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Modeling the Perception of Spoken Words

M. Gareth Gaskell
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Psychology Department, Birkbeck College,
Malet Street, London WCI1E 7HX
g.gaskell@psyc.bbk.ac.uk

Abstract

We present a new distributed connectionist model of the
perception of spoken words. The model employs an internal
representation of speech that combines lexical information
with abstract phonological information. We show how a
single distributed representation of this type can form the
basis for the perception of words and nonwords alike. The
model is tested against lexical and phonetic decision data
from Marslen-Wilson and Warren (1994). These
experiments examined the integration of cues to place of
articulation during lexical access and showed a pattern of
results which proved difficult to accommodate in previous
models. The use of a single, late, phonological
representation allows this pattern of results to be simulated
and has the potential to incorporate many other properties of
the human system.

Introduction

This paper describes a new approach to the perception and
recognition of spoken words. This departs from previous
approaches by postulating a fundamentally different
relationship between speech input, lexical representations
of meaning and form, and the listener’s perceptual
experience of speech. The conventional approach, standard
across essentially all current theories and models, assumes
a processing architecture where speech is first analyzed in
terms of some form of pre-lexical phonological unit (such
as strings of phonemes or syllables) constituting a separate
level of perceptual and computational representation. This
pre-lexical level forms the input to the mental lexicon and
is the basis for the listener’s perceptual experience of the
speech stream. We argue, instead, that there is no such pre-
lexical level, that the speech input, analyzed in featural
terms, is mapped directly onto combined phonological and
lexical representations, and that the listener’s perceptual
representation of speech is an abstract post-lexical product
of the system.

Evidence for the abstractness of the phonological percept
comes from a series of studies of phonological variation
(Lahiri & Marslen-Wilson, 1991; Gaskell & Marslen-
Wilson, 1994). These indicate that subjects have relatively
little awareness of the surface form of speech. Instead, they
base phonological judgments on the abstract representation
of speech that underlies surface variations. Evidence that
the phonological percept is a late product of the perceptual
system comes from studies of the integration of
phonological cues in speech perception. In particular,
lexical and phonetic decision data in Marslen-Wilson and
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Warren (1994; henceforth MW94) argue against the pre-
lexical integration of phonetic cues into segmental or
similar units.

Here we describe a distributed connectionist model that
operates on these premises. The model’s behavior in
simulations of lexical and phonetic decision closely mirrors
human performance in the MW94 experiments. This
success, contrasting with the failure of localist models to
account for these data, is based on the use of a single, post-
lexical level of phonological representation, providing the
basis for the listener's perceptual experience of words and
nonwords alike. This model, it also turns out, provides a
successful framework for explaining a wide range of
properties of human spoken-word recognition (Gaskell &
Marslen-Wilson, in preparation).

Experimental Background

Marslen-Wilson and Warren examined the integration of
featural cues to segment identity in words and nonwords.
They created cross-spliced monosyllabic words and
nonwords that contained conflicting cues to the place of
articulation of the final consonant. For example, subjects
might hear a token consisting of the initial consonant and
vowel of jog, followed by the final consonant burst of job.
The vowel transitions here point to a final velar consonant
(the [g] from jog), which conflicts with the place
information in the burst, indicating a labial consonant (the
[b] from job). The purpose of the experiments was to
examine the effects of these conflicts between cues as a
function of the lexical status of the stimuli involved, and of
the task the subjects were performing.

As summarized in Table 1, triplets of monosyllables
containing either one word and two nonwords or two words
and one nonword were cross-spliced to produce six types
of stimulus. These varied in terms of the presence or
absence of mismatching cues and in the lexical status of
the pre- and post-splice components. In a lexical decision
experiment, where subjects make a timed judgment as to
whether the stimulus is a word or not, there were
interference effects for all mismatch conditions except
N3NI1, where the stimulus as a whole formed a nonword,
and where both pre- and post-splice components derived
from a nonword. Surprisingly, a very similar pattern was
found in a phonetic decision task, where subjects make a
timed forced-choice judgment as to the identity of the final
consonant of the stimulus (e.g., between "g" and "b").
There were again strong interference effects for all
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mismatch conditions, but a greatly reduced effect for
N3NI1.
Table 1: MW94 experimental contrasts

Lexical Status Code Example
Word Sequences
Wordl + Wordl WI1W1 job + job
Word2 + Wordl W2W1 jog + job
Nonword3 + Wordl N3WI1 jod + job
Nonword Sequences
Nonwordl + Nonwordl NINI  smgb + smob
Word2 + Nonword1 W2N1  smog + smob

Nonword3 + Nonwordl ~ N3N1  smod + smob
Note: The underlined sections represent the segments
spliced together to create the stimuli.

We drew two main conclusions from these results. First,
that lexical decisions and phonetic decisions were based on
the same processing substrate, and second, that this
substrate supported a complex pattern of interactions
between the featural and lexical aspects of speech. A
further simulation study using the localist TRACE model
indicated that these results could not readily be modeled by
a processing system of the classical sort, where lexical
effects on phonetic decisions are accounted for in terms of
top-down interactions from the lexical level to an
independent pre-lexical phonemic level. We proposed
instead a processing architecture of the type developed
here, where the computational substrate for lexical and
phonetic decisions is the same distributed representation,
simultaneously encoding the mappings from speech input
onto a phonological representation and from speech input
onto a representation of lexical (or semantic) identity.

Modeling Assumptions

Our model is based on a small number of assumptions
about the perception of speech. These are partly drawn
from previous models of speech perception (e.g., Morton,
1969; McClelland & Elman, 1986; Marslen-Wilson, 1987)
and partly based on a functional analysis of the perceptual
system. The principal assumptions are:

1) Lexical knowledge is represented in a fully
distributed fashion.

2) Different forms of lexical knowledge (e.g.,
phonology, semantics) are represented at the same level
and accessed simultaneously.

3) Speech input maps directly and continuously onto
lexical representations.

4) The lexical access process operates with maximal
efficiency by extracting the most informative lexical
representation at all points during the perception of speech.

The value of distributed representations in the modeling
of cognitive functions is well documented (e.g., Hinton,
McClelland & Rumelhart, 1986; Hinton & Shallice, 1991).
We envisage the lexical entry for a word to be a distributed
pattern representing the semantic, syntactic, morphological
and phonological specification of that word. These
representations can be conveniently described in micro-
featural terms (e.g., Plaut & Shallice, 1993). We also
assume that units of lexical representation are not
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duplicated, in that the goal of lexical access—the
activation of a single complete lexical representation—fills
the representational space. This view of the lexical access
process differs radically from currently popular models of
word recognition such as TRACE and Cohort, which view
the process of selection between candidates as a parallel
localist process of competition. Instead of mapping speech
input onto many localist representations, we shall explore
the possibility that lexical selection operates on a single
distributed level of representation.

Our model also differs from standard models in the
ordering of different forms of information. Generally,
phonological knowledge is seen as more “low-level” than
semantic or syntactic knowledge. Almost all models
suppose that a pre-lexical segmental (or similar)
representation of speech is computed and that lexical
access operates by matching this to phonological
representations of words in an input lexicon. Thus,
phonological representations are seen as the key to the
lexical entries of words. Our model contains no such
intrinsic ordering, with different forms of knowledge co-
represented at the same level of the system. We are not
trying to claim that the goodness of fit between the speech
stream and stored representations does not rely on
phonological information, but we propose that internal
representations of phonological form are highly abstract
and that no segmental representation of speech mediates in
the lexical access process. By this view, the perception of a
word and the perception of a word-like nonword (or an
unfamiliar word) differ only in the degree to which
different types of information are accessed. The perception
of a word leads to the activation of all forms of lexical
knowledge whereas the perception of a nonword leads only
to the retrieval of phonological information, which is
abstracted by the same process as that operating on words.

The assumption of maximal efficiency implies that at all
points our model must derive the most informative output
available from its analysis of incoming speech. Thus, if it
1s possible to isolate a single lexical match to the current
input (i.e., at the word’s uniqueness point), the relevant
information about that word should be extracted. At other
points, where more than one lexical entry matches the
speech presented so far, the output of the model should
reflect this ambiguity and activate the stored knowledge
about these candidates. Thus, the network should
simultaneously entertain multiple hypotheses about the
lexical identity of incoming speech, as do the majority of
current models of speech perception. However, the
distributed nature of the lexical representations used in our
model places limitations on the effectiveness of the parallel
evaluation of multiple candidates. Our model assumes that
speech is mapped more or less directly onto distributed
representations of lexical knowledge, implying that
multiple lexical candidates can only be evaluated by their
influence on this level of representation rather than at some
independent stage of competition (as assumed in models
such as TRACE and Cohort). Since different lexical
candidates will generally have different lexical
representations, this suggests that they will interfere,
producing a lexical “blend” of the various candidates.



Network Architecture

To allow the network to generalize over patterns of
phonetic features spread across time, the model is based on
a simple recurrent network architecture (Elman, 1990;
Norris, 1990). The network is trained on the mapping
between a stream of phonetic features and an internal
representation of words. The featural input is passed
through a set of 200 hidden units, which have access via
recurrent links to the state of the hidden units at the
previous time-step. The hidden units are also connected to
two sets of output units, representing the phonology and
the lexical (or semantic) identity of the words contained in
the speech stream (see Figure 1). From the perspective of
the MW 94 results, this is the crucial property of the model,
since it means that the same substrate (the hidden unit
weight space) 1is simultaneously coding both the
phonological mapping and the lexical mapping. Our
hypothesis is that this will allow the model to simulate the
experimental results, in a situation where the same
phonological output layer represents both words and
nonwords.

For the purposes of this initial model, lexical/semantic
identity was distributionally represented by an arbitrary
vector of 50 zeros and ones. The phonological output was
based on a slight adaptation of the Plaut & McClelland
(1993) monosyllabic word representation. This is a
compact phonemic representation of monosyllabic words,
divided into 3 groups of units corresponding to syllable
onset, thyme and coda. Within each group, phonemes are
represented by single units.

This representation provides a basis for decisions
involving the form of speech. The use of phonemes here is
a representational convenience. We assume that a
segmental representation of speech emerges as a product of
the interaction between orthographic and phonological
knowledge in literate speakers of alphabetic languages
(Marslen-Wilson & Warren, 1994; Morais, Bertelson, Cary
& Alegria, 1986; Read, Zhang, Nie & Ding, 1986).

Auditory input to the network was represented segment
by segment on a set of 13 binary input units. Eleven of
these encoded the phonetic features of the current input
segment using the Jakobson, Fant and Halle (1952) feature
system. To simulate the coarticulatory spread of place
information between consonant and preceding vowel, we
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added two further feature units. These were set 10 zero for
all segments except vowels immediately preceding nasal or
stop consonants. For these vowels, the two features
represented the place of the following consonant, mirroring
the diffuse and grave feature values for that consonant.

Consistent with evidence for the relative weakness of the
vowel transition cues to place (e.g., Warren & Marslen-
Wilson, 1987) these cues were made probabilistic during
training: cues were correct (i.e., agreed with the place of
the consonant) 70% of the time, with the remaining 30% of
vowel cues consistent with either of the other two places of
articulation used in the stimulus triplets.

The network was trained to perform the joint
phonological and semantic mapping for a set of 36
monosyllabic words drawn from the MW94 test words.
These comprised the unspliced words required to create 24
spliced triplets (12 word triplets and 12 nonword triplets)
for testing. All words ended with a single consonant which
was either a nasal (/n/, /m/, or /ng/), a voiced stop (/d/, /b/
or /g/) or an unvoiced stop (/t/, /p/ or /k/). These were
presented as input to the network in the form of sequential
bundles of phonetic features.

To maintain a more realistic learning environment for
the network, a number of other words were added to the
training corpus. Firstly, a set of 71 words were added to
simulate the competitor environment for the test words.
These were all close cohort competitors, sharing initial
C(C)V segments with the target words but diverging on the
final consonant cluster. This gave the test words an average
of 3.5 close competitors (range 0-10).

In addition, the token frequencies of the training set were
manipulated, reflecting the skewed distribution of word
frequencies in English (Zipf, 1965). Test words were all
given a token frequency of 20 within the training corpus.
The cohort competitors were then assigned random
frequencies between 1 and 40, with a mean frequency of
20. A further 2998 monosyllables, taken from the
simulations of Plaut and McClelland (1993), were added to
the training corpus, with a token frequency of 1.

This corpus was presented to the network 50 times
during training. On each cycle, the 13 input nodes were
activated with the phonetic pattern of one segment of a
word and the network was trained, using backpropagation,
to produce the correct semantic and phonological patterns

OUTPUT

HIDDEN
UNITS

INPUT
(phonetic features)

Figure 1. Network Architecture
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for that word.

The network was then tested on a set of stimuli designed
to simulate the test conditions of MW94 (see Table 1). The
WIWI1 and NINI1 baseline stimuli all contained vowel
place cues that matched the place of the following
segment. All other stimuli contained mismatching cues to
the place of articulation of the final consonant. For
example, the W2W1 stimuli contained place information in
the vowel conforming with the W2 word combined with
the final consonant of W1. Only the word tokens had been
presented to the network during training. The test words
were presented to the network in a random order, with each
test item preceded by two filler words. The phonological
and semantic activations were recorded at each time-step.

Results

Lexical Decision

Following other researchers we assume that output error
scores correlate with response times in a cascaded
processing system. We also assume that a lexical decision
response depends predominantly on the lexical/semantic
rather than phonological output of the model. Error scores
at the semantic output can be transformed into word
activation values using the function:

50
25-Y ) -0

=1
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(where ¢ = training value and o = output value for the ith
unit).

This gives an activation value between -1 and 1, where 1
represents a perfect fit between the semantic output and the
training pattern for that word and O is the expected
activation value for an output pattern chosen at random. In
a distributed representational system the competitor
environment of a word can be directly reflected in this
activation value. A semantic output which is similar to the
training pattern for one word implies that it must also be
dissimilar to the semantic patterns for all words which are
not semantically related to that word. So, for example, no
two unrelated words can have an activation of 0.9 at the
same time. For this reason, there is no need to use relative
activations to define a lexical decision criterion.

The upper graph in Figure 2 illustrates the activation of
the semantic pattern of W1 for each of the members of the
word triplets (averaged across all items). The stimuli for
each condition are identical up to word position -1, where
the coarticulatory information in the vowel is presented. At
word position 0, the final consonant is presented.

The W1W1 condition is the baseline for comparison of
effects of mismatch. Here, as featural information is
presented, the activation of W1 rises, to a peak at the end
of the word of 0.71. This figure does not represent perfect
activation of the word, but implies that W1 is by far the
most active candidate. Both cross-spliced tokens result in
reduced activation of the W1 target, mainly on presentation
of the mismatching coarticulatory information in the
vowel. Furthermore, the patterns for the mismatching
tokens are highly similar, with slightly more mismatch for

word activation =
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W2W1 than N3W1 tokens. The model therefore predicts
that both mismatching tokens should delay the recognition
of the target to an equal extent.

0.8
06 ¢t
o
S04t W1W1
© s
§ W2W1
P4 0.2 T =
N3W1
‘=
0.2 t + } et
g -4 -3 -2 -1 0
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o606t N1N1
w ESS
£ W2N1
N3N1
0.2 1
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-4 3 -2 1 0
Word Pos

Figure 2. Semantic activations of W1 for the word triplets

(above) and of W2 for the nonword triplets (below). The x-

axis represents the position within the current stimulus (0 =
final segment).

To examine the predictions for the nonword stimuli in a
lexical decision task, we need to examine the activation of
the semantic pattern for W2, the only word member of the
stimulus triplets (lower graph, Figure 2). Unsurprisingly,
W2 is best activated by the W2N1 token. However, the
activation of W2 on presentation of this token does not rise
above 0.4. Therefore, the model would predict a majority
of “No” responses to these stimuli. In addition, the
increased activation of W2 for this condition would predict
“No” responses should be slower than for the baseline
(N1N1) and N3N1 conditions.

The data from the lexical decision simulation were
transformed to provide a comparison with the MW94 data
(see Figure 3). In each case the simulation results were
summed over the points during presentation of the word for
which the conditions differed (i.e., on presentation of the
final 2 segments). For the case where activation was
assumed to be negatively correlated with response time
(i.e., the “Yes” responses) these activations were negated.
For both word and nonword conditions, the pattern of



activations produced by the network closely maiches the
pattern of response times found in MW94,
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Figure 3. Comparison between lexical decision
experimental data and network simulation for word (upper
graph) and nonword (lower graph) stimuli.

Of particular interest is the finding that, like humans, the
model shows no inhibitory effects when presented with two
nonwords spliced together. This is because phonetic
featural information is mapped directly onto lexical
representations. The NIN1 and N3NI conditions are
equivalent in terms of the degree to which they maich W2
phonologically: both contain information in the vowel
transition and the following burst which deviates from the
place of articulation of the W2 final consonant. Since there
is no intermediate segmental level it does not matter that
for the N3N1 condition the two sources of information
conflict with each other segmentally—these cues are only
integrated in the parallel mapping onto the phonological
level. Thus, these conditions predict similar levels of
inhibition of a lexical decision response.

Phonetic Decision

The translation from localist phonemic output values to
predictions of phonetic  decision responses s
straightforward: The network’s predictions should depend
on the relative activations of the word-final phoneme nodes
involved. These are the three segments in the coda output
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group that share the manner and voicing of the ambiguous
segments, but vary in place of articulation. For example,
the nectwork’s response to the stimulus token jog,
constructed from the onset of job and the final burst of jog,
would depend on the activations of the /b/, /g/ and /d/
nodes in the coda group of the phonological output units.
Therefore the difference between the activation of the
target segment and its most active triplet competitor was
used as a correlate of experimental response time (see
Figure 4). As before, this measure is summed over the
output for the final two segments of the input to provide a
comparison with the experimental data.
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Figure 4. Comparison between phonetic decision
experimental data and network simulation for word (above)
and nonword stimuli (below).

Comparison of the two graphs shows a strong effect of
lexical status on the network response. The responses to the
word sequences ranged between -1.2 and -0.3, compared to
-0.2 10 0.4 for the nonword sequences. This is consistent
with the finding in the experiment that responses were
slower for the nonword than the word sequences.

The patterns within the two sequence types are quite
similar. Compared to the baseline conditions, the patterns
involving nonword onsets (i.e., N3W1 and N3N1) produce
mismatch effects but these mismatch effects are weaker
than for the mismatching conditions with word onsets (i.e.,
W2WI1 and W2N1). This pattern of results fits the response
time data for the nonword sequences very well (since the



mismatching effect of the W2N1 stimuli was roughly twice
that of the N3N1 stimuli), although it underestimates the
effect of mismatch for the N3W1 condition.

Again, it is interesting that the mismatching tokens
composed of two nonwords (N3N1) show less of an
inhibitory effect than the W2NI1 condition. Here the
difference can be explained in terms of the interaction
between lexical/semantic and phonological levels. As the
lexical decision simulation shows, the W2NI1 tokens
activate the W2 representation more strongly than the
N3N1 tokens. This biases the phonological activations in
favor of an output which is coherent with this word and
thus inhibits activation of the “correct” phonemic nodes.

Discussion

In both lexical and phonetic decision simulations, the
predictions of the network closely follow the pattern of
responses found in the MW94 data. In the lexical decision
simulation the network shows strong inhibitory effects for
consonant place mismatches involving words (i.e., in the
W2W1, N3W1, and W2NI1 conditions) but little effect of
mismatch involving only nonwords (in the N3N1
condition). In the phonetic decision simulation all
mismatching stimuli show inhibitory effects on responses,
but the strength of these effects depends on the lexical
status of the components of the stimuli.

The model achieves our objective of providing a basis
for phonological perception which is not pre-lexical and is
strongly influenced by lexical activations, but still allows
the form of nonwords to be identified and to be influenced
by lexical factors. Indeed, the influence of Ilexical
competitors is slightly too strong in the current model,
although this is more likely to reflect properties of the
training corpus than the choice of architecture.

The fact that these results can be accommodated by our
model is an important validation of this approach.
Although this research is at an early stage we expect o
model many other properties of the speech perception
system in a similar manner. In particular, the use of a
distributed lexical representation provides a
straightforward explanation of many time course effects in
lexical access. Effects such as the multiple activation of
lexical candidates, frequency and competition effects in
lexical access, and priming of associatively and
semantically related words can be explained in terms of
the interference caused by semantic “blending” of outputs
(cf. Joordens & Besner, 1994) in a fully distributed lexical
representation (Gaskell & Marslen-Wilson, in preparation).
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