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Matthew Randolph Lee

ABSTRACT

We now live in the genomics era, where novel sequences abound, awaiting

structural determination that will probably only ever be solved experimentally in a small

fraction of these new targets, due to the time constraints of experimental methods. Thus,

the allure of accurate, insightful protein structure prediction is greater now than it ever

has been, but the leading-edge methods fall well short of providing useful predictions,

unless there is a very high percentage of sequence identity. Amino acid sequences

exhibit an enormously large number of possible conformations, leading to a

dimensionality problem that can only be overcome by reducing the representation of the

protein. Unfortunately, resolving the difficulty of dimensionality by simplifying the

representation also limits the extent of accuracy that can be had. A logical answer to this

predicament is to pass on structures obtained from an ab initio or comparative modeling

protein structure prediction effort, which both are effective at dramatically reducing the

number of allowable configurations, into a more accurate method such as molecular

mechanics/dynamics, to move from low/medium resolution structure predictions to high

resolution ones. This can be accomplished by simply more effective scoring of the large

number of predictions that arise from the early stages, and by drawing the best

predictions ever more closely to the native state. This thesis has been an exploratory

effort, met with significant success, designed to evaluate the promise of using methods

within molecular mechanics, molecular dynamics in particular, in the endgame of protein

structure prediction for high resolution protein structure prediction.
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Chapter 1:

Introduction



Successful ab initio protein structure prediction remains one of the greatest

challenges in computational chemistry, while protein structure prediction in general has

become of much greater widespread interest due to the vast number of new sequences

identified by genomics initiatives in recent years. A widely held belief, postulated by

Anfinsen', is that the structure of every protein is governed by thermodynamics, that

native structures lie at the global free energy minimum. Although examples are

beginning to surface in which this postulate does not hold true, with the first published

case being o-lytic protease”, these are widely regarded as exceptions to the rule. Thus, a

computational approach should be capable of both identifying and finding the native

structure by monitoring the free energy in most proteins. However, there are three

pragmatic reasons why the structure prediction community cannot take advantage of this

premise (or discount it). To begin with, the free energy landscape presumably has a very

uneven surface, meaning that structures with lower free energies do not necessarily have

more native similarity. Second of all, the dimensionality of conformational space,

coupled with limited sampling in modern computational methods, makes it difficult to

explore many conformations over a practical timescale. The third reason, perhaps the

most important of all, is that obtaining an accurate free energy function has remained a

challenging unsolved problem.

Compared to NMR and crystallography experiments, methods for structure

prediction produce structures with low levels of accuracy, lacking sufficient accuracy in

the energy potential. To address the first and second practical reasons mentioned above,

the ruggedness of the landscape and the dimensionality problem, ab initio approaches use

simple, highly empiricized potential energy functions that bias the dominant forces

thought to direct protein folding’ and in some cases, additional database restraints” to



narrow down the number of acceptable conformations. A popular choice in these

approaches is the use of a lattice model, which unrealistically separates the continuum of

backbone dihedrals into only a few bins. Another common simplification is the omission

of hydrogen atoms and the representation of side chains in a simpler form, such as a

single particle. The main alternative to ab initio methods, comparative modeling, in its

"classical” approach (for review, see Sanchez et al.)", creates a core from the structurally

conserved region, then builds in the variable loop regions and lastly adds side chains, by

inheritance if possible or from rotamer libraries with simple potential functions.

The main focus of comparative modeling is to reduce the dimensionality issue by using

as much knowledge-based information as possible. Both these approaches are designed

with the intent of allowing a computer to rapidly screen out a relatively small number of

native-like conformations and neither captures all of the physics involved with structure

determination. In order to address the third pragmatic reason, the accuracy issue, these

predicted structures can then be superimposed onto an all-atom molecular mechanics

model for the endgame of a hierarchical protein structure prediction approach; by being

more faithful to the structural detail and applying a more sophisticated potential energy

function, the hope is that the structural and energetic description of the system will be

improved to allow for high resolution protein structure prediction.

The aforementioned methods for protein structure prediction generate many tens

to thousands of structures, which gives rise to three major objectives in the “endgame” or

final stages of structure prediction: 1) correct identification of the native state, 2)

enhancing the selection process and 3) refinement of best structure predictions, which are

still not accurate enough for practical application.



Molecular dynamics (MD), which moves a molecular mechanics structure along

the energy landscape according to Newtonian mechanics, can in principle with sufficient

sampling be used for the structural refinement of ab initio and comparative modeling

predictions. Chapter 3 represents the first successful attempt at using state-of-the art

explicit solvent, restraint-free molecular dynamics simulations for refinement of the HP

36 villin headpiece and ribosomal S15 proteins, although we do not find similar success

using this refinement method in Chapter 5 on any of 12 other proteins. Although the

possibility of either our energy function being inadequate to improve structures or

Anfinsen’s thermodynamic hypothesis being incorrect can not be discounted, an inability

to refine structures with standard state-of-the-art molecular dynamics simulations

probably stems from the inability to sample sufficiently, as these dynamics simulations

are now accurate enough to maintain the native structure with 1 to 2 Å Co. RMSD, well

within the expected fluctuation range of native states under physiological conditions." A

number of ways of improving the sampling are currently in the literature, and include

lowering energy barriers of the potential energy surface through mean-field approaches

such as Locally Enhanced Sampling”, filtering out the low energy motions as in Self

guided MD", and running the simulations with and implicit solvent, such as the

* or the Finite Difference Poisson BoltzmannGeneralized Born approximation"

method”.

Being able to consistently refine predicted structures would be an extremely

valuable aspect of the endgame itself, but theoretical work should also provide additional

physical information that can be used to improve the ab initio and comparative modeling

methods. For instance, MD simulations on fluids generate thermodynamic properties

such as the specific heat, while those on small rigid molecules predict conformational



free energy differences. Similarly, it would be beneficial for protein structure refinement

MD runs to not only produce a trajectory of conformations, but to also provide an

estimate of the relative free energy for each one. This could serve not only as a more

effective discriminator over the feeder methods that use more approximate potential

functions, but also be used iteratively to improve the initial stage structure prediction

methods.

Over the past decade, a number of studies have approached this difficult

evaluation in various biomolecules using a continuum solvent model in which the total

free energy is partitioned. This continuum solvent model, when used to post-process

molecular dynamics simulations through the Molecular Mechanics-Poisson

Boltzmann/Surface Area free energy (MM-PBSA), had been shown to give results that

correlate well with experimental data when comparing nucleic acid configurations in

solution". In these nucleic acid systems, however, Gelee seems to account largely for the

free energy differences, with the other contributions being relatively insensitive to

configuration. This leads to only a single dominant term that requires “fine tuning”.

Still, this general type of approach had also been used successfully on other biomolecular

systems as well. Eisenberg & McLachlan were able to reproduce, with high accuracy

and using a very simple empirical solvation free energy, the experimental solvation free

energies of transfer observed in amino acids”. Later, a more rigorous continuum solvent

treatement, similar to MM-PBSA, was used to discriminate between folded and

intentionally “misfolded” protein conformations that are structurally and energetically

very different from each other".

Perhaps the most challenging application of the combined explict/continuum

model MM-PBSA is to accurately compare the free energies of different solvated stable



protein conformers. Unlike nucleic acids, the stability in proteins is significantly affected

by forces other than the electrostatics, most notably the hydrophobic effect and loss of

configurational entropy”. Chapter 2 represents the first attempt at using an implicit

solvent free energy function for discriminating between the native state and a partially

folded, compact conformation. This nice result was further tested on a much more

challenging set of small alpha proteins in Chapter 3, where through molecular dynamics

simulations, we were able to not only refine structures as mentioned above, but also see a

corresponding drop in our continuum solvent free energy. In Chapter 4, we investigated

much larger decoy sets as well, and compare the quality of NMR and crystal structures,

and provide stimulating results, which suggest that an unfolded state can be used as a

reference point to identify the native without prior knowledge of any native information,

the first of the three main goals in the endgame of structure prediction. In Chapter 5, we

characterize the ability of our high resolution protein structure prediction tools to act as

the endgame of a statistically meaningful set of proteins.

Given that genomics initiatives have fueled the more general interest in protein

structure prediction, due to the ever growing disparity between known sequences and

structures, a set of methods useful for the endgame of protein structure prediction should

be 1) accessible to anyone who has an interest, rather than just people who specialize in

the area, 2) capable of taking advantage of the rapidly growing computer power, and 3)

applicable to large numbers of protein conformations. In Appendix A, I present the

Scripting programs I wrote as part of my Ph. D. that enabled me to automate those

processes that previously required manual human intervention, from setup to analysis,

which on a large scale set of proteins otherwise acts as the bottleneck. These scripts are

an ideal way of maximizing efficient usage of the types of parallel architecture that are



becoming increasingly popular, namely the single processor Intel or AMD machines that

are being networked together, by applying methods for the endgame of protein structure

prediction that are useful in identifying the native state, ranking structure predictions, and

refining some of the structure predictions further.
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On the Use of MM-PB/SA in Estimating the Free Energies of Proteins:

Application to Native, Intermediates and Unfolded Villin Headpiece
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ABSTRACT:

We investigate the stability of three different ensembles of the 36-mer villin headpiece

subdomain, the native, a compact folding intermediate and the random coil. Structures

were taken from a one pus molecular dynamics folding simulation and a 100 ns control

simulation on the native structure. Our approach for each conformation is to first

determine the solute internal energy from the molecular mechanics potential, then to add

the change resulting from solvation (AGsov). Explicit water was used to run the

simulation and a continuum model was used to estimate AGsov with the finite difference

Poisson-Boltzmann model accounting for the polarization part and a linearly surface

area-dependent term for the non-polar part. We leave out the solute vibrational entropy

from these values but demonstrate that there is no statistical difference among the native,

folding intermediate and random coil ensembles. We find the native ensemble to be ~26

kcal/mol more stable than the folding intermediate and ~39 kcal/mol more stable than the

random coil ensemble. With an experimental estimate for the free energy of denaturation

equal to 3 kcal/mol, we approximate the non-native degeneracy to lie between 10" and

10°. We also present a possible scheme for the mechanism of folding, first order

exponential decay of a putative transition state, with an estimate for the ty, of folding of

~1 pis.
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INTRODUCTION:

Among the goals of computer simulations of protein systems are to understand the

mechanism and kinetics of folding and to predict the correct native structure from the

very large number of possibilities.

Because the time scale of protein folding, ranging from tens of microseconds to

seconds, makes it currently prohibitive to study the entire mechanisms of folding using

all-atom models with explicit solvent, simplified models have been used and have given

1,2,3,4exciting insights All atom models have been used to give insights into protein

5,6,7,8,9unfolding by raising the temperature to high values Also, advances in computer

power have enabled studies on the early stages of the mechanism of protein folding",

using all-atom, explicit solvent models. Progress has also been made in predicting

protein structure from sequence”, but there is still much work to be done. A crucial

element in reaching the goal of predicting protein structures is the development of a

method that can discriminate between the correct native structure and other alternatives.

Because native protein structures at physiological temperatures are determined by their

free energies, which consist of competing enthalpic and entropic parts, gas-phase

energies alone are unlikely to be effective for such a purpose, even at the atomic level".

As a result, two general types of approaches have emerged for adding the entropy:

knowledge-based and physical. The knowledge-based methods rely on comparison with

properties of known proteins” taken from the protein structure databases. The physically

based methods use functions from molecular mechanical force fields. Recently, we'"

and Hermans' group" proposed two similar physical methods and showed they were

effective in comparing different structures of free energies of nucleic acids" and

12



proteins”. The challenge remains to try such functions on even more challenging decoy

structures that come increasingly closer to the correct native structure. An interesting test

case has been afforded us in this regard, as our simulation of the early phase of villin

folding found a variety of structures including a metastable intermediate. We also have a

control simulation on native villin (minimized average NMR structure”) which lasted

100 nanoseconds, approximately 10 times longer than any comparable simulation on a

native protein.

We have applied the molecular mechanics-Poisson Boltzmann/surface area (MM

PB/SA) method developed by Srinivasan et al." to the folding and native simulations of

villin, a net 1.1 microseconds worth of structures. We find, encouragingly, that the native

structure is calculated to have a noticeably more favorable free energy, 15-35 kcal/mole

lower than all other structures, with the intermediate characterized by the lowest free

energy found during the folding trajectory.

METHODS:

As previously reported", we ran molecular dynamics with the Cornell et al. all

atom force field", the TIP3P model for water, periodic boundary conditions and an 8 A

cutoff for all solute/solvent non-bonded interactions (with no cutoff for intra-solute

interactions) to sample conformational space in the isothermal-isobaric ensemble.

Energy calculations reported in this study were made every 100 ps, totaling 10,000

evaluations for the folding trajectory and 1,000 for the control simulation. We first

approximated the free energy of each snapshot as the sum of two terms: the internal

energy of the protein (EMM) and a solvation free energy (AGsov).

13



G1 = EMM + AGsov (1)

EMM is the sum of an internal strain energy (Eint), a van der Waals energy

(vdWºot), and an electrostatic energy (EELto). Eint is the energy associated with vibration

of covalent bonds and rotation of valence bond angles and torsional angles. VdWol and

EELto are further broken down into short range values, those that are within three

covalent bonds (vdW14 and EEL1-4), and long range values that are four or more covalent

bonds apart (vdWNB and EELNB).

The entropy of a given snapshot (Ssolute), excluding conformational entropy, can

be estimated by calculating the translational, rotational and vibrational partition functions

with normal mode analysis on a Newton-Raphson minimization. Because

configurational differences stem primarily from the latter, we will refer to this as the

“vibrational” entropy. This is the most time-intensive part of the MM-PB/SA method on

a per snapshot basis and we performed the vibrational entropy calculation on five

conformers each of the native state, the metastable folding intermediate, and the

denatured state.

Obtaining the solvation free energy from an implicit description of solvent as a

continuum is advantageous because it affords a solvation potential that is a function only

of the solute's geometry, as discussed and implemented by Srinivasan et al.”

AGsov = <AGNP + “AGpop as (Ye SASA + b) + “AGoo■ - (2)

14



The non-polar solvation free energy (AGNP) includes the (largely entropic) cost of

creating a solute-sized cavity in solvent and the free energy of inserting the discharged

solute into that cavity. Also referred to as the first solvation shell effects, this term has

been found experimentally in hydrocarbons to be linearly related to the solvent accessible

surface area (SASA), which is obtained from Sanner’s MSMS algorithm” (probe radius

= 1400 Å). The Y coefficient is set to 5.42 cal/mol • A* and b is set to 920 cal/mol. The

electrostatic solvation free energy (AGPol) is the cost of charging the discharged solute in

the cavity. We adhered to the same Poisson-Boltzmann protocol as described by

Srinivasan et al.", which uses DelPhi’’ and most of its standard default parameters,

together with PARSE atomic radii” and Cornell et al. charges”, to calculate the

electrostatic solvation free energy difference for the system between exterior dielectrics

of 80 (solvent) and unity (gas phase) according to the position dependent electrostatic

potential. One small difference in this usage of DelPhi is to use larger grid spacing of 0.5

A, extending 20% beyond the edge of the solute. Additionally, we used fewer finite

difference iterations (1000) for each (AGPol) calculation, which was still amply sufficient

as we found the values in this system to reach 90% convergence at around 50 iterations.

RESULTS & DISCUSSION:

The native structure has the lowest MM-PB/SA free energy estimate.

Figures 1 and 3a show the actual MM-PB/SA free energy data as a function of

time from the folding and control simulations. As shown in Table 1, we predict the

native villin headpiece conformation to be on average -25 kcal/mol more stable than the

lowest energy state encountered during the 1 pus folding simulation (15 kcal/mol at the

15



smallest gap). This non-native low energy state is, as previously reported, highly

compact with a residence time of 160 ns". In comparison, we predict the native

conformation to be on average -35 kcal/mol more stable than the unfolded state.

-950

-970

| 101 0 …

-1030

-1050

-1070

Time (ns)

Figure 1. MM-PB/SA free energy from the folding trajectory. The free energy
was calculated once every 100 ps, a total of 10,000 times for one pus of data. For
each Poisson-Boltzmann calculation, 1000 iterations were used with grid spacing
of 0.5 A, PARSE radii and Cornell, et al. charges. The 20 ns running average of
100 ps time steps is shown as the darker solid line. The previously reported
folding intermediate ensemble, lies between 240 and 400 ns. We refer the
structures from 500 to 1000 ns as the “random coil ensemble” or the “unfolded
state”.
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Figure 3. Control simulation results showing (A) actual MM-PB/SA data and
(B) 20 running averages. The 20 ns running average of the free energy remains
relatively constant at –1058 kcal/mol.

The folding trajectory roughly obeys Boltzmann statistics, according to MM-PB/SA.

In our previous work, we further characterized the folding trajectory by a

clustering method, using a limit of 3 Å main-chain RMSD from the cluster's average, and

found 30 marginally stable states that were populated with ~500 or more of the 50,000

total coordinate sets". The relationship between the natural log of the cluster population

and the MM-PB/SA free energy appears to be a reasonably well behaved Boltzmann

distribution, with a correlation coefficient of -0.54. We do not expect a perfect inverse
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relationship because kinetic barriers distort the Boltzmann relationship in a non-ergodic

trajectory and because the MM-PB/SA free energy is not completely accurate.

Electrostatics are the major source of fluctuation, but not a good predictor of G1

As can be seen in Figures 2 and 3b, AGsov and EMM each exhibit much more

fluctuation than their sum, G1. Over a typical 10 ns period, AGsov and EMM will each

oscillate over a 300 kcal/mol range and G over a 50 kcal/mol range. The standard

deviations over the entire 1 pus folding trajectory are 66.5 kcal/mol for AGsov, 73.7

kcal/mol for EMM, and only 17.6 kcal/mol for G1. The reason for such a disparity in

variances is that AGsov and EMM are strongly inversely related with a correlation

coefficient of -0.97; large changes of AGsov are always accompanied by approximately

equal and opposite changes in EMM. This inverse relationship can be explained by

looking at their dependency on their individual electrostatic components. EMM has a

correlation coefficient of 0.95 with its electrostatic term, the intra-protein Coulombic

energy (EMM-eel), and AGsov one of 1.00 with its electrostatic term, the cost of charging

the solute (Gpol). The correlation between EMM-eel and Gpol is also strong with a

coefficient of -0.97. As intra-solute electrostatic interactions are formed, EMM-eel and

resultantly EMM decrease, while electrostatic interactions between solute and solvent are

broken, and resultantly Grol and AGsov increase. Thus, the solvation free energy and gas

phase energy are inversely related because their preponderant terms are themselves

inversely related. The causal factors for fluctuation of AGsov and EMM are their

electrostatic terms, while the causal factor for fluctuation in G1 is the total electrostatics

for the solvated system (EELto), the sum of EMM eel and Grol.
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Given that electrostatics provide the major source of fluctuation in the solvated

protein system, a separate issue remains as to whether or not EELot dictates the general

trend of G1. We find EELlot over the course of the folding trajectory to have a correlation

coefficient of only 0.30 with G1, and the sum of the remaining non-electrostatic terms in

the system (non-EEL) one of 0.77 with G1. In addition, EELtot in the folding trajectory

has a much smaller standard deviation (16.2 kcal/mol) than non-EEL (27.3 kcal/mol). It

is not the delicate balance between the sum of strongly opposing terms, Gpol and EMM eel,

that relates best to our estimate of the total free energy. Rather, it is the sum of all other

terms not associated with electrostatics that drives the shape of the G1 trajectory. This is

not to suggest that forces created by electrostatic interactions are a small contribution to

the sum of all forces acting on a protein, that they do not drive the motion of the protein.

What the variances in the distributions of EELtot and non-EEL show are that the sum of

electrostatics is much more constant, and what the correlation coefficients with GI show

are that the sum of non-electrostatics is more responsible for changes in the free energy.
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Table 1. Summary of Bººks from MD Simulations on the Villin Headpiece

Ensemble <vdW->|<eel- |<Emº ºxº~~AGo- <AGNP

Native - 104.6 |-731.9 582.0

(1 to 100 ns) (11.1) (31.5) (16.1)

-105 |-720.1 || 600.6

(14.9) (30.1)|(17.6)
Folding Intermediate

(240 to 400 ns)

Unfolded

(500 to 1000 ns)
–65.6 |-660.9 || 598.3

(17.5) (50.9)|(16.8)

NOTES: 1) values are given in kcal/mol with standard deviations in parenthesis
2) n=5 for T-Sgas
3) G1 = EMM + DGsolv

Compact structures have better long range van der Waals contacts.

As seen in Table 1, we consider the 100 ns native simulation as a single ensemble

and have broken the folding trajectory into two further ensembles, folding intermediate

and the unfolded (the last half microsecond of the trajectory). The one energy component

that is similar for the native and intermediate states (~ -105 kcal/mol) and significantly

more favorable than in the ensemble of unfolded structures (~ -66 kcal/mol) is vdWot.
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The P value from a two-tailed student's t-test between average values from native and

folding intermediate is statistically insignificant (> 0.05). In contrast, P values, even after

the Bonferroni correction for multiple group comparison, between native and unfolded

and between intermediate and the unfolded are highly significant (< 0.0001). However,

when looking at EELtot, the internal strain energy (Eint), and the energy of the non-polar

first solvation shell effects (AGNp), none of the 3 pairwise comparisons of the three

ensembles is significantly different for any of the three energies. In addition, we find

vdW1-4 to show virtually no fluctuation in any of our simulations, that the variance found

in vdWrot is essentially identical to that of vdWNB, which implies that it is the long-range

van der Waals interactions (4 or more covalent bonds apart) that are more favorable in

the native and intermediate states. This is reasonable since these two ensembles are more

compact and more favorable van der Waals interactions would be a rational causal factor

that they might share in common.

Although the above shows that the two similarly compact native and folding

intermediate states have dispersion energies (vdWNB) that are similarly favorable over the

less compact unfolded state, this does not imply that all states with native compactness

will necessarily have dispersion energies as favorable as the native state. It is possible

that the most highly compact structures will not have well packed interiors and therefore

higher than native dispersion energies. In this case, the native-like dispersion energies in

the folding intermediate were accomplished only at the expense of internal strain energies

(see below).

A more statistically meaningful way to associate van der Waals interactions with

compactness is to look at the correlation coefficients between the vdWNB and some
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parameter that estimates degree of compactness, because this weights the relationship at

every snapshot as opposed to comparing three group averages, which can only reveal if

the relationship is direct or inverse. The most common measure for degree of

compactness is the radius of gyration (R), which calculates the root mean square

deviation of each atom in a molecule from the center of mass. The correlation coefficient

over the entire folding simulation is 0.82 and that from the control simulation is 0.67,

suggesting that compactness and long-range dispersive forces are indeed related, albeit

more so in the less compact non-native structures. However, even when looking only at

the most compact region of the folding simulation, the folding intermediate, the

correlation coefficient is still much higher than the value in the native structures, 0.79.

Thus, although the two similarly compact states have similarly favorable dispersion

energies, the relationship between Ry and vôWNB is substantially lower in the native state.

Among compact states, there can be a larger distribution of correlation coefficients than

among unfolded structures. Perhaps this lesser degree of correlation in the native state

can be explained if very well-packed protein sidechains hinder deviations in the

compactness from being accompanied by changes in VDWNB. The hydrophobic core in

the native state will have very favorable van der Waals contacts, and hence a reasonably

constant va Wºot that will likely be less sensitive to the protein’s periodic expansion and

relaxation than that of the folding intermediate and unfolded ensemble whose sidechains

have more freedom to reorient themselves.
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Table 2. Summary of Internal Strain Energies from MD Simulations on
the Villin Headpiece'

|- Ensemble Bond * Dihedral Eint
Native 104.5 274.7 202.8 582.0

(1 to 100 ns) (8.1) (11.8) (8.6) (16.1)
Folding Intermediate 106.7 290.7 203.6 601.1

(240 to 400 ns) (8.6) (12.5) (10.4) (15.8)
Unfolded 105.9 285.9 206.7 598.5

(500 to 1000 ns) (8.2) (12.5) (9.4) (15.5)
(Intermediate) - (Native) 2.2 16.0 0.8 19.0

(Unfolded) - (Intermediate) -0.8 –4.8 3.1 -2.6

'values are given in kcal/mole, with standard deviations in parenthesis

The native state has less internal strain than other compact structures.

We use the same type of comparisons between native and other compact

structures as we did between compact and non-compact structures in the previous section.

Referring back to Table 1, one can compare the energy terms between native and folding

intermediate ensembles. Gi is ~27 kcal/mol lower and Eint -19 kcal/mol lower in the

native ensemble than in the folding intermediate. The difference seen in the averages of

Eint is highly significant with a Bonferroni-corrected P value < 0.0001. None of the other

energy terms (EEtot, vaW, and AGNP) are significantly different between the native and

folding intermediate states.

By these group comparisons, it appears that Eint has the greatest association with

G1 in the native and little association in all other ensembles. Again, correlation

coefficients provide more information. In the unfolded ensemble (500 ns – 1 pus), the

coefficient between Eint and G1 was only 0.30, suggesting that they are relatively

independent of one another. In the control simulation on the native ensemble, we observe
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a correlation coefficient of 0.73 and in the compact folding intermediate ensemble, a

coefficient of 0.26. These data suggest that biggest source of disparity between the native

and other low Ry states in this study is Ent, the internal strain energy. Table 2 takes a

more detailed look at the Eint and finds that the major source of difference is the angle

term.

Entropic contributions to the MM-PB/SA method.

Table 1 shows that vibrational entropy does not differ by much among the native,

compact and unfolded states and that the ToSsolute term does not appear to be any more or

less favorable in any of the states. The P values for the three pairwise comparisons are all

greater than 0.05 and thus not statistically different. This is in agreement with the

findings of Hermans when comparing folded and misfolded protein structures, using the

harmonic approximation from the covariance matrix of the positional fluctuations during

the dynamics trajectory,” and of our group when comparing different forms of nucleic

acids”. Neither method is particularly accurate, but both show that the T-Solute term

is comparable for various similar “structures” of small proteins.

The native and random coil intrinsic “vibrational” entropies are similar but it is

the entropy associated with the hydrophobic effect that is represented in the AGNP term.

As expected, this part of the solvation free energy is least favorable in the unfolded states

which also has the highest Ry. This AGNP term makes the unfolded states, from 500 ns to

1 us, about 3 kcal/mol less favorable than the native (P<0.0001). However, AGNP in the

folding intermediate is about 1 kcal/mol more favorable than in the native ensemble (P<

0.0001). As should be expected with a simple linear relation, the fact that the folding
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intermediate is (statistically) significantly more favorable than the native (albeit by only 1

kcal/mol), shows that the limitations of this term arise from the uncertainty in the

function, not from sample size.

Estimating the conformational entropy of the denatured state.

The free energy of denaturation (AGdena) for small proteins has been estimated to

fall between 5 and 10 kcal/mol”. MacKnight linearly extrapolated a series of

guanidine hydrochloride (GuHCl) denaturations of villin to 0 M GuhCl at pH = 5.4 and

4°C and estimates AGdena to be 3.3 (+0.4) kcal/mol. This may at first seem to be

inconsistent with our AG1 between native and unfolded villin estimates. However, until

now we have been considering the free energies of the individual snapshots and not the

entropy associated with considering all the unfolded states as a conformational ensemble,

the conformational entropy. In fact, the experimental AGdenat can be used in conjunction

with AG to estimate the effective conformational degeneracy of this ensemble.

Assuming a Boltzmann distribution of the two-state model, the number of individual

denatured conformations, i.e. the degeneracy of the denatured state (Qaena), can be

estimated as follows:

-
(-AG./RT) (-AG, / RT) (3)

P(denat)/P(native) = e - Qdena■ Qhat e e

where AG1 is an average effective G1 difference between native and denatured states.

Assuming the degeneracy of the native state (Qmai) is unity,
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[(AG, -AG...)/RT] (4)
Qdenal = €

Sconf - Rln(2denal - (AGl
-

AGdena)/T (5)

ln(2denat = AAG/RT (6)

The total conformational entropy associated with the degeneracy of the denatured state

(Sconf) and hence the log of Qdenat are directly proportional to AAG, the difference

between protein stability, AGdenat, and the effective G1 difference between a typical native

and denatured snapshot, AG1.

From looking at the free energy during the microsecond trajectory, it is not clear

whether the free energy difference between the native conformation and the folding

intermediate (~26.2 kcal/mol) should be used as AG, or if instead that between the native

and the average non-compact states (~38.5 kcal/mol) is more appropriate. If the compact

states are all of approximately similar free energy and together represent the dominating

configuration of the denatured state, then we would use a AG = 26.2 kcal/mol, giving us

the smallest estimate for AAG of 22.9 kcal/mol. This translates to a lower bound

degeneracy estimate on the order of 3.8 - 10". If on the other hand, the non-compact

random coil configurations are Boltzmann-weighted far more than the compact ones, then

we would approximate AG = 38.5 kcal/mol. This leads to upper bound estimates of

AAG = 35.2 kcal/mol and of Qaem = 3.0 - 10°. The value for Qaena can then be

converted into another interesting value, an average number of degrees of freedom per
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residue (y): y” 6 = Qdenat. Our range of estimates for Qdenat corresponds to a range of y

values from 2.9 to 5.1, which is in qualitative agreement with Dill's estimates” for y.

Estimating the Free Energy of Unfolding.

In the previous section, we attempted to use the experimental AGdenal together

with our AG in order to estimate the degeneracy of the non-native state. Alternatively,

we can use AG, together with other degeneracy estimates to obtain a free energy of

unfolding and compare that directly with the experimental value. Karplus estimates that

in a 27-mer small protein, there is a mixture of 10" “semi-compact globule”

conformations and 10" random coil conformations”, which correspond to y values of 2.3

and 3.9, respectively, and Qdenal values for a 36-mer of 2.2 ° 10° and 2.2 ° 10”,

respectively. By splitting the denatured state probability shown in equation (3) into a

sum of two probabilities, again assuming Quat is unity, Karplus's estimates for the

degeneracy of compact (Qcompact) and random coil (QRC) states can be used together with

the respective AG, predictions in this study (AG1 compact and AGLRC),.

P(denat)/P(native) = P(compact)/P(native) + P(random coil)/P(native)
(7)

-AG-1/RT -AGºe■ RT
- Qcompact O . ) + QRC e . )

This results in a AGdenat of 7.7 kcal/mol with 89% of the denatured state being a compact

structure and 11% random coil; thus, the total error is 4.4 kcal/mol.
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Estimating the folding kinetics.

Figure 4 attempts to separate the noise of the folding trajectory by looking at the

200 ns running average (thick line). This plot captures the folding intermediate and

suggests that a transition state might lie around the 700 ns mark. If this is the case and

villin continues to undergo first order exponential decay towards its native state without

encountering any further kinetic traps, extrapolating out the smoothed plot leads to a half

time for folding of 1.05 pis (k: = 6.6 • 10'), leading to a total time from the denatured

state to 90% “folded” of 4.2 ps.
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Figure 4. Control simulation results showing (A) actual MM-PB/SA data and
(B) 20 running averages. The 20 ns running average of the free energy remains
relatively constant at –1058 kcal/mol.

Plaxco et al.” have summarized the intrinsic folding rates for a set of 12 non

homologous, simple, single domain proteins and looked at their relationship with size,

stability and topology of the proteins. They found that size and stability have weak or

non-existent relationships with ln(k), but that the relative contact order (CO), which

reflects the relative amount of local and non-local contacts in a protein’s native structure,

shows a strong inverse correlation (R = -0.81). CO is the average sequence separation

distance between all non-hydrogen atoms that are within 6 Å, normalized by the sequence

length. CO for the average, minimized, NMR villin structure” comes out to 11.0%. Our
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estimate for villin, from the extrapolation of the folding trajectory, of ln(k) = 13.4 is

consistent with the data presented by Plaxco et. al", adding this data actually increases

the magnitude of the correlation coefficient between CO and ln(k) to -0.84. Although

the extrapolation leads to strong agreement with the estimate that would arise from

villin's CO, there are a number of assumptions made, the two most important are the

following.

First, the extrapolation in Fig. 4 assumes that folding will proceed without going

through any further metastable intermediates, such as the one found between 240 – 400

ns. In our previous paper," it was concluded, based on villin's CO of 11.0% and the

Plaxco/Baker CO least squares line, that villin folds on a 10-100 pus time scale. There, we

suggested that the villin headpiece may continue to fall into metastable intermediates

until it found one that was close enough to the more stable native structure to allow it to

reach the native state by further subtle readjustments of the structure. Again

approximating the 90% “folded” state as native, this range of folding times (10-100ps)

would correspond to a range for the half time of folding between 3.3 and 33.3 pus, each of

which also increases the correlation between CO and ln(kf) to -0.84 and -0.85,

respectively. At this point, it is not clear which picture is correct.

Secondly, although the native structure is of significantly lower free energy

according to the combined molecular mechanical/continuum model (MM-PB/SA) than

anything found in the folding trajectory so far, it is not known at this point how closely

this free energy model can reproduce the “true” native global free energy minimum of

villin.
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CONCLUSIONS:

The recent completion of a one microsecond folding simulation has allowed us to

demonstrate that the MM-PB/SA method can successfully identify the native

conformation from other compact structures in a small, single domain protein, the villin

headpiece. As the folding trajectory formed the very compact intermediate, the biggest

change in energy was a drop in the dispersion energy to levels as favorable as in the

native state, and during this simulation we found a high correlation between the

dispersion energy and RY. However, the folding intermediate was only able to

accomplish such favorable van der Waals contacts at the expense of exhibiting more

internal strain, particularly in the angle term, which was the key term more favorable in

the native state than in the intermediate.

The differences in MM-PB/SA free energies of villin between native and the non

native structures, combined with the estimated free energy of unfolding, leads to an

estimate of the conformational degeneracy in the non-native state between 10" and 10°

or an average number of conformations per residue between 2.9 and 5.1. Smoothing the

energies over a large window leads to an apparent transition state for folding at 700 ns in

the trajectory. If one assumes no further kinetic traps, our estimate is that it may take an

additional 3.5 pus to fold villin from this point.
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ABSTRACT:

On two different small proteins, the 36-mer villin headpiece domain (HP-36) and the

65-mer structured region of ribosomal protein (S15), several model predictions from the

ab initio approach Rosetta were subjected to molecular dynamics simulations for

refinement. After clustering the resulting trajectories into conformational families, the

average Molecular Mechanics-Poisson Boltzmann (MM-PBSA) free energies and Co.

RMSD's were then calculated for each family. Those conformational families with the

lowest average free energies also contained the best Co. RMSD structures (1.4 Å for S15

and for HP-36 core) and the lowest average Co. RMSD's (1.8 Å for S15 and 2.1 Å for

HP-36 core). For comparison, control simulations starting with the two experimental

structures were very stable, each consisting of a single conformational family, with an

average Co. RMSD of 1.3 Å for S15 and 1.2 Å for HP-36 core (1.9 Å over all-residues).

In addition, the average free energies rank correlate strongly with the average Co.

RMSD's (rs = 0.77 for HP-36 and rs = 0.83 for S15). Molecular dynamics simulations

combined with the MM-PBSA free energy function provide a potentially powerful tool

for the protein structure prediction community in allowing for both high resolution

structural refinement and accurate ranking of model predictions. With all the information

that genomics is now providing, this methodology may allow for advances in going from

sequence to structure.

38



INTRODUCTION:

While the concerted effort in genomics rapidly uncovers a vast number of new

gene sequences, the gap between known sequences and structures grows ever larger,

thereby increasing the usefulness and interest in meaningful structural information that

non-experimental methods can provide. There are two important challenges in protein

structure prediction.

The first challenge is to generate higher resolution structure predictions,

especially when sequence identity is low. The most recent community-wide Critical

Assessment of Structure Prediction experiment, CASP III, serves as the best forum to

evaluate the current state of protein structure prediction. Of the “ab initio targets”,

defined as those having no close structural relatives in the PDB, results were promising in

that for roughly half of the easy to medium difficulty targets, approximately 60% of the

predictions were successful in obtaining the correct architectures'. However, to be useful

for contributing to a greater understanding of function or for experimental design, much

more than the correct architecture must be in place, a deficiency in nearly every CASP III

3D coordinate prediction of ab initio targets. Of the 12 ab initio targets that had more

than two O-helices, not a single prediction of those with > 60% coverage (the percentage

of target residues that was modeled) had a Co. RMSD over all modeled residues of less

than 7.0 Å; the vast majority were well over 10.0 Å away. Because of the enormously

complex energy landscape of proteins, the number of local minima must be reduced by

ab initio or comparative methods in order to obtain a good set of predictions in a

reasonable amount of time. The approach of the Rosetta protein folding algorithm is to

work from the bottom up, first modeling local structure and then performing tertiary
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assembly. The effect of simplifying the energy landscape, however, is that the native

state can no longer be as readily discriminated from among the ab initio predictions.

Bringing these predictions to the realm of molecular mechanics introduces much of the

physics back into the system, resulting in a more accurate free energy landscape. Ever

since accurate methods for treatment of long range electrostatics, such as particle mesh

Ewaldº, have been included in molecular dynamics simulations, simulations on

experimental structures of biomolecules have remained within 1 to 2 A RMSD”, while

those on non-native structures steadily drift into new conformational families (this work,

unpublished results Duan and Kollman’ and Alonso & Daggett"), suggesting that the

native states are indeed at the global free energy minimum of a molecular mechanics

representation. Thus, if conformational space could be exhaustively explored in a

molecular dynamics or Monte Carlo simulation, the native state should be capable of

being found. Moreover, in the interest of protein structure prediction, if the energy

landscape is globally convex as is widely believed, extended dynamics simulations

should be able to drive non-native conformations down the free energy gradient closer to

the native state.

The second important challenge is to be able to more accurately rank the large

number of structure predictions that emerge, even within a single prediction method on

any given protein. Due to the necessary limitations of the community wide experiment,

only 5 or fewer 3D coordinate predictions per group were submitted. Hence, an inability

to accurately rank the native structural quality of predictions in the absence of an

experimental structure for any prediction method will usually preclude the best

predictions from being identified. Without a standard for comparing coordinates, scoring

functions together with physically meaningful (and often subjective) measures like
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compactness and the numbers of surface-exposed hydrophobic residues and unpaired

buried polar residues can sometimes identify good conformations, but are rarely if ever

able to identify those predictions that most closely resemble the native state. Therefore,

the need remains for a highly accurate free energy function that can capture the same

subtle differences that allow nature to guide a protein to its native conformation in order

to help identify the best predictions in an unbiased way. Such a free energy function may

also help to reveal the relative importance of underlying forces involved in protein

stability, another deficiency highlighted by the assessors of CASP III. Vorobjev et al."

were the first to apply a physics-based effective free energy potential involving gas phase

internal energy calculations combined with implicit solvent on a limited set of native and

intentionally “misfolded” proteins. After generating conformational ensembles with

explicit solvent molecular dynamics on 9 of the 22 pairs of native and misfolded proteins

created by Holm & Sander” (the EMBL set), then calculating the average free energy of

the ensembles, they found the native to always be more favorable. Lazardis & Karplus’

later demonstrated that their effective free energy can discriminate native structures from

a more extensive series of misfolded structures, including the entire EMBL set, and the

decoy set of Park & Levitt". We recently applied an effective free energy potential,

Molecular Mechanics-Poisson Boltzmann/Surface Area (MM-PBSA), to HP-36 in which

we correctly ranked the native structure, an early stage “on-pathway” folding

intermediate and an ensemble of unfolded conformers, with physically meaningful

relative differences". As previously discussed”", an advantage of these physics-based

methods is that, due to the difference in conformational entropy between the unfolded

and native states, the energy not only favors the native state, but must be of appreciable

size. This sizeable gap should be directly related to the number of residues, as larger
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proteins have more degrees of freedom and thus a greater degeneracy of the unfolded

State.

In the current study, we meet both of the challenges of protein structure prediction

in the context of two small proteins. We run extended molecular dynamics simulations

that lead to higher resolution structure predictions in both cases. We also demonstrate

how robust the MM-PBSA method is in distinguishing a small handful of “off-pathway”

ab intio model predictions from one another and from the native configuration, and

evaluate its ability to identify any forces among the predictions that might account for

some having more native quality than others.

METHODS:

Rosetta.

Rosetta builds protein structures from fragments with similar amino acid

sequences using a fragment insertion-simulated annealing method for searching

conformational space and a simple side chain centroid based energy/scoring function

which favors hydrophobic burial, strand pairing, and other low resolution features of

native protein structures. Structures were generated for the two sequences studied here

with the method used for the Rosetta predictions in the CASP3 structure prediction

experiment (Proteins suppl3, 1999), except that homologues of the two proteins were

excluded from the fragment libraries. For HP-36, sidechains were added in using the

backbone-dependent library of SCWRL".
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Molecular dynamics.

We ran production-phase molecular dynamics with a 2.0 fs timestep under the

isothermal-isobaric ensemble (300 K and 1 atm) with the Cornell et al. all-atom force

field", the TIP3P" model for water, periodic boundary conditions, the particle mesh

Ewald method (PME) for electrostatics, a 10 A cutoff for Lennard-Jones interactions,

and the use of SHAKE" for restricting motion of all covalent bonds involving hydrogen,

all within the AMBER 5.0 suite of programs". 2816 TIP3P water molecules were added

around HP-36 and 3000 around S15 in order to end up with a buffer of about 10 Å from

the edge of the periodic box, resulting in box sizes approximately 90,000 A* for HP-36

and 160,000 Å for S15. Temperature was maintained by the Berendsen coupling

algorithm" using separate t coupling constants of 1.0 for the protein and solvent and

pressure was maintained with isotropic molecule-based scaling", also with a t coupling

constant of 1.0. The PME grid spacing was ~1.0 Å and was interpolated on a cubic

B-spline, with direct sum tolerance set to 10°. We removed the net center of velocity

every 100 ps to correct for the small energy drains that result from the use of SHAKE,

discontinuity in the potential energy near the Lennard Jones cutoff value and constant

pressure conditions.

For equilibration, we first minimized the solutes with the steepest descent method

for the first 500 steps, followed by the conjugate gradient method until the RMS of the

Cartesian elements of the gradient was less than 0.4 kcal/moleA. Water molecules alone

were then minimized in the same way until the RMS was less than 0.1 kcal/moleA and

then slowly heated, while allowing them to move unrestrained for 25 ps (with a 1 fs

timestep) in order to fill in any vacuum pockets. The solute atoms alone were then

minimized in the presence of ever decreasing positional restraints, thereby allowing them
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to slowly feel the forces of the now equilibrated waters, until the positional restraints

reached zero. Finally, a temperature ramp was used to gradually raise the temperature of

the whole system over 20 ps up to 300 K.

In order to cluster the molecular dynamics trajectories, we defined conformational

families as being those with Co. RMSD's of less than 2.0 Å from the cluster average. In

cases where the value was greater than 2.0 Å from any cluster, we placed them in the

most representative conformational family, with every structure being a member of a

single family. We analyzed the trajectories using AMBER 5.0, Procheck” and UCSF

MidasPlus”. Simulations were run on Origin200’s at UCSF and on the Origin2000 at the

National Center for Supercomputing Applications.

Post-processing the energy of the trajectory data.

Coordinates from the trajectory were saved every 5 ps with the MM-PBSA

calculation evaluation performed on each of them. The MM-PBSA free energy of each

snapshot is approximated as the sum of two terms: the internal energy of the protein

(EMM) and a solvation free energy (AGsov).

G1 = EMM + AGsov (1)

EMM is the sum of an internal strain energy (Eint), a van der Waals energy (vdW),

and an electrostatic energy (EEL). Eint is the energy associated with vibration of covalent

bonds and rotation of valence bond angles and torsional angles. viiW and EEL are further

broken down into short range values, those that are within three covalent bonds (vdW14

and EEL1-4), and long range values (vdWNB and EELNB).
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The entropy of a given snapshot, which will loosely be referred to as the

“vibrational” entropy, can be estimated by calculating the translational, rotational and

vibrational partition functions with normal mode analysis on a Newton-Raphson

minimization (ToSsolute). This, however, is the most time-intensive part of the MM-PBSA

method on a per snapshot basis. Given the results in our previous study", where we

found this term to be indistinguishable among the native state, the folding intermediate

and the unfolded state of HP-36, we did not perform this calculation in the current study.

Obtaining the solvation free energy from an implicit description of solvent as a

continuum is advantageous because it affords a solvation potential that is a function only

of the solute’s geometry, as discussed and implemented by Srinivasan et al”, thereby

making it computationally tractable. In contrast, calculating the entire free energy from

the explicit solvent is very impractical. It would require a very costly potential of mean

force calculation since the simulations on different conformations have little overlap in

phase space and the partition function of the system including explicit waters would take

an extremely long time to calculate, largely due to the fact the water structures do not

converge.

AGsov - ‘AGsov NP + ‘AGsolvelec” ~: (Y O SASA + b) + ‘AGsolvelecº (2)

The non-polar solvation free energy (AGsolv.NP) includes the (largely entropic) cost of

creating a solute-sized cavity in solvent and the free energy of inserting the discharged

solute into that cavity. Also referred to as the first solvation shell effects, this term has

been found experimentally in hydrocarbons to be linearly related to the solvent accessible

surface area (SASA), which is obtained from Sanner's MSMS algorithm” (probe radius

45



= 1400 Å). The Y coefficient is set to 5.42 cal/mol • Å and b is set to 920 cal/mol. The

electrostatic solvation free energy (AGsolvelec) is the cost of charging the discharged solute

in the cavity. We adhered to the same Poisson-Boltzmann protocol as described by

Srinivasan et al.”, which uses DelPhi^* and most of its standard default parameters,

together with PARSE atomic radii” and Cornell et al. charges", to calculate the

electrostatic solvation free energy difference for the system between exterior dielectrics

of 80 (solvent) and unity (gas phase) according to the position dependent electrostatic

potential. One small difference in this current application of DelPhi is to use larger grid

spacing of 0.5 Å, extending 20% beyond the edge of the solute. Additionally, we used

fewer finite difference iterations (1000) for each (AGsolvelec) calculation, which was still

amply sufficient as we found the values in this system to reach 90% convergence at

around 50 iterations.

RESULTS & DISCUSSION:

Rosetta results on HP-36 and S15.

The Rosetta method, as previously described”, rapidly generates -1000 structure

predictions with centroid sidechains in a matter of hours. The four HP-36 models chosen

for this study, labeled 17, 18, 54 and 60, ranged in global similarity to the experimental

structure from 2.76 to 8.47 Å Co. RMSD (Table 1). These four were selected as they

were centers of the four most highly populated clusters from the initial 1000 Rosetta

predictions. The five S15 models, labeled 0, 43, 112, 156 and 471, ranged from 2.14 to

8.06 Co. RMSD (Table 1). For this protein, we screened the 100 best scoring Rosetta

models for those with a Co. RMSD - 4.5 Å and selected the three with the best Rosetta
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scores (471, 43, and 156); we also selected the two with the best scores (0 and 112)

without regards to RMSD. Although the best Rosetta predictions are very good, they are

among a larger number of less impressive predictions and the correlation between RMSD

and Rosetta score is rather poor; with S15, the best Rosetta scoring conformations had

RMSD's of 8.06 and 7.27 Å. This demonstrates the difficulty in blindly selecting the

best predictions, even from a method as promising as Rosetta.

For comparison, it may prove useful to look at results on a similar target at CASP

III. The CASP III target closest in difficulty to the two proteins investigated in this work

was a medium-difficulty “ab initio target”, the 89-mer protein HDEA, which like the

36-mer HP-36 and the 65-mer structured region of S15 has three alpha helices. A non-ab

initio threading method from the Bryant group yielded perhaps the best prediction at

CASP III for HDEA, which modeled only 54% of the target residues and had a Co

RMSD of 5.85 Å over those residues, although the model submitted as first by the Bryant

group” had a much higher C. RMSD of 10.76 Å. Of the more difficult cases in which

most or all of the target residues were modeled, the ab initio work of the Scheraga

group” came up with the best prediction, a model with 100% coverage and a Ca RMSD

of 7.27 Å, while the model submitted as their first had a Co. RMSD of 8.94 Å. Again, the

two challenges of protein structure prediction can be seen from the CASP III results of

HDEA, where the best predictions 1) still had very high RMSD’s and 2) were not the

predictions submitted as first.

Simulations on the native structures.

The characteristics of HP-36 and S15 make them good candidates for ab intio

structure prediction. Because part of our goal was to improve the resolution of structure
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predictions, which entails an extended amount of computer time, we chose to study

proteins containing the simplest non-trivial topology, which according to the results of

CASP III appear to be small alpha proteins containing three secondary structural

elements, like HDEA. HP-36 forms three small helices packed together in a novel

architecture” with the NMR structure (1vii) having much lower B-factors over the core

residues 6–33 (with the N-terminal residue 41 renumbered as one). The 86-mer S15

forms 4 helices in the X-ray structure (1a22)”, although the first 21 N-terminal residues

including the N-terminal helix are very disordered and not included in our model

structures, with residue 22 renumbered as residue one. In addition to having the same

general topology as HDEA, they are reasonably sized and have enough of a hydrophobic

core and secondary structure to make them thermostable at room temperature.

Simulations of the experimental structures were carried out as a basis for

comparison. Minimization, solvation and equilibration were required prior to the

production-phase simulations, leading to small deviations (< 1 Å Co. RMSD) from the

experimental coordinates. During the subsequent control simulations of the equilibrated

HP-36 NMR structure, the all-residue Co. RMSD was, on average, 1.90 Å away from the

NMR structure with a standard deviation of 0.29 Å (Figure 2A); over the core region, the

average Co. RMSD was 1.20 Å with a standard deviation of 0.16 Å (Figure 2B). The

difference in these Co. RMSD's is consistent with the distribution of experimental

B-factors. Those with the highest B-factors exhibited the most fluctuation. The

corresponding control simulation on S15 led to an all-residue Co. RMSD of 1.26 Å from

the X-ray structure with a standard deviation of 0.21 Å (Figure 3).

Through clustering the trajectories, we found that both control simulations

consisted of a single family, which demonstrates good stability of the native states in our
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simulation. This implies that at room temperature, there is not enough thermal energy to

overcome a kinetic barrier if the experimental structure should happen to lie outside the

global free energy minimum (see discussion below on HP-36), or that the actual global

minimum is the same as that resulting from our molecular mechanics energy potential.
4
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Table 1. A summary of the molecular dynamics results
Model Rosetta

Score

HP-36

170-735) –24.9
180–270) –29.5
18,270-1600)
54(0.960) –27.1
600-935) –30.3
Native(0-3000)

S15

00-835) 45.1
43(0-200) 66.5
43(200–775)
112(0.775) 44.1
1560-760) 78.6
471 (0-500) 66.0
471 (500-960)
Native(0-1000)

all residues'
init.

5.40

3.17

2.76

8.47

0.00

7.27

4.40

8.06

2.14

2.81

0.00

aVg.

5.18

3.52

2.78

3.19

8.41

1.90

7.56

4.87

5.09

9.03

2.18

1.81

2.86
1.26

Co. RMSD (Å)
core region’
init.

3.18

2.70

2.07

6.07

0.00

aVg.

2.89

3.27

2.14

2.87

6.58

1.20

% Native
Contacts'

68.5

73.4

77.6

70.2

58.2

90.9

72.8
74.5

75.4

68.3

87.3

85.4

82.7

92.8

% Native AGo,”
Helical
Content"

83.8

80.6

80.6

89.4

78.1

87.7

94.2

90.7

90.7

90.7

96.3

96.3

96.3

96.3

(kcal/mol)
avg. SD

35.5 15.2

15.5 14.7

-1.2 16.2

15.2 14.7

15.3 14.4

0.0 15.7

46.7 18.4
62.1 24.0

40.8 16.1

52.8 24.8

34.1 18.9

30.5 18.5

31.0 20.5

0.0 44.4

The trajectories were clustered, giving rise to conformational families for some of the models. All values
except for the initial RMSD’s and Rosetta scores are average values over the dynamics.

'The S15 all residue RMSD excludes the less ordered N-terminal 21 residues, where the
average mainchain temperature factor in the X-ray structure is 40.4, and spans the
remaining 65 amino acids, where the average mainchain temperature factor is 25.5.

*The HP-36 core region comprises residues 6-33, where the average mainchain B-value in
the NMR structure is 0.68, compared to 1.53 outside the core.

* A contact is defined by any two residues containing atoms s 3.5 Å apart. There were 89
native contacts in 1vii (HP-36) and 221 in 1a32 (S15).

* Residues were assigned as helical if they fell within the core helical region of the
Ramachandran map according to Procheck and were contiguous with at least two other
helical residues. A total of 20 residues were helical in 1vii and 54 in la32.

* The average is relative to the native's average. Only 18(270-1600) had an average value
comparable to the native’s with P = 0.31.
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Figure 1. Cartoon diagram comparisons of the experimental structures (shown in gray) with the best ab
initio predictions in this study. S15 from the simulation of Rosetta model 156 at 0 ps in magenta (a) and at
750 ps, the lowest Co. RMSD structure (1.39 A), in pink (b). HP-36 from the simulation of Rosetta model
18 at 0ps in dark green (c) and at 1250 ps, the lowest core Co. RMSD structure (1.41 Å), in light green (d).

L
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Figure 2. Timecourse of the Co. RMSD of HP-36 vs. the NMR structure, resulting from molecular
dynamics simulations in explicit water, starting with the NMR structure (*) or Rosetta model 18 (e). (A)
shows the Ca RMSD over all-residues and (B) shows the Co. RMSD over the core region (6-33).
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Simulations on Rosetta HP-36 predictions.

We ran approximately one nanosecond of molecular dynamics on each of the

HP-36 Rosetta models and clustered the Table 1). During the dynamics, only model 18

underwent a conformational transition (Figure 2), with the new family 18270-1600) having

an average core region Co. RMSD of 2.14 Å (SD = 0.25 Å) and values as low as 1.41 A

(Figures 1A and 2B). Perhaps most importantly, this structural change was accompanied

by a drop in the MM-PBSA free energy to a level statistically comparable to that found in

the native state (P value = 0.31), while the free energy for the other three simulations

remained 15 kcal/mol or more higher than the native state's (P values < 0.001). After

observing the -15 kcal/mol free energy drop in the model 18 trajectory, we ran it out

about 50% longer than the others’ and did not find any additional structural or energetic

changes, which would agree with the structure having a free energy comparable to the

native state’s.

Among the four Rosetta predictions, model 18 started out with the greatest

number of native contacts and the conformational transition was also accompanied by a

further increase in native contact formation, although still less than in the control

simulation. What is not clear is whether the number of native contacts primarily dictates

the protein folding reaction path or, alternatively, if the number of contacts is dependent

on some other common parameter such as amount of native secondary structure that

primarily governs the reaction path. If the number of native contacts is the major

independent parameter in the folding reaction, then the lack of structural improvement in

the other three models may have been due to the inability to increase the number of

native contacts in the one nanosecond time range.
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In the one Hs folding simulation of HP-36 by Duan & Kollman’, secondary

structure differed markedly between the native control simulation and every non-native

structure, as the simulation was started from an extended state with no secondary

structure. Here however, due to the nature of the Rosetta method, all four of the model

structures had very reasonable secondary structure, not appreciably different from the

control simulation and the structures showed a very poor correlation between the

percentage of native helical formation and RMSD. Thus, when comparing compact

structures, the amount of native secondary structure is not as good a measure of progress

towards the native free energy basin as the number of native contacts.

i
.UT -

0.5i

0 100 200 300 400 500 600 700 800 900 1000

Time (ps)

Figure 3. Timecourse of the Co. RMSD of S15 vs. the X-ray structure, resulting from molecular dynamics
simulations in explicit water, starting with X-ray structure (~), Rosetta model 156 (e) or Rosetta model 471
(+).
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Simulations on Rosetta S15 predictions.

Simulations on the 5 Rosetta S15 models were also carried out for close to one

nanosecond (Table 1). Two of these trajectories contained a conformational transition,

43 and 471, neither of which was associated with any improvement. Unlike what we

found with HP-36, none of these 7 structural families possesses an average free energy

comparable to the native state’s (P values < 0.001), although the free energies of the five

models did deviate from one another, with the two most energetically favorable models,

156 and 471, also containing the best structures. As can be seen in Figure 3, the average

Co. RMSD's of 156 and of 471, prior to its conformational transition (0-500 ps), were

2.18 (SD = 0.34 Å) and 1.81 Å (SD = 0.26 Å), respectively, with minimum values of

1.39 (Fig 1b) and 1.38 Å.

The same topological trends were observed for the S15 models as with HP-36.

The two best, 156 and 471, had more native contacts than the other three Rosetta S15

models, and still less than the control simulation. Secondary structure prediction was

again universally good for all the Rosetta models and showed little correlation with

RMSD.

Interpreting the energies.

Like both of the native states, the HP-36 low energy state 18(270-1600) remained

stable for over 1 ns. In contrast, one of the two low energy S15 states (model 471) that

was still -30 kcal/mol higher than the native level shifted after ~500 ps into a separate

family where the free energy was not statistically different from the initial family’s and

the geometric similarity to the experimental structure was noticeably diminished. Since

the free energy of 471 (270-1600) was ~30 kcal/mol higher, it is not unexpected that it unlike
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the native would transition into another state. These observations reflect the non-linear

relationship between Co. RMSD and Got that one would expect even from a funnel

shaped energy landscape; structures having similar free energies may differ significantly

in terms of their geometries, particularly so the higher they are in free energy. Thus, the

Spearman rank (rs) correlation coefficient is more appropriate for this relationship than

the Pearson product-moment correlation coefficient, which is relevant for linear

relationships between two variables. Figure 2 shows the relationship between Co. RMSD

and AGot for the two proteins investigated in this work. As mentioned in the

Introduction, because the conformational entropy and thus AGot (which does not account

for Seon) are dependent on the number of residues", the strength of the relationship

should be looked at separately for the two proteins. For S15, rs = 0.83 (n=8) and for

HP-36, r, - 0.77 (n=6). Statistically, there is a strong association for both S15 and HP-36

between Co. RMSD and AGot; given their sample sizes, both of their rs values exceed the

critical level for rejecting the null hypothesis of no relationship with P × 0.002. It should

also be noted that apart from HP-36 model 18, which may be an alternative global

minimum (see below), the smallest relative free energy value seen is 15 kcal/mol in the

36-mer HP-36 and 30 kcal/mol in the 65-mer S15, further corroborating the hypothesis

that the energy gap between native state and any non-native state is directly related to the

size of the protein.

A benefit of using the physics-based MM-PBSA free energy as a scoring function

is that individual force contributions can be readily examined and compared among the

successful and unsuccessful model predictions. Our data here (Table 2) and previously"

suggests that van der Waals interactions are what primarily set apart the native state from

the non-native states, which likely can only be properly achieved by precise packing of
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the sidechains. The S15 model simulations all had van der Waals energies of 30 or more

kcal/mol higher than the native, with this term also being the dominant component

separating the two best MM-PBSA scorers, 156 and 471, from the native. With HP-36,

none of the four predictions achieved the native van der Waals energy, although with

model 18, the conformational change was associated with a sharp drop in the total

electrostatics energy that was enough to compensate for the less favorable van der Waals

energies to allow for a total free energy equal to that of the native state. While the van

der Waals energy correlates best with RMSD, model 54 has a more favorable van der

Waals energy than the second conformation of model 18; however, the total MM-PBSA

still favors the latter, and the native state still has best van der Waals energy among all

the HP-36 conformational states.
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Table 2. Comparing the energy components
Model AEunin' AE,dwº AAGown■ AG.e." AGot
HP-36

170-735) 13.43 6.26 -0.70 16.53 35.52
180–270) 8.80 9.45 0.03 -2.74 15.54
18,270-1600) 4.11 8.30 0.34 - 13.98 -1.22
54(0.960) 6.24 3.35 -0.44 6.05 15.20
600-935) –4.80 11.21 0.73 8.12 15.25
Native(0-3000) 0.00 0.00° 0.00° 0.00 0.00

S15

00-835) -12.36 38.20 –0.02 15.71 46.73
43(0.200) 4.57 40.50 1.10 10.78 62.14
43(200–775) 1.84 35.38 1.74 -3.40 40.76
1120.775) –0.70 41.61 1.28 5.38 52.77
1560-760) 1.25 32.46 1.74 –6.55 34.09
471 (0-500) –6.11 33.38 1.63 –3.61 30.50
471 (500-960) -1.71 30.66 0.87 –3.78 30.98
Native(0-1000) 0.00 0.00° 0.00° 0.00 0.00

All values are in kcal/mol, are averages for the structural family, and are relative to the
native states
' internal strain energy associated with bond, angle and dihedral motions away from their reference values

intra-protein Lennard Jones potential energy
non-polar contribution to the solvation free energy
sum of intra-protein Coulombic energy and electrostatic element of the solvation free energy
absolute values for HP-36 Evdw and AG.oly Np are -113.3 and 18.2 kcal/mol, respectively
absolute values for S15 Evdw and AG.oly Np are -255.9 and 29.5 kcal/mol, respectively

.
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Figure 4. Plot showing correlation between average values Co. RMSD and AGot for HP-36 (e) and S15
(o), with each data point representing a separate conformational family.
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A) 18,270-1600) B) NMR structureF11

Figure 5. Illustration of the C-termini, residues 21-36, demonstrating the region of greatest geometric
disparity between the average structure from the 18370-1600) low energy state (A) and the NMR structure
(B). For clarity, only the hydrophobic sidechains are shown together with the backbone N, CA, and C
atoms. For reference, phenylalanine 11 is shown as well. Solvent lies to the right of glycine 34, with the
two hydrophobic residues on the NMR structure being solvent exposed.

.
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That HP-36 18,270.1600) and the native state lie at the same free energy level is

rather intriguing. Table 2 suggests that while their total free energies are similar, the

native state forms better van der Waals interactions and has a poorer overall charge

distribution, which more specifically arises from weaker a solute-solvent electrostatic

interaction (data not shown). We find that the degree of charge burial is higher in model

18 than in the native structure; perhaps the Poisson equation is not sufficiently penalizing

model 18 for its charge burial, which could possibly explain why our calculations show it

having a better solute-solvent electrostatic energy. However, it is also possible that the

NMR structure does have worse electrostatics than model 18. Figure 3 depicts the C

termini of both states, the region where they differ most. Particularly interesting is how

in the NMR structure the two hydrophobic endmost residues L35 and F36, which happen

to be the mostly highly disordered monomers, are almost completely solvent exposed,

forming a separate miniature hydrophobic cluster. In contrast, the average structure from

the 18(270-1600) low energy state has the L35 and F36 sidechains packed against the core of

the protein, with the polar backbone atoms instead being solvent exposed. Given these

topologies, we believe it is likely that the NMR structure may not be the single most

energetically favorable conformation and can find no structural basis for why 18,270-1600)

should not have a free energy as favorable as that from the native state. Perhaps prior to

expression of the final two C-terminal residues, a highly stable core that includes several

hydrophobic interactions locks the protein into a kinetic trap. At this point, we do not

know how much of the difference in AGelec is real and how much of it is artifactual.

º
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Efficiency.

In each of the conformational families containing the equilibrated initial structure,

the average free energies and C. RMSD's from every 10"ps over the first 150 ps (n =

15) give good agreement with the averages taken from every 5" ps over the entire

window (Table 3). With the method described in this work, one can pragmatically rank 5

to 10 small protein structure predictions using two SGI R10000 processors in about one

month by running 150 ps of molecular dynamics on each model prediction. With a

dedicated 64-node SGI Origin, one can conceivably rank -150-300 structures in one

month by running in coarse grain parallel, although the human intervention associated

with this kind of setup would lead to a considerable slowdown. If one instead seeks to

accomplish structural refinement, such as that found with some of the Rosetta model

predictions in this work, simulations much longer than 150 ps may be necessary. To

carry out one ns of simulation time, as we did for each of the model predictions in this

study, one can expect to spend upwards of one month of computer time on a single SGI

R10000 processor per model conformation of a small protein.

º
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Table 3. Statistical Efficiency g

P value'

HP-36 MM-PESA
170-735) 0.43

180–270) 0.87
54(0.960) 0.87
600-935) 0.09
Native(0-300 0.05

S15
00-835) 0.90
43(0-200) 0.78
112(0.775) 0.35
1560-760) 0.09
471 (0-500) 0.34
Native(0. 100 0.79

'The P values are for comparison of averages that result from post-processing either a)
the first 150ps every 10"ps or b) the entire initial conformational family every 5"ps.

There are two ways to increase the efficiency of sampling. First, replacing the

model such as the Generalized Born or the Analytical Continuum Electrostatic potential”
inclusion of explicit waters during the dynamics simulation with a continuum solvent ,

n
should allow many more structures to be examined with the same computational expense.

-

Secondly, one can use Locally Enhanced Sampling (LES)” in the molecular dynamics sº

trajectory, which we have found can drive the structure to more native like values more

quickly”. *

!.

CONCLUSIONS: s

As the genome projects continue to unravel novel gene sequences, successful .

protein structure prediction has more potential application now than ever before. If
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enough atomic detail can be reliably predicted, in particular at the active and allosteric

sites, better understanding of function can be achieved without the time consuming

process of experimentally determining the structure. As CASP III has shown, however,

the structure prediction community must still make significant advances before this goal

can be realized, especially on sequences that have low sequence identity and on “ab initio

targets”, those with no structural relatives in the PDB. The hierarchical method presented

here, to combine an ab initio method like Rosetta with molecular dynamics and

MM-PBSA, seems to be promising for enabling more accurate protein structure

predictions because the final stage is capable of both accurately ranking models and

further refining them. We suggest methods like this may allow for a significant advance

in CASPIV compared to CASP III predictions and should ultimately be useful in helping

to generate accurate structures from the myriad of new sequences stemming from the

genome projects.

Beginning with the Rosetta algorithm and ending with all-atom molecular

dynamics simulations, we take sequence information of two small proteins and find

structures that lie only 1.4 Å Co. RMSD from the experimental structures. These

geometrically best conformations are members of conformational families that have both

1) the lowest average Co. RMSD and 2) the most favorable average MM-PBSA free

energy among all non-native states. The single energy component that relates best to both

RMSD and total free energy is the van der Waals term, which is the only term

consistently more favorable in the native than in all other states. While it has been

suggested that electrostatics are important in separating misfolded decoys from native

structures, the present work that includes highly native-like decoys is consistent with our

previous study" on protein stability in suggesting that electrostatics have a poor

63



correlation with the MM-PBSA free energy, which itself rank correlates well with the Co.

RMSD.

While we show in this work that molecular dynamics can sometimes within

hundreds of picoseconds lead to structural refinement of some model predictions of small

proteins, future work is required to show how general this result is. Although we believe

that molecular dynamics will generally guide proteins to lower free energies, simulations

for limited amount of time will not always be capable of overcoming barriers, resulting in

refinement of only some structures, as we found with HP-36 and S15. If longer

simulations lead to ever decreasing free energies, as we suggest, then the more extended

the simulation, the greater the probability is of refining low resolution structure

predictions. As computers become ever more powerful, allowing one to run longer

simulations, standard molecular dynamics as well as a number of other methods, such as

Locally Enhanced Sampling" and self-guided molecular dynamics”, can be used to more

readily find new structures and MM-PBSA will help in evaluating if they are lower in

energy.
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Background: While X-ray crystallography structures of proteins are considerably more

reliable than those from NMR spectroscopy, it has been difficult to assess the inherent

accuracy of NMR structures, particularly the side chains.

Results: For 15 small single-domain proteins, we use a molecular mechanics/dynamics

based free energy approach to investigate native, decoy and fully extended alpha

conformations. Decoys are all less energetically favorable than native in 9 of the 10

X-ray structures and in none of the 5 NMR structures, but short 150 ps molecular

dynamics simulations on the experimental structures cause them to have the lowest

predicted free energy in all 15 proteins. In addition, a strong correlation exists (r’= 0.86)

between the predicted free energy of unfolding, from native to fully extended, and the

number of residues.

Conclusions: This work suggests that the approximate treatment of solvent used in

solving NMR structures can lead NMR model conformations to be less reliable than

crystal structures. This conclusion was reached because of the considerably higher

calculated free energies and the extent of structural deviation during aqueous dynamics

simulations of NMR models compared to those determined by X-ray crystallography.

Also, the strong correlation found between protein length and predicted free energy of

unfolding in this work suggests, for the first time, that a free energy function can allow

for identification of the native state based on calculations on an extended state and in the

absence of an experimental structure.

■
-l
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INTRODUCTION:

While methods for experimental determination of protein structure have had an

enormous impact on the study of molecular action, protein design, and interpretation of

chemical, kinetic or thermodynamic experiments, they are often quite challenging.

Elucidation of a protein structure by X-ray crystallography demands a supersaturated

concentration, which can usually only be achieved upon addition of agents that compete

with the protein for water. These foreign agents and packing effects of crystallization

itself can induce structural defects; while this artifactual information is reported with the

structure in known instances, it is not possible to realize all of the errors caused by these

model-specific systematic limitations. Another pitfall of crystallography occurs on

segments having very low or non-existent electron densities, which presumably contain

highly disordered atoms that are in motion and thus difficult to detect in the time scale of

crystallography. Additionally, in some instances of low to medium resolution structures,

oxygen atoms cannot be distinguished from nitrogen atoms. While these kinds of gross

inaccuracies are relatively uncommon, other smaller deviations almost certainly exist in

all X-ray structures, due to differences between the crystal environment, which is only

50% aqueous by volume, and the natural surroundings; this fundamental difference

between crystal and native structures, as well as the non-static nature of proteins, creates

an average atomic uncertainty of around 0.5 Å in structures, with the best data.

In comparison, protein structures solved by nuclear magnetic resonance (NMR)

are completely solvated, free of the constraints of a crystal lattice, allowing for better

description of the inherent flexibility, in surroundings much closer to what the native

protein actual experiences. However, despite the more realistic environment that NMR
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structures present, they are inherently less reliable than X-ray data because there is much

less experimental data per atom than in crystallography. Differences among the various

models of an NMR ensemble are usually much greater than 1 A, often 2 A.

Determination of a protein structure using NMR involves a refinement process, usually

starting with a randomly generated conformation that satisfies some local distance

constraints, and proceeding with a sampling protocol that attempts to satisfy as many

NOEs as possible, until a point is inevitably reached, where the structure is incapable of

being improved further. While more NOEs generally allow for more accurate structures,

shortcomings of the refinement stage are what preclude greater precision in the method.

Likely the most severe approximation usually made during the refinement stage of NMR

structure determination is an inaccurate representation of the solvent, which can prevent

finding a better solution with lower positional uncertainty, even if the refinement stage

were capable of exploring every possible conformation, due to systematic errors in the

energy potential. Generating tens of structures with low average RMSDs compared to

the mean structure does not necessarily imply accuracy, only that there is less uncertainty

of the ensemble not having satisfied the NOEs on the energy surface used to describe the

biomolecule. In the vast majority of NMR structures, inclusion of solvent effects is done

by using a distance dependent dielectric constant in the Coulomb energy, and is thus not

very accurate.

As a step towards understanding some of the qualitative differences between

NMR and X-ray structures, we investigated the Molecular Mechanics-Poisson

Boltzmann/Surface Area (MM-PBSA) free energies of X-ray and NMR structures, before

and after short, computationally inexpensive molecular dynamics simulations, in
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comparison to large sets of decoy conformations, on a total of 15 small, single-domain

proteins. Sets of decoys for 8 proteins came from the "Rosetta All Atom Decoy Set" [1,

2] and 7 from the Park & Levitt 4-state reduced decoy set[3,4]. While it is widely

believed that the native structure lies at the global free energy minimum(5], which would

satisfy the demands of thermodynamics, alpha-lytic protease has recently emerged as an

exception, with the native state exhibiting a half life of unfolding on the order of 1

year[6]. Nevertheless, the native state should, in the majority of cases, obey macroscopic

thermodynamics and lie at the global minimum, irrespective of whether the native

structure has been solved by X-ray crystallography or NMR spectroscopy. At the very

least, the native state should have a free energy substantially lower than unfolded and

poorly folded conformations. This work suggests that NMR structures can benefit

significantly from short aqueous molecular dynamics simulations and that free energy

calculations can be used to identify the native state in the absence of an experimental

Structure.

RESULTS:

Decoys compared to crystal structures.

The 4-state reduced decoy set[4, Homepage, 1999 #34] consists of ~650

conformations for 7 proteins, with each conformer differing from the native conformation

at 10 specific dihedral angles, that always lie in regions between or at the ends of

secondary structure elements. Each dihedral may adopt only one of 4 possible discrete

values, leading to an exhaustive enumeration of 1,048,576 (4") possible conformations

per protein, of which ~650 were physically reasonable after removing those with steric
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conflicts and unreasonably extended chains. Thus, the decoys for any given protein

differ only in their tertiary structure but cover a wide range of native similarity. Three of

these proteins are purely alpha and the other four are mixed alpha/beta, with the native

counterpart being an X-ray structure in all seven cases.
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Figure 1. Single-point minimization MM-PBSA (y-axes) vs. Co. RMSD (x-axes) on crystal structures and
on decoys containing native secondary structure (Park & Levitt 4-state reduced set). Each blue dot
represents a single decoy. There were approximately 650 decoys for each of the 7 proteins. Red circles are
minimized X-ray crystal structures. Red exes are crystal structures that have been minimized after 150 ps
of molecular dynamics in explicit solvent. Figure inlays contain an overlap of the crystal structure before
(gray tube) and after (cyan tube) dynamics.
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Table 1. X-ray rank among Park & Levitt set

Protein VDw(MJ)' vow(MJ)12'VDW MM-PBSA’
1ctf 2 1 1 1

1 rô9 77 1 1 1

1Sn3 2 1 1 1

2cro 160 1 1 1
3icb 1327 3 1 3

4pti 286 4 1 1
4rxn 49 3 1 1

<Z-> –3.95 –3.98 –3.92 –3.57

'VDW(MJ) is a distance dependent contact potential and VDW(MJ)12 is the same, but with a
sharper repulsive term. The results of these energy functions are taken from Park et al. 1997.

*VDW is the attractive dispersion energy between non-bonded atoms in the MM-PBSA
calculation

* MM-PBSA is described in the Methods

For each protein in the 4-state reduced set, we performed single-point

minimization calculations (see Methods) on all the decoys, on the initial crystal structure,

and on a 150 ps snapshot from an explicit solvent molecular dynamics simulation that

started with the minimized crystal structure. Figure 1 shows the resulting MM-PBSA

free energies as a function of Co. RMSD. This free energy function does better than any

of the 18 scoring functions studied by Park et al. (1997)[7] and at least as well as other

recently reported physically based functions that have successfully examined this same

decoy set[8–10]. The crystal structures, shown as the gray tube diagrams on the pictorial

inlays and represented by the red solid circles, have lower, more favorable free energies

than all of the decoys in 6 out of the 7 proteins, with the crystal structure coming out 3"
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best among 654 decoys on 3icb, albeit even for this protein, the best structure with MM

PBSA had a Co. RMSD of only ~1 Å from the native.

The Z-score (see Methods) has been widely used to evaluate the goodness of a

protein structure scoring function[11], but good Z-scores only imply that the native

structure receives a much better score than the average score of all the conformers in the

decoy set. Table 1 shows the X-ray rank results of two distance dependent contact

potential energy functions from Park et al. (1997)[7] that were among the four best (in

terms of average Z-scores of all the proteins in the 4-state reduced set) out of the 18

functions investigated, alongside the X-ray rank results from MM-PBSA and its van der

Waals component alone (VDW). While the average Z-scores are comparable in each of

the four, VDW(MJ) clearly does a relatively poor job in picking out the crystal structure

as best. Our VDW correctly identifies all 7 crystal structures, MM-PBSA identifies 6 out

of 7, VDW(MJ)12 predicts 4 out of 7 correctly, and VDW(MJ) does not predict any

correctly. These X-ray rank results indicate that energy functions, which result in good

Z-scores, are not necessarily good at correctly identifying the native fold.
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Table 2. Assessing predictive value of energy functions

MM-PBSA VDW
Protein 2

Ts 1 Z Ts l Z

1ctf 0.77 –2.47 –0.18 -3.36

1T69 0.55 –3.88 –0.27 –5.01
1sn3 0.52 –4.57 –0.32 –3.97

2cro 0.66 -3.03 -0.03 –4.57

3icb 0.75 -1.86 0.13 –3.58

4pti 0.44 –5.21 –0.37 –3.27
4rxn 0.65 –4.00 -0.48 –3.66

AVG 0.62 –3.57 –0.22 –3.92

2

r, is the Spearman rank correlation coefficient between Co. RMSD and the
energy; it is more meaningful than the standard Pearson product-moment
correlation coefficient in non-parametric relationships that are not linearly
related.

* Z score is the number of standard deviations separating the energy of the native
conformation from the average energy of the entire set. (see Methods)

4RXN 4PTI

100 3 D helices (very small), 1 D sheet (2 strands) 120 2 D helices, 1■ m sheet (2 strands)
X-Ray, 65 residues X-Ray, 58 residues

-120 Hs-" e -140

-160

-180

-200

-220 4

-260 r T r -280 *

Figure 2. Single-point minimization VDW (y-axes) vs. Co. RMSD (x-axes) on crystal structures and on
decoys containing native secondary structure (Park & Levitt 4-state reduced set). Only two representative
proteins are shown, demonstrating the lack of a relationship between native similarity and van der Waals
energies, despite identification of native fold from all decoys. Red circles are minimized X-ray crystal
structures. Red exes are crystal structures that have been minimized after 150 ps of molecular dynamics in
explicit solvent.
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The Z-score also does not address strength of relationship between native

similarity and the scoring function. Instead, correlation coefficients provide a far more

direct criterion for establishing strength of association between two variables, and are

thus more fitting for judging predictive value of a scoring function for structure

prediction. For parametric samples, in which both variables are normally distributed on

an interval scale, implying a linear relationship, the standard (Pearson product-moment)

correlation coefficient (r) is most appropriate, but for non-linear relationships on an

ordinal scale, in which one or both variables are not normally distributed, the Spearman

rank correlation coefficient (rs) is most appropriate. In a Boltzmann distribution,

conformations are weighted exponentially, according to their free energies, P(i) = exp(-

AE/RT), where AE, is the difference in free energies between two states, i and some

reference, such as the native state. Because there is no reason to not believe that the vast

majority of proteins obey microscopic thermodynamics, one should expect that protein

conformations roughly populate in a Boltzmann distribution, rather than a Gaussian

distribution. Thus, to evaluate the strength of association between any variable and a free

energy like MM-PBSA, rs is more appropriate than r. For predictive value in protein

structure prediction, a strong correlation with native similarity is highly desired, so we

evaluated the Spearman rank correlation between MM-PBSA and Co. RMSD in Table 2,

which shows a reasonably good correlation, slightly better than that reported by Gatchell

et al.[10] and Dominy & Brooks[9]. While Table 1 indicates the lack of association

between good Z-scores and the ability to correctly identify the native fold, Table 2 shows

that good Z-scores do not imply good predictive value. Although the VDW potential did
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slightly better than MM-PBSA in terms of Z-score, it has no meaningful relationship with

Co. RMSD, as illustrated in Figure 2 on two representative proteins and quantified in

Table 2. 8 A conformations have the same VDW energy as 2A structures

Table 3. Pearson product-moment correlation coefficient
between CO. RMSD and MM-PBSA

CO. RMSD bin
0 - 2.5 2.5 - 5.0 × 5.0

1ctf 0.62 0.38 0.36
1169 0.63 0.45 0.37

1sn3 0.66 0.38 0.23
2cro 0.72 0.37 0.41

3icb 0.48 0.55 0.38

4pti 0.84 0.38 0.32
4rxn 0.54 0.47 0.34

AVG 0.64 0.43 0.34

Protein

The Co. RMSD bins contain every structure in the decoy set within the specified values.
The linear relationship between Co. RMSD and MM-PBSA is strongest in the bin of close
StructureS.

While some have suggested that there is no physical requirement for a

relationship between free energy and native similarity[12], Dill & Chan introduced the

widely accepted view of a funnel-shaped free energy landscape■ 13] to describe proteins,

where the native state has the lowest free energy and the more distant the native

similarity, the less favorable the free energy. If the free energy landscape is indeed

globally convex, the relationship between native similarity and free energy should be

approximately linear for only those conformations immediately surrounding the native

state, and the further structures lie from the native state, the less linear the relationship is,
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until finally on the level surface of the funnel, where native similarity is very low, there is

no relationship at all. We investigated this by separating the 4-state reduced decoy sets

into three bins of native similarity: close (< 2.5 Å), medium (2.5-5.0 Å) and distant (> 5

A). For each similarity bin, we evaluated the Pearson product-moment correlation

coefficient, which again is the strength of relationship between two variables that are

linearly related. As expected, the close structures showed the greatest degree of linear

association between Co. RMSD and MM-PBSA (r = 0.64), with the distant structures

showing only a slight tendency, and medium structures falling in between. These results

suggest, together with the rank correlation results in Table 2, that the free energy and

native similarity are related on an ordinal scale, with that relationship becoming

increasingly linear as native similarity increases.
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Figure 3. Single-point minimization MM-PBSA (y-axes) vs. Co. RMSD (x-axes) on crystal structures and
on decoys with no secondary structural restrictions (Rosetta ab initio all atom decoy set). Note these
decoys were generated in a structure prediction effort without information of the native structure. Red
circles are minimized X-ray crystal structures. Red exes are crystal structures that have been minimized
after 150 ps of molecular dynamics in explicit solvent. Figure inlays contain an overlap of the crystal
structure before (gray tube) and after (cyan tube) dynamics.

The Rosetta "All Atom Decoy Set" consists of 1000 decoy conformations for each

protein, with each conformer generated by the Baker group in the same manner as that

used for the community-wide Critical Assessment of Structure Prediction experiment

from a 1998 (CASP III)[2]. Three of the eight that we investigated from this decoy set

had crystal structures. In contrast to the 4-state reduced set, the Rosetta set usually does

not populate the low Co. RMSD regions very well, which should lead to a limited

relationship at best between functions with good predictive value and Co. RMSD among
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these decoys, because as discussed earlier, the linear correlation falls off beyond the 5 Å

mark (Table 3). Furthermore, because the structures in this set differ from one another

immensely more than they do in the 4-state reduced set where 10 dihedral angles are the

only degrees of freedom, the noise of the energy should much greater. Thus, we cannot

hope to distinguish 8 A from 15 A structures, even with a free energy function that were

entirely precise. All that can be hoped for in this Rosetta decoy set is the ability to

distinguish native from everything else, which MM-PBSA effectively accomplishes

(Figure 3).
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Decoys compared to NMR structures.

The five other proteins that we investigated in the Rosetta decoy set had NMR

structures. What clearly distinguishes these 5, shown in Figure 4, from the 10 sets with

crystal structures, is that the minimized NMR structures (red closed circles) do not have

the lowest free energies in any of the proteins. For 1gb1, there is a 6 A decoy lower in

free energy, a 16 A one for 1ksr, a 9 Å one for 1res, an 18 A one for 1fit, and a 17 A one

for 1 wiu. We believe that this arises presumably because of the unsophisticated

refinement methods used to solve the NMR structures, as discussed above. While these

reported NMR structures are undoubtedly in the correct global structural fold, these

single-point minimization MM-PBSA results suggest that the NMR structures are

nowhere near the bottom of the native energy basin, that minimization alone is

insufficient to overcome the numerous bad contacts, bond lengths, valence bond and

dihedral angles, which additively can lead to many tens to hundreds of kcal/mol

penalties, with only minor perturbations to the correct native topology and structure, in

terms of RMSD.

Effect of molecular dynamics.

Figures 1, 3 and 4 also show the effect of molecular dynamics on the native

structure compared to single-point minimization MM-PBSA calculations. Experimental

structures that have undergone 150 ps of molecular dynamics, followed by minimization,

are shown as the cyan tube diagrams on the inlays and represented by the red exes. These

native 150 ps snapshots have the best free energies in all 10 of the X-ray examples (7

from the 4-state reduced model and 3 from Rosetta), including 3icb where the minimized
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X-ray structure ranked 3" best, and the best free energies in four of the five NMR

examples where none of the minimized NMR structures ranked best. In the 150 ps

snapshot of 3icb, the region that deviated most from the crystal was one of two Caº'

binding loops in the protein. While the 3icb deposited pdb structure contains hetero-atom

records for two Caº ions, the structures in the decoy set do not, so to be consistent with

the decoy set and have a level playing field, we removed these divalent cations from the

crystal structure prior to evaluating the single-point minimization MM-PBSA, creating a

locally unfavorable hole in the system, which was filled in the 150 ps snapshot. Because

hetero-atoms are not included in structure predictions, it is appropriate to remove them

from the experimental structures as well, when trying to evaluate a scoring function's

ability to pick out the native conformation. This leaves crystal structures with locally

unfavorable regions, where the missing hetero-atoms may have been involved in

stabilizing the protein, creating an artifactual energy penalty of the native structure, that

can be compensated for with a short 150 ps dynamics simulation.
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Table 4. Free energy improvement of X-ray structures by molecular dynamics

protein/AMM-PBSA Astrain' AVDW Asolv_NP AEEL tot’|Co. RMSD|Resolution
11z1 –73.4 –0.4 -12.1 1.1 –62.0 0.59 1.5

1ris –40.3 6.8 –34.3 0.8 –44.6 0.79 2.0
1tul –83.0 -10.4 –36.5 1.0 –37.2 0.84 2.2

1ctf –25.2 -8.6 -15.2 0.7 –2.0 0.89 1.7

1T69 -9.8 0.4 –3.5 0.4 –7.1 0.93 2.0

1sn3 –50.8 -16.5 –25.8 0.5 -8.9 0.64 1.2
2cro –43.1 -19.6 -16.9 0.5 –7.1 1.04 2.4

3icb –79.8 –27.1 -0.9 1.3 –53.2 1.54 2.3

4pti 5.5 37.1 –28.6 0.3 -3.3 0.93 1.5
4rxn –29.1 -17.2 –6.4 0.2 –5.7 0.93 1.2

AVG –42.9 –5.5 -18.0 0.7 –23.1 0.97 1.8

The differences are between single point calculations on the initial structure as well as on the 150 ps snapshot of the
dynamics simulation. They are not as precise as ensemble average calculations, which are not possible as the
minimum requirement for a statistically meaningful ensemble average is 15 snapshots over 150 ps.

| The internal strain energy results from deviations away from reference values in bond length, angle and dihedral
terms.

* The non-polar solvation energy accounts for the cost of solvating a discharged solute.
* The total electrostatics energy is the sum of intra-solute Coulombic energies and solute-solvent electrostatic
energies.

Table 4 numerically summarizes the single-point minimization data of the X-ray

structures, before and after molecular dynamics, for MM-PBSA and each of its four

components. 9 out of the 10 crystal structures had a more favorable free energy after the

dynamics simulations, with the 150 ps snapshots having moved 0.97 A on average from

their initial conformation and being 43 kcal/mol on average more favorable. Only the

4pti crystal structure, which was already 100 kcal/mol more favorable than the best

decoy, and incidentally whose crystal structure did not contain any hetero-atoms other

than water molecules, did not experience an improvement. These substantial

improvements in free energy and ~1.0 Å movement away from the crystal structure
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results from 1) the absence of hetero-atoms included in the X-ray crystal, 2) differences

between our more representative aqueous solution and the crystal surroundings, and

perhaps 3) inaccuracies in the force field.

Table 5. Free energy improvement of NMR structures by molecular dynamics

protein AMM-PBSA Astrain' AVDw Asolv_NP AEEL tot’|Co. RMSD
1gb1 –91.2 –7.9 –38.2 0.4 –45.6 1.12
1ksr 19.7 44.5 106.4 3.5 -134.7 2.18

1res -103.8 –26.2 –56.5 –0.1 –21.0 1.56

1tit –200.8 –45.7 –76.8 –0.2 –78.1 1.32
lwiu -184.7 –69.3 –68.7 2.0 –48.7 1.65

AVG -112.1 –20.9 –26.8 1.1 –65.6 1.57

See footnotes to Table 4.

Table 5 shows the same results as Table 4, but for the 5 NMR examples. After

150 ps, the NMR structures, none of which had the most favorable single-point

minimization MM-PBSA, moved 60% further (<Co. RMSD-= 1.57 Å), on average, from

their starting structures than did the crystal structures. They also experienced a much

greater decrease in free energy, 112 kcal/mol on average, with only the 150 ps 1ksr NMR

snapshot not showing an improvement over the initial NMR structure, and thus not

becoming more favorable than its Rosetta decoy set.

The incorrect ranking of the 1ksr conformations stems not from flaws in MM

PBSA, but rather from using it to compare single-point calculations on minimized

structures. Although it is a rapid and thus desirable calculation, there are at least three

reasons why this single-point minimization MM-PBSA method cannot be expected to
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succeed in all cases. First, minimizations effectively remove temperature, thereby

altering the balance between enthalpy and entropy and thus changing the free energy

surface as well. Second, minimizations have difficulty escaping local minima, which can

over penalize conformations experiencing locally unfavorable energies like those solved

by NMR. Third, the MM-PBSA values fluctuate considerably, with standard deviations

on the order of 20–30 kcal/mol. Therefore, to obtain a more accurate MM-PBSA value, a

statistically sufficient ensemble of molecular dynamics trajectories should be generated,

with comparison of the resulting ensemble-averages. An ensemble, which samples

conformational space at 300 K, does not overly weight enthalpic contributions, can much

more readily alleviate locally unfavorable interactions to escape local minima, and

provides enough data to generate meaningful ensemble-averages that can be compared by

using t tests to evaluate the significance of differences.

Figure 5. (shown on following page) Effect of using ensemble-averages on MM-PBSA (y-axes) vs. Co.
RMSD (x-axes). Circles show the same single-point minimization MM-PBSA results as Figure 4, but on a
relative scale. Exes are the ensemble-averages from 150 ps of molecular dynamics simulation, starting
from the conformation represented by the open circle that the arrow originates from.

87



1GB1-1 a helix, 1 B sheet (4 strands)
150

-

NMR, 54/56 residues modeled

50 &
- - -

1RES - 3 o'
100

NMR, 35/43 residues

50

0
-

0 2 4 6 8 10

200

150

100

50

200

150

100

50

1KSR – B barrel (7 strands)
NMR, 92/100 residues

1TIT- B barrell (6 strands)

NMR, 85/89 residues modeled

T w -

1WIU - B barrel (7 strands)
300

NMR, 90/93 residues modele

250

200

100
-

f
50

88



Thus, for lksr, as well as for each of the other NMR examples, we generated 6

ensembles: one from the NMR structure, two from the Rosetta decoys with the lowest

RMSD, and three from the Rosetta decoys with the lowest single-point minimization

MM-PBSAs. The open circles in Figure 5 show the single-point minimization MM

PBSA of all the decoys and the initial NMR structure, relative to the most favorable

conformation, with the red ones being the NMR structure and the dark blue ones being

the 5 decoys selected for molecular dynamics. (Note that the energies are relative in

Figure 5 and absolute in Figure 4.) The exes in Figure 5 are the resulting ensemble

average MMPBSA values, relative to the best. The arrows map initial snapshot to its

corresponding ensemble average. Upon comparing the ensemble-averages, we find that

the native state now has the most favorable MM-PBSA free energy in every protein,

except 1res, where the lowest free energy has only a 1.5 Å Co. RMSD from the NMR

determined structure. It is also particularly noteworthy that this approach shows the

native structure to be most stable for 1ksr, where MD followed by minimization (red ex if

Figure 4) did not lead to the NMR structure being most stable. To be sure, the MD

average structure analysis was only done on 6 candidates, rather than the 1000 in the

entire decoy set, albeit we picked the lowest energy and lowest RMSD ones from the

original minimization analysis as our decoys.

Size dependence of the free energy of unfolding.

As the whole allure of protein structure prediction rests in its potential to

determine structures faster than experimental methods, an often overlooked requirement

is that the predictor have an absolute means of knowing when the native state has been
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found. A scoring function that has a high correlation between score and native similarity,

when applied to a database of structure predictions, can only identify the lowest scoring

conformation, which it predicts to have the most native similarity, but it cannot determine

if this best scoring structure is native or not. Consequently, we investigated the

possibility of using an extended state as the reference, rather than the native state, for our

average-ensemble MM-PBSA free energy, as Chiche et al.[14] did using the Eisenberg

and McLachlan SFE solvation energy[15]. However, we used an all o helical structure

for technical reasons (see Methods) as the extended reference, and we also added

hydrogen atoms to sulfur atoms of cysteine residues involved in disulfide bonds of the

native structure. We find, as shown in Figure 6, that among the 15 proteins studied in

this work, a strong correlation exists (rº = 0.86) between the size of a protein, in terms of

the number of residues, and its A(MM-PBSA) average-ensemble free energy, in going

from native state to fully extended state that is entirely alpha. Because the absolute

average-ensemble MM-PBSA of a fully extended helical state for any protein can always

be simulated, this correlation implies that one can come up with an expected absolute

average-ensemble MM-PBSA value for the native state, based only on the number of

residues, thereby providing an absolute check for identifying the native state.
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Figure 6. Size dependence of A(MM-PBSA), mat. Data on the 15 proteins in this work, 4 alpha proteins
(yellow triangles), 4 beta proteins (blue circles) and 7 mixed proteins (green squares), shows a strong
relationship between the number of residues and the free energy of unfolding. The X-intercept is 10
residues, suggesting that the most favorable conformation for peptides of this size may be all O-helical.

That A(MM-PBSA)o-nat relates linearly to the size of a protein is not a

coincidence, and can be simply rationalized. The MM-PBSA free energy does not

account for conformational entropy (Seon■ ); it predicts the intrinsic free energy of a

particular snapshot, without including the effect of other degenerate structures residing at
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the same energy level, which would effectively lower the relative free energy of this

ensemble of near degenerate structures by increasing Sconf. In other words, AGu =

A(MM-PBSA)-nat - T-Sconfu. If we use the expression for Boltzmann's law, Sconfi =

Rºln(Q), where Q, is the number of degenerate structures at a given energy level i and

assume for the unfolded state that Q = y”, with y representing the average number of

conformations per residue and n the number of residues, Sconfu can be assumed to be

directly proportional to n, Sconfu = n-R-ln(y). In view of the empirical fact that AGu

remains relatively insensitive to protein size, A(MM-PBSA)-nat should be roughly equal

to T-Sconfu and thus also proportional to the number of residues. If one finally assumes

that the MM-PBSA of the o helical state is representative of the MM-PBSA of other

individual members of the unfolded state, A(MM-PBSA)o-nat = A(MM-PBSA), nat.

A final interesting observation from Figure 6 is that the regression line has an X

intercept of 10 residues. This suggests that peptides of 10 amino acids or fewer prefer the

O-helical conformation over any other. For peptides so small, hydrophobic clusters,

which are likely critical for compact conformations, would be marginally stable at best.

Furthermore, a collapsed structure would probably have less favorable van der Waals

interactions than the repeating (i to i + 4) attractions found in an O. helix. Another

possibility for interpreting the far left end of Figure 6 is that the linear relationship adopts

a much smaller slope for very small peptides.

DISCUSSION:

High resolution X-ray crystallography structures have an average atomic

uncertainty on the order of 0.5 Å. Interestingly, 150 ps snapshots from molecular

92



dynamics simulations on crystal structures had lower single-point MM-PBSA free

energies than the initial crystal structures in 9 out of the 10 cases, with only 4pti not

benefiting energetically from molecular dynamics. While the initial structures were

already more favorable than entire ensembles of decoys in all but 3icb, the 150 ps

snapshots had a better single-point MMPBSA values in all 10 cases. In addition to

having more favorable predicted free energies, 150 ps snapshots moved, on average, less

than 1 A from their initial coordinates; these limited coordinate shifts may have been due

to our removal of hetero-atoms, due to adverse effects caused by packing artifacts or

other defects in the crystal structure, or due to the intrinsic tendency of proteins to

breathe.

The average atomic uncertainty of NMR structures is difficult to quantify. While

a popular idea is to evaluate the average deviation from a central average structure on an

"NMR ensemble", this does not account for systematic uncertainties caused by

inaccuracies of the energy surfaces being used to refine the structure, or for the inability

to sample sufficiently during the refinement. 150 ps snapshots from simulations on NMR

structures showed much greater improvements in free energy and much greater

movement, over 1.5 A, compared to their initial structures, than in the X-ray examples.

All 5 of the NMR models were less favorable than a significant number of decoy

structures, and 4 of the 5 150 ps snapshots had a markedly improved free energy, to

levels significantly below the best scoring decoys. However, the more accurate method

for evaluating free energies, ensemble-average MM-PBSA, favors the native state in all 5

of the NMR examples. The larger structural shifts and drops in predicted free energies

for NMR, than for X-ray structures, is consistent with the greater uncertainty in NMR

93



structures. Moreover, this work suggests that short explicit solvent molecular dynamics

simulations can correct, at least in part, for the errors introduced during the standard in

vacuo refinement protocol of NMR structure solution.

MM-PBSA provides meaningful, physically-based insight into relative free

energies of proteins.[16, 17], as do a few other energy functions[8–10], but an important

finding of this work is that it presents the first look at using this kind of free energy to

determine whether a protein structure prediction is of native quality, sans the actual

experimental structure. We find that a strong correlation exists between the size of a

protein and its MM-PBSA free energy of unfolding, from native state to an all alpha

helical state (r’= 0.86).

Biological Implications:

A critical step for making use of the now abundant genomic information is having

accurate three dimensional protein structures, with X-ray crystallography and NMR

spectroscopy currently being the two methods that can be used to determine these

structures. However, although crystal structures are well known to be more accurate than

NMR models, it has been challenging to asses the inaccuracies in the NMR models that

are obtained through refinement of NOE constraints. The present work suggests that

short room temperature molecular dynamics simulations with accurate treatment of

solvent effects and long range electrostatics, which are dramatically more

computationally accessible than they were only 5 years ago, are important for escaping

locally trapped, energetically unfavorable geometries that are inherent in NMR models.
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While protein structure prediction methods are still not at the point where they

can be used in place of experimental methods, if they are ever to reach that lofty goal,

they must be capable of more than just generating the native structure, for these methods

always generate a multitude of models. Structure predictors must also be able to 1)

identify which among the scores of generated conformations are most native like and 2)

know if the best structures are actually in the native state or not. Molecular mechanics

free energy functions like MM-PBSA, that include implicit solvation free energies and

are physically grounded, perform better than statistical and empirical functions at ranking

structure predictions. We also show in this work that MM-PBSA can be used, together

with an alpha helix extended state, to accurately predict when a protein conformation is

in the native state without any a priori native state information, such as tertiary contacts

or secondary structure. This method is based only on the protein length and the

difference in free energy between a given conformation and the alpha extended

conformation.

EXPERIMENTAL PROCEDURES:

The AMBER 5 suite of programs[18] was used for all molecular mechanics

simulations. The Cornell et al. all-atom force field(19] (parm.94) was used for

simulations and the parm26 force field[20], which differs only in the q', \, torsional

potentials of the peptide unit, was used in the MM-PBSA free energy analysis.
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Minimization

We used a single minimization protocol on all protein conformations: steepest

descent for the first 10 cycles, followed by conjugate gradient until the RMS of the

Cartesian elements of the potential energy gradient fell below 0.4 kcal/mol:A.

Minimizations were carried out in the gas phase, using a distance dependent dielectric

constant of 4r and a cutoff for all non-bonded interactions of 25 A.

Molecular dynamics

We ran all production-phase molecular dynamics simulations with a 2.0 fs time

step under the isothermal-isobaric ensemble (300 K and latm) with explicit solvent,

using the TIP3P model■ 21] for water, periodic boundary conditions, the particle mesh

Ewald (PME) method(22] for electrostatics, a 10 A cutoff for Lennard-Jones interactions,

and the use of SHAKEI23] for restricting motion of all covalent bonds involving

hydrogen atoms. Water molecules were added around the proteins using a 10 A buffer

from the edge of the periodic box. The temperature and pressure were maintained by the

Berendsen coupling algorithm using a t coupling constants of 1.0. PME grid spacing was

~1.0 Å and was interpolated on a cubic B-spline, with the direct sum tolerance set to 10°.

We removed the net center of velocity every 100 ps to correct for the small energy

drainage, that results from the use of SHAKE, discontinuity in the potential energy near

the Lennard Jones cutoff value, and constant pressure conditions.

For equilibration, we solvated the minimized structures, minimized the water

molecules alone until the RMSD was ~ 0.1 kcal/mol:A and then slowly heated, while
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allowing the water to move unrestrained for 25 ps (with a 1.0 fs time step) in order to fill

any vacuum pockets.

MM-PBSA

Coordinates from a trajectory were saved every 5 ps, and the MM-PBSA

calculation evaluated on each of them. The MM-PBSA free energy of each snapshot is

approximated as the sum of two terms, using an interior dielectric constant of 4: the

internal energy of the protein (EMM) and a solvation free energy (AGsov). EMM is the sum

of an internal strain energy (Eint), a van der Waals energy (VDW), and an intra-solute

electrostatic energy (EEL). AGsov consists of the cost of submerging a discharged solute

in solvent (Asolv_NP) and the subsequent cost of adding the charges back to the solute

(Asolv_eel). Asolv_NP is approximated as being linearly related to the solvent accessible

surface area (SASA): 5.42*SASA + 920 cal/mol. We adhered to the same Poisson

Boltzmann protocol as first described by Srinivasan et al.,(24] which used DelPhi III25]

and most of its standard default parameters, together with PARSE atomic radii and

Cornell et al. charges, to calculate Asolv_eel. The entropy of a given snapshot, which is

mostly vibrational, can be calculated with normal mode analysis on a Newton-Raphson

minimization. This, however, is the most time-intensive part of the MM-PBSA method

on a per-snapshot bases. Given the results in our previous study[16], where we found

this term to be indistinguishable among the native state, the folding intermediate, and the

unfolded state of HP-36, we did not perform this calculation in the current study. For a

more detailed discussion of the MM-PBSA method, see the review by Kollman et al.[26].
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Single-point minimization and ensemble-average calculations

When comparing the experimental and 150 ps structures with all the structures in

the decoy set, we took each individual structure, performed minimization and evaluated

MM-PBSA, using only a single value for the reported MM-PBSA, which we refer to as

single-point minimization values. For the ensemble-average values, we took the average

of every 10"ps over a 150 ps molecular dynamics simulation, as we previously showed

that this protocol provides the least expensive, yet statistically sufficient protocol for

evaluating an ensemble-average MM-PBSA[17].

NMR structures

When using the term "the NMR structure", we are referring to model 1 in each of

the NMR ensembles. We used this as the representative for simulation purposes, as it is

more physically realistic than an average structure. The RMSDs, however, are always

calculated in reference to the average NMR structure, as it is most representative of the

various geometries of the ensemble.

Fully extended conformations

In order to create a fully extended chain for our reference state, we selected all

alpha-helical conformations, because they were computationally efficient and well

behaved. The other alternative, an extended beta strand, experiences bends in the rod

wherever a proline resides, preventing the extended state from being remaining linearly

shaped, and leading to water box sizes that are immensely larger than those for the all

alpha-helical conformations. Flat-well restraints on the backbone (p and y torsion angles
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were used to keep the backbone in a helical conformation, with no energy penalty for

-180° - p < -60° and -60° - y < -30°, a parabolic side extending +20° with a 30

kcal/molºradº force constant, and linear sides, with slopes at the outer edge of the

parabolas, extending beyond that.

Z-score

The Z-score of a given value among a sample, Zi, expresses how many standard

deviations value i is away from the average value of the sample. Negative Z-scores mean

the value is less than the average. For example, in the 4-state reduced decoy set, a Z

score of -2.0 for a crystal structure would means that the crystal structure has an energy

that is 2.0 standard deviations lower than the average, which for a perfectly Gaussian

distribution would mean that the native is more favorable than 97.5% of all the decoys.
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ABSTRACT:

In order to effectively sample as much conformational space as possible, methods

for protein structure prediction make necessary simplifications that also prevent them

from being as accurate as desired. Thus, the idea of feeding them, hierarchically, into a

more accurate method that samples less effectively was introduced a decade ago, but has

not met with more than limited success in a few isolated instances. Ideally, the final

stages should be able to identify the native state, show a good correlation with native

similarity in order to add value to the selection process, and refine the structures even

further. In this work, we explore the possibility of using state-of-the-art explicit solvent

molecular dynamics and implicit solvent free energy calculations to accomplish all three

of those objectives on 12 small, single-domain proteins, 4 each of alpha, beta and mixed

topologies. We find that this approach is very successful in ranking the native and also

enhances the structure selection of predictions generated from the Rosetta method.
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INTRODUCTION:

Approaches for predicting three-dimensional protein structure based on amino

acid sequence, ranging from ab initio to comparative modeling, all make considerable

approximations in order to contend with the otherwise intractable number of possible

conformations. Commonly in ab initio methods, a simplified energy potential is used

together with a reduced representation of the protein, in which case side chains are often

represented by centroids, hydrogen atoms are usually omitted, and only a few discrete

torsional angles are allowed. Comparative modeling methods also rely on many of the

same approximations, albeit primarily on the non-homologous regions. These

simplifications, while beneficial in that they filter out the majority of unrealistic and

improbable structures, limit the degree of accuracy that can be obtained. Even over the

homologous regions of a comparative modeling effort, the exact native structure of any

sequence inevitably differs from its nearest structural neighbor template, particularly in

localized areas that may allow for small global superposition differences, despite large,

local deviations that can not be corrected without a more accurate representation of the

protein and the energy potential, as well as sufficient sampling.

The solution for overcoming the limiting simplifications is not to remove them

from the outset, but rather to add in the detail when necessary, because introducing a

higher level of accuracy to the energy potential makes for a more rugged surface that is

more difficult to sample, thereby restricting the distance in conformational space that can

be sampled on a practical timescale. Thus, the current structure prediction methods must

draw the tertiary structure sufficiently close to the correct structure, within a “radius of
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convergence”, before all-atom detail with a continuum torsional space may be capable of

improving them further.

The first attempts at using all-atom models as the final stage of a hierarchical

approach took place a decade ago", before control simulations were capable of

maintaining the native state, at a time when the computer power required for even short

simulations was very demanding. These investigators applied their methods to the GCN4

leucine zipper, which has a very simple coiled coil homodimer topology consisting of

two 33-mer monomers, of which all 33 residues were O.-helical. In the end, they obtained

~1 Å backbone RMSD structures, but only with the help of O-helical constraints applied

to every residue. While having brought forth the enticing idea of hierarchical protein

structure prediction, these studies were only successful because they knew the correct

structure to begin with and used native constraints to severely reduce the conformational

search. Samudrala et al. later attempted a hierarchical approach by building all-atom

models from a subset of off-lattice predictions on a set of 13 proteins and applying

minimization alone’, leading to the correct global topology in 6 of the cases. However, in

this study, it was not demonstrated and is unlikely that the final stage of this hierarchical

effort added any value to the initial off-lattice models, since minimization affords

extremely limited conformational sampling at best. More recently, with advances in

simulation methods, most notably being accurate means for treatment of long-range

electrostatics" that allows for maintenance of native protein structures’, our group

(Simmerling et al.) used an enhanced sampling protocol called Locally Enhanced

Sampling", which has been shown to lower energy barriers using a mean-field approach,

that drove a 3.7A 29-mer protein structure with an incorrectly packed beta sheet to a 2.2
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A conformation with the correct topology'. Even more recently, we ran nanosecond

state-of-the-art molecular dynamics simulations, with accurate long-range electrostatics

and explicit solvent, on initial structure predictions for the 36-mer HP-36 and the 65-mer

S15 alpha proteins, not only improving some of the model predictions to sub-2.0 Å Co.

RMSD structures, but also demonstrating that the highest resolution models also had the

best predicted Molecular Mechanics-Poisson Boltzmann (MM-PBSA) free energies

among a handful of other models with less native similarity".

In the current work, we further explore the promise of using explicit solvent

molecular dynamics simulations together with MM-PBSA for the endgame of structure

predictions on 12 other small single-domain roºm. 4 alpha, 4 beta and 4 mixed. The

three main objectives are: 1) identification the native state, 2) improved filtering over the

previous stage by providing better correlation with native similarity and 3) refinement of

the structures.
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RESULTS & DISCUSSION:

Conformational families

For each of the 12 proteins, 30 Rosetta model predictions were compared: the

centers of the 5 most highly populated clusters, and among the remaining Rosetta

predictions, the 5 with the best Co. RMSD predictions, and the 20 with the most favorable

Rosetta energy scores. We equilibrated each of these Rosetta models and the

experimental structures in a box of TIP3P” water with a 10 A buffer and ran one ns

production phase trajectories, for a total of 372 explicit solvent one ns simulations. After

having clustered the resulting trajectories, using a 2.5 Å Co. RMSD cutoff (see Methods),

we observe that the Rosetta model predictions had an average of 1.8 conformational

families over the course of the nanosecond simulation; more specifically, the alpha

proteins averaged 1.5, the beta proteins 2.4, and the mixed proteins 1.6. In comparison,

11 of the 12 trajectories on experimental structures had only a single conformational

family, with the lone exception 1gab spending 90% of the time in the initial

conformational family that had a slightly more favorable MM-PBSA free energy (Table

1). The ensemble-average values for the MM-PBSA as a function of two native

similarity metrics, Co. RMSD on the left and percentage of native contacts on the right,

are plotted for each conformational family in Figures 1-3.
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Table 1. Native state stability
protein residues l-RMSD-m ‘RMSD. I.Q.: :8:

1gab 47 1.7 2.3 85.4 84.8

# ■ ug. 62 1.5 91.1
º luxd 43 1.3 86.2

lpou 70 2.0 84.4
1sro 66 1.9 76.9

# Iqyp 42 2.3 72.3
-6 1 vif 48 0.9 89.8

2cdx 54 2.6 74.1
11eb 63 1.5 88.5

# 2pt 60 1.9 79.8
‘E 5icb 72 1.6 87.0

5Znf 25 1.6 86.9

1 lutg, lvif and 5icb are X-ray crystal structures. The remaining 9 are NMR structures.
* In the NMR cases, the average NMR structure was used as the reference.

Native states

Table 1 shows that, for the most part, control simulations led to very stable native

states having average Co. RMSD's under 2.0 Å and on average a percentage of native

contacts (Q-values) greater than 80%. Among the exceptions, the NMR model for 1 pou

seemed to have a <Co. RMSDX on the high end, although it still had a very good Q-value

of 84%. The three beta proteins with NMR structures, 1sro, 1dyp and 2Cdz, had RMSDs

on the high end as well as Q-values on the low end, when being compared to their

respective average NMR structures. For 2Cdx, the one with the greatest deviation from

the NMR models, the snapshots from the 1 ns trajectory showed an average pair-wise Co.

RMSD of 1.36 Å from one another with a standard deviation of 0.36 Å, and consisted of

a single conformational family. Similarly, for 1sro and 1 gyp, the average pair-wise

RMSDs were 1.42 and 1.32 A, with standard deviations of 0.41 and 0.43 Å, respectively,

and they too populated single conformational families throughout their simulations.
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These findings are in agreement with a separate study", in which we suggest that the

approximate treatment of solvent used in solving NMR structures causes them to be less

reliable than crystal structures.

MM-PBSA parameters

In the MM-PBSA free energy method, there are a few parameters that one cannot

derive from “first principles.” Perhaps the greatest difficulty lies in deciding what

interior dielectric constant (Eint) is most appropriate. On the one hand, because the atomic

point charges in our force field have been derived based on high level quantum

mechanical charges with a dielectric constant of 1, we may be justified in using £int = 1.

On the other hand, the experimental dielectric constant in proteins is ~4. Thus, the choice

of £int may be system dependent, with larger dielectric constants than 1 likely to be

appropriate in some instances.

Another uncertainty is in deciding which parameters to use for describing the

backbone torsional potentials. Because the original Cornell et al. force field

(PARM94)", which was parameterized on a set of dipeptides, was shown to slightly

favor alpha helical conformations on a training set of tetrapeptides”, the torsions for phi

and psi had been modified in response to high level ab initio calculations on the alanine

tetrapeptide, which led to a significantly better agreement between molecular mechanical

and quantum mechanical relative free energies on the tetrapeptide training set, giving rise

to the PARM96 force field. However, it is still not clear that one is more generally the

better choice for proteins, particularly in the post-processing stage of MM-PBSA

calculations.
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The non-polar component of the solvation free energy is a third area in which one

may explore multiple values or functional forms. In principle, this term should account

for all of the non-electrostatic contributions associated with solvating a molecule,

primarily including the entropically unfavorable cost of cavity formation and the always

attractive dispersion interactions between solute and solvent. Because it has been

reasoned that both of the primary factors involved in this term are roughly proportional to

the solvent-accessible surface area (SASA), as found in alkanes, MM-PBSA and other

methods that calculate the solvation free energy with a continuum solvent” use a small

positive linear Y coefficient to scale this term as a function of SASA, which assumes that

the relative weighting of the unfavorable cavitation is stronger than that of the attractive

dispersion. An alternative approach, long used by Cramer's and Truhlar's groups, has

been to calculate atomic surface tensions that depend on properties such as atom type and

nearest-neighbor recognition," which does not always lead the non-polar solvation free

energy to be positive. Recently, Pitera and van Gunsteren" demonstrated the importance

of considering all solute-solvent van der Waals interactions (VDW), including those

buried in the protein interior, indicating that solvent excluded volume may be more

appropriate than surface area in relating to the favorable aspect of non-electrostatic

Solvation free energies. While we continue to make the linear approximation, we explore

the effect of using different Y coefficients.

Previous studies applying MM-PBSA to binding free energies” and relative free

energies of stability on proteins” have been successful using values between 1 and 4 for

ent, the PARM96 force field, and a Y coefficient between 5 and 7 cal/mol:A*. Figures 1-3

graphically depict the results using our standard values: einl - 4, PARM96 and Y = 5.42
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cal/mol:A* and Tables 2-4 show the effects of changing ent, the dihedral component of

the force field, and Y on the ability to rank the native structure and on the strength of

relationship with Co. RMSD, which we discuss below.

Table 2. Native rank

MM-PESA

protein VDW' eel toº standard set' emº- I' PARM94° Y= 54.2° n

1gab 9 25 7 (2.08 Å) 12 (2.42 Å) 8 (2.14 Å) 10 (2.24 Å) |39
# lutg |4 18 1 4 (9.00 Å) 1 2 (10.40 Å) |55
Tº luxd 12 35 23 (1.80 Å) 27 (1.90 Å) 10 (1.56 Å) 17 (1.70 Å) |36

1pou |18 1 17 (11.01 A) 1 10 (10.24A) 1 53
1sro 2 37 1 1 4 (4.27 Å) 1 70

3 layp || 65 1 1 2 (8.60 Å) 1 71
3 Ivif I1 16 1 1 1 1 73

2cdx |8 53 1 1 32 (10.16 Å) 3 (10.45 A) |77
1 leb 1 48 1 4 (7.07 Å) 3 (7.95 Å) 1 53

# 2pt 1 46 5 (3.70 Å) 13 (3.84 Å) 4 (3.67 Å) 1 54
‘E 5icb 1 49 1 9 (5.74 Å) 4 (6.33 Å) 1 53

5Znf 19 26 l 1 1 1 38

weighted avg." 4.46 36.23 4.1 l 5.1.1 7.20 2.69
in parenthesis are the average RMSD's of the conformational families having lower energies than the native.
'van der Waals energy

* total electrostatic energy, using elm = 4: intra-solute Coulombic + AG.olyrol
'standard set is em. - 4, PARM96, and Y = 5.42 cal/mol:A’
'standard set, except for ent
'standard set, except for the force field
“standard set, except for Y
7 weighted according to n (see Methods)

Native rank

Table 2 shows the native rank of the conformational families containing the

equilibrated experimental structures, according to its van der Waals (VDW) and total

electrostatics (eel tot) components, and according to MM-PBSA, using various

permutations of the three parameters mentioned above. With the standard set, MM

PBSA predicts the native family as most energetically favorable in 8 of the 12 proteins
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(Table 2). In the alpha proteins 1 gab and luxd, the average Co. RMSD of conformational

families lower in free energy is only 2.08 and 1.80 A, respectively, with the lowest 19ab

energy Rosetta structures having as good a RMSD as the NMR model, and with one

having even more native contacts (from the average NMR structure) than the NMR

model. In the mixed protein 2ptl, only three of the 54 conformational families had a

lower predicted free energy, all three of which were low RMSD structures. Only in the

case of the 4-helix bundle 1 pou do the standard parameters decidedly fail, where nearly

half of the 53 conformational families scored better than native. VDW alone performs

worse than the standard set MM-PBSA, predicting the native family as most favorable in

only 5 of the same 8 that the standard set MM-PBSA did and no others. Interestingly,

eel tot predicts the native as best in only a single instance, 1 pou, the protein that the

standard set had the most difficulty with, and otherwise ranks very inadequately. Along

those lines, using the lower eint = 1 allows MM-PBSA to correctly rank native in 1pou,

while really only worsening three others, the alpha protein lutg and the two mixed

proteins 11eb and 5icb. The PARM94 force field, which has been suggested to unduly

favor alpha helices”, performs similarly to PARM96 on the alpha proteins, but worse on

the beta and mixed proteins. Finally, amplifying the Y coefficient, which would more

heavily weight the unfavorable cavitation term’s dependence on SASA, also allows MM

PBSA to correctly rank 1 pou and 2ptl, but slightly upsets the correct ranking of lutg and

2cdx, with a net effect of ranking a bit better than the standard set.
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Table 3. Strength of association with Co. RMSD
MM-PESA

protein |VDW' eel toº standard set em=1" PARM94° Y= 54.2% n

1gab |0.77 –0.07 |0.77 0.53 0.82 0.81 35

# lutg 0.64 -0.31 |0.63 0.02 0.49 0.60 11
+ luxd |0.78 -0.52 |0.74 0.49 0.76 0.77 31

1pou IO.82 -0.40 10.76 0.75 0.67 0.34 11
1sro 0.08 0.05 0.25 0.29 –0.04 0.22 35

s: 1 gyp |0.57 –0.35 |0.61 0.62 0.70 0.65 15
3 Ivif lo.81 0.12 lo:78 0.78 0.77 0.80 14

2cdx 0
1 leb 0.50 –0.90 |0.63 0.47 0.31 0.44 8

# 2pt, 0.46 –0.05 |0.39 0.35 0.41 0.47 46
E 5icb 0.24 –0.27 10.16 –0.04 0.23 0.20 17

5Znf 10.48 –0.08 |0.63 0.63 0.47 0.58 29

weighted avg|0.53 -0.18 IO.55 0.44 0.49 0.54
These values represent the Pearson product-moment correlation coefficients among families < 5A from the experimental structure.
'van der Waals energy

* total electrostatic energy: intra-solute Coulombic + AG.on rol
'standard set is ea =4, PARM96, and Y=542 calmol:A’
“standard set, except for £n
'standard set, except for the force field
“standard set, except for Y
7 weighted according to n (see Methods)

Correlation with native similarity.

In order for any energy function to be useful for structure prediction, it must

exhibit a good association with native similarity, not just correctly rank the native

structure among a set of decoys. Moreover, in a successful hierarchical approach, the

final stage must be more effective at correlating with native similarity than the initial

structure prediction methods. In this study, we examine the linear correlation coefficient

between Co. RMSD and the various energies as above, but only for structural families

that were less than 5 Å from the experimental structures. We impose this 5 Å limit,

because we suggest, in a separate work", based both on the notion of a globally convex

free energy landscape and on data of large decoy sets, that the relationship between Co.

RMSD and an effective free energy such as MM-PBSA is only linear near the native

state, that the relationship disappears beyond 5 Å Co. RMSD.
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Part of the reason why the relationship of our free energy with RMSD falls off

beyond a certain point stems from RMSD not being the best way of describing native

similarity. For instance, a single hinge motion between two domains can lead to very

large RMSD values, despite native similarity being otherwise very high. Thus, Q-values,

the percentage of formed native contacts, provide another way of judging how similar a

given conformation is to the reference point, and should not lose their association with a

free energy as readily as RMSD. As can be seen from Figures 1-3, the relationship of

MM-PBSA is roughly more well behaved with respect to Q than RMSD in three (1gab,

lutg and luxd) of the four alpha proteins, in two (1sro and 1 vif) of the four beta proteins,

and in all four of the mixed proteins.

In Table 3, we summarize our findings, which show that the standard parameter

set MM-PBSA correlates with Co. RMSD as well as any of the other terms or MM-PBSA

parameter permutations. Somewhat surprisingly, VDW does as well as the much more

computationally demanding entire effective free energy function itself, even though it did

not rank native as well. Eel tot shows virtually no correlation, which causes the MM

PBSA with eint = 1 to have a lesser association. The PARM94 force field performs

similarly to PARM96 and the higher Y coefficient seem to have no effect on the strength

of association between MM-PBSA and Co. RMSD.

;
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Table 4. Ability to filter decoys
Rosetta' MM-PBSA’ VDW" *

protein init.” avg." init.” avg. init.” avg."
1gab |4.56 4.90 2.45 2.08 1.97 1.98

# Iutg 10.87 11.20 8.36 8.32 9.96 9.80
º luxd 5.31 5.52 1.82 1.52 1.70 1.58

1 pou 11.45 11.34 10.88 11.08 10.88 11.06
1sro 6.12 5.66 4.34 4.56 4.72 4.48

# Iqyp 6:51 6.42 5.78 5.86 6.30 6.58
..f. 1 Vif 8.18 8.04 4.76 4.92 6.46 6.46

2cdx 10.03 10.68 9.56 10.26 9.64 10.14
11eb 6.68 6.84 7.44 7.88 8.30 8.54

# 2pt, 6.43 6.86 3.48 3.46 3.50 3.92
‘E 5icb 5.33 5.48 5.96 5.86 5.62 5.44

5Znf 4.26 4.26 1.58 2.38 1.78 2.48

aVg. 7.14 7.27 5.53 5.68 5.90 6.04
'The average values of the 5 most highly populated Rosetta structures
* The average values of the 5 lowest energy structures
* Initial Co. RMSDs
4 Ensemble-average Co. RMSDs from first conformational families if more than one

Note that this is an average of an average.

Although it is useful to have a scoring function that relates to native similarity, the

more relevant issue, in the context of hierarchical protein structure prediction, is whether

or not MM-PBSA provides a better filter than Rosetta at selecting the most promising

predictions. Because Rosetta does not rely entirely on its energy score in identifying its

most favored conformations, it is not appropriate to calculate its correlation coefficient

with Co. RMSD. Instead, to evaluate whether or not MM-PBSA or VDW is

advantageous over Rosetta in scoring its predictions, we compare the ‘Co. RMSDX of the

best 5 conformations in Table 4, this being the centers of the 5 most highly populated

clusters generated from Rosetta and the 5 lowest energy structures according to MM

PBSA or VDW alone. Under each of the three scoring functions, for each protein, we

show the average values of the 5 deemed best, from both their initial and their ensemble
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average Co. RMSDs. As can be seen from Table 4 and from Figures 1-3, MM-PBSA

(using the standard parameter set) improves the structure selection process, as does

VDW. Among the alpha proteins, three of the four benefited from MM-PBSA, with the

initial structures being on average 2 to 3 Å better than the 5 chosen by Rosetta.

Additionally, for 1gab and luxd, the molecular dynamics simulations improved the

RMSD even further by an additional - 0.5 Å. In the beta proteins, the selection process

also benefited from the more accurate MM-PBSA in all four proteins, albeit marginally

with 2cdx, which was only 0.5 Å better. Finally, among the mixed proteins, the selection

process improved substantially in half the cases, with 2ptl and 5Znf structures having Co.

RMSDs that were roughly 3 Å lower, but those from 11eb and 5icb were marginally

worse by one and 0.5 Å, respectively. Using the VDW energy alone as the scoring

function allowed for the same qualitative areas of improvement in filtering, although the

extent of improvement was slightly less. In summary, the average initial Co. RMSD

among the 5 chosen by Rosetta was 7.14 Å, that from VDW was 5.90 Å, and that from

MM-PBSA was 5.53 Å.

Refinement

The final objective in the endgame of hierarchical protein structure prediction

entails improving the native quality of the initial predictions. As we found in our

previous work, in which we refined two small alpha proteins", there are two aspects of

refinement: 1) relaxation to allow for very small domain shifts and correction of locally

unfavorable geometries, which have minimal barriers and occur within 50 ps of

molecular dynamics time, due to the more accurate free energy surface in molecular
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mechanics and 2) transitions over energy barriers into new conformational families that

may have more favorable free energies and more native similarity. Thus to isolate the

two potentialities, each trajectory was clustered into conformational families with a 2.5 Å

cutoff as mentioned above.

Table 5. Relaxation of initial conformations

0-2.5 Å 2.5-5.0 Å > 5.0 Å
protein linit' <RMSD-m n init' <RMSD-º n |init' <RMSD-m n

1gab |2.26 H-H: TI-ii-TTF g—
# Iutg 0 13.88 4.42 5 || 10.36 10.52 25
ºf luxd 1.86 1.70 20 |3.25 3.38 6 |6.73 7.00 3

1pou |2.30 3.00 1 |3.68 3.63 4 || 11.43 11.57 25
1Sro 0 |4.13 4.18 19 |7.47 7.20 10

§ lqyp 0 |3.99 4.54 8 |6.49 6.57 21
# Ivif 0 13.62 4.02 5 |9.02 8.93 23

2cdx 0 0 (9.10 9.61 29
11eb 2.50 2.45 2 |3.35 3.58 4 |8.12 8.31 25

# 2pt, 2.46 3.22 7 ||3.62 3.84 22 |9.03 9.27 3
‘E 5icb 0 13.81 4.02 4 |7.53 7.62 24

5Znf 1.50 2.37 21 |3.84 4.50 8 |6.50 6.40 1

alpha |1.99 1.90 30 |3.45 3.40 35 | 10.61 10.78 54# a beta 0 |4.02 4.25 32 |8.22 8.36 83
# a mixed 1.79 257 30 |3.66 3.97 38 |7.87 8.02 53

all 1.89 2.24 60 |3.70 3.86 105 |8.80 8.95 190
Conformational families for each protein are grouped into 3 bins based on their initial Co. RMSD.
Values reported in this table are the mean values among all members in the bin.
' initial Co. RMSD
2 ensemble-average of the initial conformational family
3 weighted according to n (see Methods)

For looking at possible refinement in the form of relaxation, we examine the

initial Co. RMSDs in comparison to the average RMSDs of the very first conformational

family (Table 6). We further split the data into close, medium and distant bins, 0–2.5 Å

from the experimental structure, 2.5 – 5.0 Å, and > 5.0, respectively, because we believe

that the closer the structure is to the native to begin with, the greater the likelihood that

conformational changes will be favorable. On average, only the relaxation of structures
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in the close and medium bins of the alpha proteins improved the native similarity, but

only slightly.

Table 6. Transitions from initial conformations

0-2.5 Å 2.5-5.0 Å > 5.0 Å
protein l-RMSD-m' <RMSD-..., n |<RMSD-m' <RMSD-- n_l-RMSD-m' <RMSD-.... n
1 leb 0 13.20 3.40 1 |8.59 8.58 19

§ 2ptl 3.20 3.55 4 |3.86 4.00 14 || 10.95 10.86 3
E 5icb 0 |4, 16 4.16 5 IT.60 7.75 19

5Znf 2.77 3.63 2 |5.43 5.88 3 0

1gab 2.65 3.25 2 |3.43 3.83 3 |8.80 9.00 1

# lutg 0 |4.42 4.26 5 || 10.55 10.47 15
º luxd 2.13 2.23 3 ||3.40 3.30 1 I9.30 9.20 1

1 pou 3.00 3.10 1 |3.67 3.90 3 || 1.73 11.27 16
1sro 0 |4.24 4.48 14 |6.80 6.78 9

§ 1 qyp 0 |4.80 4.96 7 I6.52 6.78 18
.# 1 wif 0 |4.01 4.14 5 |8.92 8.87 20

2cdx 0 0 |9.44 9.67 24

weighted avg.” [2.75 3.15 12 |4.17 4.32 61 |8.88 8.90 145
Trajectories for each protein that underwent a structural transition are grouped into 3 bins based on their initial Co. RMSD.
Values reported in this table are the mean values among all members in the bin.
I ensemble-average of the initial conformational family
2 ensemble-average of the 2nd conformational family
3 weighted according to n (see Methods)

Not all of the trajectories contained more than a single conformational family, but

among those that did, Table 7 compares the ensemble-average Co. RMSDs of the initial

and second conformational families, again further split into similarity bins. While we did

not see any bin in which conformational changes led to more native families, we would

only expect this to happen with any regularity in the close similarity bin, where there very

few transitions that are probably not statistically relevant.

CONCLUSIONS:

While in principle, progressive improvement in detail should allow for more

accurate protein structure prediction, this has not been shown to be the case, except in a
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few isolated proteins, largely due to the very short radius of convergence afforded by the

more accurate, detailed methods such as molecular mechanics that include all-atom

accuracy along with energy potentials based on first principles, and due to the structure

predictions not being of high enough resolution, lying outside of the radius of

convergence. Improvements in the initial stages of protein structure prediction by a small

handful of methods, most notably the Rosetta method, and development of accurate

methods for evaluating the relative free energies of stability, have provided us with the

opportunity to demonstrate a successful hierarchical collaboration.

Native rank, filtering and refinement are the three main objectives for the

endgame of protein structure prediction. Among the 12 proteins, each with a distinctive

topology, the methods presented in this work handle the first of these goals very well,

correctly placing native as first in 8 of the examples. In the remaining four, the lower

energy structures had average Co. RMSDs of only ~2 Å in two of the proteins, which is

considered to within the narrow range of natural fluctuation around the native state under

physiological conditions”, and 3.7 in another. In the fourth protein, using either a lower

interior dielectric constant of unity or a higher Y coefficient for the non-polar solvation

free energy lead to the corrected native rank. The methods presented in this study also

perform adequately as a filtering mechanism in an absolute sense, and substantially better

than Rosetta in a relative sense. The third objective, despite our previously reported

success on the HP-36 villin headpiece and ribosomal S15 protein", is one in which we do

not succeed; this does not imply that molecular dynamics made structures worse, only

that it did not improve them.
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That we were unable to really refine the best structures came as somewhat of a

disappointment, but not entirely as a surprise. The nature of refinement found in both

S15 and HP-36 included small helical domain shifts into more tightly packed structures.

While we do not believe that our energy function is inadequate to improve the structures,

we do feel that perhaps one nanosecond explicit solvent simulations are too short for

more systematic refinement of close structures. In order to overcome this limitation,

apart from trying to simply run longer simulations, methods that improve the sampling

may provide the solution. Locally Enhanced Sampling was effective on CMTI, which

has 3 disulfide bridges over 29 residues, as mentioned above, but application of this

approach on proteins less stable than the disulfide-rich CMTI led to unstable control

simulations on the native structure (unpublished results), presumably due to the

additional entropy of the method which altered the free energy surface. But because

Locally Enhanced Sampling still stands out as a promising method for overcoming large

energy barriers, particularly when used locally rather than globally, one might envision

application of this mean-field approach directed at those regions with greater known

uncertainty in the beginning stages of a hierarchical structure prediction, such as the

intervening sequences between predicted secondary structural elements. Alternatively,

** provide another potential approachimplicit solvent molecular dynamics simulations

for improving sampling, both in terms of the length of simulation that can be

accomplished and in terms of the more rapid conformational changes that accompany the

absence of solvent viscosity.

Apart from the lack of success in refinement aspect, the methods presented in this

work still performed admirably in ranking the native and selecting better structures than

:
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Rosetta. With the automation software used in this work, along with the increasingly

greater computational power that continues to emerge, the methods described in this

work for the final stages of structure prediction are much more accessible to the structure

prediction community than only a few years ago.

METHODS:

The AMBER 5 suite of programs” was used for all molecular mechanics

simulations. The PARM94 all-atom force field" was used for the molecular dynamics

simulations and both the PARM94 and PARM96” force fields, the latter of which differs

only in the Q, y torsional potentials of the peptide unit, was used in the MM-PBSA free

energy analysis.

Molecular dynamics

We ran all production-phase molecular dynamics simulations with a 2.0 fs time

step under the isothermal-isobaric ensemble (300 K and latm) with explicit solvent,

using the TIP3P model” for water, periodic boundary conditions, the particle mesh Ewald

(PME) method" for electrostatics, a 10 A cutoff for Lennard-Jones interactions, and the

use of SHAKE” for restricting motion of all covalent bonds involving hydrogen atoms.

Water molecules were added around the proteins using a 10 Å buffer from the edge of the

periodic box. The temperature and pressure were maintained by the Berendsen coupling

algorithm using a t coupling constants of 1.0. PME grid spacing was ~1.0 Å and was

interpolated on a cubic B-spline, with the direct sum tolerance set to 10°. We removed

the net center of velocity every 100 ps to correct for the small energy drainage, that
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results from the use of SHAKE, discontinuity in the potential energy near the Lennard

Jones cutoff value, and constant pressure conditions.

For equilibration, we solvated the minimized structures, minimized the water

molecules alone until the RMSD was ~ 0.1 kcal/mol:A and then slowly heated, while

allowing the water to move unrestrained for 25 ps (with a 1.0 fs time step) in order to fill

any vacuum pockets.

To cluster the molecular dynamics trajectories, we defined conformational

families as being those with Co. RMSDs of -2.5 Å from the first structure in the family,

with the first snapshot lying >2.5 Å from the first member of the initial family deemed as

the first structure of the 2" conformational family. On those families that were not

populated for 100 or more ps, we did not calculate ensemble-averages and did not

consider them in any of the results we report in this study.

MM-PBSA

Coordinates from a trajectory were saved every 5 ps, and the MM-PBSA

calculation evaluated on each of them. The MM-PBSA free energy of each snapshot is

approximated as the sum of two terms, using an interior dielectric constant of 4: the

internal energy of the protein (EMM) and a solvation free energy (AGsoly). EMM is the sum

of an internal strain energy (Eint), a van der Waals energy (VDW), and an intra-solute

electrostatic energy (EEL). AGsov consists of the cost of submerging a discharged solute

in solvent (Asolv_NP) and the subsequent cost of adding the charges back to the solute

(Asolv_eel). Asolv_NP is approximated as being linearly related to the solvent accessible

surface area (SASA): YºSASA + 920 cal/mol. We adhered to the same Poisson

-
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Boltzmann protocol as first described previously", which used DelPhi II” and most of its

standard default parameters, together with PARSE atomic radii and Cornell et al.

charges", to calculate Asolv_eel. The entropy of a given snapshot, which is mostly

vibrational, can be calculated with normal mode analysis on a Newton-Raphson

minimization. This, however, is the most time-intensive part of the MM-PBSA method

on a per-snapshot bases. Given the results in our previous study", where we found this

term to be indistinguishable among the native state, the folding intermediate, and the

unfolded state of HP-36, we did not perform this calculation in the current study. For a

more detailed discussion of the MM-PBSA method, see the review by Kollman et al.”.

NMR structures

When using the term "the NMR structure", we are referring to model 1 in each of

the NMR ensembles. We used this as the representative for simulation purposes, as it is

more physically realistic than an average structure. The RMSDs, however, are always

calculated in reference to the average NMR structure, as it is most representative of the

various geometries of the ensemble.

Q-values

A contact is defined as any two residues containing atoms s 3.5 Å apart. A

contact map is generated for the actual experimental structure of X-ray crystals and for

the average NMR structure of NMR ensembles. The Q-value represents the percentage

of contacts in the native contact map that are also found in the conformation being
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evaluated, with the exact same topologies being required in both the reference and target

configurations.

Weighted averages

In Tables 2, 3, 5 and 6, we report a weighted average according to n, which is

calculated as follows:

N .
I O W1

weighted avg. ===
g g N

ni is the number of samples in ensemble i, and N is the total number of samples among all

ensembles in the bin.

Automation

The bottleneck in running molecular dynamics simulations and MM-PBSA

calculations on a single protein conformation lies in the computer time. However, when

dealing with a larger number, human intervention and data analysis takes over that role.

For this work, in which we simulated nanosecond length simulations, analyzed, and post

processed the MM-PBSA on 372 different structures, a set of programs with the Perl

scripting language was written to automate the process (Appendix A in thesis by M.R.

Lee”). These programs allow for implementation of a standard set of flags for running

the simulations and scale with complete efficiency up to the number of computer

processors available, by running simulations in coarse grain parallel. The majority of

simulations in this work were run on 6 separate 4-processor Compaq Alpha ES40

machines, which when combined with the automation software, allowed for 24

independent simulations to be running simultaneously.

.

-
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Chapter 6:

Conclusions & Future Direction
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CONCLUSIONS:

The work presented in this dissertation is the start of a bridge building between

computationally demanding molecular mechanical simulations and genomic data. I

demonstrate the usefulness of molecular dynamics simulations in refining structures, and

of MM-PBSA in identifying the native structure, both relative to large sets of decoys, and

in an absolute manner without a priori native state information by using an O-helical

extended state as the reference point. Particularly important along the lines of working

with genomic data, I also have written several scripting programs to allow for routine

implementation of these methods for the endgame, the final stages, of protein structure

prediction, that are capable of fully utilizing the type of increased computer power in

modern architectures. Again the three main objectives of the endgame are:

1) identification of the native state

2) being able to judge native similarity by having a score that correlates well

with native similarity in order to enhance the structure selection process

3) refinement of the best structure predictions.

What we learn specifically from Chapter 2 is that MM-PBSA allows for

discrimination between the native state and a compact folding intermediate state, the start

of an answer to objective 1. I showed that the lack of conformational entropy in MM

PBSA causes the energy gap between the native state, which has a very low degeneracy,

and any other non-native state, which coexists at that energy level with many other

structures, to be a sizeable margin that grows as the size of the protein increases, which

led the potential for satisfying objective 1 more generally.

L
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In Chapter 3, I found that I was able successfully meet objective 3, by markedly

improving a few of the Rosetta structure predictions that were within a radius of

convergence. I showed that state-of-the-art explicit solvent molecular dynamics can be

useful for drawing structures closer to the native state as hypothesized. The most

interesting result out of this work, however, was that the MM-PBSA energy gap principle

learned from Chapter 1 was consistent with this work, and that refinement from a 3 Å to

a 2A structure (which is arguably a member of the native state') was accompanied by

substantial energy drop, thereby providing another work in which we successfully met

objective 1.

Among thousands of decoy structures investigated in Chapter 4, I found a

reasonably good correlation with RMSD, thereby satisfying in part objective 2, and I also

was the first to demonstrate that linear relationships between RMSD and an effective free

energy exist only near the native state, which suggests that for satisfying objective 2,

accurate physically-based scoring functions may only be of use among decoys less than

~5 A from the native. Another interesting observation that came from this work is one of

interest to the entire field of structural biology, that NMR models benefit markedly from

short explicit solvent, restraint-free molecular dynamics simulations. While crystal

structures were most favorable in every instance, NMR structures were significantly less

favorable in every instance, and short 150 ps simulations corrected for this by ranking

native as most favorable in each instance, by comparing at the ensemble-averages. Thus,

this lends further support to applicability of MM-PBSA for meeting objective 1, but

shows that it depends on having an accurate representative of the native state to begin

with, which does not necessarily follow experimental structure determination.

Alternatively, I demonstrate an unorthodox approach for meeting objective 1, that an
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extended state calculation can be used as a reference point to give an absolute indicator

of how good a particular free energy is, which is different and more useful than just

knowing that a conformation has a lower free energy than all other decoys in its database

Set.

Finally, I show in Chapter 5 that MM-PBSA works well for meeting objectives 1

and 2 in a larger, more statistically significant set of 12 proteins. Not only did MM

PBSA correlate reasonably with RMSD, but it also significantly improved the selection

process, compared to Rosetta. I also found, however, a single instance in which the

standard set of MM-PBSA parameters failed in the native rank objective, that was

corrected for by either using a lower dielectric constant or a higher Y coefficient of the

non-polar solvation term.

FUTURE DIRECTION:

While I successfully accomplished the refinement objective on two small alpha

proteins in Chapter 3, I was unable to reproduce similar results on any of the Rosetta

predictions of the 12 proteins studied in Chapter 5. Thus, in future attempts to meet

objective 3, simulation protocols that sample more effectively'’, as discussed in Chapter

1, may be useful.

The lack of successfully ranking the native in 1pou from the work in Chapter 5

suggests that a more accurate method for treating the non-polar solvation term may be

warranted in future MM-PBSA development, particularly on protein stability studies,

where the hydrophobic effect, long considered to be a dominant force in protein folding"

is theoretically accounted for by this term. Because the solvent excluded volume (SEV)

has been demonstrated to relate better to the attractive component of non-polar solvation
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free energy than solvent accessible surface area (SASA)', one might consider splitting

the Y-SASA term into a Y-SASA and a Y-SEV and redoing the parameterization, where

Yi would be positive and Y, would be negative.
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Appendix A:

Automating AMBER molecular dynamics simulations & MM-PBSA
free energy calculations
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OVERVIEW

MinMMPBSA.tbl

t
MinMMPBSA.pl

Init/${BASENAME}.crd

${BASENAME}.pdb —- DMºl—º {BASENAME}...min.crdTopol/${BASENAME}.vac9x.top

Solvate.pl

Solv/${BASENAME}.solv.crd
Eqprd.pl I* Topol/${BASENAME}.solv.top

Equil/${BASENAME}...min wat.crd
Equil/${BASENAME}.md wat.crd
Prod/${BASENAME}...prod.crd
Prod/${BASENAME}...prod.traj
MMPBSAS/${BASENAME}...mmpbsa
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Min.pl

OVERVIEW: This program will creates AMBER coordinate and topology files for
every “.pdb file found in the working directory, using theap. It will also create individual
"batch scripts" to minimize each structure and "job scripts" that will launch each of the
individual "batch scripts", according to the type of queuing system specified by the user.

USAGE: Min.pl -sander [0]-tleap [0]-leapre [0] -caps [N]-hetatm [N] -hyd [N]
-sscut [2.5]-qtyp [0] -ncpus [8] -nsets [2]-tlim [5]-mreq [10]
[myleap) ■ toponly] [septop] [help]

flags for finding necessary files
sander: Pathname of sander executable; default of 0 will search for "sander"

in $path list.
tleap: Pathname of theap executable; default of 0 will search for "tleap"

in $path list.
leapre: Pathname of a non-standard leapre file; default is to create a standard one.

flags for how to run the minimization
maxcyc: Maximum # of cycles allowed
drms: Maximum rmsd of the Cartesian elements of the potential energy gradient
ntmin: 0 = steepest descent for 10 steps, then conjug. grad.

= steepest descent for ncyc steps, then conjug. grad.
2 = only steepest descent (only allowed with "-drms 0")

ncyc: Used only with "-ntmin 1"

flags for assigning topology and how pdb files are parsed
caps: Whether or not to use terminal protecting groups NME and ACE.

Use "Y" or "y", otherwise charged terminals are default.
hetatm: Whether or not to read HETATM records from pdb files.

Use "Y" or "y", otherwise ignoring HETATM's is default.
hyd: Whether or not to read hydrogen atoms from pdb files.

Use "Y" or "y", otherwise ignoring (non-bb) hydrogens is default.
SSCut: Cutoff to use for determining disulfide bonds.

flags for creating the job script
qtyp: Type of queue system (unicos, LSF, NQS or default of 0 for none)
ncpus: # cpu's that will be used in each set by job script
nSetS: # sets that will be run by each job script
tlim: Estimated time needed (hours) for each individual minimization
mreq: Estimated memory required by each individual minimization

Note that thim and mreq are ignored if qtyp is 0 (no queuing system).

flags for changing the default file output behavior
[myleap) Use this flag if you only want to create the leap input files

for each ${BASENAME}.pdb found in "./Init/" or in "./".
[toponly] Use this flag if you only want to create the topology files

for each ${BASENAME}.pdb
[septop] Use this flag to create separate topology files for each pdb structure.
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Otherwise, hard links will be created for those with the same
number of atoms.

help flag
[help] Print this USAGE message

FILE INPUT:
1) ${BASENAME}.pdb

Min.pl will sequentially search for all files ending with the suffix ".pdb" in the working
directory and dynamically assign the root of the filename to the variable
${BASENAME}. (For example, for the file "abc.pdb", ${BASENAME} is "abc".) For
each pdb file found, a set of files, whose nomenclature is based on the current
${BASENAME}, will be created as described below.

FILE OUTPUT:
1) Init/${BASENAME}.crd
2) Topol/${BASENAME}.vac.94.top

Topol/${BASENAME}.vacQ6.top
Topol/${BASENAME}.vac99.top
(tl.oSBASENAME if theap fails on $BASENAME)

and the following unless "toponly" is used on the command line:
3) Run.min. SBASENAME (the batch scripts)
4) myleapre-add.S{BASENAME}

(DO NOT DELETE - used by Solvate.pl module)
5) QMin.n (the job scripts)

Each QMin.n job script will contain ncpus”nsets number of batch scripts and
should be submitted to the appropriate queue (or run interactively if qtyp is 0) and
will produce the following files for each batch script:

1) Min/${BASENAME}...min.crd
2) Min/${BASENAME}...min.out
3) Min/${BASENAME}...min.info

Min.pl creates Init/, Topol/, and Min/ directories and organizes the output files
accordingly.

DETAILED EXPLANATION OF FLAGS:

flags for finding necessary files
Min.pl will, by default, search through the path to try and locate executables. If these
executables can not be found in the path, or if the user wishes to designate an alternative
binary, the entire pathname should be used as the flag's argument (i.e. "-sander
/usr/bin/sander").

r--
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The standard leapre file is compatible with all standard protein and nucleic acid residues,
as well as all residues found in the standard AMBER force field. If a pab file contains
non-standard residues, such as an unnatural amino acid or an organic compound, the user
will need to:

1) Create LEap library files (.off or .lib suffix) and AMBER parameter files for
every non-standard residue found in the pdb file; see LEaP documentation or
the streptavidin tutorial on the AMBER web page:

http://www.amber.ucsf.edu/amber/tutorial/streptavidin/index.html

2) Create a teap source file that contains the command to load in the LEaP
library and parameter files. The following approach is suggested.
a) Run the "Mkleapre-pl" program, which will create a teap source file

called "leapre".
b) Edit leapre by adding the appropriate lines to the bottom:

loadOff LEaP input file(s)
loadAmberParams LEaP param file(s)

c) Rename "leapre" to something unique like, like "uniq leapre"

3) Use the uniquely named leapre file as the argument for the "-leapre" flag of
Min.pl.

flags for how to run the minimization
The default protocol for minimizing is using steepest descent for 500 steps followed b
conjugate gradient until the gradient of the Cartesian elements is below 0.4 kcal/mol/
(or if 50,000 steps are run before this is satisfied), all in a distance dependent dielectric (e
= 4r). Refer to the SANDER documentation for how to change the minimization
protocol using the $maxcyc, $drms, $ntmin, and $ncyc flags.

flags for assigning topology and how pdb files are parsed
-caps, -hetatm, and -hyd: Pretty self-explanatory. By default, charged termini will be

used and all HETATM and non-backbone hydrogen atom records are ignored
from the pdb files. (The hydrogen atoms will be built-in by LEaP.)

-sscut: Threshold distance (in Å) between any two SG atoms used for assigning disulfide
bridges. If any CYS (or CYX) residue is close enough to form a disulfide with
more than one other cysteine residue, only the closest residue will be cross-linked.
The standard value of 2.5 Å has a reasonable physical basis, but larger values may
be desired for ab initio or comparative modeling protein structure predictions to
lock down suspected or known disulfide bridges.

WARNING ON RUNNING Min.pl MORE THAN ONCE ON A PDB FILE
If Min.pl is run and disulfides are assigned, the involved CYS residues are
renamed to CYX in the pdb file and any HG atoms will be discarded. When can
this be a potential pitfall? If Min.pl is run again with a more stringent threshold
(shorter -sscut argument), in which now fewer disulfides are assigned, the pdb file
will incorrectly contain CYX residues, that are not part of a disulfide bridge and
still lack HG atoms, because the more liberal previous run already converted the

**
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CYS to a CYX. To revert back to CYS nomenclature of all cysteine residues, the
program "CYXtoCYS.pl" can be run without any command line arguments,
which will work on all pdb files in the working directory.

flags for creating the job script
As noted above in the OUTPUT FILES section, Min.pl creates two kinds of scripts,
batch and job. A batch script contains all the information to run a minimization on single
structure and a job script will run multiple batch scripts in coarse grain parallel series.

-qtyp: What kind of queuing job script to create. The unicos option is creates a standard
NQS job script, except that the memory units are words rather than bytes. The
default option will create a c-shell job script with no queuing information.

-ncpus: Number of processors (AKA "threads", or "CPU's") on which to run the job
script in coarse grain parallel.

-nsets: Number of coarse grain parallel sets to run in series.

-tlim and -mreq: These flags are used in conjunction with -ncpus and -nsets to determine
the total time and memory limits that will be used for the job script.

These flags are not the most intuitive and can best be understood by example.
Suppose there are 20 pdb files in the working directory. The user wishes to run
Min.pl on a machine with 4 open processes, so the -ncpus argument is set to 4.
Due to time constraints of the batch system, each job can only run 2 sets of 4, so
the -nsets argument is set to 2. Three QMin.n job scripts will be created: QMin.0
(8 batch scripts), QMin.1 (8 batch scripts), & QMin.2 (4 batch scipts). In QMin.0
and QMin.1, the first set of 4 will run in the background and once the job script is
finished waiting for all 4 batch scripts of the first set to finish, the second set of 4
is launched and waited on; once the second set is complete, the job script is
finished. The user approximates that each batch script will take 6 minutes and 5
MB of RAM, so -tlim is 0.1 and -mreq is 5. The job script will designate a total
limit of 1 hour (8*0.1 = 0.8 hours, then rounded up) and 20 MB (5*4).

flags for changing the default file output behavior
myleap: The Solvate.pl program builds from the leapre files created by Min.pl and if

these files are accidentally removed, the "myleap" keyword can be entered on the
Min.pl command line to just create the myleapre-add.S{BASENAME} files
(without spending time using teap to generate AMBER files).

toponly: If you only desire to create AMBER coordinate and topology files, without the
batch and job scripts, use this command line keyword.

septop: If one has multiple conformations of a single biomolecule, it is desirable to
create hard links of the vacuum topology files in order to save disk space
(particularly when 5 or more conformations of the same are being evaluated).

º
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Solvate.pl
OVERVIEW: For every Min/*.min.crd file found, this program will create solvated
AMBER coordinate and topology files. It uses theap to submerge the structure in a
TIP3P water box with a 10 Å buffer on each edge.

USAGE: Solvate.pl [tleap) [ambpdb] [scwrl] [help] -p [94] -sscut [2.5]

flags for finding necessary files
tleap: Pathname of theap executable; default of 0 will search for "tleap"

in $path search.
ambpdb: Pathname of ambpdb executable; default of 0 will search for "ambpdb"

in $path search.
scwrl: Pathname of scwrl executable, if scwrl sidechains are to be used.

The default of 0 is to NOT use scwrl sidechains.

flags for run behavior
top: which FF to use for explicit solvent MD; default is parm.94

Use "96" or "99" as flag options for the other FF's.

SSCut: If scwrl sidechains are added, this flag is the cutoff distance
for assigning SS bonds of the newly added side chains.

help flag
[help] Print this usage message

FILE INPUT:
1) Min/${BASENAME}...min.crd
2) Min/${BASENAME}...min.out
3) Topol/${BASENAME}.vac9x.top
4)./myleapre.add.S{BASENAME}

Solvate.pl will search for all Min/*.min.crd files and dynamically assign the
${BASENAME} variable in the same way that Min.pl does with *.pdb files. The
min.out files are checked to ensure that the minimization completed properly.

FILE OUTPUT:
1) Topol/${BASENAME}.solv.top
2) Solv/${BASENAME}.solv.crd

Solvate.pl creates the Solv/ directory and puts all the solvated AMBER coordinate files
there and all the solvated AMBER topology files in Topol/.

-
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DETAILED EXPLANATION OF FLAGS:

flags for finding necessary files
The documentation of Min.pl applies to the -sander and -ambpdb flags.

-scwrl: This argument contains the pathname of the scwrl executable, if the user should
desire to replace the existing side chains with those from the scwrl backbone
dependent rotamer library (Bower, M.J., Cohen, F.E. & Dunbrack, R.L., Jr.
(1997).J. Mol. Biol. 267, 1268–1282). Otherwise, the default argument of 0 will
leave current side chains intact.

If the initial pdb structure did not contain side chains, Min.pl used theap to build
them in very crudely and it is highly recommended that you use scwrl to replace
them.

NOTE: The option to build side chains appears in Solvate.pl rather than in
Min.pl because scwrl fails very often in structures that have not been minimized.

-sscut: Like in Min.pl, the threshold distance (in A) between any two SG atoms used for
assigning disulfide bridges, but on side chains that were built in by scwrl. This
flag can not be set unless the -scwrl flag is also set.

-

º
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EqPrd.pl
OVERVIEW: For every Solv/*.crd file found, this program creates individual batch
scripts to 1) equilibrate water atoms, 2) run production phase molecular dynamics and 3)
optionally calculate the MM-PBSA free energies. Like Min.pl, it will also create batch
and job scripts.

USAGE: EqPrd.pl [sander] [nice] [scwrl] -ncpus [8] -nsets [2]-ps [150]-tlim [5]-mreq
[10] -qtyp [0] -equil [short] [trajonly] [help]

flags for finding necessary files
sander: Pathname of sander executable; defualt of 0 will search for "sander"

in $path list.

flags for the batch scripts
ps: how long (ps) production phase will run
equil: "none", "short" or "long"

none - no equilibration; creates only production batch scripts
(assumes Equil/*.md wat.cra and Topol/*solv.top files exist)

short - 1) minimize H20:2) temp. ramp MD on H20 only
long - 3) minimize entire system 4) temp. ramp on whole system

scwrl: Whether or not scwrl sidechains were added by Solvate.pl.
Unless "Y" or "y" is argument, this flag is not set.
If it is set, batch scripts will minimize solute again prior to
water minimization

mmpbsa: Whether or not to calculate MM-PBSA on the production phase trajectory.
Unless "N" or "n" is argument, MM-PBSA will be included

flags for creating the job script
qtyp: type of queue system (unicos, LSF, NQS or default of 0 for none)
ncpus: # cpu's that will be used by batch job
nSetS: # sets that will be run by batch job
nice: The amount (between 0 and 20) to nice batch scripts in the job script

The higher the number the lower the priority
tlim: Time needed (hours) for each minimization
mreq: Memory needed for each minimization

help flag
[help] Print this usage message

FILE INPUT:

1) Solv/${BASENAME}.solv.crd
2) Topol/${BASENAME}.solv.top
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EqPrd.pl will search for all Solv/*solv.crd files and dynamically assitn the
${BASENAME} variable in the same way the Min.pl does with *.pdb files.

FILE OUTPUT:
Run.SBASENAME

QEqPrd.n files will then be generated,
each of which should be submitted to the queue
and will produce the following files for each $BASENAME:

1) Equil/${BASENAME}...min wat.crd & Equil/${BASENAME}.md wat.crd
2) Equil/${BASENAME}...min wat.out.Z & Equil/${BASENAME}.md wat.out.Z
3) Equil/${BASENAME}...min wat.info & Equil/${BASENAME}.md_wat.info
4) Equil/${BASENAME}.md wattraj.Z

NOTE: if longed is specified, *.minall.” and *.tramp.”
output files will also be generated.

5) Prod/${BASENAME}...prod.crd
6) Prod/${BASENAME}...prod.out.Z
7) Prod/${BASENAME}...prod.info
8) Prod/${BASENAME}...prod.traj.Z
9) ${BASENAME}...mmpbsa (energies from MMPBSA.pl and RMSD's from ptraj)

EqPrd.pl creates the Solv/directory and puts all the solvated AMBER coordinate files
there and all the solvated AMBER topology files in Topol/.

DETAILED EXPLANATION OF FLAGS:

flags for finding necessary files
Refer to the documentation of Min.pl.

flags for the batch scripts
-ps:

-equil:

This flag will specify how long to run the molecular dynamics production phase.
The default length of 150 ps has been shown to give sufficient sampling for a
meaningful ‘MM-PBSA>.

The user may select from three possible equilibration schemes:

none: If solvated AMBER coordinate and topology files already exist, this option
may be used, but only after the files have been named appropriately; i.e. the
coordinate file must be named "Solv/${BASENAME}.solv.crd" and the topology
file "Topol/${BASENAME}.solv.top".

short: This option is the default and is recommended for most applications. It
consists merely of minimizing and equilibrating the water molecules with a linear
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temperature ramp from 5 to 300 K over 25 ps with a 1 fs time step. Assuming the
initial solute itself has only gone through minimization prior to being submerged
in a water box, this short equilibration scheme can potentially blow up during the
subsequent production phase. At the first step of MD, the solute is essentially at 0
K (due to the minimization) and the solvent is at 300K (resulting from
temperature ramp); the system as a whole is coupled to a heat bath of 300 K.
Thus, this short scheme will lead to a sudden jolt of kinetic energy being added to
the solute during the production run and thus can lead to failure. However, this
short scheme saves a significant amount of time, which is desired when dealing
with many conformations, has been found to be sufficient for most small protein
conformations, in that the initial native structures generally remain under 1.5 Å
from their starting point.

long: To more carefully equilibrate the system and better ensure that the starting
structure will not move too far during the first hundreds of ps of the production
phase, the user might want to implement this long equilibration scheme. After
equilibrating the water molecules, the entire system will be minimized, followed
by MD with a linear temperature ramp from 5 to 300 K over 20 ps with a 2 fs
timestep.

scwrl: If scwrl sidechains were added during Solvate.pl, they should be
minimized before the solvent is equilibrated; setting this flag will have the batch
scripts do so.

mmpbsa: The batch scripts will by default launch MM-PBSA on the resulting
production phase trajectories. If the user desires to perform free energy post
processing separately or not at all, this flag must be unset ("-mmpbsa N'" on the
command line of Eq.Pra.pl.);

flags for creating the job script
Refer to the documentation of Min.pl.

-nice: This flag will place a "nice +n" before each batch script in the job script.
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MinMMPBSA.pl
OVERVIEW: For every Min/*.min.crd file found, MinMMPBSA.pl will evaluate the
MM-PBSA and print the energy information in a table, with the following column titles:
structure, vow, Solv_NP, EEL_tot, G94, G96, G99, and optionally CA_r and NatCon.

USAGE: MinmMPBSA.pl -ref [0]-ncpus [1] [help]

FILE INPUT:
1) Min/${BASENAME}...min.crd
2) Topol/${BASENAME}.vac9x.top

FILE OUTPUT:
1) MinmMPBSA.tbl

DETAILED EXPLANATION OF FLAGS:

ref: If a protein pdb file is entered here as the command line argument,
MinMMPBSA.pl will, in addition to calculating the energies on each snapshot,
calculate the CA RMSD (using ptraj) and % of native contacts (using
ContactPeader and ContactMap) between each snapshot and this reference
conformation. The reference pdb file must be consistent with the topology file.

ncpus: The number of processors on which to run this in coarse-grain parallel.

* *

-*
*
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