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Decoupling of second-order linear systems by isospectral transformation

Daniel T. Kawano, Rubens G. Salsa Jr. and Fai Ma

Abstract. We consider the class of real second-order linear dynamical systems that admit real diagonal forms with the same
eigenvalues and partial multiplicities. The nonzero leading coefficient is allowed to be singular, and the associated quadratic
matrix polynomial is assumed to be regular. We present a method and algorithm for converting any such n-dimensional
system into a set of n mutually independent second-, first-, and zeroth-order equations. The solutions of these two systems
are related by a real, time-dependent, and nonlinear n-dimensional transformation. Explicit formulas for computing the
2n×2n real and time-invariant equivalence transformation that enables this conversion are provided. This paper constitutes
a complete solution to the problem of diagonalizing a second-order linear system while preserving its associated Jordan
canonical form.

Mathematics Subject Classification. 15A22, 34A30, 70J10.

Keywords. Second-order linear differential equations, Quadratic matrix polynomials, Diagonalization, Isospectral systems.

1. Introduction

Consider the real second-order linear dynamical system

Mẍ(t) + Cẋ(t) + Kx(t) = f(t) (1.1)

for which the coefficients M,C,K ∈ R
n×n and a solution x(t) ∈ R

n exists, where the independent time
variable t ≥ 0. The leading coefficient M �= 0 (to maintain the second-order nature of (1.1)) is allowed
to be singular. The inhomogeneity f(t) ∈ R

n is given and continuously differentiable. Initial values
x(0) ∈ R

n and ẋ(0) ∈ R
n are also provided. When M is invertible, x(0) and ẋ(0) are arbitrary. For the

case of singular M , we take x(0) and ẋ(0) to be consistent initial values; that is, they satisfy all constraints
on their components such that Mẍ(0) + Cẋ(0) + Kx(0) = f(0) holds. Associated with the homogeneous
form of (1.1) is the n × n quadratic matrix polynomial (or matrix pencil) Q(λ) = Mλ2 + Cλ + K in the
scalar parameter λ ∈ C. We assume Q(λ) is regular, i.e., Q(λ) does not have zero determinant for all
values of λ. Equation (1.1) arises in various scientific and engineering applications. For example, (1.1)
models the small-amplitude vibration of a lumped-parameter mechanical system (e.g., see [1]).

In general, the scalar component equations of (1.1) are mutually dependent because they cannot be
arranged to make M , C, and K all diagonal. System (1.1) is said to be coupled in this case. We are
concerned with the transformation of (1.1) into the real second-order system

A2p̈(t) + A1ṗ(t) + A0p(t) = g(t), (1.2)

where the coefficients A2, A1, A0 ∈ R
n×n are diagonal. The solution p(t) ∈ R

n, the inhomogeneity g(t) ∈
R

n, and ˜Q(λ) = A2λ
2 + A1λ + A0 is the regular quadratic pencil that corresponds to the homogeneous

form of (1.2). We say system (1.2) is decoupled because it comprises n mutually independent scalar
equations. The process of converting (1.1) into (1.2) is referred to as decoupling.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00033-018-1030-x&domain=pdf
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If M is symmetric and positive definite and K is symmetric and at least positive semidefinite, then M
and K can be simultaneously diagonalized by a real congruence transformation [2]. This transformation
will also diagonalize a symmetric C that is at least positive semidefinite if and only if CM−1K =
KM−1C [3]. Recently, much progress has been made in decoupling system (1.1) free of this restriction
and similar ones (e.g., see [4]) by a real transformation into (1.2) that preserves the eigenvalues and partial
multiplicities (i.e., the sizes of the corresponding Jordan blocks) of the quadratic matrix polynomial
Q(λ)—that is, Q(λ) and ˜Q(λ), or, loosely speaking, systems (1.1) and (1.2), have the same Jordan
canonical form. Such systems are said to be isospectral ; we refer to the decoupling transformation that
relates these systems as an isospectral transformation.

The typical approach to diagonalization in the literature concerns the homogeneous form of (1.1) and
expresses the problem of decoupling it via isospectral transformation as the conversion of Q(λ) into ˜Q(λ)
by relating their linearizations (i.e., 2n × 2n linear pencils with the same Jordan structure as Q(λ) and
˜Q(λ)) through an equivalence transformation that preserves the block structure of the linearizations’
coefficients, or a diagonalizing structure-preserving transformation (DSPT). (See [5] and [6] for recent
examples.) When M is invertible but the coefficients M , C, and K are otherwise arbitrary, the conditions
for which Q(λ) and ˜Q(λ) are isospectral are well understood (see Lancaster and Zaballa’s work in [7]), and
algorithms for generating a corresponding DSPT are available (see [5] in particular). Thus, isospectral
transformation of a homogeneous (1.1), with M nonsingular, into the homogeneous form of (1.2) is a
settled matter. For the nonhomogeneous case, [8] and [9] offer insight into the role of the inhomogeneity
f(t) in decoupling. However, both presentations are problematic because it is never shown that x(t)
being a solution of (1.1) is a necessary condition for p(t) to be a solution of (1.2) and the proposed
mapping from p(t) to x(t) to hold; a reformulation of the given arguments is needed. When M �= 0 is
singular, Zúñiga Anaya [10] determined the necessary and sufficient conditions for Q(λ) and ˜Q(λ) to be
isospectral, but a method for constructing a corresponding DSPT is not pursued in [10] and has yet to
be offered in the literature. In this paper, we show that a DSPT for the case when M is not invertible
does indeed exist, develop an accompanying algorithm for generating this transformation using spectral
data, and demonstrate that a solution x(t) of coupled system (1.1) can be recovered from a solution p(t)
of decoupled system (1.2).

To summarize, the objective of our paper is to address the following open problems regarding de-
coupling: given any second-order system (1.1) that can be decoupled into (1.2) by a real isospectral
transformation, what is the form of the corresponding transformation, and how does the solution p(t)
of the decoupled system map to the coupled system’s solution x(t)? By answering these questions, we
provide a complete solution to the problem of converting (1.1) into (1.2) by an isospectral transformation.
Systems that can be decoupled in this manner are of considerable practical interest (for modal analysis,
model reduction, damping characterization, etc.), but our focus here is on the theory of decoupling instead
of its many applications. Our paper begins with a summary of background information in Sect. 2 that
will prove useful in later developments. In Sect. 3, we discuss the conditions for which the quadratic ma-
trix polynomial Q(λ) for the coupled system is isospectral to the decoupled system’s diagonal quadratic
pencil ˜Q(λ) and propose an indexing scheme for and an arrangement of the spectral data to construct a
convenient form for ˜Q(λ). Section 4 details the development of a DSPT that converts Q(λ) into ˜Q(λ), and
this transformation is subsequently used in Sect. 5 to connect the solutions of the coupled and decoupled
systems. We provide an algorithm for isospectral decoupling in Sect. 6 that we then demonstrate in two
illustrative examples in Sect. 7. We close our paper with some concluding remarks in Sect. 8.

First, a few remarks on our notation. We generally use capital letters to denote matrices, lowercase
Roman letters for column vectors, and lowercase Greek letters for scalars. There are some exceptions
to these conventions: t for the independent time variable, r for the rank of a matrix, the imaginary
unit i =

√−1, and n for the dimension of (1.1) and (1.2). We also use a subscripted or ornamented
n for quantifying certain scalars. The letters j, k, and � are reserved for indexing scalars, vectors, and
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matrices. We use the notation vj (j = 1, 2, . . . , n) to represent the sequence of vectors v1, v2, . . ., vn.
The same notation is adopted for a sequence of scalars αj ; these scalars are sometimes arranged in a
vector v = [α1, α2, . . . , αn]T , where the superscript T indicates the transpose. The complex conjugates of
a vector v and a scalar α are denoted by v and α, respectively. We use I and 0 to denote, respectively,
the identity matrix and a matrix of zeros, the sizes of which can usually be readily inferred from the
context by compatibility. When clarity is needed, we will write Iα to signify the α × α identity matrix
and 0α×β to denote an α × β matrix of zeros. Lastly, we construct a block diagonal matrix B from a
sequence of arbitrary matrices Aj (j = 1, 2, . . . , n) using direct sum notation: B = A1 ⊕ A2 ⊕ · · · ⊕ An

or, more compactly, B = ⊕n
j=1Aj .

2. Background

As a prelude to our extension of decoupling by an isospectral transformation to the case when M �= 0 is
singular, we briefly review relevant details regarding eigenvalues, eigenvectors, generalized eigenvectors,
and linearization of a quadratic matrix polynomial Q(λ) = Mλ2 + Cλ + K.

2.1. Eigenvalues, eigenvectors, and generalized eigenvectors

Solution of the scalar polynomial det(Q(λ)) = 0 in λ yields the 2n eigenvalues λj (j = 1, 2, . . . , 2n) of
Q(λ) [11–13], where the set of eigenvalues {λj} is termed the spectrum of Q(λ). If M is invertible, then
all eigenvalues of Q(λ) are finite; some eigenvalues are infinite when M is singular. We denote the reversal
of Q(λ) as Qrev(λ) = Kλ2 +Cλ+M [14]. The finite eigenvalues of Q(λ) and Qrev(λ) are reciprocals, and
the eigenvalue at infinity for Q(λ) when M is not invertible corresponds to the zero eigenvalue of Qrev(λ)
[15].

An eigenvalue might have several partial multiplicities. The number of occurrences of an eigenvalue is
its algebraic multiplicity, which is the sum of its partial multiplicities. The number of partial multiplicities
is the geometric multiplicity. An eigenvalue is simple if it occurs only once; such an eigenvalue has unit
partial, algebraic, and geometric multiplicities. A repeated eigenvalue is semisimple when its algebraic
and geometric multiplicities coincide. Otherwise, the repeated eigenvalue is defective.

Associated with a semisimple eigenvalue λ0 of Q(λ) with algebraic multiplicity α ≤ n are α eigenvectors
vj �= 0 (j = 1, 2, . . . , α) that are the linearly independent column vectors in the null space of Q(λ0).
(Consequently, a simple eigenvalue λ0 has a single eigenvector v1 �= 0 that is the solution of Q(λ0)v1 =
0.) A defective eigenvalue λ0 with algebraic multiplicity α and geometric multiplicity γ < α has γ
eigenvectors vj �= 0 (j = 1, 2, . . . , γ). Associated with each partial multiplicity μk > 1 of the defective
eigenvalue is a Jordan chain v�

k (� = 1, 2, . . . , μk) of length μk, where v1
k �= 0 is an eigenvector and vj+1

k

(j = 1, 2, . . . , μk − 1) are generalized eigenvectors that satisfy [12]
⎡

⎢

⎢

⎢

⎢

⎣

Q(λ0) 0 · · · 0
Q(1)(λ0) Q(λ0) · · · 0

...
... · · · ...

Q(µk−1)(λ0)
(μk−1)!

Q(µk−2)(λ0)
(μk−2)! · · · Q(λ0)

⎤

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

v1
k

v2
k
...

vμk

k

⎤

⎥

⎥

⎥

⎦

= 0. (2.1)

In (2.1), Q(j)(λ0) denotes the jth derivative of Q(λ) with respect to λ that is evaluated at λ = λ0. For
a matrix polynomial with degree greater than 1, the vectors in each Jordan chain need not be linearly
independent, and the zero vector is an admissible generalized eigenvector [12].

Analogous results pertain to the reverse polynomial Qrev(λ). Of particular interest is the zero eigen-
value of Qrev(λ) that corresponds to the infinite eigenvalue of Q(λ). If the zero eigenvalue of Qrev(λ) is
semisimple with algebraic multiplicity α, then the associated eigenvectors vj �= 0 (j = 1, 2, . . . , α) are the
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α linearly independent column vectors in the null space of Qrev(0). When the zero eigenvalue of Qrev(λ)
is defective, the Jordan chain v�

k (� = 1, 2, . . . , μk) of length μk for a μk × μk Jordan block, with v1
k �= 0,

satisfies
⎡

⎢

⎢

⎢

⎢

⎣

Qrev(0) 0 · · · 0
Q

(1)
rev(0) Qrev(0) · · · 0

...
... · · · ...

Q
(µk−1)
rev (0)
(μk−1)!

Q
(µk−2)
rev (0)
(μk−2)! · · · Qrev(0)

⎤

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

v1
k

v2
k
...

vμk

k

⎤

⎥

⎥

⎥

⎦

= 0. (2.2)

Lastly, we note that because M , C, and K are real, any finite and nonreal eigenvalues, eigenvectors, and
generalized eigenvectors must occur in conjugate pairs. Also, the eigenvectors and generalized eigenvectors
associated with real eigenvalues can be, and are, taken to be real. Though the term nonreal is more precise
than complex, we will subsequently use these terms interchangeably; that is, by complex we specifically
mean a quantity with nonzero imaginary part.

2.2. A strong linearization

In generating an isospectral transformation that decouples (1.1) when M is singular, we must carefully
select a 2n × 2n linear pencil L(λ) associated with Q(λ) = Mλ2 + Cλ + K such that both the finite and
infinite eigenvalues of L(λ) and their partial multiplicities are the same as those for Q(λ). In this case,
L(λ) is said to be a strong linearization of Q(λ). Gohberg, Kaashoek, and Lancaster [14] showed that the
so-called first companion form

[

I 0
0 M

]

λ +
[

0 −I
K C

]

= L(λ)

is always a strong linearization of Q(λ), though the qualifier strong did not appear until later in [16].
While there exist other options for a strong linearization of Q(λ) to choose from (see [15]), we adopt the
first companion form in our paper because, conveniently, it is associated with the homogeneous form of
the 2n-dimensional first-order realization

[

I 0
0 M

] [

ẋ(t)
ẍ(t)

]

+
[

0 −I
K C

] [

x(t)
ẋ(t)

]

=
[

0
f(t)

]

of coupled system (1.1) that later plays a role in relating a solution p(t) of decoupled system (1.2) to a
solution x(t) of (1.1).

3. Isospectrality and spectral data

When can a quadratic pencil Q(λ) = Mλ2 + Cλ + K be converted into the diagonal form ˜Q(λ) =
A2λ

2 + A1λ + A0 by a transformation that preserves the eigenvalues (both finite and infinite) and their
partial multiplicities? Here, we discuss the conditions for which decoupling via isospectral transformation
is possible and introduce a particular indexing and arrangement of the allowable spectral data for Q(λ)
to generate an explicit and attractive form for ˜Q(λ) that will be convenient as part of a decoupling
algorithm.

3.1. Conditions for isospectrality

Lancaster and Zaballa [7] determined the necessary and sufficient conditions for which Q(λ) and ˜Q(λ)
are isospectral when M is invertible (see Theorems 6 and 7 in [7] and conditions (10), (13), and (15)
that they reference), and Zúñiga Anaya [10] later extended these results to consider when M is singular.
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Specifically, let λj (j = 1, 2, . . . , nd) be the distinct finite eigenvalues of Q(λ) with partial multiplicities
μjk (k = 1, 2, . . . , γj), where γj ≤ n is the geometric multiplicity of each λj . The algebraic multiplicity
of λj is then αj =

∑γj

k=1 μjk ≤ 2n. Let the eigenvalue at infinity have geometric multiplicity γ∞ ≤ n
and partial multiplicities μ∞k (k = 1, 2, . . . , γ∞) so that its algebraic multiplicity α∞ =

∑γ∞
k=1 μ∞k ≤ 2n.

Zúñiga Anaya then established the following result.

Lemma 3.1. (Theorem 2 of [10]) Let Q(λ) = Mλ2 + Cλ + K, with M,C,K ∈ C
n×n, be a regular

quadratic matrix polynomial. There exists a diagonal quadratic pencil ˜Q(λ) = A2λ
2 + A1λ + A0, where

A2, A1, A0 ∈ C
n×n, that is isospectral to Q(λ) if and only if the following conditions hold:

nd
∑

j=1

αj + α∞ = 2n,

μjk ∈ {1, 2} (j = 1, 2, . . . , nd, k = 1, 2, . . . , γj), (3.1)
μ∞k ∈ {1, 2} (k = 1, 2, . . . , γ∞), (3.2)

αj

2
≤ γj ≤ n + βj − β∞ − β̂ (j = 1, 2, . . . , nd), (3.3)

α∞
2

≤ γ∞ ≤ n − β̂, (3.4)

where βj is the number of partial multiplicities μjk = 2 for the jth distinct eigenvalue λj, β∞ is the
number of partial multiplicities μ∞k = 2 for the eigenvalue at infinity, and β̂ =

∑nd

j=1 βj.

Note that the result in Lemma 3.1 concerns Q(λ) and ˜Q(λ) with complex coefficients. By employing
the same arguments as in the proof of Theorem 7 in [7], Lemma 3.1 can be applied specifically to qua-
dratic matrix polynomials with real coefficients by imposing the additional requirement that all nonreal
eigenvalues be semisimple and occur in conjugate pairs. Conditions (3.1)–(3.4) of Lemma 3.1 then pertain
to the real eigenvalues and to the eigenvalue at infinity, so it would be prudent to separate the nonreal
and real eigenvalues. Let λc

j (j = 1, 2, . . . , nc) and λ
c

j be the distinct nonreal eigenvalues of Q(λ) and their
complex conjugates, respectively, both having partial multiplicities μc

jk (k = 1, 2, . . . , γc
j ) and geometric

multiplicities γc
j ≤ n. The algebraic multiplicity of λc

j is then αc
j =

∑γc
j

k=1 μc
jk ≤ n, and the same is true

of the complex conjugate. Denote the distinct real eigenvalues of Q(λ) as λr
j (j = 1, 2, . . . , nr). Each λr

j

has partial multiplicities μr
jk (k = 1, 2, . . . , γr

j ), geometric multiplicity γr
j ≤ n, and algebraic multiplicity

αr
j =

∑γr
j

k=1 μr
jk ≤ 2n. We then arrive at the following modification to Lemma 3.1 by the proof of Theorem

7 in [7].

Theorem 3.2. Let Q(λ) = Mλ2+Cλ+K, with M,C,K ∈ R
n×n, be a regular quadratic matrix polynomial.

There exists a diagonal quadratic pencil ˜Q(λ) = A2λ
2 + A1λ + A0, where A2, A1, A0 ∈ R

n×n, that is
isospectral to Q(λ) if and only if the following conditions hold:

2
nc
∑

j=1

αc
j +

nr
∑

j=1

αr
j + α∞ = 2n,

μc
jk = 1 (j = 1, 2, . . . , nc, k = 1, 2, . . . , γc

j ),
μr

jk ∈ {1, 2} (j = 1, 2, . . . , nr, k = 1, 2, . . . , γr
j ),

μ∞k ∈ {1, 2} (k = 1, 2, . . . , γ∞),
αr

j

2
≤ γr

j ≤ n −
nc
∑

�=1

αc
� + βr

j − β∞ − β̂r (j = 1, 2, . . . , nr),

α∞
2

≤ γ∞ ≤ n −
nc
∑

�=1

αc
� − β̂r,
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where βr
j is the number of partial multiplicities μr

jk = 2 for the jth distinct real eigenvalue λr
j , β∞ is the

number of partial multiplicities μ∞k = 2 for the eigenvalue at infinity, and β̂r =
∑nr

j=1 βr
j .

Based on Lancaster and Zaballa’s explanations of their proofs of Theorems 6 and 7 in [7] and Zúñiga
Anaya’s discussion of his proof of Theorem 2 in [10], we can express the conditions of our Theorem 3.2
more conveniently as follows.

Corollary 3.3. Let Q(λ) = Mλ2+Cλ+K, with M,C,K ∈ R
n×n, be a regular quadratic matrix polynomial.

There exists a diagonal quadratic pencil ˜Q(λ) = A2λ
2 + A1λ + A0, where A2, A1, A0 ∈ R

n×n, that is
isospectral to Q(λ) if and only if the following conditions hold:

(i) all nonreal eigenvalues are semisimple and occur in conjugate pairs;
(ii) all Jordan blocks associated with a defective eigenvalue, either real or infinite, are no larger than

2 × 2; and
(iii) excluding the nonreal eigenvalues and the 2 × 2 Jordan blocks, all remaining real eigenvalues and

infinite eigenvalues, which have unit partial multiplicities, form pairs of distinct eigenvalues.

3.2. Indexing and arrangement of the spectral data

As expressed in Corollary 3.3, the conditions for isospectrality of Q(λ) and ˜Q(λ) impose restrictions on
their shared spectrum and partial multiplicities and imply a particular scheme for pairing the eigenvalues.
From condition (i), complex conjugate eigenvalues (which must be semisimple) are necessarily paired. By
condition (ii), a 2 × 2 Jordan block of a finite and real eigenvalue or an infinite eigenvalue suggests a
natural pairing of the defective eigenvalue with itself. Lastly, condition (iii) results in a pairing of a real
eigenvalue of unit partial multiplicity with another, but different, real eigenvalue or an eigenvalue at
infinity with a partial multiplicity of 1. This interpretation allows us to characterize the spectrum of a
diagonalizable Q(λ) as follows.

Let r = rank(M) ≤ n so that, in general, Q(λ) admits nf finite eigenvalues and n∞ ≥ n − r
eigenvalues at infinity such that nf + n∞ = 2n. Thus, nf ≤ n + r. If there are n1 pairs of complex
conjugate eigenvalues, n2 real Jordan blocks of size 2 × 2, and n3 pairs of distinct real eigenvalues with
unit partial multiplicities, then we can form at most r = n1 + n2 + n3 total pairs for nf ≤ n + r, leaving
nf − 2r real eigenvalues to pair with nf − 2r eigenvalues at infinity with partial multiplicity 1. The
remaining (2n − nf ) − (nf − 2r) = 2(n − nf + r) eigenvalues must correspond to the 2 × 2 Jordan blocks
of the infinite eigenvalue, and thus there are n − nf + r such blocks.

Now, for the finite eigenvalues, denote the n1 semisimple complex eigenvalues with positive imaginary
part as λj (j = 1, 2, . . . , n1) and their corresponding eigenvectors as vj . Specify λr+j and vr+j as the
complex conjugates: λr+j = λj and vr+j = vj . Let λn1+j (j = 1, 2, . . . , n2) be the n2 repeated and defec-
tive real eigenvalues with eigenvectors vn1+j ; the matching eigenvalues λr+n1+j = λn1+j have generalized
eigenvectors vr+n1+j . From (2.1), these eigenvectors and generalized eigenvectors satisfy

[

Q(λn1+j) 0
Q(1)(λn1+j) Q(λn1+j)

] [

vn1+j

vr+n1+j

]

= 0 (3.5)

because the Jordan blocks are 2×2. For the n3 pairs of distinct real eigenvalues with unit partial multiplic-
ities, denote the pairs’ larger eigenvalues and the associated eigenvectors as λn1+n2+j (j = 1, 2, . . . , n3)
and vn1+n2+j , respectively; λr+n1+n2+j are the smaller eigenvalues with eigenvectors vr+n1+n2+j . Let
λ2r+j (j = 1, 2, . . . , nf − 2r) be the nf − 2r real eigenvalues paired with infinite eigenvalues and v2r+j be
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their associated eigenvectors. We can then construct an nf × nf Jordan matrix

Jx,f =

⎡

⎣

n1
⊕

j=1

[

λj 0
0 λr+j

]

⎤

⎦ ⊕
⎡

⎣

n2
⊕

j=1

[

λn1+j 1
0 λr+n1+j

]

⎤

⎦

⊕
⎡

⎣

n3
⊕

j=1

[

λn1+n2+j 0
0 λr+n1+n2+j

]

⎤

⎦ ⊕
⎡

⎣

nf−2r
⊕

j=1

λ2r+j

⎤

⎦

(3.6)

and, conformable to (3.6), an n × nf matrix

Vx,f =
[

v1 vr+1 v2 vr+2 · · · vr v2r v2r+1 · · · vnf

]

(3.7)

of the corresponding eigenvectors and generalized eigenvectors, where the couple (Vx,f , Jx,f ) constitutes
a finite Jordan pair for Q(λ) [11].

For the n∞ eigenvalues of Q(λ) at infinity, which correspond to the n∞ zero eigenvalues of the reverse
polynomial Qrev(λ) = Kλ2 +Cλ+M , nf −2r of them have unit partial multiplicity, so their eigenvectors
vnf+j (j = 1, 2, . . . , nf − 2r) are in the null space of Qrev(0) = M . The remaining 2(n − nf + r)
infinite eigenvalues are associated with n − nf + r Jordan blocks of size 2 × 2 with eigenvalue 0, and
their eigenvectors v2(nf−r+j)−1 (j = 1, 2, . . . , n − nf + r) and generalized eigenvectors v2(nf−r+j) satisfy,
from (2.2),

[

Qrev(0) 0
Q

(1)
rev(0) Qrev(0)

] [

v2(nf−r+j)−1

v2(nf−r+j)

]

=
[

M 0
C M

] [

v2(nf−r+j)−1

v2(nf−r+j)

]

= 0. (3.8)

Defining an n∞ × n∞ Jordan matrix

Jx,∞ =

⎡

⎣

nf−2r
⊕

j=1

0

⎤

⎦ ⊕
⎡

⎣

n−nf+r
⊕

j=1

[

0 1
0 0

]

⎤

⎦ (3.9)

and an n × n∞ matrix
Vx,∞ =

[

vnf+1 vnf+2 · · · v2n

]

(3.10)
of the corresponding eigenvectors and generalized eigenvectors, conformable to (3.9), we then have an
infinite Jordan pair (Vx,∞, Jx,∞) for Q(λ) [11].

3.3. The diagonal quadratic matrix polynomial and its spectral data

The eigenvalue pairing scheme associated with the isospectrality conditions of Theorem 3.2 (or, equiva-
lently, Corollary 3.3) plays a critical role in constructing the diagonal quadratic pencil ˜Q(λ) isospectral
to Q(λ). As explained by Lancaster and Zaballa in [7] and Zúñiga Anaya in [10], the eigenvalue pairs
specified by Corollary 3.3 populate the diagonal of ˜Q(λ) in the following manner:

(i) Each of the n1 pairs of semisimple complex conjugate eigenvalues, λj (j = 1, 2, . . . , n1) and λr+j =
λj , corresponds to a quadratic term (λ−λj)(λ−λr+j). (Note that this quadratic term is the product
of two linear elementary divisors of Q(λ).)

(ii) The n2 Jordan blocks of size 2 × 2 for the real and defective eigenvalues λn1+j = λr+n1+j (j =
1, 2, . . . , n2) are associated with the quadratic terms (λ − λn1+j)(λ − λr+n1+j) = (λ − λn1+j)2.
(These terms are quadratic elementary divisors of Q(λ) for λn1+j .)

(iii) As with the complex conjugate eigenvalues, the n3 pairs of distinct real eigenvalues with unit partial
multiplicities, λn1+n2+j (j = 1, 2, . . . , n3) and λr+n1+n2+j �= λn1+n2+j , correspond to the quadratic
terms (λ − λn1+n2+j)(λ − λr+n1+n2+j).

(iv) The nf −2r pairings of the real eigenvalues λ2r+j (j = 1, 2, . . . , nf −2r) and an eigenvalue at infinity,
both with unit partial multiplicity, are associated with a linear term λ − λ2r+j .
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(v) Each of the n − nf + r Jordan blocks of size 2 × 2 for the defective infinite eigenvalue corresponds
to a constant entry of 1.

Using our particular indexing of the eigenvalues from Sect. 3.2, we can then construct an explicit form
for ˜Q(λ) and extract from it expressions for the real coefficients A2, A1, and A0. To do so, first define
the following diagonal matrices of the finite eigenvalues:

Λ1 =

⎡

⎣

n1
⊕

j=1

λj

⎤

⎦ ⊕
⎡

⎣

n2
⊕

j=1

λn1+j

⎤

⎦ ⊕
⎡

⎣

n3
⊕

j=1

λn1+n2+j

⎤

⎦ =
r

⊕

k=1

λk, (3.11)

Λ2 =

⎡

⎣

n1
⊕

j=1

λr+j

⎤

⎦ ⊕
⎡

⎣

n2
⊕

j=1

λr+n1+j

⎤

⎦ ⊕
⎡

⎣

n3
⊕

j=1

λr+n1+n2+j

⎤

⎦ =
r

⊕

k=1

λr+k, (3.12)

Λ3 =
nf−2r
⊕

j=1

λ2r+j . (3.13)

Consequently, ˜Q(λ) can be written in an attractive form that groups second-, first-, and zeroth-order
terms in λ on the diagonal:

˜Q(λ) =

⎡

⎣

r
⊕

j=1

(λ − λj)(λ − λr+j)

⎤

⎦ ⊕
⎡

⎣

nf−2r
⊕

j=1

(λ − λ2r+j)

⎤

⎦ ⊕
⎡

⎣

n−nf+r
⊕

j=1

1

⎤

⎦

= (Irλ − Λ1) (Irλ − Λ2) ⊕ (

Inf−2rλ − Λ3

) ⊕ In−nf+r

=
(

Irλ
2 − (Λ1 + Λ2)λ + Λ1Λ2

) ⊕ (

Inf−2rλ − Λ3

) ⊕ In−nf+r

= A2λ
2 + A1λ + A0,

and so the coefficients
A2 = Ir ⊕ 0n−r,

A1 = −(Λ1 + Λ2) ⊕ Inf−2r ⊕ 0n−nf+r,

A0 = Λ1Λ2 ⊕ −Λ3 ⊕ In−nf+r.

(3.14)

As a result, decoupled system (1.2) is conveniently partitioned such that the first r rows, the next nf −2r
rows, and the last n−nf +r rows contain second-, first-, and zeroth-order mutually independent equations,
respectively.

We are now in a position to generate a finite Jordan pair (Vp,f , Jp,f ) and an infinite Jordan pair
(Vp,∞, Jp,∞) for ˜Q(λ). First, we note that Jp,f = Jx,f of (3.6) and Jp,∞ = Jx,∞ in (3.9) because ˜Q(λ)
is isospectral to Q(λ). Next, let ej (j = 1, 2, . . . , n) be an n-dimensional column vector of zeros except
for a 1 in the jth row. Because ˜Q(λ) is diagonal, we can take ej as an eigenvector of an eigenvalue that
appears in the jth diagonal entry of ˜Q(λ). Moreover, when a diagonal entry corresponds to a 2×2 Jordan
block of a real eigenvalue, it is straightforward to confirm that we can always choose 0 as a generalized
eigenvector of the defective eigenvalue. Using the notation row (Xj)

α
j=1 =

[

X1 X2 · · · Xα

]

to represent a
block-row matrix, the n×nf matrix Vp,f of eigenvectors and generalized eigenvectors conformable to the
Jordan matrix Jp,f is then

Vp,f =
[

row
([

ej ej

])n1

j=1
, row

([

en1+j 0
])n2

j=1
,

row
([

en1+n2+j en1+n2+j

])n3

j=1
, row (er+j)

nf−2r
j=1

]
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or, equivalently,

Vp,f =

⎡

⎢

⎢

⎢

⎣

⎡

⎣

n1
⊕

j=1

[

1 1
]

⎤

⎦ ⊕
⎡

⎣

n2
⊕

j=1

[

1 0
]

⎤

⎦ ⊕
⎡

⎣

n3
⊕

j=1

[

1 1
]

⎤

⎦ ⊕ Inf−2r

0(n−nf+r)×nf

⎤

⎥

⎥

⎥

⎦

. (3.15)

Now, the n∞ eigenvalues of ˜Q(λ) at infinity, which correspond to the n∞ zero eigenvalues of the reversal
˜Qrev(λ) = A0λ

2 + A1λ + A0, have n − r eigenvectors that are in the null space of ˜Qrev(0) = A2. From
the structure of A2 in (3.14), it is clear that these eigenvectors can be taken as er+j (j = 1, 2, . . . , n − r).
Of these eigenvectors, n − nf + r are associated with the infinite eigenvalue’s n − nf + r Jordan blocks
of size 2 × 2. Analogous to (3.8), these n − nf + r eigenvectors w2k−1 (k = 1, 2, . . . , n − nf + r) and the
corresponding generalized eigenvectors w2k satisfy

[

˜Qrev(0) 0
˜Q
(1)
rev(0) ˜Qrev(0)

]

[

w2k−1

w2k

]

=
[

A2 0
A1 A2

] [

w2k−1

w2k

]

= 0. (3.16)

Because of the form of A1 given in (3.14), w2k−1 cannot be any of the first nf − 2r eigenvectors er+�

(� = 1, 2, . . . , nf − 2r) for A1w2k−1 + A2w2k = 0 of (3.16) to have finite solutions w2k, so we must have
w2k−1 = enf−r+k. It is simple to verify that we can then choose w2k = 0 as generalized eigenvectors so
that (3.16) holds. Therefore, conformable to the Jordan matrix Jp,∞, the n × n∞ matrix Vp,∞ of the
associated eigenvectors and generalized eigenvectors is

Vp,∞ =
[

row (er+j)
nf−2r
j=1 , row

([

enf−r+j 0
])n−nf+r

j=1

]

.

Alternatively,

Vp,∞ =

⎡

⎢

⎢

⎣

0r×n∞

Inf−2r ⊕
⎡

⎣

n−nf+r
⊕

j=1

[

1 0
]

⎤

⎦

⎤

⎥

⎥

⎦

. (3.17)

4. A diagonalizing structure-preserving transformation

We now establish a transformation that converts an n×n quadratic matrix polynomial Q(λ) = Mλ2+Cλ+
K into the diagonal pencil ˜Q(λ) = A2λ

2 + A1λ + A0 isospectral to Q(λ) through their first companion
forms. We define this particular type of diagonalizing structure-preserving transformation (DSPT) as
follows.

Definition 4.1. Let the n × n quadratic matrix polynomials Q(λ) = Mλ2 + Cλ + K and ˜Q(λ) = A2λ
2 +

A1λ + A0 be regular and isospectral. If

L(λ) =
[

I 0
0 M

]

λ +
[

0 −I
K C

]

and ˜L(λ) =
[

I 0
0 A2

]

λ +
[

0 −I
A0 A1

]

are the first companion forms of Q(λ) and ˜Q(λ), respectively, and (R,S) is a pair of real and invertible
2n × 2n matrices satisfying

R

[

I 0
0 M

]

S =
[

I 0
0 A2

]

(4.1)

and

R

[

0 −I
K C

]

S =
[

0 −I
A0 A1

]

, (4.2)
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then (R,S) will be called a diagonalizing first companion structure-preserving transformation from Q(λ)
to ˜Q(λ).

Because this is the only type of DSPT we consider, we will often omit reference to the first companion
form for convenience. To determine the transformation matrices R and S that comprise a DSPT, we
utilize the notion of a decomposable pair of a regular pencil. Based on Section 7.3 of [11], we have the
following definition pertaining to an n × n quadratic pencil.

Definition 4.2. Let Q(λ) = Mλ2+Cλ+K, where M,C,K ∈ C
n×n, be a regular quadratic matrix polyno-

mial. The couple
([

X1 X2

]

, T1 ⊕ T2

)

is called a decomposable pair of Q(λ) if the following conditions hold:

(i) the matrices X1 ∈ C
n×n̂, T1 ∈ C

n̂×n̂, X2 ∈ C
n×(2n−n̂), and T2 ∈ C

(2n−n̂)×(2n−n̂), with 0 ≤ n̂ ≤ 2n,
such that

[

X1 X2

] ∈ C
n×2n and (T1 ⊕ T2) ∈ C

2n×2n;

(ii) the matrix
[

X1 X2T2

X1T1 X2

]

∈ C
2n×2n is invertible; and

(iii) MX1T
2
1 + CX1T1 + KX1 = 0 and KX2T

2
2 + CX2T2 + MX2 = 0.

Conveniently, we can use spectral data to generate a decomposable pair for Q(λ). Specifically, by The-
orem 7.3 in [11], if (Vx,f , Jx,f ) and (Vx,∞, Jx,∞) are, respectively, finite and infinite Jordan pairs for Q(λ),
then (

[

Vx,f Vx,∞
]

, Jx,f ⊕Jx,∞) is a decomposable pair for Q(λ). We next make use of the following result.

Lemma 4.3. Let Q(λ) = Mλ2 + Cλ + K be a regular quadratic matrix polynomial with finite Jordan pair
(Vx,f , Jx,f ), infinite Jordan pair (Vx,∞, Jx,∞), and first companion form L(λ). Then J(λ) = (Iλ−Jx,f )⊕
(Jx,∞λ − I) is a strong linearization of Q(λ) and J(λ) = R−1

x L(λ)Sx, where

Rx =
[

Vx,f Vx,∞
MVx,fJx,f −KVx,∞Jx,∞ − CVx,∞

]

and Sx =
[

Vx,f Vx,∞Jx,∞
Vx,fJx,f Vx,∞

]

.

Proof. Lemma 4.3 follows immediately from specializing Theorem 7.6 in [11] to the case of a quadratic
pencil and then applying Theorem 7.3 of [11]. �

Of course, Lemma 4.3 also applies to the diagonal pencil ˜Q(λ). We are now ready to prove the following
statement, which is one of the main results of this paper.

Theorem 4.4. Let Q(λ) = Mλ2 + Cλ + K and ˜Q(λ) = A2λ
2 + A1λ + A0 be regular and isospectral

quadratic matrix polynomials with first companion forms L(λ) and ˜L(λ), respectively, where (Vx,f , Jx,f )
and (Vx,∞, Jx,∞) are finite and infinite Jordan pairs for Q(λ), and (Vp,f , Jp,f ) and (Vp,∞, Jp,∞) are finite
and infinite Jordan pairs for ˜Q(λ). Then (R,S), where

R =
[

Vp,f Vp,∞
A2Vp,fJp,f −A0Vp,∞Jp,∞ − A1Vp,∞

] [

Vx,f Vx,∞
MVx,fJx,f −KVx,∞Jx,∞ − CVx,∞

]−1

(4.3)

and

S =
[

Vx,f Vx,∞Jx,∞
Vx,fJx,f Vx,∞

] [

Vp,f Vp,∞Jp,∞
Vp,fJp,f Vp,∞

]−1

, (4.4)

is a diagonalizing first companion structure-preserving transformation from Q(λ) to ˜Q(λ).

Proof. By Lemma 4.3, for Q(λ), we have J(λ) = R−1
x L(λ)Sx, where

Rx =
[

Vx,f Vx,∞
MVx,fJx,f −KVx,∞Jx,∞ − CVx,∞

]

and Sx =
[

Vx,f Vx,∞Jx,∞
Vx,fJx,f Vx,∞

]

are invertible. Likewise, ˜J(λ) = R−1
p

˜L(λ)Sp for ˜Q(λ), where the invertible matrices

Rp =
[

Vp,f Vp,∞
A2Vp,fJp,f −A0Vp,∞Jp,∞ − A1Vp,∞

]

and Sp =
[

Vp,f Vp,∞Jp,∞
Vp,fJp,f Vp,∞

]

.
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Because Q(λ) and ˜Q(λ) are isospectral, the Jordan matrices Jx,f = Jp,f and Jx,∞ = Jp,∞, so J(λ) = ˜J(λ).
Consequently, R−1

x L(λ)Sx = R−1
p

˜L(λ)Sp. Equivalently, RL(λ)S = ˜L(λ) with R = RpR
−1
x and S = SxS−1

p

as in (4.3) and (4.4), respectively. Invertibility of R and S is clear. Moreover, R and S must be real because
the coefficients of L(λ) and ˜L(λ) are real. Thus, by Definition 4.1, (R,S) constitutes a diagonalizing first
companion structure-preserving transformation from Q(λ) to ˜Q(λ). �

We should note that Theorem 4.4 is consistent with previously established results for isospectral
transformation of a quadratic pencil Q(λ) with M nonsingular. Specifically, when M is invertible (and
thus A2 is nonsingular), the linear pencils

L1(λ) =
[

I 0
0 M

]−1

L(λ) = λI +
[

0 −I
M−1K M−1C

]

and

˜L1(λ) =
[

I 0
0 A2

]−1

˜L(λ) = λI +
[

0 −I
A−1

2 A0 A−1
2 A1

]

are strictly equivalent to the first companion forms L(λ) and ˜L(λ), respectively. Therefore, L1(λ) is a
linearization of Q(λ), and ˜L1(λ) is a linearization of ˜Q(λ). In addition, the transformation matrices R
and S in (4.3) and (4.4), respectively, reduce to

R =
[

Vp,f

A2Vp,fJp,f

] [

Vx,f

MVx,fJx,f

]−1

and S =
[

Vx,f

Vx,fJx,f

] [

Vp,f

Vp,fJp,f

]−1

because the shared eigenvalues of Q(λ) and ˜Q(λ) are all finite. Now, notice that

R =
[

I 0
0 A2

] [

Vp,f

Vp,fJp,f

] [

Vx,f

Vx,fJx,f

]−1 [

I 0
0 M

]−1

=
[

I 0
0 A2

]

S−1

[

I 0
0 M

]−1

,

in which case condition (4.1) in Definition 4.1 for a DSPT is identically satisfied. Also,

R

[

0 −I
K C

]

S =
[

I 0
0 A2

]

S−1

[

0 −I
M−1K M−1C

]

S

so that condition (4.2) of Definition 4.1 becomes
[

0 −I
M−1K M−1C

]

S = S

[

0 −I
A−1

2 A0 A−1
2 A1

]

,

at which point we obtain what Garvey et al. call a right block-companion structure-preserving transfor-
mation in [6], and this transformation is also diagonalizing in this case.

5. Connecting the solutions of the coupled and decoupled systems

By Theorem 4.4, we now have a means of demonstrating that it is possible to recover a solution x(t) of
coupled system (1.1) from a solution p(t) of decoupled system (1.2), when the inhomogeneity

g(t) =
(

A1R2 + R4 + A2R2
d
dt

)

f(t), (5.1)

by the real, time-dependent, and nonlinear mapping

x(t) =
(

S1 + S2
d
dt

)

p(t) − S2R2f(t). (5.2)
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In (5.1) and (5.2), Rj (j = 1, 2, 3, 4) and Sj represent the n × n blocks of the transformation matrices R
and S defined in (4.3) and (4.4), respectively:

R =
[

R1 R2

R3 R4

]

and S =
[

S1 S2

S3 S4

]

.

We note that hypothesized inhomogeneity (5.1) and mapping (5.2) from p(t) to x(t) are inspired by our
previous work in decoupling when M is invertible that uses a different method than the one we present
here (see [9] in particular). For our forthcoming proof, it is useful to first observe that if

R−1 = P =
[

P1 P2

P3 P4

]

,

where Pj (j = 1, 2, 3, 4) are n × n blocks, then the statement PR = I contains the identities

P1R2 + P2R4 = 0 and P3R2 + P4R4 = I. (5.3)

Theorem 5.1. Let Q(λ) = Mλ2 + Cλ + K and ˜Q(λ) = A2λ
2 + A1λ + A0 be regular and isospectral

quadratic matrix polynomials with first companion forms L(λ) and ˜L(λ), respectively, where (Vx,f , Jx,f )
and (Vx,∞, Jx,∞) are finite and infinite Jordan pairs for Q(λ), and (Vp,f , Jp,f ) and (Vp,∞, Jp,∞) are finite
and infinite Jordan pairs for ˜Q(λ). If p(t) is a solution of the decoupled system A2p̈(t)+A1ṗ(t)+A0p(t) =
(

A1R2 + R4 + A2R2
d
dt

)

f(t) and x(t) =
(

S1 + S2
d
dt

)

p(t)−S2R2f(t), then x(t) is a solution of the coupled
system Mẍ(t) + Cẋ(t) + Kx(t) = f(t).

Proof. If p(t) is a solution of A2p̈(t) + A1ṗ(t) + A0p(t) =
(

A1R2 + R4 + A2R2
d
dt

)

f(t), then it must also
satisfy the first-order realization

[

I 0
0 A2

] [

ṗ(t)
p̈(t)

]

+
[

0 −I
A0 A1

] [

p(t)
ṗ(t)

]

=
[

0
(

A1R2 + R4 + A2R2
d
dt

)

f(t)

]

. (5.4)

Define a function y(t) =
(

S3 + S4
d
dt

)

p(t) − S4R2f(t) so that it and x(t) =
(

S1 + S2
d
dt

)

p(t) − S2R2f(t)
are jointly expressed as

[

x(t)
y(t)

]

= S

[

p(t)
ṗ(t) − R2f(t)

]

. (5.5)

Apply the inverse of transformation (5.5) to (5.4) and multiply the resulting equation on the left by
R−1 = P to obtain, with some manipulation,

R−1

[

I 0
0 A2

]

S−1

[

ẋ(t)
ẏ(t)

]

+ R−1

[

0 −I
A0 A1

]

S−1

[

x(t)
y(t)

]

=
[

(P1R2 + P2R4) f(t)
(P3R2 + P4R4) f(t)

]

. (5.6)

By Theorem 4.4, (R,S) is a DSPT, so (5.6) becomes
[

I 0
0 M

] [

ẋ(t)
ẏ(t)

]

+
[

0 −I
K C

] [

x(t)
y(t)

]

=
[

0
f(t)

]

, (5.7)

where we have used the identities in (5.3). The upper and lower halves of (5.7) give y(t) = ẋ(t) and
Mẏ(t) + Cy(t) + Kx(t) = f(t), respectively. Therefore, x(t) is a solution of Mẍ(t) + Cẋ(t) + Kx(t) =
f(t). �

An immediate consequence of the proof of Theorem 5.1 is that, from (5.5), the relationship between so-
lutions p(t) and x(t) of (1.2) and (1.1), respectively, and their derivatives can be expressed simultaneously
and compactly as

[

x(t)
ẋ(t)

]

= S

[

p(t)
ṗ(t) − R2f(t)

]

,
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which allows us to conveniently obtain the decoupled system’s initial values p(0) and ṗ(0) from those of
the coupled system, x(0) and ẋ(0):

[

p(0)
ṗ(0)

]

= S−1

[

x(0)
ẋ(0)

]

+
[

0
R2f(0)

]

. (5.8)

6. A decoupling algorithm

Using our earlier developments, we present here an algorithm for converting coupled system (1.1) into
diagonal form (1.2) by an isospectral transformation, when possible, and then recovering a solution x(t)
of (1.1) from a solution p(t) of (1.2). Our algorithm is as follows:

1. We must first verify that (1.1) can in fact be decoupled by an isospectral transformation. To do
so, determine the eigenvalues of the quadratic matrix polynomial Q(λ) = Mλ2 + Cλ + K and
their partial multiplicities, and then check that the isospectrality conditions of Theorem 3.2 (or,
alternatively, Corollary 3.3) are satisfied. If not, then isospectral decoupling of (1.1) is not possible.

2. After confirming that decoupling of (1.1) by isospectral transformation is possible, compute the
eigenvectors of Q(λ) and any Jordan chains using (3.5) and (3.8).

3. Next, index the eigenvalues, eigenvectors, and generalized eigenvectors as described in Sect. 3.2. Form
the diagonal matrices Λ1, Λ2, and Λ3 in (3.11)–(3.13) to obtain the decoupled system’s real and
diagonal coefficients A2, A1, and A0 given in (3.14), and construct the finite and infinite Jordan pairs
for both Q(λ) and the diagonal pencil ˜Q(λ) = A2λ

2+A1λ+A0 using (3.6), (3.7), (3.9), (3.10), (3.15),
and (3.17).

4. If the coupled system’s inhomogeneity f(t) = 0, then g(t) = 0 for the decoupled system, so de-
coupling is complete. To obtain the solution x(t) of the homogeneous coupled system, calculate the
transformation matrix S in (4.4), use (5.8) to determine the initial values of the homogeneous decou-
pled system, compute the solution p(t), and then recover x(t) from p(t) using transformation (5.2).

5. If f(t) �= 0, then compute the transformation matrix R in (4.3) to form the decoupled system’s
inhomogeneity g(t) from (5.1), at which point decoupling of coupled system (1.1) is complete. If the
solution x(t) of (1.1) is desired, first calculate S in (4.4) to obtain the initial values of decoupled
system (1.2) using (5.8), then solve for p(t), and use transformation (5.2) to map p(t) to x(t).

This algorithm is summarized diagrammatically as a flowchart in Fig. 1.
We should note that for a particular system (1.1), decoupled system (1.2) isospectral to it is not

necessarily unique because there might be multiple options for generating pairs of distinct real eigenvalues
or pairs of real eigenvalues and eigenvalues at infinity, all with unit partial multiplicities. Different pairing
schemes result in different forms for (1.2), but they are all members of an equivalence class because (1.1)
and (1.2) are isospectral. Put another way, the different solutions of the different decoupled systems all
yield the same solution to (1.1). For a particular choice of pairing, (1.2) is unique up to an arbitrary
nonzero scaling of the eigenvectors and a permutation of the mutually independent component equations:
scaling the eigenvectors has no effect on the homogeneous part of (1.2)—which, as shown in (3.14),
is constructed solely from the eigenvalues—and the order in which the component equations appear is
ultimately unimportant, though the partitioning of (1.2) into second-, first-, and zeroth-order equations
by our decoupling algorithm is attractive. Theoretically, the choice of pairing scheme and eigenvector
scaling is irrelevant to the decoupling process, but some choices might be better than others from a
computational standpoint or simply for convenience. For the sake of generality, we do not advocate any
particular pairing or normalization scheme here, but we refer the reader interested in suggested strategies
to [17]. A related discussion of this nonuniqueness in decoupling can be found in Lancaster and Zaballa’s
work [5] on parameterizing structure-preserving transformations when M is invertible.
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Coupled system
Mẍ(t) + Cẋ(t) + Kx(t) = f(t)

with coordinate x(t)

Compute the eigenvalues of
Q(λ) = Mλ2 + Cλ + K

and their partial multiplicities

Conditions of
Theorem 3.2 are

satisfied?

Isospectral
decoupling

is not possible

Compute the eigenvectors and
generalized eigenvectors of Q(λ)

Construct
Λ1, Λ2, Λ3 in (3.11)–(3.13)

A2, A1, A0 in (3.14)
Jx,f = Jp,f , Vx,f , Vp,f in (3.6), (3.7), (3.15)

Jx,∞ = Jp,∞, Vx,∞, Vp,∞ in (3.9), (3.10), (3.17)

Construct S in (4.4),
set g(t) = 0

Construct
R, S in (4.3), (4.4)

g(t) in (5.1)

Decoupled system
A2p̈(t) + A1ṗ(t) + A0p(t) = g(t)

with coordinate p(t)

x(t) =
(

S1 + S2
d
dt

)

p(t)

−S2R2f(t)

Yes

No

f(t) = 0 f(t) �= 0

Fig. 1. Flowchart for decoupling a second-order linear system by an isospectral transformation and recovering its solution
from that of the decoupled system
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7. Illustrative examples

We now provide two examples to illustrate the use of our decoupling algorithm formulated in Sect. 6 and
to further discuss the issue of nonuniqueness in decoupling.

Example 1. In this example, we demonstrate the entire process of solving (1.1) by decoupling. Consider
the system

⎡

⎣

1 0 0
0 0 0
0 −1 1

⎤

⎦ ẍ(t) +

⎡

⎣

2 1 0
−1 1 0
0 −1 2

⎤

⎦ ẋ(t) +

⎡

⎣

1 2 0
−1 2 0
0 0 2

⎤

⎦ x(t) =

⎡

⎣

2 cos t
sin 3t

0

⎤

⎦ (7.1)

with consistent initial values x(0) = [1, 0,−1]T and ẋ(0) = [1, 2,−1]T . We find that the spectrum of
its associated quadratic matrix polynomial consists of a pair of complex conjugate eigenvalues, −1 + i
and −1 − i; a simple real eigenvalue, −1; a repeated real eigenvalue, −2, that occurs twice and has
one eigenvector (i.e., it has a partial multiplicity of 2); and a simple eigenvalue at infinity. It is clear
via Corollary 3.3 that the conditions of Theorem 3.2 are satisfied, so system (7.1) can be decoupled
by an isospectral transformation. In fact, there is only one set of admissible pairings for decoupling.
Specifically, the decoupled system must contain one second-order independent equation that corresponds
to the complex conjugate pair (−1 + i,−1 − i); another second-order equation that is associated with the
2 × 2 Jordan block for the real eigenvalue −2 (that is, a pairing of −2 with itself); and one first-order
equation that arises from pairing the simple real eigenvalue, −1, with the infinite eigenvalue. Consequently,
upon indexing the eigenvalues as described in Sect. 3.2, we have

Λ1 =
[−1 + i 0

0 −2

]

, Λ2 =
[−1 − i 0

0 −2

]

, and Λ3 = −1

from (3.11)–(3.13), and so, by (3.14), the decoupled system’s coefficients are

A2 =

⎡

⎣

1 0 0
0 1 0
0 0 0

⎤

⎦ , A1 =

⎡

⎣

2 0 0
0 4 0
0 0 1

⎤

⎦ , and A0 =

⎡

⎣

2 0 0
0 4 0
0 0 1

⎤

⎦ .

Using (3.6) and (3.9), the Jordan matrices

Jx,f =

⎡

⎢

⎢

⎢

⎢

⎣

−1 + i 0 0 0 0
0 −1 − i 0 0 0
0 0 −2 1 0
0 0 0 −2 0
0 0 0 0 −1

⎤

⎥

⎥

⎥

⎥

⎦

and Jx,∞ = 0,

and the corresponding eigenvectors and Jordan chain are such that, from (3.7) and (3.10),

Vx,f =

⎡

⎣

0 0 0 −1 1
0 0 1 0 0
1 1 1 −1/2 0

⎤

⎦ and Vx,∞ =

⎡

⎣

0
1
1

⎤

⎦ .

Associated with the decoupled system, Jp,f = Jx,f and Jp,∞ = Jx,∞, and

Vp,f =

⎡

⎣

1 1 0 0 0
0 0 1 0 0
0 0 0 0 1

⎤

⎦ and Vp,∞ =

⎡

⎣

0
0
1

⎤

⎦
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(a) (b)

Fig. 2. Solution of a decoupled system (7.2) and b coupled system (7.1) in Example 1

by (3.15) and (3.17). Consequently, from (4.3) and (4.4), we have the DSPT

R =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1/2 −1 1 1/2 −1/2 0
0 1 0 0 1 0
2 0 0 1 −2 0

−1 0 0 −1 0 1
1 −2 0 1 −3 0
0 0 0 0 1 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

and S =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 −2 1 0 −1 0
0 1 0 0 0 0
1 0 0 0 −1/2 0
0 4 −1 0 2 0
0 0 1 0 1 1
0 2 1 1 2 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

that decouples system (7.1) into
⎡

⎣

1 0 0
0 1 0
0 0 0

⎤

⎦ p̈(t) +

⎡

⎣

2 0 0
0 4 0
0 0 1

⎤

⎦ ṗ(t) +

⎡

⎣

2 0 0
0 4 0
0 0 1

⎤

⎦ p(t) =

⎡

⎣

− sin t − sin 3t − (3/2) cos 3t
2 cos t + sin 3t + 3 cos 3t

2 cos t − sin 3t

⎤

⎦ , (7.2)

for which the consistent initial values are p(0) = [0, 0, 3]T and ṗ(0) = [−4, 2,−1]T using (5.8) and the
inhomogeneity was generated by (5.1). Figure 2a depicts the solution p(t) of (7.2), where we have denoted
the components of p(t) as ρj(t) (j = 1, 2, 3). The solution x(t) of (7.1), with components χj(t), is recovered
using (5.2) and illustrated in Fig. 2b.

Example 2. Here, we elaborate on the nonuniqueness of decoupled system (1.2) when there are multiple
options for pairing distinct real eigenvalues and pairing real eigenvalues with eigenvalues at infinity. We
also demonstrate how scaling of the eigenvectors affects the form of (1.2). Suppose we have the system

⎡

⎣

1 0 0
0 0 0
0 0 0

⎤

⎦ ẍ(t) +

⎡

⎣

1 1 0
−1 1 0
0 0 0

⎤

⎦ ẋ(t) +

⎡

⎣

1 2 1
1 2 1
1 1 1

⎤

⎦x(t) =

⎡

⎣

cos 3t
− sin t
sin 2t

⎤

⎦ , (7.3)

where x(0) = [1, 0,−1]T and ẋ(0) = [1, 1, 0]T are consistent initial values. The associated quadratic
pencil’s spectrum comprises three simple and real eigenvalues (0, −1, and −2) and a defective infinite
eigenvalue that occurs three times and has partial multiplicities 1 and 2. Using Corollary 3.3, it is
straightforward to see that this spectrum satisfies the conditions of Theorem 3.2, and thus it is possible
to decouple system (7.3) by an isospectral transformation. In this case, the decoupled system must consist
of one second-order independent equation that corresponds to a pairing of two of the real eigenvalues; one
first-order equation that arises from pairing the remaining real eigenvalue with the eigenvalue at infinity
that has unit partial multiplicity; and one zeroth-order equation associated with the infinite eigenvalue’s
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2 × 2 Jordan block. However, the decoupled system isospectral to (7.3) is not unique because there are
three possible pairing schemes involving the real eigenvalues and the infinite eigenvalue with unit partial
multiplicity: (0,−1) and (−2,∞); (0,−2) and (−1,∞); and (−1,−2) and (0,∞). We will concentrate on
the first two pairing schemes.

For the first option, (0,−1) and (−2,∞), if we index the eigenvalues per Sect. 3.2 and take the
corresponding eigenvectors and generalized eigenvectors such that

Jx,f =

⎡

⎣

0 0 0
0 −1 0
0 0 −2

⎤

⎦ , Vx,f =

⎡

⎣

1 0 1
0 1 2

−1 −1 −3

⎤

⎦ ,

Jx,∞ =

⎡

⎣

0 0 0
0 0 1
0 0 0

⎤

⎦ , and Vx,∞ =

⎡

⎣

0 0 0
1 0 0
0 1 0

⎤

⎦ ,

then we arrive at the following decoupled system after a series of calculations from our decoupling
algorithm in Sect. 6:

⎡

⎣

1 0 0
0 0 0
0 0 0

⎤

⎦ p̈(t) +

⎡

⎣

1 0 0
0 1 0
0 0 0

⎤

⎦ ṗ(t) +

⎡

⎣

0 0 0
0 2 0
0 0 1

⎤

⎦ p(t) =
1

2

⎡

⎣

sin t + cos t − 4 cos 2t − 9 sin 3t + cos 3t
− sin t − cos 3t

2 sin 2t

⎤

⎦ (7.4)

with consistent initial values p(0) = [5/2,−1/2, 0]T and ṗ(0) = [1/2, 1/2, 2]T . The DSPT that relates systems
(7.3) and (7.4) is governed by

R =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1 1 0 3/2 −1/2 −1
0 0 0 −1/2 −1/2 1
1 1 1 0 1 −1
0 −1 0 −1 0 1
0 0 0 0 1 −1
0 0 0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

and S =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1 1 0 1 0 0
0 2 0 −1 0 0

−1 −3 1 0 0 0
0 −2 0 0 0 0
0 −2 0 1 1 0
0 6 0 −1 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (7.5)

Alternatively, using the second pairing option, (0,−2) and (−1,∞), with the same eigenvectors (but reordered to
reflect the change in pairing scheme so that

Jx,f =

⎡

⎣

0 0 0
0 −2 0
0 0 −1

⎤

⎦ and Vx,f =

⎡

⎣

1 1 0
0 2 1

−1 −3 −1

⎤

⎦

instead) gives
⎡

⎣

1 0 0
0 0 0
0 0 0

⎤

⎦ p̈(t) +

⎡

⎣

2 0 0
0 1 0
0 0 0

⎤

⎦ ṗ(t) +

⎡

⎣

0 0 0
0 1 0
0 0 1

⎤

⎦ p(t) =

⎡

⎣

sin t + cos 3t
− sin 2t + cos 3t

sin 2t

⎤

⎦ , (7.6)

where p(0) = [1, 1, 0]T and ṗ(0) = [1, 0, 2]T , and the associated DSPT is now

R =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0 0 0
0 1 0 1 −1 0
1 1 1 0 1 −1
0 0 0 1 −1 0
0 0 0 0 1 −1
0 0 0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

and S =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0 0 0
0 1 0 −1 0 0

−1 −1 1 1 0 0
0 0 0 1 0 0
0 0 0 2 1 0
0 1 0 −3 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (7.7)

Therefore, the choice of pairing scheme affects all aspects of the decoupled system: the coefficient matrices, the
inhomogeneity, and the initial values. Although the solutions p(t) of the two decoupled systems, (7.4) and (7.6),
are different, they both generate the same solution x(t) to (7.3) through (5.2) because the transformation matrices
R and S change accordingly with the choice of pairing, as evidenced by (7.5) and (7.7).
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Sticking with the second pairing scheme, suppose we now scale some of the eigenvectors for the finite real
eigenvalues differently:

Vx,f =

⎡

⎣

2 1 0
0 2 −1

−2 −3 1

⎤

⎦ ,

in which case the decoupled system takes the form
⎡

⎣

1 0 0
0 0 0
0 0 0

⎤

⎦ p̈(t) +

⎡

⎣

2 0 0
0 1 0
0 0 0

⎤

⎦ ṗ(t) +

⎡

⎣

0 0 0
0 1 0
0 0 1

⎤

⎦ p(t) =
1

4

⎡

⎣

2 sin t − cos t + 3 sin 3t + 2 cos 3t
4 sin 2t − 4 cos 3t

4 sin 2t

⎤

⎦ (7.8)

with initial values p(0) = [1/4,−1, 0]T and ṗ(0) = [3/4, 0, 2]T . Instead of (7.7), the DSPT relating systems (7.3)
and (7.8) is

R =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1/2 0 0 −1/4 1/4 0
0 −1 0 −1 −1 2
1 1 1 0 1 −1
0 0 0 1 −1 0
0 0 0 0 1 −1
0 0 0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

and S =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

2 0 0 1/2 0 0
0 −1 0 −1 0 0

−2 1 1 1/2 0 0
0 0 0 1 0 0
0 2 0 2 1 0
0 −1 0 −3 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (7.9)

Thus, for the particular eigenvalue pairing scheme we used, the choice of eigenvector scaling affects the decoupled
system’s inhomogeneity and initial values but not the coefficient matrices, which depend only on the eigenvalues.
Because the homogeneous parts of (7.6) and (7.8) are identical, we regard the two systems as being equivalent.
Their solutions are different because the inhomogeneity and initial values differ, but they both yield the same
solution to (7.3) via (5.2) because the transformation matrices R and S change to compensate for the difference
in scaling of the eigenvectors, which (7.7) and (7.9) demonstrate.

8. Concluding remarks

We have shown that any real second-order linear system (1.1) with nonzero leading coefficient and whose associated
spectrum satisfies the conditions of Theorem 3.2 can be converted into a real diagonal form (1.2) of the same
dimension by a transformation that preserves the eigenvalues and their partial multiplicities. In general, the
isospectral decoupled system contains a mixture of second-, first-, and zeroth-order independent scalar equations.
Decoupling is made possible by a real DSPT, which can be constructed from spectral data, that relates the first
companion linearizations associated with isospectral systems (1.1) and (1.2); this DSPT reduces to a previously
established decoupling transformation when the leading coefficient of (1.1) is invertible. We have offered an
algorithm for decoupling that features a convenient structure for the decoupled system whose solution recovers
the response of the coupled system through a real, time-dependent, and nonlinear mapping. Thus, we have
provided a complete solution to the problem of converting (1.1) into (1.2) by a real isospectral transformation.
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