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Abstract
Osteoarthritis (OA) classification in the knee is most commonly done with radiographs using the 0–4 Kellgren Lawrence (KL)
grading system where 0 is normal, 1 shows doubtful signs of OA, 2 is mild OA, 3 is moderate OA, and 4 is severe OA. KL
grading is widely used for clinical assessment and diagnosis of OA, usually on a high volume of radiographs, making its
automation highly relevant. We propose a fully automated algorithm for the detection of OA using KL gradings with a state-
of-the-art neural network. Four thousand four hundred ninety bilateral PA fixed-flexion knee radiographs were collected from the
Osteoarthritis Initiative dataset (age = 61.2 ± 9.2 years, BMI = 32.8 ± 15.9 kg/m2, 42/58 male/female split) for six different time
points. The left and right knee joints were localized using a U-net model. These localized images were used to train an ensemble
of DenseNet neural network architectures for the prediction of OA severity. This ensemble of DenseNets’ testing sensitivity rates
of noOA,mild, moderate, and severe OAwere 83.7, 70.2, 68.9, and 86.0% respectively. The corresponding specificity rates were
86.1, 83.8, 97.1, and 99.1%. Using saliency maps, we confirmed that the neural networks producing these results were in fact
selecting the correct osteoarthritic features used in detection. These results suggest the use of our automatic classifier to assist
radiologists in making more accurate and precise diagnosis with the increasing volume of radiographic image being taken in
clinic.

Keywords Osteoarthritis . Radiographs . Neural networks .Machine learning

Introduction

Osteoarthritic degenerative joint disease is a leading cause of
chronic disabilities in the USA. OA symptoms include stiff-
ness, limited joint function, and pain which lead to a decrease
in quality of life. OA primarily affects weight-bearing joints
with the knee and hip joints being the most common sites.
Pain clearly is one of the most important outcome measures
in OA and is measured using questionnaires and patient-
reported outcomes (PROMs), such as the Knee Outcomes in
Osteoarthritis Scores (KOOS) [1] or Western Ontario and
McMaster Universities Osteoarthritis Index (WOMAC) [2].
The ultimate clinical outcome of osteoarthritis is often total
joint replacement in the hip or knee, which is effective in
managing symptoms and reversing loss of function in most

patients, but is costly, not without risk of complications, and
only effective for a limited length of time [3].

In an effort to develop quantitative biomarkers for OA and
fill the void that exists for diagnosing, monitoring, and
assessing the extent of whole joint degeneration in OA, the
past decade has been marked by a greatly increased role of
imaging for OA. OA assessment and diagnosis are most com-
monly done with radiographs (x-rays) using the 0–4 Kellgren
Lawrence (KL) grading system where 0 is normal, 1 shows
doubtful signs of OA with potential abnormality, 2 demon-
strates definite osteophytes (mild OA), 3 shows definite joint
space narrowing (moderate OA), and 4 is severe joint space
narrowing with subchondral sclerosis and bony deformity (se-
vere OA) [4, 5]. Although this is a class-based method, the
grading system does represent a continuous progression of
OA, beginning with osteophytes and ending with deformation
of the bone. KL grading is widely used for clinical assessment
and diagnosis of OA, usually on a high volume of radio-
graphs; however, it is still subject to inter- and intra-user var-
iability, making its automation highly relevant [6].

Automation of several computer vision tasks has been ac-
celerated in the last few years by the usage of artificial
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intelligence (AI) and machine learning techniques [7, 8] with
the availability of large amounts of annotated data and pro-
cessing power. Using the concepts of transforming data to
knowledge by the observation of examples, supervised learn-
ing can today accomplish challenges never demonstrated be-
fore [9–12].

OA research was recently marked by the curation of public
datasets in which imaging plays a central role. Large-scale
epidemiologic trials such as the Osteoarthritis Initiative
(OAI) provide a rich array of structural and functional features
of musculoskeletal tissues, which have shed light on disease
etiology, and long-range outcomes in OA. This extraordinary
data availability opens a variety of possibility in applying
machine learning to the study of OA.

In addition to the data availability, the now available pro-
cessing power is a completely new concept that has changed
the machine learning field. Conventional machine learning
techniques were limited in their ability to process natural data
in their raw form. For decades, constructing a pattern recog-
nition or machine learning system required careful engineer-
ing and considerable domain expertise to design feature ex-
tractors able to transform raw data, such as the pixel values of
an image, into a suitable internal representation or feature
vector from which the classifier could detect patterns in the
input. In contrast, representation learning is a set of novel
methods that allows a machine to be fed with raw data and
to automatically discover the best representations of the infor-
mation hidden in the data needed to accomplish a specified
task [13].

Deep learning neural networks are representation learning
methods characterized by the usage of multiple, simple, but
non-linear units to build several interconnected layers. Each
layer aggregates the information at increasing levels of ab-
straction starting with simple image elements, such as edges
or contrast, to more complex and semantic aggregations,
uncovering latent patterns able to accomplish pattern recogni-
tion tasks [14]. The key aspect of deep learning is that these
models are not designed to solve a specific task, but are adap-
tive to the specific problems, learning directly from the data
and using a general-purpose learning procedure.

In this study, we aim to capitalize these recent advance-
ments in deep learning field to develop a method for the au-
tomatic knee x-ray inspection and staging of OA severity
based on KL grading.

Materials and Methods

Subjects

Four thousand five hundred four bilateral PA fixed-flexion
knee radiographs were collected from the OAI dataset
(https://oai.epi-ucsf.org/) (age = 61.2 ± 9.2, BMI = 28.6 ± 4.8,

male:female = 1886:2618). Subjects were collected from six
different time points (baseline, 12, 36, 48, 72, 96 months) for
both left and right knees resulting in a total of 39,593 images.
Each of these cases was graded by skilled radiologists
involved in the development of the OAI dataset. A handful
of these cases were graded multiple times, in which case the
modal grade was selected.

In order to preprocess the radiographs to be fed into the
machine learning models, they needed to be split into left and
right knees and then localized around the knee joint in order to
provide for a smaller, more precise field of view for the neural
network to learn from. The x-rays were split into left and right
knees by dividing the image directly in the middle and then
flipping the left side of the image so that it appears to be facing
the same way as the right. This alleviates the algorithm of
having to learn an additional feature of side when learning.
From these split images, cropped localization bounding boxes
around the knee were made using a 2-D cross-correlation tem-
plate matching method (where the template was made using
an average of two manually cropped knee joint images) across
500 images, implemented in MATLAB (Mathworks, Natick,
MA). These 500 bounding boxes were then quality checked to
ensure the template had correctly extracted the knee joint. This
resulted in 450 usable localized knee joints, which were then
used to train a U-Net network, described in a previous mus-
culoskeletal tissue segmentation study [15], to extract the
bounding box around the knee joint created by the template
matching method. The U-Net was trained for only 10 epochs
using a cross entropy loss function and learning rate of 1e−4
with Adam optimizer. The results from this model were then
manually quality checked on a new set of 500 knee images.
Four hundred ninety-eight of the bounding boxes produced by
the U-Net correctly localized the knee, showing improvement
over the base template matching method.

The trainedU-Net was applied to the available OAI dataset,
resulting in 39,593 joint localized radiographs, which were
then resized to 500 × 500 images for model building.

Model Architecture

Data was divided with a 65/20/15 split resulting in 25,873
training images, 7779 validation image, and 5941 testing im-
ages. In order ensure generalizability of model performances,
the training/validation/testing split was made such that sub-
jects in testing were completely different from those used in
training and validation, resulting in 3883 unique subjects in
training and validation and 621 unique subjects in testing
(Table 1 has the demographic breakdown per group).

Per recommendation of our internal clinical radiologist
(TL) and to assist the neural networks learning, KL grades
of 0–1 were grouped to represent x-rays with Bno OA^ since
the clinical response for these two grades are usually the same,
where KL 2–4 still represent mild, moderate, and severe OA,
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respectively. Given this grouping and the large imbalance be-
tween overall KL gradings (Table 1 shows the initial KL
distribution between training, validation, and testing), KL
scores of 3 or 4 were augmented with random rotations and
translations (3 times for grade 3, 6 times for grade 4) to allow
for a more balanced training dataset between scores, resulting
in an additional 16,629 augmented images for training.

We used an ensemble of different model checkpoints from
different variations of the DenseNet neural network architec-
tures to make OA assessments [16, 17] based on their perfor-
mances with the validation dataset. The DenseNet neural net-
work architecture consists of a series of concatenating previ-
ous layers’ feature maps together, but keeping the same num-
ber of feature maps generated by each convolution functions
the same. This sequence of operations is called a dense block
(Fig. 1b). DenseNets consist of multiple dense blocks stringed
together. This novel approach allows for learning from feature
maps in previous layers while keeping the number of learnable
parameters low (which is desirable to avoid over-fitting the
model).

All DenseNets were trained on the training dataset with
a learning rate of 1e−4, 0–1 input image normalization,
cross entropy loss function, growth rate of 12, block depth
of 6, for 20 epochs on a NVIDIA Titan X GPU, imple-
mented in native TensorFlow (Google, Mountain View,

CA). The choice of these learning parameters (cross en-
tropy loss function, growth rate, block depth, learning
rate) was decided via grid hyper-parameter search based
on performance on the validation dataset ranging our
search with values that had previously been experimented
within the Huang et al. paper and other DenseNet
implementations. The difference between the architectures
was the decision on whether or not to include demograph-
ic information to the network (Fig. 1b shows the
traditional DenseNet architecture with the demographic
variation). For the demographic inclusion DenseNet, age,
sex, and race were fed in as a 3-dimensional vector and
then multiplied element-wise by a 32-dimensional weight
vector (simply a trainable fully connected layer). BMI
was not included due to a number of subjects missing this
piece of information. This 32-dimensional layer was then
concatenated onto the flattened image output of the
DenseNet (Fig. 1c). The ensemble of these DenseNets
was made by averaging the softmax logit outputs of dif-
ferent model checkpoints from the two DenseNet archi-
tectures. Softmax is a linear mapping of outputs to the 0–
1 range, displayed in Eq. 1, where x is a given input node,
ak is the raw model output for the kth class channel of
input node x, and K is the total number of channels in the
output layer, which also represents the number of classes

Table 1 Demographic information for training, validation, and testing datasets as well as KL score distributions

Age BMI Gender KL: 0 1 2 3 4

Training 61.2 ± 9.2 28.6 ± 4.8 1886 M 2618 F 10,391 4714 6263 3467 1038

Validation 61.3 ± 9.2 28.7 ± 4.8 1639 M 2242 F 3112 1507 1877 997 286

Testing 60.2 ± 9.1 28.2 ± 4.8 246 M 375 F 2541 1293 1281 660 166

a
b

c
Fig. 1 Pipeline for machine learning algorithm. a Template pattern
matching using an average of two manually cropped knee joints. b
DenseNet architecture with potential for addition of demographic

vector. c Fully connected layer for the transformation of the
demographic vector in 32 feature vector
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in the classification problem. Predictions are made by tak-
ing the position of the maximal softmax value.

Pk xð Þ ¼ exp ak xð Þð Þ
∑k 0∈Kexp ak 0 xð Þ� � ð1Þ

The model’s resulting performances were compared to oth-
er efforts towards automatic KL grading using a chi-squared
two-sampled proportion test at the α < 0.05 level.

Clinical Radiologist Review and Saliency Maps

To fully assess the performance of our ensemble model, we
conducted a single-blind study by selecting 54 random cases
that the neural network classified differently than the original
radiologists’ grading and showed them to our internal clinical
radiologist. A musculoskeletal radiologist with more than
20 years of experience (TL) was presented the image and
two grades (the original radiologist grading and the algorith-
mic grading) without knowing which grade corresponded to
the source and was asked to select the grade he agreed most
with or, if he disagreed with both, what grade he would give it.
This allowed for a more in-depth assessment of the accuracy
rate of our algorithm.

We also did a case-by-case examination with our clinical
radiologist on 12 subjects which the algorithmmisclassified to

better understand which features the algorithm may have been
missing. Additionally, to asses which features the algorithm
was using for its decision-making, saliency/heat maps of each
input image were generated by taking the derivative of the
outputted models’ logits with respect to the input image and
then visualizing the derivative mapping [18]. Higher values of
this derivative for a pixel suggest that the given pixel was
influential in the calculations made by the neural network.

Results

The U-net for knee joint localization worked on 98.3% of the
1000 randomly sampled cases. In order to keep the fully au-
tomatic nature of this classification pipeline, the incorrectly
localized images were kept in the modeling dataset. Left and
right knee localization and resizing for an inputted DICOM
image takes 1.49 s to generate.

The optimal DenseNet models used for the ensemble learn-
ing were a standard DenseNet after 15 epochs (DN15) and
DenseNet with demographic input vector after 8 epochs
(DN+DEM8) (the validation sensitivity and specificity
accuracy results can be viewed in Table 2). The resulting
softmax logit outputs of these two models were averaged to
make the final predictions. This ensemble of DenseNets’ test-
ing sensitivity rates of no OA, mild, moderate, and severe OA
was 83.7, 70.2, 68.9, and 86.0% respectively. The correspond-
ing specificity rates were 86.1, 83.8, 97.1, and 99.1%. The
testing confusion matrix can be viewed in Fig. 2 and a full
breakdown of training, validation, and testing Specificity and
sensitivity ensemble results can be viewed in Table 3. OA
severity prediction from the inputted 500 × 500 knee localized
image takes 7.38 s, making the entire prediction pipeline just
under 9 s for a given image.

Of the 5941 testing cases, 1639 predications disagreed, 54
of which were sampled and given to our clinical radiologists
to evaluate which grading they agreed most with. The internal
radiologist agreed with original radiologist grading for 33
cases (61.1%), the neural network grading for 16 cases
(29.6%), and neither score for 5 cases (9.3%). Specific cases
where the internal radiologist agreed with the original radiol-
ogist grading can be viewed in Fig. 3a, b and a case where the
radiologist agreed with the algorithm can be viewed in Fig. 3c.
Of the 49 cases that the internal radiologist agreed with either
the initial grading or the AI, there were 26 cases of no OA, 4

Table 2 Validation set specificity
and sensitivity accuracy for the
two DenseNet models used for
ensemble building (DN
DenseNet, DN+DEM DenseNet
with demographic information)

No OA (%) Mild OA (%) Moderate OA (%) Severe OA (%)

DN15 Sensitivity 84.4 72.1 69.4.4 83.1

Specificity 86.8 84.01 97.2 99.2

DN-DEM8 Sensitivity 85.8 71.11 69.7 80.19

Specificity 85.18 84.4 97.8 99.6

Fig. 2 Confusion matrix for OA: true labels are the rows while the
predicted labels are the columns. The diagonal represents the number of
correct predictions for that class. The total number of subjects in each
group can be obtained by summing that respective row. Darker squares
represent a higher percentage of that group classified for a predicted label

474 J Digit Imaging (2019) 32:471–477



cases of mild OA, 16 cases of moderate OA, and 3 cases of
severe OA. For no OA, the internal radiologist agreed with the
AI grading 9.1% of the time, 75% for mild OA, 56.3% for
moderate OA, and 66.7% for severe OA. However, due to the
small sample sizes between the KL groups, it is difficult to say
if these inter-agreement rates are statistically significant. It
should also be noted that the internal radiologist did mention
that a number of the provided 54 cases were particularly tough
to select a correct grading for.

Saliencymaps were then used to examine which features of
the input image the algorithm was identifying as important for
decision-making. In cases were the algorithm and radiologists
agreed, relevant features such as osteophytes (Fig. 4a) and
joint space narrowing (Fig. 4b) were identified. For cases that
the algorithmmisclassified the OA grading, many times it was
due to the presence of hardware in the knee (Fig. 4c).

Discussion

Our study’s results show insight into the application of deep
neural networks within the field of musculoskeletal research.
It also shows consistency as well as improvement over a pre-
vious study. Antony et al. conducted a similar project for au-
tomatic KL prediction with a different neural network archi-
tecture (more closely resembling an ImageNet) using data
from the OAI and Multicenter Osteoarthritis Study [19, 20].

From their reported confusionmatrix, sensitivity of 82.3, 29.7,
71.7, and 78.1% and specificity of 68.1, 83.9, 97.4, and 98.7%
were reported for no OA, mild, moderate, and severe OA,
respectively. Using a chi-squared contingency test across
OA groups, it was found with statistical significance that our
model had higher sensitivity (p < 0.0001) for mild OA and
higher specificity for no OA classification (p < 0.0001) than
Antony et al.’s work, but lower specificity for mild OA (p =
0.004). All other comparison metrics had no statistically sig-
nificant differences between results at the α < 0.05 level.

Additionally, the single-blind experiment with our internal
radiologists highlights the inter-observer reliability of KL
classification, which has been reported to range from 0.51 to
0.89 [5, 21, 22]. This part of the study also suggests that our
reported classification accuracies are potentially 30% higher,
which would add around 7.5% to each group classification
getting us closer to meeting the upper ends of inter-observer
agreement reported for KL classification. It is again difficult to
definitively make these claims given the relatively small num-
ber of cases reviewed by our internal radiologist. It is however
reassuring to see that most of the misclassifications (shown in
the Fig. 2 confusion matrix) are being made with adjacent
groups (i.e., the majority of moderate OA misclassifications
are for mild OA).

While our neural networkmodel does show very promising
performance advantages compared to manual and previous
automatic KL grading schemes, there is room for

Table 3 Specificity and
sensitivity of the ensemble
DenseNet model for the training,
validation, and testing datasets

No OA (%) Mild OA (%) Moderate OA (%) Severe OA (%)

Training Sensitivity 96.4 99.5 97.1 100

Specificity 99.9 96.8 99.9 99.9

Validation Sensitivity 83.8 74.2 75.9 87.6

Specificity 88.5 84.3 97.2 99.4

Testing Sensitivity 83.7 70.2 68.9 86.0

Specificity 86.1 83.8 97.1 99.1

Fig. 3 Examples for misclassification: (red arrows represent features of
interest) a Correct grading by the radiologist, misinterpretation by the AI.
This subject was graded as normal by the radiologist; however, related to
a mildly oblique projection, there appears to be a prominent bony
structure in the intercondylar notch that could be interpreted as an
osteophyte which would result in a mild OA grade. b Correct grading
by the radiologist, misinterpretation by the AI. This was graded as mild
OA given small osteophytes on either side of the tibial plateau. These

osteophytes appear insignificant and could have therefore potentially also
been graded as no OA. c Incorrect grading by the radiologist, correct
grading by the AI. This was graded as mild OA by the radiologist;
however, there is lateral femoro-tibial joint space narrowing, marked by
the fact that the lateral joint space should be more narrow than the medial
joint space, consistent with moderate OA, which is what the algorithm
graded it as moderate OA
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improvement in accuracy outside of the Bground truth^ KL
values being somewhat subjective to user preference. A large
number of misclassifications came from subjects with hard-
ware in the knee. While an algorithm is ideally generalizable
enough to deal with these cases along with normal cases to-
gether, a potential solution would be to have another machine
learning algorithm to detect the presence of hardware and then
build two separate classifiers to assess OA progression in
Bhardware present^ and normal cases.

Conclusion

Using state-of-the-art convolutional neural networks with
novel implementations of their ensemble learning and

inclusion of demographic variables directly into the network,
we were able to produce a precise automatic classifier for the
assessment of OA in knee radiographs. Additionally, our
ensembled models have shown the ability to correctly identify
relevant features within a knee radiograph that are used to
make OA assessments through the analysis of saliency maps.
Both of these achievements are essential for the clinical trans-
lation of this type of algorithm to assist radiologists in making
more accurate and precise diagnosis with the increasing vol-
ume of radiographic images being taken in clinic.

Funding Information This project was supported by Grant Numbers P50
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Fig. 4 Saliency map examples. a
Example of a knee with mild OA
that the model also predicted as
mild OA. The saliency map has
highlighted the relevant
osteophytes. b Knee with severe
OA that the model also predicted
as severe OA. The saliency map
has highlighted the relevant joint
space narrowing. c Knee with
moderate OA that the model
classified as mild OA. This
misclassification was likely made
due to that fact the model was
assigning high importance to the
screw instead of features within
the joint
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