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Dynamics and transport properties of three surface quasigeostrophic point
vortices

C. K. Taylor and Stefan G. Llewellyn Smitha)

Department of Mechanical and Aerospace Engineering, Jacobs School of Engineering, University of
California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0411, USA

(Received 25 May 2016; accepted 2 November 2016; published online 17 November 2016)

The surface quasi-geostrophic (SQG) equations are a model for low-Rossby number geophysical

flows in which the dynamics are governed by potential temperature dynamics on the boundary. We

examine point vortex solutions to this model as well as the chaotic flows induced by three point

vortices. The chaotic transport induced by these flows is investigated using techniques of Poincar�e
maps and the Finite Time Braiding Exponent (FTBE). This chaotic transport is representative of

the mixing in the flow, and these terms are used interchangeably in this work. Compared with point

vortices in two-dimensional flow, the SQG vortices are found to produce flows with higher FTBE,

indicating more mixing. Select results are presented for analyzing mixing for arbitrary vortex

strengths. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4967806]

Gaining an understanding of mixing is important for

many problems, from biomedical devices using micro-

droplets to predicting pollutant dispersal over many kilo-

meters in the atmosphere. In this work, we examine

transport in a model of ocean flow at large scales to gain

insight into mixing for these kinds of systems. Simple

point vortices are used as a model system, and compari-

sons are also drawn between this model and the two-

dimensional model where point vortices have been stud-

ied extensively. Recently developed tools for quantifying

mixing are utilized in order to find trends and make

comparisons.

I. INTRODUCTION

Many fields within the fluid dynamics community

require a good understanding of mixing in order to advance

in problems such as miniaturizing biomedical devices,23

improving combustion engines,1,30 and predicting how pollu-

tants carried in the ocean or atmosphere will disperse.12,16,20

While mixing is a familiar concept, the particulars of how to

define and measure the extent of mixing in a given flow

remain challenging. Mixing is generally decomposed into

two stages, starting with the process of stirring, where diffu-

sion is negligible but advection will stretch material lines

into filaments.29 The second stage begins when the scales of

the filaments are small enough that the advection effects are

of the same order as diffusion, and from there the mixed

region will homogenize. The initial step of stirring was stud-

ied by Aref and Pomphrey under the name “chaotic motion”

in the simplified case of point vortices in two-dimensional

flow.5 In this case, chaos refers to aperiodic behavior in

which two points in the flow that are initially very near will

exhibit very different trajectories over finite time.4

Physically, a particle in the flow that undergoes chaotic

advection will, over time, be carried through the entire

region and interact with all of the fluid particles that are

bounded by the same material lines. Thus, if dye is intro-

duced into the fluid anywhere in that region, the dye will

eventually spread over the entire region, satisfying the typi-

cal conceptual definition of mixing. This chaotic advection is

what we consider to be mixing in this work. In their study of

point vortices, Aref and Pomphrey found that three interact-

ing vortices would follow regular trajectories, and four vorti-

ces could follow chaotic trajectories. The four vortex result

also applies to the analysis of flow surrounding three vorti-

ces, because a point in the fluid can be modeled as a particle

that is passively carried by the fluid, represented as a point

vortex of zero strength. Thus, by Aref and Pomphrey’s find-

ings, three point vortices will follow periodic paths but can

produce chaotic flow in the surrounding fluid.

This work examines point vortices and the resulting cha-

otic transport in the Quasigeostrophic (QG) approximation.

This model approximates the ocean as a thin body of fluid

spread over a rotating sphere and assumes the fluid is strati-

fied, Boussinesq, and effectively inviscid at large scales. The

equations of motion can be nondimensionalized using char-

acteristic scales—velocity U, horizontal length L, height H,

kinematic viscosity �, Coriolis frequency f, and buoyancy

frequency N—to obtain dimensionless numbers that charac-

terize a regime of motion. Inviscid flow is characterized by

high Reynolds number Re¼UL/�, and in this regime the vis-

cous stress is negligible and can be ignored in the equations

of motion. The Rossby number, Ro¼U/fL, compares the

local velocity to the velocity of the rotating coordinates. In

the limit Ro ! 0, the QG equations of motion are obtained.

In the QG equations, potential vorticity, or the combined

effects of vorticity, buoyancy, and the Coriolis force, is con-

served. The Surface Quasigeostrophic (SQG) model14 fur-

ther simplifies the physics by specifying that the potential

vorticity is zero in the interior so that the flow is determined

by evolution of buoyancy on the boundaries. Physically, this

can be pictured as motion induced by a buoyancya)sgls@ucsd.edu
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distribution at the surface. As the buoyancy distribution

evolves, the internal fluid must also evolve to satisfy zero

potential vorticity.

At ocean mesoscales (flow with horizontal scales of

10–100 km), stratification and rotation both contribute to

suppressing vertical motion. Thus, horizontal velocities dom-

inate the dynamics, but flow will still vary in the vertical and

have weak vertical velocity. This quasi-two-dimensional

model presents an interesting challenge to classic tools for

studying mixing. The flow does not require mixing measures

that examine the full three-dimensional complexity, but

neglecting the vertical dependence altogether would be

overly simplified. Some researchers looking to understand

mixing in this middle ground have considered kinematic

models of eddies22 or approximating three-dimensional shear

with horizontal shear that varies in the vertical.24 This work

complements the current body of knowledge by examining

dynamic models in this quasi-two-dimensional regime and

using a global complexity measure to explore mixing in the

model’s parameter space.

By examining mixing for simple exact solutions in the

SQG model, this work provides insight into mixing in the

ocean as well as the comparison between these dynamics to

those found in classical two-dimensional chaotic flows.

Since vortices are characteristic structures in the ocean,6,10

simplified point vortices provide an ideal model problem for

studying mixing at the mesoscale. The article is structured as

follows. In Section II, the point vortex solution to the SQG

equations is reviewed in analogy with those for two-

dimensional flow. In Section III, the evolution of three vorti-

ces is derived for equal vortex strengths. In Section IV, the

transport properties of this flow are analyzed using the algo-

rithms developed by Thiffeault and Budi�sić.26 Section V cal-

culates vortex interaction for arbitrary vortex strength and

outlines the resulting mixing. Finally, a concluding discus-

sion is given in Section VI.

II. POINT VORTEX MODEL

Classical (2D Euler) point vortices have been studied

extensively in the examination of regular and chaotic trajec-

tories.4 The equations of motion are two-dimensional and

inviscid,

D~u

Dt
¼ 0 ; r �~u ¼ 0: (1)

Written instead in terms of a streamfunction and vorticity

(using the geophysical convention), the equations become

Dw ¼ x; (2)

where

x ¼ ẑ � ðr �~uÞ; rw ¼ ðv;�uÞ; (3)

and D is the two-dimensional Laplacian. In the two-

dimensional case, the point vortex is defined by a singular

point of vorticity, and thus the streamfunction is the free-

space solution to

Dw2D ¼ �jdðx� x0Þdðy� y0Þ (4)

for a point vortex of strength (or circulation) j and position

(x0, y0). The solution is the classic point vortex

w2D ¼ �
j
2p

log j~x �~x0j: (5)

For multiple point vortices with strengths jj and positions~xj,

the streamfunctions will be added and the vortices them-

selves will evolve according to

_xi; _yið Þ ¼ � 1

2p

X0
j

jj

j~xi �~xjj2
yi � yj;�xi þ xjð Þ: (6)

The SQG model presented by Held et al.14 is derived

from the QG equations for three-dimensional flow on a rotat-

ing planet, with the hydrostatic and f-plane approximations.

These approximations are appropriate for mesoscale flow. In

Cartesian geometry with rotation given by the Coriolis

parameter, f, the equations are

Ro
Du

Dt
� v ¼ �/x;

Ro
Dv

Dt
þ u ¼ �/y;

h ¼ /z;

ux þ vy þ Ro wz ¼ 0;

Dh
Dt
þ w ¼ 0 (7)

with the conventional material derivative

D

Dt
¼ @

@t
þ~u � r ;

and where the variables (u, v, w) are the velocities in the (x,

y, z) directions, respectively; / is the geopotential height;

and h is the buoyancy. Geopotential height refers to the pres-

sure surface compared to a reference height, usually sea

level, given by

/ ¼ p� p0

q0

:

Buoyancy is the force experienced by a fluid parcel due to

differences between its density and the surrounding density,

h ¼ � g q0 � q0ð Þ
q0

:

The physical constants in the equations of motion are the

Coriolis parameter, f, and the buoyancy frequency, N. An

expansion in small Ro� 1 yields at O(1)18,28

Dw ¼ q; ws
z ¼ hs;

Dq

Dt
¼ 0; (8)

where D is the three-dimensional Laplacian, q is the potential

vorticity, the superscript s indicates that the variable is evalu-

ated at the surface of the domain (conventionally z¼ 0), and

the subscript z indicates the z-derivative. The SQG model is
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(8) with the more restrictive and dynamically consistent con-

dition that q¼ 0 in the interior.

While the 2D Euler system is governed by the specified

vorticity, in SQG flow the system is governed instead by the

temperature at the surface. Thus, the analogous point vortex

flow in SQG is found from the definition

hs ¼ jdðx� x0Þdðy� y0Þ: (9)

The solution to (8) is

w ¼ � j
2p

1

j~x �~x0j
; (10)

given in the study of Held et al.14 Note that, unlike the 2D

case, this solution has three-dimensional dependence. For an

arbitrary number of vortices with strengths jj and positions

~xj, i.e.,

Dw ¼ 0 ; ws
z ¼

X
j

jjdðx� xjÞdðy� yjÞ; (11)

the solution is the linear combination

w ¼ � 1

2p

X
j

jj

j~x �~xjj
: (12)

The point vortices themselves will be advected by the flow,

neglecting the singular velocity contribution of each point

vortex at its own location. From conservation of energy in

(7), w is of order Ro and so is neglected in (8). Each vortex

then induces only horizontal motion, so the vertical position

of each vortex will remain constant. In this work, we con-

sider all vortices to be on the same plane, z¼ 0. The horizon-

tal evolution of a given point vortex is determined by the

sum of contributions of every other vortex in the system,

given by

_xi; _yið Þ ¼ � 1

2p

X0
j

jj

j~xi �~xjj3
yi � yj;�xi þ xjð Þ; (13)

where the prime indicates that the self-interaction i¼ j is

ignored. The difference between the dynamics of 2D and

SQG point vortices is essentially the powers of vortex sepa-

ration in the denominator appearing in (5) and (6) for the

classical case and appearing in (12) and (13) in the SQG

case. The power in the SQG case is greater by 1. On the sur-

face, at z¼ 0, this is the only difference. However, in the

SQG case, all fields including streamfunction are a function

of depth, z, that appears parametrically in (12). The advec-

tion equation (13) however does not lead to any change in z
for trajectories.

III. THREE VORTEX CASE

As detailed in Aref’s 1983 review,4 for planar two-

dimensional flow, three point vortices are the minimum num-

ber that produce chaotic flow. The three vortices will evolve

in a regular pattern, but a passive particle (a vortex of

strength 0) will follow a chaotic trajectory for certain vortex

and initial particle positions. Aref’s analysis is based solely

on Hamiltonian mechanics, and thus applies to SQG as well.

Thus, to study chaos in SQG, we consider three SQG point

vortices.

To analyze the vortex interaction, we extend the analysis

of Kuznetsov and Zaslavsky15 for classical point vortices of

equal strength. If all vortices have equal strength, the

strength can be absorbed into the length scales and elimi-

nated from the nondimensional equations. Kuznetsov and

Zaslavksy consider the position of each vortex as a complex

number, zj¼ xjþ iyj (not to be confused with the vertical

coordinate z), and relocate the origin to the center of vortic-

ity, given by P
j jjjzjj2P

j jj
:

Then, they write the vortex positions in terms of action varia-

bles Jn, hn,

zj ¼
1ffiffiffi
3
p
X2

n¼1

ffiffiffiffiffiffiffi
2Jn

p
eihn e�2ipn j�1ð Þ=3 j ¼ 1;…; 3: (14)

From here, make another change of variables

I1 ¼ J2 � J1; I2 ¼ J2 þ J1;

/1 ¼ h2 � h1; /2 ¼ h2 þ h1: (15)

These new variables I1 and I2 have geometric significance,

with

I1 ¼ A=
ffiffiffi
3
p

; I2 ¼ L2=4; (16)

where A represents the signed area of the triangle formed by

the vortex positions and L2 ¼
P

jjjzjj2 is the angular

momentum, a constant.

The vortex dynamics can then be analyzed by taking

advantage of the Hamiltonian relations

_I1 ¼
@H

@/1

; _I2 ¼ �
@H

@/2

; (17)

where the Hamiltonian H is the energy of the system, a con-

stant of motion, given by

H ¼ 1

4p

X
i

X
j

1

jzi � zjj
: (18)

Finally, define the “area variable” as

I ¼ I1

I2

� �2

¼ 16A2=3L4: (19)

Because H and I2 are constants, the evolution of I depends

only on I. A potential function is defined as � _I
2

such that

where this potential is negative the solution is real, and thus

the plotted curve of _I
2ðIÞ can be interpreted as a potential

well. These potential curves are shown in Figure 1 for vari-

ous energies. There are two regimes of motion visible, sepa-

rated by the critical energy labeled Hc. In the higher energy
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regime, two of the vortices are close enough that they will

orbit one another, while the vortex further away remains sep-

arate. In the other regime of motion, all three vortices will

orbit one another. The form of H and the quantitative shape

of the curves in Figure 1 is the only formal difference with

the analysis of Aref. The resulting dynamics of the vortices

is qualitatively similar.

These potential wells can be used to determine the

period of motion from the integral

T ¼ 2

ðImax

Imin

dI

j _Ij
; (20)

where Imin and Imax refer to the intersections of the well with

the � _I
2 ¼ 0 axis, and the factor of 2 is needed to account for

the return from Imax to Imin over one cycle. After one cycle, I
will return to its original value, meaning the vortex triangle

has its original area, but the vortices will be permuted among

the triangle vertices. This can be seen clearly in the co-

rotating frame (explained below) in Figure 2, where in (a) all

three vortices orbit and in (b) only two vortices are orbiting.

At time T, the area has returned to its original value, but the

orbiting vortices have changed positions. A higher energy

results from two of the vortices orbiting at close range, so

the period of vortex motion at higher values of H will be the

area variable period T multiplied by an additional factor of 2.

Then, for lower energies the three vortices will permute with

one another; thus, the period of vortex motion will be T mul-

tiplied by an additional factor of 3.

Tv ¼
3T if H < Hc

2T if H > Hc:

�
(21)

The dependence of Tv on H across both regimes of motion is

shown in Figure 3. Note the singularity at the boundary

between the two regimes motion, H¼Hc¼ 0.5623. Referring

to Figure 1, it can be seen that the Hc potential well has a

decaying approach to Imin¼ 0, implying that the solution will

take infinitely long to reach this turning point in I, thus result-

ing in the singularity in Tv exhibited in Figure 3.

Figure 4 also reveals that the vortices slowly rotate

about their center of vorticity. The presence of a rotation

becomes clear when zj is written in terms of the new

variables.

zj tð Þ ¼ Lffiffiffi
6
p ei/2 tð Þ=2

h
1� I1=2 tð Þ
� �1=2

e�2pi j�1ð Þ=3e�i/1 tð Þ=2

þ 1þ I1=2 tð Þ
� �1=2

e�4pi j�1ð Þ=3ei/1 tð Þ=2
i
: (20)

Note that at t¼ 0 and t¼ Tv, the term in the brackets is equal.

Therefore, at t¼ Tv, each vortex has returned to its original

position with a rotation about the center of vorticity of

/2ðTvÞ=2. This rotation can be calculated in a similar manner

to the period of motion. Using

_/2 ¼ �
@H

@I2

; (23)

we find

/2 Tvð Þ ¼ 2

ðImax

Imin

_/2

j _Ij
dI: (24)

FIG. 1. Potential function � _I
2ðIÞ showing the evolution of vortex motion

for various energies, H. There is a critical energy Hc¼ 0.5623, marked as a

dotted line, that divides the two regimes of motion.

FIG. 2. Equal strength vortex trajectories in the co-rotating frame (a) up to

and (b) just before time T, demonstrating the necessary factors for comput-

ing Tv in (21). For (a) the lower-energy three-vortex orbits, a triangle con-

necting the vortices at t¼ 0 (solid) and t¼T (dotted-dashed) is also shown.

The two triangles are equivalent, but the vortex associated with each vertex

has changed, therefore requiring a factor of 3 to return each vortex to its

original position. For (b) the higher-energy two-vortex orbit, the trajectories

are shown for a time just less than T to more clearly show the dynamics. The

vortex that remains separate is about to return to its original position, but the

two orbiting vortices will have changed positions. Therefore, this regime

requires a factor of 2 to return each vortex to its original position.
FIG. 3. Period of motion for each vortex Tv vs. H. The vertical dotted line

shows the boundary between the two regimes of motion.
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With this shift, the motion of the vortices is described in its

entirety. Vortex trajectories in the co-rotating frame are

shown in Figure 5. For these plots and Section IV, we have

normalized the horizontal coordinates by L.

IV. TRANSPORT

Using a standard ODE solver, the system of evolution

equations (13) can be solved for any vortex distribution and

initial passive particle position. If the resulting trajectories

are strobed at every period of vortex motion and the frame is

rotated to remove the vortex shifting, Poincar�e maps such as

those shown in Figure 6 are obtained. These can be com-

pared to the two-dimensional Poincar�e maps given in the first

figure in Kuznetsov and Zaslavsky.15

It can be seen in Figure 6 that, while the dynamics are

purely two-dimensional, the flow has vertical dependence.

Even when particles follow regular trajectories (a)–(c), the tra-

jectories change with depth. In the case where mixing is

exhibited, the barriers of chaotic motion seem to extend as

three-dimensional surfaces, and islands are observed at a range

of depths. A three-dimensional visualization of the chaotic

mixing is shown in Figure 7, and the islands are shown to

extend in depth. This figure was produced by using a set of

Poincar�e sections to approximate the three-dimensional

(a) (b)

FIG. 4. Two regimes of motion are observed, (a) lower-energy two-vortex

orbits and (b) higher-energy three-vortex orbits. The points indicate initial

positions of vortices and the lines indicate trajectories in time. It is observed

that the vortices permute and also rotate in time, resulting in braid-like

trajectories.

(a) (b) (c)

FIG. 5. Vortex trajectories for H¼ (a)

0.54, (b) 0.56, and (c) 0.58 in the co-

rotating frame. These demonstrate the

two regimes of motion from Figure 1.

FIG. 6. Poincar�e maps for SQG point

vortices for two distinct vortex configu-

rations sampled at three depths. Vortex

positions are designated by blue crosses

at the surface in (a) and (d). The upper

row shows a non-mixing case, and it is

observed that the paths change with

depth. The lower row is a case where

two vortices orbit one another, and this

induces mixing, even at depth, though

the chaotic region changes with depth.

Compare the z¼ 0 plots (a) and (d) to

classical solutions in Kuznetsov and

Zaslavsky.15
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chaotic region, and approximating the surface of this volume

using the MATLAB function alphavol.17 Two islands near

(x, y)¼ (60.2, �0.5) descend only partway, whereas islands

near (x, y)¼ (61, 0) descend at least as far as was sampled

here.

In order to analyze the quantitative effect of changing

the vortex distribution (i.e., the parameter H) and compare

the SQG vortices to two-dimensional vortices, it is necessary

to use a measurable property. In chaotic advection, the rele-

vant property is the complexity of the flow, and one of the

most convenient measures of global complexity seems to be

topological entropy. Informally, the topological entropy of a

dynamical system measures the loss of information under the

dynamics. The relation between topological entropy and

maximal rate of stretching of material lines has been investi-

gated by a number of authors.19,25 It is useful in the context

of mixing (or rather stirring), given the extensive study of

the relation between material line stretching and transport.

However, the value of topological entropy can be difficult to

compute given only a velocity field.7,19 Another tool that has

been used to investigate chaotic advection are braids. These

mathematical objects encode the topological entanglement

of trajectories of 2D flows and have been used to investigate

chaotic advection, for instance in the case of point vortices9

and other flows.8,25 Thiffeault and Budi�sić, based on earlier

work,25 have recently developed a tool called Braidlab that,

among other functions, calculates the Finite Time Braiding

Exponent (FTBE), which approximates topological entropy

using particle trajectories.11,26 The FTBE has been used in a

detailed analysis of mixing in vortices.27 The entropy of a

braid of any set of trajectories from the flow is only a lower

bound for the topological entropy of the flow although there

is evidence that this bound can be made arbitrarily tight.

Similarly, FTBE calculations based on aperiodic trajectories

(of the sort computed in this paper) approximate the topolog-

ical entropy of the flow.

One benefit of FTBE over the more commonly used

Finite Time Lyapunov Exponent (FTLE)21 is that FTBE pro-

vides a global measure of complexity as opposed to a local

one,2 allowing us to compare quantitatively the extent of

stirring exhibited by different flows and thus explore the

parameter space. This is particularly relevant when informa-

tion is available only from a limited number of trajectories.

(It is true that FTLEs could be used to generate a global mea-

sure by averaging over the spatial domain, but we pursue the

FTBE approach here.)

The FTBE is dependent on the number of trajectories.

While it also depends on the length of integration time, we

found that it converged after enough time, as shown in

Figure 8. Hence, we fix our analysis to include 64 trajectories

integrated over 90 periods of vortex motion. As an estimate,

the FTBE also varies slightly according to the time step cho-

sen and the initial conditions of the trajectories. To quantify

this variation, 13 different sets of 64 trajectories were used

to generate a mean FTBE and standard deviation for each

flow considered. Because the vortices are of equal strength

and we have fixed L¼ 1, the only varying parameter is H.

FTBE vs. H is shown in Figure 9. The boundary

between the two mixing regimes of vortex motion is indi-

cated with the vertical dotted line, and it seems that for the

lower-energy flows the observed mixing is relatively con-

stant, with a minimum seen right at this regime boundary.

Then, as the energy of the vortex configuration increases into

the two-orbiting-vortices regime, we see FTBE increasing as

well. Comparing the SQG case in Figure 9(a) to the classical

two-dimensional case in Figure 9(b), the same qualitative

trends are observed but the SQG case exhibits a higher level

of mixing than the classical case. Finally, in Figure 9(c)

FTBE is calculated at increasing depth, where the plane of

vortex motion is z¼ 0. While the vortices still produce mix-

ing at a depth close to the surface, the FTBE falls steeply at

depths below approximately z¼�0.25. This is consistent

with qualitatively simpler Poincar�e maps generated at depth

z¼�0.5 shown in Figure 6(f).

V. ARBITRARY VORTEX STRENGTH

Aref described the motion of three classical vortices of

arbitrary strength by noting that these sums are constants of

motion X
i

jixi;
X

i

jiyi;
X

i

jiðx2
i þ y2

i Þ;

FIG. 7. A 3D visualization of the chaotic mixing region of a flow, demon-

strating that the islands in the Poincar�e maps extend as surfaces in three

dimensions. This figure was produced by using a set of Poincar�e sections to

approximate the three-dimensional chaotic region, then using the MATLAB

function alphavol17 to produce the surface containing this region.

FIG. 8. Convergence of FTBE as integration time is increased.
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and therefore the sum

1

2

X
i;j

jijjl
2
ij; lij ¼ jzi � zjj;

is constant and independent of the choice of coordinates.

Additionally, the Hamiltonian is a constant. With the con-

vention j1�j2> 0, the above can be used to define a con-

stant parameter C such that

j1j2l212 þ j2j3l2
23 þ j3j1l213 ¼ 3j1j2j3C:

C is essentially a time scale for relative motion. Note that,

with the origin defined as the center of vorticity,

L ¼ 3

Q
j jjP
j jj

C;

so fixing L¼ 1 in the equal strength case is equivalent to

C¼ 1.

For nonzero C we can define trilinear coordinates

b1 ¼
l2
23

j1C
; b2 ¼

l2
13

j2C
; b3 ¼

l212

j3C
;

with

b1 þ b2 þ b3 ¼ 3:

Additionally, the physical regime is where the vortex posi-

tions can form a triangle, which in trilinear coordinates is

expressed as

ðj1b1Þ2 þ ðj2b2Þ2 þ ðj3b3Þ2

� 2ðj1j2b1b2 þ j2j3b2b3 þ j1j3b1b3Þ:

From here, the SQG analysis differs from Aref’s

because we introduce the SQG Hamiltonian

H ¼ 1

4p

X0
i;j

jijj

li;j
:

Rewriting in terms of trilinear coordinates we find

H ¼ j1j2j3

2pjCj1=2

1

jb1j1j1=2j1

þ 1

jb2j2j1=2j2

þ 1

jb3j3j1=2j3

 !
;

(25)

1

jb1j1j1=2j1

þ 1

jb2j2j1=2j2

þ 1

jb3j3j1=2j3

¼ 2pHjCj1=2

g3
¼ h;

(26)

where g ¼ ðj1j2j3Þ1=3
is the geometric mean. The second

line indicates a constant of motion that defines the phase tra-

jectories in trilinear coordinates, and this constant h is con-

sidered to be a shape parameter.

A particular set of vortex properties will correspond to a

point in the plane of trilinear coordinates within the physical

regime (see Figure 10). As time evolves, the vortices will

trace the phase trajectory line. If the trajectory goes off to

infinity, as in plot (c), the vortices scatter. Intersections of

the trajectories with the physical regime boundary are points

where the vortices are collinear. At the fixed points of the

trajectories, which are at the center of the concentric curves

in plots (a) and (b) and at trajectory intersections in plots (c)

and (d), the vortices exhibit rigid motion. As for classical

two-dimensional point vortices, this fixed point is

FIG. 9. For three equal strength SQG vortices, the FTBE is calculated for various vortex configurations characterized by the Hamiltonian, H, plotted (a) at the

surface and (c) versus depth. For comparison, the FTBE for three equal strength two-dimensional vortices is shown in (b). Error bars of the FTBE are deter-

mined by statistical analysis of several choices of trajectory subsets. The vertical dotted line indicates the boundary between the two regimes of vortex motion.

(a) (b)

(c) (d)

FIG. 10. Phase trajectories for various vortex strengths, with values of the

shape parameter h of each curve labeled. Three axes represent trilinear coor-

dinates and the black curve shows the physical regime boundary. Compare

to Figures 2, 3, and 4 in Aref.3 Intersections of trajectories with physical

regime boundaries represent collinear vortex configurations, escapes to

infinity represent vortex scattering, and fixed points correspond to rigid

motion of the vortex configuration.
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b?1; b
?
2; b

?
3

� �
¼ 1

h

1

j1

;
1

j2

;
1

j3

� �
; (27)

where

h ¼ 1

3

1

j1

þ 1

j2

þ 1

j3

� �

is the harmonic mean.

If C is zero, the analysis is much the same with the

change

b1 ¼
l2
23

j1

; b2 ¼
l2
13

j2

; b3 ¼
l2
12

j3

;

b1 þ b2 þ b3 ¼ 0 :

Expressed in terms of only (b1, b2), the trajectories will be

given by

1

jb1j1j1=2j1

þ 1

jb2j2j1=2j2

þ 1

j b1 þ b2ð Þj3j1=2j3

¼ h;

as shown in Figure 11. Unlike the equal strength case, for

arbitrary strength vortices the trajectory cannot be written

explicitly, but the period of permutation and the rotation rate

of the vortices can be computed from the resulting integra-

tion. Some examples of resulting vortex trajectories are

shown in Figure 12.

From the phase trajectories in Figure 10, it is clear that 5

constants must be designated to specify one unique solution:

three vortex strengths define the phase space, h defines a par-

ticular phase trajectory, and C defines the time scale of fol-

lowing that trajectory. This parameter space is therefore very

large, and as a preliminary examination only select slices are

considered here. The integration time was also limited to

only 60 periods of vortex motion.

First, the effect of varying L in the equal strength case is

examined in Figure 13. It is clear from these results that

changing L will vary the critical depth at which the FTBE

drops steeply. Additionally, L affects the scale of the FTBE,

where smaller L leads to overall higher FTBE. Small L
implies that the vortices are spaced very near one another,

resulting in larger velocity magnitudes in the flow between

the vortices. It is perhaps not surprising that these higher

velocities lead to more efficient mixing.

For a second case, the three initial distances between vor-

tices are designated as l13 ¼ l12 ¼ 2l23 ¼ 0:2 and the vortex

strengths are constrained by j1¼ j2. With this it is possible to

solve for both these strengths as well as the third vortex

strength from specifying two constants of motion. The param-

eter domain was chosen to be extensive, �100< h< 100,

�1<C< 1, and a grid of 256 samples was examined. For

these calculations, horizontal lengths are not normalized by L,

as this results in changing C. All the simulations exhibited

mixing, and the resulting FTBEs across this coarse grid are

shown in Figure 14. Although only preliminary, the results

seem to indicate a line in h-C space of maximum FTBE. A

more rigorous computational exploration of the parameter

space would be needed to fully uncover the trends in FTBE.

As a third case, the constant of motion C is fixed as

unity as it was in the equal strength case, and the vortex

strengths are constrained by j1¼ j2¼ 1. Then, the system is

determined by the h-j3 parameter space. Based on phase tra-

jectory plots, a representative parameter domain was chosen

to be �2< h< 5, �8<j3< 8. In this case, many parameter

gridpoints did not have mixing, either because there was not

a physical solution (marked as negative and separated by a

black contour in Figure 14(b)), or because the solution

resulted in two vortices orbiting so energetically as to domi-

nate the dynamics, resulting in periodic flow trajectories

(marked as zeros).

(a) (b)

FIG. 11. Phase trajectories for the case C¼ 0 and two vortex strength com-

binations. The axes represent b1, b2 with b3¼�b1 � b2, and the black lines

show the physical regime boundary. Values of the shape parameter h are

labeled. In the case of (a), the physical regime boundaries lie along the (b1,

b2) axes. Compare to Figures 5 and 6 in Aref.3.

(a) (b) (c)

FIG. 12. Select examples of vortex trajectories. In (b) and (c), the shape parameter h is near the unstable fixed point of the phase trajectories. In (b) specifically,

the value of h is slightly less than that of the critical phase trajectory shown in Figure 10(c), such that this phase trajectory will curve away from the unstable

fixed point toward the trilinear axes. This vortex trajectory traces the phase trajectory back and forth between the intersections with the physical regime bound-

ary, at which points the vortices are collinear. Similarly, in (c), this physical trajectory represents the phase trajectory in Figure 10(d) that traces from the inter-

section near the top of oval that is the physical regime boundary, passes near the unstable fixed point, and then traces to the intersection near the right of the

oval.
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VI. SUMMARY AND CONCLUSION

This work has presented a novel analysis of SQG point

vortex interaction as well as an exploration of the surround-

ing flow properties. As in the two-dimensional case, three

vortices have the potential to induce chaos in the surrounding

flow trajectories. This mixing has been diagnosed using the

classical tool of Poincar�e maps and the new FTBE tool.

These vortices behave qualitatively in the same way as clas-

sical two-dimensional point vortices, exhibiting the same

two regimes of motion in the equation strength case, and

similar phase trajectories in the arbitrary strength cases.

The FTBE seems to provide a good measure of global

complexity, revealing quantitative trends in mixing based on

the flow parameters. While the value of the FTBE is not

meant to be construed as a physical value, it can be used to

compare relative tracer complexity between flows, where a

higher FTBE indicates higher complexity and thus mixing.

The first trend observed for SQG point vortex flows is that

the FTBE is relatively constant in the regime of three orbit-

ing vortices, then a minimum is found near the regime

boundary, and mixing then increases with energy in the

regime of two orbiting vortices. Also, the SQG case exhibits

a higher extent of mixing than the classical two-dimensional

case. The second trend is that there is a critical depth below

which the FTBE falls steeply, and this depth is dependent on

the constant of motion L ¼
P

i jijzij2. Finally, a third trend

is given in a preliminary investigation of FTBE for arbitrary

vortex strength, which seems to indicate a line in h-C space

that corresponds to maximum mixing.

Work in progress will expand on this analysis to deter-

mine the effect of including O(Ro) velocities. Following

others, Muraki et al.18 have calculated the small Ro-order

expansion to the QG equations. The O(Ro) equations include

derivatives of the O(1) solution, and in the point vortex case,

where the O(1) solution is singular, these terms are very

problematic. However, the vertical velocity can instead be

obtained from the energy conservation equation

wþ Dh
Dt
¼ 0:

It is thus possible to examine the effect of vertical velocity

on mixing, though in this case the solution is not dynami-

cally consistent because the velocity is not divergenceless.

For a dynamically consistent solution, a different model

problem must be used. Other ongoing work is examining

mixing due to elliptic patches formed by collapsed constant-

PV ellipsoids, as in the study of Dritschel et al.13

Because the SQG model is relevant to large-scale ocean

flows, understanding mixing in this model should provide

insights into the physical processes behind pollution disper-

sion or vehicle trajectories in weakly three-dimensional

flows. As a two-dimensional model with vertical depen-

dence, such examination also shows how tools for studying

mixing in two-dimensional flow can be modified to apply to

more complicated, three-dimensional problems. While the

FTBE cannot be extended directly to three dimensions, the

relative scales of vertical to horizontal motion mean that the

topological properties of the flow used by the FTBE are still

two-dimensional to leading order.
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