ∫ 0

τ Y i(u) ξh
(1)(u) − ξ(1)(u)

2
dOi(u).

Since ASE(h) involves the unknown quantity ξ(1)(·), we define CV(h) with the leave-one-out

estimator as CV(h) = n−1∑i = 1
n ∫ 0

τ Y i(u) Zi(u) − ξh, − i
(1) (u)

2
dOi(u). It is easy to show that

CV(h) = n−1 ∑
i = 1

n ∫0
τ
Yi(u) Zi(u) − ξ(1)(u) 2

dOi(u) + n−1 ∑
i = 1

n ∫0
τ
Yi(u) ξh, − i

(1) (u) − ξ(1)(u) 2
dOi(u)

− 2n−1 ∑
i = 1

n ∫0
τ
Yi(u) Zi(u) − ξ(1)(u) ξh, − i

(1) (u) − ξ(1)(u) dOi(u)

Since the first item on the right-hand side does not involve h and the expectation of the third

item is zero, minimizing ASE(h) is on average equivalent to minimizing CV(h). Using

similar techniques as those in Chiang et al.,26 it can be shown that the ASE converges to

O(h4) + O(1/(nh)), where the first term corresponds to squared bias and the second

corresponds to variance. Thus, we can show that the optimal nonparametric convergence rate

is Cn−1/5 by following the same argument as in Newey et al.27 We then determine the

constant C by minimizing CV(h) with h = Cn−1/5. In Appendix 1 we show that the range of

the bandwidth for βh is h = O(n−v), where 1/4 < v < 1/2, so after choosing the constant C in

the first step, we use h = Cn−1/3 for the estimation of β.
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In the simulation tables, we report the relative bias (Bias) and the Monte-Carlo empirical

standard deviation of the point estimates (SD). For the proposed method, we also report the

average standard errors (ASE) estimated by the bootstrap method and the coverage

percentage (CP) of the 95% confidence intervals. Table 1 shows the simulation results when

Zi is continuous. For the scenarios with no time trend in the covariate, the LCCF method

gives biased point estimates and the bias increases as the missing probability increases. The

linear interpolation method and the proposed method give virtually unbiased point estimates.

For the scenarios with time trend in the covariate, both the LCCF and linear interpolation

methods give biased estimates, while the proposed method still provides virtually unbiased

estimates. For the variance estimation of the proposed method, the ASEs are all close to the

Monte Carlo SDs, and the coverage percentages are all close to 95%. As expected, the SDs

(and ASEs) of the proposed method decrease as the sample size increases and increase as the

missing rate increases. Table 2 shows the results when the time-dependent covariate is

binary. The two simple methods provide biased estimations regardless of whether there is

time trend or not in the covariate. The proposed estimator gives virtually unbiased estimates

for all scenarios.

We examined the performance of the baseline mean function estimation using the first

scenario in Tables 1 and 2. Figure 1 shows that the bias of the baseline mean function

estimates from their corresponding true baseline function was negligible under the

simulation scenarios.

We also conducted simulation studies to evaluate the performance of the two extensions of

the proposed method described in Sections 3.1 and 3.2, namely (1) when both time-

dependent and -independent covariates are present in the model and (2) when time-

dependent covariates are measured on different time schedules. For the first extension, we

simulated data with one continuous time-independent covariate Wi from a normal

distribution with mean 1.5 and variance 0.05 and one binary time-dependent covariate Zi(t),
in the same way as for the binary covariate with time trend described before. The simulation

results (the top panel of Table 3) show that the proposed method described in Section 3.1

works well under various scenarios. Additional simulations were performed to compare the

method proposed in Section 3.1 and the estimator without discriminating time-dependent

and -independent covariates in equation (6). The results in Table 4 show that the former

method was more efficient than the latter, especially in the estimation of the time-

independent covariate’s effect for our simulated data.

For the second extension, we simulated data with two time-dependent covariates, one binary

and one continuous, following the same way as before, except that the measuring times of

the two covariates were simulated separately. We explored situations where each covariate

was either with or without time trend. The simulation results of the two extensions are

presented in Table 3. It is shown that the extensions of the proposed method perform well

under all scenarios.
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5 Real data analysis

We applied the proposed method to a study investigating the effect of streptococci on the

risk of pharyngitis.4 Pharyngitis is an infection of the pharynx, the back of the throat, which

is often due to viruses, but several bacteria which include group A streptococcus (GAS) are

also a common cause of pharyngitis. The pharyngitis caused by GAS is also known as strep

throat and is prevalent in children and usually occurs in late winter and early spring. Bacteria

of other streptococcal groups including GCS and GGS may also cause pharyngitis, and thus

it is of clinical interest to investigate the effect of these bacteria on the risk of pharyngitis.

Between March 2002 and March 2004, 307 school children in a rural area near Vellore,

India were recruited. During the follow-up time, cases of pharyngitis were identified weekly

(referred to as ‘event visits’) and the streptococci status was also determined for those with

pharyngitis at the time when pharyngitis was diagnosed. In addition, monthly visits were

scheduled to monitor the streptococci status (referred to as ‘regular visits’). The detailed

design of this study can be found in Jose et al.4 Note that although regular visits were

scheduled on a monthly basis, the actual observation times were irregularly spaced across

subjects to balance the workload. It is reasonable to assume that the regular observation

process Oi(t) is independent of the covariate processes Zi(t) and the censoring time Ci.

The start time of the study, March 11, 2002, is used as the time origin of the recurrent event

process of the occurrence of pharyngitis. By choosing calendar time as the time scale, we

can avoid modeling the confounding effect of season which is a nuisance in this study. Note

that 74 (out of 307) school children were recruited in the second year after 15 June 2003, for

whom, the at-risk indicator Yi(t) is modified to reflect whether subject i has been enrolled in

the study prior to time t and remained under observation at time t. A two-week rule was

applied to determine an episode of pharyngitis, i.e. a pharyngitis event occurred within 14

days after a previous episode was considered as the same episode. During the two-year

follow-up, 640 pharyngitis occurrences were identified and 2827 regular visits were

recorded. Among throat cultures collected in the regular visits, about 11.43% of them were

positive for GAS, 2.90% were positive for GCS and 15.32% were positive for GGS. Among

the cultures collected at the event visits, about 17.19% of them were GAS positive, 4.69%

GCS positive and 17.66% GGS positive. Since GAS, GCS and GGS all belong to the

Streptococcus genus family, they are likely to be correlated. We applied McNemar’s test for

pairwise comparison using the measurements in the first regular visit of each child to test if

these bacterial infections were correlated with each other. The results show that GCS was

significantly correlated with both GAS and GGS but no significant correlation was observed

between GAS and GGS. Thus to avoid collinearity, we fit the additive rates model with only

GAS and GGS to explore their relationship with the occurrence of pharyngitis. The

bandwidth parameter in the proposed estimator was selected to be 0.6 using the approach

described in Section 4. The estimated rate difference for the time-dependent GAS and GGS

status based on the proposed kernel method are 0.067 and 0.020, respectively, and their

corresponding 95% confidence intervals are (0.028, 0.106) and (−0.013, 0.053). Thus, we

conclude that positive GAS was associated with a higher risk of pharyngitis, while the GGS

infection status was not significantly associated with the risk of pharyngitis. Figure 2 shows

the estimated baseline mean function with point-wise 95% confidence bands.

Lyu et al. Page 13

Stat Methods Med Res. Author manuscript; available in PMC 2022 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Lastly, we extend the supremum test proposed in Lin et al.28 to check the additive rates

assumption, where the p-value is approximated by the empirical probability that the

supremum statistics based on score processes simulated under the additive rates model is

greater than the supremum statistic based on the observed score process. The supremum test

yielded a p-value of 0.41, suggesting that the additivity assumption is reasonably met. Note

that the Lin et al. approach28 requires the values of covariates to be observed throughout the

follow-up period. For ease of implementation, we used the last-covariate-carried-forward

approach in the above model checking procedure. Details of the testing procedure can be

found in the supplemental material.

6 Discussion

In this paper, we propose a kernel smoothed estimating function method to deal with

intermittently measured time-dependent covariates in the additive rates model. Compared to

the Cox-type models, the additive model is more appealing to practitioners when the rate

difference is of primary interest or the proportional rates assumption is violated. In relation

to the recent works on Cox-type model,23,24 the proposed work offers an alternative tool to

analyze recurrent event data with time-dependent covariates which are only intermittently

observed. Moreover, when multiple time-dependent covariates are in presence and measured

on different schedules, the methods in Cao et al.23 and Li et al.24 cannot be directly applied.

In this case, we extend our proposed method by using multivariate kernels to obtain

consistent estimates.

Even though joint models would be a useful alternative method for analyzing recurrent event

data with time-dependent covariates, there has been no joint models with the additive rates

submodel for the recurrent events existing in literature. Even if such a joint model exists, the

proposed model would still be preferable since it does not require modeling the underlying

covariate process, while the joint model would require a complete specification of the joint

distribution of the recurrent event process and the covariate process. This could be

challenging when both continuous and binary covariates are present. Instead, we apply

nonparametric kernel smoothing method to approximate the mean covariate process to

obtain consistent estimates, and hence is more robust against model misspecifications.

In the motivating example, the covariates were measured at both event visits and regular

visits, which is typical in recurrent event data since the subjects are still at risk after an event

occurs. If the covariates are not observed at the time of events, a double kernel approach

similar to what was proposed for the proportional rates model in Cao et al.23 can be

extended to the additive rates model, but the convergence rate of the resulting estimator

would be slower than the regular root-n rate. A less computationally intensive and simpler

method is to carry forward the last observed value to replace the missing observation at

event times in Zi(t)dNi(t) in equation (5) and keep the rest of the terms in the estimating

function which involve kernel smoothing the same. The performance of these two

approaches will be evaluated in future research.

As another future direction, we can apply the kernel smoothing method to deal with

intermittently measured covariates in additive-multiplicative rates model. It is also of interest
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to investigate model checking procedures to determine whether a covariate has an additive or

multiplicative effect. For example, Lin et al.8 have proposed a standardized score-type

process to check the multiplicative assumption for recurrent event data with continuously

monitored time-dependent covariates. Research on checking the additive or multiplicative

assumption for intermittently observed time-dependent covariates is warranted.
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Appendix 1

1.1 Proof of consistency in Theorem 1

Similar to the proofs in Li et al.,24 we impose the following assumptions:

1. {Ni(·), Oi(·), Yi(·), Zi(·)}, i = 1,…, n, are independent and identically distributed.

2. Ni(τ) is bounded. Define λc(·) as the rate function of Ni(·) and λc(·) is of

bounded variation.

3. The true parameter β0 is in a compact set ℬ in ℛp and the baseline rate function

λ0(t) is absolutely continuous.

4. For each element in the covariates Zi(t), the covariate process Zij(t) has

uniformly bounded total variation, namely ∫ 0
τ ∣ dZi j(t) ∣ + ∣ Zi j(0) ∣ ≤ c for some

c > 0 for all i and j. Without loss of generality, we assume Zij(t) ≥ 0.

5. The censoring time Ci is independent of Ni
∗( ⋅ ) conditional on Zi(·) with G(τ) =

P(Ci ≥ τ) > 0.

6. The function s(k)(t) = E{Yi(t)Zi(t)⊗k}, k = 0, 1, 2 has bounded second derivatives

for t ∈ [0, τ].

7. The observation time process Oi(t) is independent of {Ni
∗( ⋅ ), Y i( ⋅ ), Zi( ⋅ )} and is

bounded. Moreover, the covariate collection rate function m(t), defined by m(t)dt
= E{dOi(t)}, is positive and has bounded second derivative for t ∈ [0, τ].

8. The kernel function K(·) is a symmetric density function with bounded support

which satisfies: ∫ −1
1 K(t)dt = 1, ∫ −1

1 tK(t)dt = 0 and ∫ −1
1 t2K(t)dt is a positive

constant.

9. The bandwidth h = O(n−v), where 1/4 < v < 1/2.
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Define Ψ(u) = E{Y(u)Z(u)⊗k}m(u), then s(k)(t)m(t) = Ψ(t). The expectation of the kernel

smoothed processes E{Sh
(k)(t)} = ∫ 0

τ Kh(t − u)E{Y(u)Z(u) ⊗ k}m(u)du, then we have

E{Sh
(k)(t)} = ∫0

τ
Kh(t − u)Ψ(u)du = ∫(t − τ) ∕ h

t ∕ h
K(ū)Ψ(t − hū)dū

= Ψ(t)∫(t − τ) ∕ h

t ∕ h
K(ū)dū − ∫(t − τ) ∕ h

t ∕ h
hūK(ū)Ψ′(t)dū + ∫(t − τ) ∕ h

t ∕ h
h2ū2K(ū)dūΨ″(t∗)

It is easy to see that supt ∈ [h, τ − h] ∣ E{Sh
(k)(t)} − s(k)(t)m(t) ∣ = O(h2) under the assumption 8.

Also, it is straightforward to show that supt∈[0,h) ∣s(k)(t)m(t) − s(k)(h)m(h)∣ and supt∈(τ−h,τ]

∣s(k)(t)m(t) − s(k)(τ − h)m(τ − h)∣ = O(h).

Next, we show the convergence of Sh
(k)(t) − E{Sh

(k)(t)}. We define

R(k)(t) = n−1∑i = 1
n ∫ 0

t Y i(u) Zi(u) ⊗ kdOi(u) and r(k)(t) = E{∫ 0
t Y(u)Z(u) ⊗ kdO(u)}, so

Sh
(k)(t) = ∫ 0

τ Kh(t − u)dR(k)(u) and E{Sh
(k)(t)} = ∫ 0

τ Kh(t − u)dr(k)(u). Then we have

sup
t ∈ [h, τ − h]

∣ Sh
(k)(t) − E{Sh

(k)(t)} ∣ ≤ h−1 sup
t ∈ [0, τ]

∣ R(k)(t) − r(k)(t) ∣ V(K) (9)

where V(K) is the variation of the kernel function. Also, since the function classes

ℱk = {∫ 0
t Y(u)Z(u) ⊗ kdO(u) : t ∈ [0, τ]} are monotone, by Theorem 2.14.9 in Van Der Vaart

and Wellner,29 P supt ∈ [0, τ] n ∣ R(k)(t) − r(k)(t) ∣ > x ≤ ckx
vke

−bkx2
, where ck, vk, bk are

constants. Therefore, for any ϵ, we have

P supt ∈ [0, τ]h
−1 ∣ R(k)(t) − r(k)(t) ∣ > ϵ

= P supt ∈ [0, τ] n ∣ R(k)(t) − r(k)(t) ∣ > nhϵ

≤ ck( nhϵ)
vke

−bk( nhϵ)2
.

(10)

It follows from equations (9) and (10) that supt ∈ [h, τ − h] ∣ Sh
(k)(t) − E{Sh

(k)(t)} ∣ converges to 0

when nh2 → ∞. Previously we have shown that

supt ∈ [h, τ − h] ∣ E{Sh
(k)(t)} − s(k)(t)m(t) ∣ = O(h2), so the consistency of Sh

(k)(t) has been proved.

By the law of large numbers, we know that n−1∑i = 1
n Ni(t) converges to E{Ni(t)} and

n−1∑i = 1
n ∫ 0

τ Zi(t)dNi(t) converges to ∫ 0
τ E{Zi(t)dNi(t)}. Thus, we show that β converges in

probability to β0.
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1.2 Proof of asymptotic normality in Theorem 1

To establish asymptotic normality of nβ, we first obtain the asymptotic i.i.d. representation

of Uh(β0). By equation (5), we have

nUh(β0) = n−1 ∕ 2 ∑
i = 1

n ∫0
τ
Zi(t)dNi(t) − n−1 ∕ 2 ∑

i = 1

n ∫0
τ
ξh

(1)(t)dNi(t)

− n−1 ∕ 2 ∑
i = 1

n ∫0
τ
Yi(t)ξh

(2)(t)dtβ0 + n−1 ∕ 2 ∑
i = 1

n ∫0
τ
Yi(t)ξh

(1)(t) ⊗ 2dtβ0

=de f I1 + I2 + I3 + I4

It can be shown that the second term can be expressed as

I2 = − n−1 ∕ 2 ∑
i = 1

n ∫0
τ
ξh

(1)(t)dNi(t)

= − n∫0
τ
ξh

(1)(t)d n−1 ∑
i = 1

n
Ni(t) − E{Ni(t)} − n∫0

τ
ξh

(1)(t)dE{Ni(t)}

= − n∫0
τ s(1)(t)

s(0)(t)
d n−1 ∑

i = 1

n
Ni(t) − E{Ni(t)} − n∫0

τ
ξh

(1)(t)dE{Ni(t)} + op(1)

Since λc(t) is the rate function of Ni(t), we have λc(t)dt = dE{Ni(t)}. Moreover, it follows

from

n∫0
τ
ξh

(1)(t)λc(t)dt − n∫0
τ s(1)(t)

s(0)(t)
λc(t)dt

= n−1 ∕ 2 ∑
i = 1

n ∫0
τ λc(t)

s(0)(t)m(t)
Yi(t)Zi(t)dOi(t) − ∫0

τ s(1)(t)λc(t)
s(0)(t)2m(t)

Yi(t)dOi(t) + op(1)

that I2 = n−1 ∕ 2∑i = 1
n ϕ2i + op(1), with

ϕ2i = − ∫0
τ s(1)(t)

s(0)(t)
dNi(t) − ∫0

τ λc(t)
s(0)(t)m(t)

Yi(t)Zi(t)dOi(t) + ∫0
τ s(1)(t)λc(t)

s(0)(t)2m(t)
Yi(t)dOi(t)

Next, we show that
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I3 = − 1
n ∑

i = 1

n ∫0
τ
Yi(t)ξh

(2)(t)dtβ0

= − 1
n ∑

i = 1

n ∫0
τ
Yi(t)

s(2)(t)
s(0)(t)

dtβ0 + n∫0
τ
s(0)(t)s(2)(t)

s(0)(t)
dtβ0 − n∫0

τ
ξh

(2)(t)s(0)(t)dtβ0 + op(1)

= − 1
n ∑

i = 1

n ∫0
τ
Yi(t)

s(2)(t)
s(0)(t)

dt − ∫0
τ 1

m(t)Yi(t)Zi(t)
⊗ 2dOi(t) + ∫0

τ s(2)(t)
s(0)(t)m(t)

Yi(t)dOi(t) β0 + op(1)

=de f 1
n ∑

i = 1

n
ϕ3i(β0) + op(1)

and

I4 = 1
n ∑

i = 1

n ∫0
τ
Yi(t)ξh

(1)(t) ⊗ 2dtβ0

= 1
n ∑

i = 1

n ∫0
τ
Yi(t)

s(1)(t) ⊗ 2

s(0)(t)2
dtβ0 − n∫0

τ
s(0)(t)s(1)(t) ⊗ 2

s(0)(t)2
dtβ0 + n∫0

τ
s(0)(t)ξh

(1)(t) ⊗ 2dtβ0 + op(1)

= 1
n ∑

i = 1

n ∫0
τ
Yi(t)

s(1)(t) ⊗ 2

s(0)(t)2
dt + ∫0

τ 2s(1)(t)
s(0)(t)m(t)

Yi(t)Zi(t)
𝖳dOi(t) − ∫0

τ 2s(1)(t) ⊗ 2

s(0)(t)2m(t)
Yi(t)dOi(t) β0 + op(1)

=de f 1
n ∑

i = 1

n
ϕ4i(β0) + op(1

)

Thus, we have nUh(β0) = n−1 ∕ 2∑i = 1
n ϕi(β0) + op(1), where

ϕi(β0) = ∫ 0
τ Zi(t)dNi(t) + ϕ2i(β0) + ϕ3i(β0) + ϕ4i(β0). Therefore, n(β − β0) converges in

distribution to a normal random variable with mean zero and variance Σ = A(β0)−1 V(β0)

{A(β0)−1}⊤, where A(β0) = ∫ 0
τ s(0)(t) s(2)(t) ∕ s(0)(t) − {s(1)(t) ∕ s(0)(t)} ⊗ 2 dt and V(β0) =

E{ϕ1(β0)ϕ1(β0)⊤}.
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Figure 1.
Estimation of the baseline mean function for simulated data: (a) continuous time-dependent

covariate scenario, (b) binary time-dependent covariate scenario. The solid line is the mean

of 1000 estimated baseline mean functions and the dotted line is the true baseline mean

function.
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Figure 2.
Estimation of the baseline mean function for Indian pharyngitis data. Time 0 is the start time

of the study, 11 March 2002. The dashed lines are the 95% point-wise confidence bands

based on the bootstrap samples.
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Table 1.

Simulation results for the model with a continuous time-dependent covariate using the last covariate carried

forward (LCCF) method, linear interpolation method (Linear), and the proposed kernel smoothing method

(Proposed).

pm

LCCF Linear Proposed

Bias SD Bias SD Bias SD ASE CP

n = 300

Without time trend

 0% 0.037 0.049 0.005 0.047 −0.001 0.048 0.049 0.940

 20% 0.043 0.049 0.005 0.047 −0.004 0.051 0.051 0.945

 40% 0.051 0.050 0.006 0.047 0.003 0.055 0.056 0.946

 60% 0.060 0.050 0.007 0.047 0.001 0.063 0.064 0.952

With time trend

 0% −0.567 0.047 −0.020 0.045 0.016 0.046 0.044 0.943

 20% −0.728 0.049 −0.038 0.045 0.019 0.048 0.047 0.941

 40% −0.952 0.050 −0.071 0.045 0.024 0.051 0.051 0.948

 60% −1.277 0.053 −0.134 0.045 0.036 0.058 0.058 0.950

n = 600

Without time trend

 0% 0.036 0.036 0.003 0.035 0.001 0.035 0.034 0.943

 20% 0.042 0.036 0.004 0.035 0.003 0.037 0.036 0.945

 40% 0.050 0.036 0.005 0.035 0.005 0.040 0.039 0.938

 60% 0.059 0.037 0.006 0.035 0.002 0.046 0.045 0.944

With time trend

 0% −0.565 0.033 −0.022 0.031 0.008 0.032 0.031 0.942

 20% −0.724 0.034 −0.040 0.031 0.013 0.033 0.033 0.935

 40% −0.946 0.035 −0.072 0.031 0.016 0.035 0.036 0.947

 60% −1.271 0.037 −0.136 0.031 0.016 0.041 0.041 0.942

Note: pm is the missing probability of the covariate values at regular visits; Bias is the relative bias computed by dividing the difference of the

mean of the 1000 estimated parameters and the true value by the true value; SD is the standard deviation of the 1000 estimated values; ASE is the
mean of the 1000 estimated standard errors by bootstrap method; CP is the proportion of 95% confidence intervals covering the true value.
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Table 2.

Simulation results for the model with a binary time-dependent covariate using the last covariate carried

forward (LCCF) method, linear interpolation method (Linear), and the proposed kernel smoothing method

(Proposed).

pm

LCCF Linear Proposed

Bias SD Bias SD Bias SD ASE CP

n = 300

Without time trend

 0% −0.095 0.033 0.153 0.042 0.003 0.041 0.039 0.933

 20% −0.141 0.033 0.107 0.041 0.004 0.043 0.042 0.941

 40% −0.206 0.032 0.031 0.039 0.006 0.046 0.046 0.949

 60% −0.299 0.031 −0.094 0.037 0.008 0.053 0.053 0.945

With time trend

 0% −0.108 0.033 0.148 0.041 −0.006 0.040 0.040 0.944

 20% −0.155 0.032 0.104 0.040 −0.004 0.042 0.042 0.952

 40% −0.221 0.031 0.031 0.038 −0.003 0.045 0.046 0.953

 60% −0.319 0.031 −0.096 0.038 −0.002 0.054 0.053 0.938

n = 600

Without time trend

 0% −0.096 0.023 0.151 0.029 0.001 0.028 0.028 0.933

 20% −0.142 0.023 0.106 0.029 0.002 0.031 0.029 0.930

 40% −0.206 0.022 0.029 0.027 0.003 0.032 0.032 0.940

 60% −0.300 0.021 −0.095 0.026 0.004 0.037 0.036 0.941

With time trend

 0% −0.106 0.024 0.150 0.029 −0.003 0.028 0.028 0.941

 20% −0.154 0.023 0.106 0.028 −0.002 0.029 0.030 0.945

 40% −0.222 0.022 0.030 0.027 −0.001 0.031 0.032 0.958

 60% −0.319 0.022 −0.096 0.026 −0.001 0.037 0.037 0.944

Note: pm is the missing probability of the covariate values at regular visits; Bias is the relative bias computed by dividing the difference of the

mean of the 1000 estimated parameters and the true value by the true value; SD is the standard deviation of the 1000 estimated values; ASE is the
mean of the 1000 estimated standard errors by bootstrap method; CP is the proportion of 95% confidence intervals covering the true value.
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Table 3.

Simulation results for the extensions of the proposed method: (a) both time-dependent and time-independent

covariates are present, where β is the coefficient for the binary, time-dependent covariate Z with time trend,

and γ is for the continuous, time-independent covariate W; (b) two time-dependent covariates with different

observation time schedules, where β1 is the coefficient for the continuous covariate Z1 and β2 is for the binary

covariate Z2.

(a)

pm

β γ

Bias SD ASE CP Bias SD ASE CP

n = 300

 0% −0.004 0.050 0.052 0.949 −0.015 0.066 0.065 0.952

 20% −0.000 0.055 0.056 0.949 −0.016 0.066 0.066 0.951

 40% −0.000 0.061 0.063 0.944 −0.017 0.068 0.067 0.952

 60% 0.006 0.076 0.075 0.940 −0.013 0.070 0.070 0.951

n = 600

 0% −0.002 0.036 0.036 0.942 0.000 0.047 0.046 0.944

 20% −0.002 0.039 0.039 0.946 0.000 0.047 0.046 0.944

 40% −0.001 0.043 0.044 0.947 −0.000 0.048 0.047 0.940

 60% 0.004 0.053 0.052 0.945 0.002 0.049 0.049 0.948

(b)

Time trend β 1 β 2

Z 1 Z 2 Bias SD ASE CP Bias SD ASE CP

n = 300

 No No 0.013 0.058 0.056 0.944 −0.000 0.052 0.052 0.962

 Yes No 0.016 0.057 0.059 0.952 0.011 0.049 0.048 0.943

 No Yes 0.014 0.056 0.055 0.949 −0.010 0.055 0.053 0.928

 Yes Yes 0.030 0.056 0.058 0.950 0.006 0.050 0.049 0.938

n = 600

 No No −0.003 0.040 0.039 0.941 0.002 0.036 0.036 0.946

 Yes No 0.009 0.044 0.045 0.960 0.007 0.034 0.034 0.950

 No Yes 0.016 0.040 0.039 0.936 −0.008 0.036 0.037 0.952

 Yes Yes 0.001 0.043 0.044 0.958 0.003 0.036 0.035 0.929

Note: pm is the missing probability of the covariate values at regular visits; Bias is the relative bias computed by dividing the difference of the

mean of the 1000 estimated parameters and the true value by the true value; SD is the standard deviation of the 1000 estimated values; ASE is the
mean of the 1000 estimated standard errors by bootstrap method; CP is the proportion of 95% confidence intervals covering the true value.
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Table 4.

Results of simulations when both time-dependent and time-independent covariates are present, using the

extension of the proposed method described in Section 3.1 (Extension) and the estimator without

discriminating time-dependent and -independent covariates (No Extension).

pm

β γ

Extension No Extension Extension No Extension

Bias SD Bias SD Bias SD Bias SD

n = 300

 0% −0.004 0.050 −0.003 0.051 −0.015 0.066 −0.013 0.066

 20% −0.000 0.055 0.000 0.055 −0.016 0.066 −0.016 0.071

 40% −0.000 0.061 0.000 0.061 −0.017 0.068 −0.016 0.079

 60% 0.006 0.076 0.006 0.076 −0.013 0.070 −0.009 0.094

n = 600

 0% −0.002 0.036 −0.002 0.036 0.000 0.047 −0.001 0.047

 20% −0.002 0.039 −0.002 0.039 0.000 0.047 0.004 0.051

 40% −0.001 0.043 −0.001 0.043 −0.000 0.048 0.004 0.056

 60% 0.004 0.053 0.004 0.053 0.002 0.049 −0.001 0.062

Note: β is the coefficient for the (binary) time-dependent covariate Z; γ is for the (continuous) time-independent covariate W; pm is the missing

probability of the covariate values at regular visits; Bias is the relative bias computed by dividing the difference of the mean of the 1000 estimated
parameters and the true value by the true value; SD is the standard deviation of the 1000 estimated values.
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