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Abstract 

The recently developed theory of Self-Consistent Electron Pairs (SCEP) 

is an iterative variational method of obtaining correlated wavefunctions. 

The computational application of the theory has been fully implemented and 

tested for a varietY'of chemical systems. Some theoretical refinements 

which resulted from these tests are presented. The chemical systems selected 

for this first SCEP study of molecular electronic structure test most of 

+ the anticipated difficulties in using the theory and include HZ' LiH, BeH , 

Bli, BeZ' CHZ' HZO, HZCO and HCCH. Some of the advantages of SCEP over 

conventional configuration interaction (CI) appear to be computational 

efficiency, variationally additive pair correlation energies and the capability 

to treat systems nearly as large as can be studied with one-configuration 

self-consistent field (SCF) theory. The method's efficiency results largely 

from the avoidance of any integrals transformation or construction and 

diagonalization of a large CI matrix. Because SCEP theory is formulated 

using Hartree-Fock-like operators, with the same.dimensiona1ity as the Fock 

operator, large basis sets are. handled nearly as easily as with SCF calcula-

tions. The largest calculation reported here involved 4Z contracted gaussian 

functions and accounts for 'V 88% of the valence shell correlation energy of 

singlet methylene. The equivalent CI wav~function would include 29Z6 

symmetry-adapted singlet configurations. 
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Introduction 

As ab initio electronic structure calculations are used to study 

increasingly critical properties of a wide range of chemical systems 

(see, for example, reference 1), the need for easily obtaining correlated, 

wavefunctions has intensified. A large number of different correlation 

energy methods have been developed over a long period of time, though 

h j . h d· 1 S 1 . . 1 1-3 t e rna or1ty ave appeare qU1te recent y. evera reV1ew art1c es 

have recently set forth the "state of the art" of electronic structure 

calculations, so only a brief, and certainly not inclusive, discussion 

of correlation methods is given here. 

The most conceptually straightforward method is configuration 

interaction (CI) ,which, of course, is the diagonalization of ,the 

Hamiltonian matrix in the space of some selected set of configurations 

(linear combinations of Slater determinants).' The matrix is typically 

quite large so that its construction and diagonalization ,are not 

trivial. Early ideas to get around the problems of CI were founded on 

4-6 perturbation theory. Notable among these was the Independent Electron 

Pair Approximation 7 (IEPA) which gave independent pair contributions to 

the correlation energy. However, since the interaction between pairs 

was neglected, the resulting correlation energy was not variational and 

gave potentially disastrous results. A similar idea, but with a different 

formalism and using groups of electrons rather than just pairs, was McWeeny's 

theory of self-consistent group functions. 8 The ideas which grew out of 

perturbation theory suggested a cluster development of the wavefunction 

as opposed to the individual configuration treatment of CI. 
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The recognized failure of IEPA left CI as the most reliable method 9 

and substantial effort has been made at improving it. Bender, Davidson9 

10 . 
and Schaefer have done extensive work with the iterative natural orbital 

(INa) method. This method involves determining optimum orbital forms by 

diagonalizing the first-order density matrix between iterations and each 

step is a complete CI calculation. Another major development was the 
. 11 

Pair Natural Orbital (PNO-CI) method of Meyer. This method was highly 

successful in large scale calculations because it greatly reduced the 

number of configurations in the CI through the use of non-orthogonal 

orbitals, the PNO's. The method introduced by Roos12 improves the computational 

efficiency of CI by determining expansion coefficients directly from two-

electron integrals. The only weakness of this method is the rather complex 

logic required to do more than single and double excitations from closed 

shell singlet states. 

Among the newest correlation energy methods is the treatment of two­

electron systems by Driessler and Ahlrichs. 13 They calculated the wavefunction 

iteratively using an operator formalism somewhat related to that of McWeeny's 

self-consistent groups. Beyond two-electron systems, their method is 

useful for selecting pair natural orbitals to do PNO-CI. The Vector Method 

14 (VM) of Bender represents another important development in CI techniques. 

VM uses the second quantized form of the Hamiltonian operator and solves 

for the wavefunction iteratively. In construction of matrix elements it has 

some similarity to Roos' method, but.is totally general with respect to , 

excitation level, types of states and selection of higher roots. 

Other recent developments have occurred in the area of perturbation 

theory. Perhaps most important is the work of Pople's group3 on third-order 



-4-

~ller-Plesset theory. 
15 

As another example, Freeman and Karplus have 

recently used Goldstone diagrams in calculations on a few small molecular 

systems, providing an interesting comparison of variational and perturbation 

correlation energy approaches. The general trend among many of the newer 

i2-l4 
methods has been to make use of perturbation theory 

to some extent. It is interesting to note, for example, that Bender's 

Vector Method had its historical development from nuclear shell models, ,. 

which of course have utilized many-body perturbation theory. The 

distinction between many of the various correlation energy methods seems 

to be whether to use higher order perturbation theory or to use first- or 

second-order perturbation theory in an iterative manner to achieve a 

variational result. The variational methods are in the end equivalent 

to a CI calculation of some type. 

Perhaps the most recent new method is the theory of Self-Consistent 

16 
Electron Pairs (SCEP) due to Meyer. This method, which is the subject 

of the present paper, uses a highly efficient operator formalism to obtain 

necessary matrix elements. As such, it avoids an integrals transformation. 

It utilizes first-order perturbation theory in an iterative variational 

scheme. Currently, the method is limited to single and double excitations 

and closed shell reference states, but the theoretical formulation should 

not limit its extension. We also point out that the coupled electron pair 

approximation 17 
(CEPA) of Meyer is easily incorporated into SCEP, if 

desired, so that unlinked cluster effects may be approximately incorporate.d. 
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Theory 

Though the theory of Self-Consistent Electron Pairs has been presented 

16 elsewhere, it is useful to briefly mention theoretical details which 

relate to work presented here. The SCEP wavefunction is given by 

(1) 

~o is a ~losed shell reference ,determinant and ~P is a,doubly substituted 

pair function; P = (ij,p) where i and j are internal orbitals (occupied 

in the reference determinant) and p is +1 or -1 for singlet or triplet 

spin coupled pairs, respectively. For the specific substitution of the 

internal pair P by an external pair, say (ab,p), a coefficient matrix 

is defined using the orbital vectorsla> 

(2) 

ab ' 
A linear combination of all ~P for a given P, multiplied"byappropriate 

expansion coefficients is designated ~P and is a representation of ~P' 

(~p' boldface, is termed the external pair coefficien:tmatrix for pair 

P (ij ,p); Cp ' ',' however, is the internal pair coefficient for the pair 

P = (ij,p) and is given by (2), if i and j are substituted for a and b.) 

The expansion coefficients are not carried explicitly so thai:~p is 

directly in terms of basis 'functions rather than orbitals. The variational 

energy expression is 

(3) 

(4) 
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EO is the energy of the reference determinant and Ep is the pth .pair 

contribution to the correlation energy. 

Calculation of the wavefunction proceeds via matrix elements Tab which p , 

for the double excitation ij + ab is of the form 

(5) 

The wave function is then improved according to first-order perturbation 

theory. 

I/I(n+l) = I/I(n) _ ~ (6) 
P,cd 

.. (7) 

Iterating with (5) and (6) yields a self-consistent solution when each 

ab 
Tp is zero. The calculation of the matrix elements in (5) and (6) 

requires primarily matrix addition and multipli~ation of easily constru,cted 

ab 
operator~ .. Furthermore, all Tp for a given pair Pare .obtained at ,the 

same time. Important in the iteration scheme is that different; non-

orthogonal sets of external orbitals maybe used for each internal pair. 

Clearly, these o~bitals may be selected to optimize convergence. 

Single excitations are treated apart from the double excitation i.terations. 

Again,.matrix elements are calculated from simple operators. 

(excitation Ii> + la» (8) 

(9) 
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The wavefunction may then be improved· by first ord.er perturbation. theo,rY. 

(10) 

In practice, it has been found that a more accurate treatment of the single 

excitations is achieved by iterating until the singles have zero Hamiltonian 

matrix elements with the total wavefunction. The original presentation of 

the theory did not include a discussion of this treatment, so an appendi:lt 

has been included which gives explicit forms of the operators used in the 

singles iterations. 

The singly-excited configurations are absorbed into 1/10 by improving 

the internal orbitals using 

Ii'> = Ii> -.k ~·Ia> T~/E~ (11) 

a . 
. The Ti are either the matrix elements of (8) or an iterative result (see 

the appendix). The orbitals are then symmetrically reorthogonalized. A projection 

operator is then used to insure orthogonality of the set of ~p's with 1/10 

in the new internal orbital basis. This is the only orthogonality constraint 

in SCEP. 

The general SCEPprocedure, then, begins with a closed shell reference 

determinant and a set of internal and external (virtual) orbitals, presumably 

from an SCF calculation. Different sets of optimum external orbitals are 

found for each internal two-electron pair. Sets of doubles and singles 

iterations are performed until all single and double excitations have zero 

Hamiltonian matrix elements with the wavefunction. New sets of externals 
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and various operators are set up after each set of singles iterations 

because the orbitals have been changed. 

, .. 
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Computational Aspects 

The SCEP procedure begins with the construction of internal pair 

Coulomb and exchange operators from the two-electron integrals, (al3ly6). 

[J
ij ] = L Ii> <jl (stl~v) , st 

~v 
~ v 

[K
ij

] = ~ Ii> <jl (s~ltv) ~(12) 
st ~ V 

llV 

If there are N occupied orbitals in the reference determinant, exclusive 

of those which are frozen to excitation, then there are only N(N+l)/2 

J and K operators, since Jij = Jj i and Kij
,=,. (Kj i) t . The J and K 

operators can be formed in effectively one pass through the two-

electron integral list and are then stored on disk. The closed-shell 

Fock operator in terms of these operators is given as 

(13) 

with H being the matrix of one-electron integrals over basis functions. 
o 

Pair Fock operators, designated Fpp and FpQ (see ref. 16), are now set 

up. FpQ represents the interaction between the internal cores of two 

doubly substituted pairs. Fpp is used to find optimum external orbitals. 

If there are M internal pairs, then there are M(M+l)/2 pair Fock operators, 

, t 
because FpQ = FQP ' In the current program version, these operators are 

constructed and then stored on ·disk. (They are, of course, unchanged throughout 

an entire set of doubles iterations.) However, the simple form of the 

operators suggests that it may be more effi~~ent to obtain them directly 

from the J and K lists during each doubles iteration. 
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The only other use of two-electron integrals is in the construction 

of external exchange operators, 

(14) 

of which there are N2 • This is done at each doubles iteration except the 

first, where ~p = O. Simple matrix manipulation of all the operators is 

used to construct a total pair operator, Gp ' for each pair. Gp is used 

to calculate matrix elements according to 

and 

Trace {[pla><bl + Ib><al]Gp } 

p Trace {cab Gp } 
-p 

The calculation is performed pair by pair and by using a "double 

(15) 

(16) 

16 transformation" of Gp each ~p can be improved directly without the 

intermediate step of (15). This has been found to be very efficient. 

The form of the wavefunction here is a set of N2 coefficient matrices, 

the ~p's. For convenience, the wavefunction is not explicitly renormalized 

at any point. Instead, one begins with <~ol~o> = 1 and then <~I~> is 

calculated using 

(17) 

where S is the basis function overlap matrix. 

Treatment of the single excitations follows convergence of the doubles. 

An operator is constructed immediately following the last doubles iteration 

. ., 
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which gives matrix elements, T~, of the singles with '1/1. Then, N(N+1)/2 
. 1 

operators are constructed (see appendix)' which are used to get matrix ' 

elements between the singly-excited configurations. The singles itera­

tions are very ~fast since the two-electron integrals are not used and 

the number of matrix elements is small. Typically, the entire treatment 

of the singles, from constructing operators to improving the orbitals, 

,requires less time than one doubles iteration. The symmetric reorthogona1i-

zation of orbitals after (11) is a three-step process. The internal 

18 orbitals are orthogona1ized using Lowdin's procedure and a five-term 
, -k: 

series expansion is used to find !J. 2 where !J. is the overlap matrix of 

the improved orbitals. Schmidt orthogonalization is used to zero out 

the overlap of the externals with the internal orbitals. This is necessary 

because the optimum form of the internal orbitals is fixed after the first 

step. Finally, the Lowdin orthogona1ization is applied to the externals 

'alone. 

Since the iterative SeEP method uses first-order perturbation theory 

to achieve self-consistency, it should be clear that the choice of energy 

. ....ab d a ff "b h f 1 denom1nators, ~P ,an Ei' a ects convergence ut not t e ina result • 

Several of the systems studied were selected because of potentially small 

energy denominators. A very small energy denominator, say less than 0.1, 

may cause the first-order perturbation expression to greatly overshoot the 

, correct result. Indeed ,it was not difficult to find cases where this 

effect completely prevented convergence. To overcome this difficulty, two 

modifications have been tested for the energy denominators. The first is 

ab a 
the addition of a small quantity to each Ep or Ei' while the second is a 

mu1tip1icatiye factor. The results of these tests, d1scussed below, showed 
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convergence was possible in all of the difficult cases. Clearly, some 

experience will be helpful in properly correcting energy denominators and 

some programmed. criterion is anticipated. 

A unique feature of SCEP. is the ability to "restart" a calculation. 

Just as in conventional SCF methods, where an orbital vector or density 

matrix determined at one geometry provides a starting guess for a calcula­

tion at a new geometry, the SCEP list of ~p' s can be used as a guess in a 

calculation at a new geometry. To do this, the old set of ~p's is ortho­

gonalized with respect to the molecular orbitals at the new geometry using 

a projection operator (see ref. 16). This restart feature has.been implemented 

in the program and tests show that it, saves at least a few doubles iterations 

and as much as 1/3 of. the total computation time., 

SCEP is a particularly attractive method fO,r use on ,mini-computers. 

This is because the maximum number of elements used in any array is the 

square of the number of basis functions; there are obviously no large CI 

matrices to deal with. Only a few such arrays are needed in, core at one 

time. In the present version of the SCEP program we have selected a generous 

limit of six arrays. For the Harris Corpor~tion Series 100 system (32K of 

48-bit words), the program limit. is 54 functions, compared to an SCF (POLYATOM) 

limit of 72 functions. We anticipate reducing the number of arrays in core 

to four which will increase the SCEP limit to 66 functions. (The program does 

take advantage of the total available memory in,the construction of most of 

the operators, even when the number of functions is less than the limit.) 

Since there is no configuration list and no configuration limit, almost any 

problem which can be studied with SCF can be studied with SCEP .. , 
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Finally, it should be pointed out that·the SCEP program is still in 

somewhat of a preliminary form. For example, all systems.are treated 

assuming no symmetry. 
16 

Meyer has shown there is definite advantage 

to including symmetry in the treatment, though the savings from symmetry 

will not be as great for SCEP as for CI. In the largest GH2 calculation 

reported here (42 basis functions), the number of symmetry-adapted configura-

tions required for a calculation equivalent to the SCEP result is 2926. 

Without symmetry, this number rises to 6669, a much more difficult problem 

for CI. SCEP is thus a very competitive method for systems without symmetry, 

and we plan to incorporate the advantages of symmetry, along with other 

improvements, in later versions of the program. 
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Results and Discussion 

Pair Correlation Energies 

An exciting result which is obtained from-' SCEP theory is the 

set of pair correlation energies which can be added to-the reference one-

co~figuration energy to give the total energy of the system. We expect 

that this will add a new level of understanding and interpretation to 

correlated wavefunctions. An example of pair correlation energies is given 

for methylene in Table 1. The first two calculations were with th~ standard 

d bi b · f D- . 19 d G . f . ou 'e-zeta aS1S set 0 unn1ng contracte aUSS1an unct10ns. The 

third calculation used a much larger basis set of 32 contracted functions, 

the same as previously used by Bender, Schaefer and MCLaughlin.
20 

A 

comparison of the first two columns of pair correlation energies shows the 

effect of freezing the carbon Is orbital. While excitations from the carbon 

Is orbital can contribute more than 0.01 au to the total correlation energy, 

the contribution of pairs which do not include the Is are nearly identical in 

both calculations. Since the SCEP method is strictly variational and explicitly 

accounts for inter-pair effects, this result demonstrates quantitatively the 

validity of freezing the carbon Is orbital. That is, the carbon Is orbital 

interacts little with other pairs, or more precisely, the ~P involving the 

1al internal orbital are almost completely independent from the correlation 

corrections for the remaining electrons. The failure of IEPA 

indicates that this will not be true for all other orbitals. What SCEP 

has provided is a clear-cut quantitative argument for freezing orbitals with 

respect to excitation. 

The capability to do large scale calculations with the SCEP method is 

shown by the results in the final column of Table I. This computation employed 
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n 
';;'11 7 

a basis set of 42 functions. Huzinaga's2l (lOs 6p) carbon basis was 

d (6 4) , 22 
contracte to s p using Dunning s contraction scheme. For hydrogen 

the Huzinaga (5s) set was contracted to (3s) following Dunning. A set of 

p functions was added to hydrogen with exponent 1.0, and two sets of d 

functions with exponents 1.3088 and 0.38768 were added to carbon, as was 

23 done in the methylene calculation of Bender et al. The geometry for all 

singlet methylene calculations was 1.11 Angstrom C-:H bond length and an 

H-C-H angle of 102 .4 degrees. To our knowledge, column D represents the 

largest methylene calculation performed to date, and the energy is lower than 

24 the previous best Singlet methylene energy of· Pakiari and Handy. 

For comparison with the above ab initio results, we have attempted to predict 

the "experimental" correlation energy of singlet methylene. The lowest single 

25 configuration SCF energy obtained to date is that of Meadows and Schaefer, . 

ESCF = -38.8952 hartrees,and we estimate the Hartree-Fock limit to be 

-38.8972 hartrees. Obtaining an estimate of the exact nonrelativistic 

energy is more difficult. We begin with Bunge's exact nonrelativistic 

26 energy for the C atom -37.8436 ± 0.0015 hartrees, and add the energy 

(-1.0 hartree) of two H atoms,~lus the dissociation energy for the process 

CH2 + C + 2H (18) 

Xhe .latter quantity is estimated to be 180.6 ± 1 kcal from the JANAF 

Thermochemical Tables,27 and we have added an estimated 11.4 ± 2 kcal 

for the zero-point vibrational energy of CH2 . Thus we arrive at -39.1496 ± 

0.004 for the exact nonrelativistic energy of ground state (triplet) CH2 • 

Adding to this the singlet-triplet separation28 of 19.5 ± 0.7 kcal we finally 



-16-

obtain -39.1185 ± 0.005 hartrees, corresponding to a correlation energy 

of 0.2213 hartrees. Our 42 basis function calculation yields a correlation 

energy of 0.1471 hartrees or 66.5% of the "experimental" result. However, 

we have made no attempt to account for the ~P involving the carbon Is 

orbital. This part of the correlation energy due to the la
l 

orbital may 

be crudely estimated as -0.0549 hartrees, the analogous quantity from 

26 Bunge's study of the C atom. Thus we may roughly estimate the valence 

shell correlation energy of CH2 as -0.1665 hartrees. Our 42 basis function 

calculation accounts for 88.4% of this valence shell correlation energy. 

Comparison of pair correlation energies for calculations with different 

basis sets shows some interesting features. Typically, one assumes a 

greater correlation energy contribution from a singlet coupled pair than 

from a triplet coupled pair. lO This is true in the double-zeta methylene 

calculations, but with larger basis sets, the (lb2 ' 3a
l

) triplet coupled pair 

has a larger pair correlation energy than the (lb2 ' 3al ) singlet coupled pair. 

Other pair energies, such as (2a
l

, 2a
l

) and (2al , lb2), show qualitative 

changes with different basis sets. These effects are probably due to the 

changes in the internal orbitals with different basis sets. However, the 

precise nature of the effects suggests additional study. It is clear at 

this point, though, that SCEP pair correlation energies will aid in under-

standing basis set effects on correlated wavefunctions. 

Table II gives a summary of results of test calculations on a few small 

systems. The BeH+ potential curve was studied at a variety of internuclear 

distances and the potential minimum was found to be at 2.55.1 bohrs. The 

/ 
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result of the water calculation, -76.13501"compares well with the equivalent 

INO result of Schaefer and Bender,29 -76.13497 hartrees. 

Convergence 

An example of the convergence of the SCEP method is shown in Table III 

for the 30 basis function LiH calculation. After the second iteration, 

changes in the wavefunction become rather small. The LiH calculation and 

most of the other calculations reported here seem to indicate that the 

singles treatment,needs to be performed only two or three times. The I 

," 

exceptions to this are cases where singly-excited configuratioris would have 

a 'large matrix element, in the CI sense, with the reference determinant. 

This implies that the internal orbitals will change substantially after 

the singles iterations so that several sets of singles iterations are needed 

to achieve self-consistency. Examples are formaldehyde, where the reference 

determinant has been shown to have a large CI matrix element with the lowest 

A '· I 33 h d' .. B H+ d B I . I . I s1ng et, t e 1ssoc1at1ng e ,an e2 at arge 1nternuc ear separat10ns. 

While these calculations did require more singles iterations than LiH, the 

number of required sets was about four, with only 'a few doubles iterations 

required between sets. 

Convergence is difficult for some systems. For basis sets larger than 

28 functions with Be2 , SCEP, in its undamped mode, does not converge at 

all. A general rule seems to be that with basis sets larger than double 

zeta, the energy denominators tend to be too small. In these cases, 

additive or multiplicative scaling factors were required. As mentioned 

earlier, these factors can be used to reduce the magnitud~ of the first-

order perturbation, correction to the wavefunction. As such, they can 
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greatly influence convergence, though not the final result. While water, 

with a double zeta basis, is not difficult to converge, it does show the 

effects of these scaling factors. The results of seven water calculations 

are given in Table IV. The fastest convergence was obtained with an 

additive factor of 0.09. The multiplicative scaling has the potential 

of overdamping as shown by the last column. 

Overall, our results on the test cases discussed here seem to 

\ indicate that convergence of the doubles starting with ~P = 0 can be 

achieved in 9 or less iterations. Two to three sets of singles iterations 

are usually required with just a few doubles iterations between. Considerable 

savings can be accomplished by using a larger convergence limit for the first 

one or two sets of doubles iterations (see Table III) or by using the restart 

feature. Convergence of many systems is quite fast, but the important conclusion 

is that even for systems that converge with difficulty, one can still depend on 

convergence in 25 or less equivalent doubles iterations (this counts set 

up and singles iteration times to the extent to which they are equivalent 

to a doubles iteration). 

Computation Time 

Having considered some of the types of molecular systems which can be 

studied by SCEP and having demonstrated the convergence properties of the 

method, it remains to show computational efficiency to establish SCEP as 

a viable correlation method. The first and admittedly easy system to 

consider is H2 . With a basis set of 22 gaussian functions,34 SCEP required 

3 minutes, 48 seconds on the Harris 100. The calculated energy was -1.171140 

hartrees at 1.4 bohrs, in exact agreement with the CI calculation of 

. 
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Bauschlicher et al.
Jl 

IIi comparison;' the SCF calculati()Ii. required 2 -minutes 

18 s~conds. The SCEP' calculation required- 9 -actu~l doubles iteiations and 

the equivalent of 12 iterations when including the time for set-~p, singles 

treatiriemt and improvement of the orbital~" - 'Each doubles iteration r~quired 

about 19' seconds and"'each SCF iteration required about 18 seconds'.' This 

similarity is not surprising because theSCEp'method is stru-ctur~d a~ound 

Hartree-Fock like operators, which 'for a' two-electron systetnare no more 

complex than the Fock operator. Driessler and Ahlrichs found similar 

\ 13 
efficiency in their PNO-CI method for two-electron systems. 

The results of a calculation on LiH have already been presented. The 

time for the SCEP calculation was about 40 minutes (on the Harris 100), 

while the SCF calculation required 9 minutes. The time for an SCF iteration 

was about 39 seconds while the time for one SCEP doubles iteration was 141 

seconds. The ratio is nearly equal to the number of electron pairs, four. 

An additional calculation done on LiH used 21 basis functions. The run 

time for this calculation was about 970 seconds compared to 2526 seconds 

with 30 basis functions and identical numbers of iterations. Solving 

(30/2l)R = 2526/970 gives R = 2.7. That is, empirically, the process goes as 

less than N3 for N basis functions. Calculations on Be2 with 22, 28, 36, 

40 and 44 basis functions and the methylene calculations gave about the 

same value of R. 

Overall, it appears that SCEP may be a highly efficient method for many 

chemical problems. It is clear that in many cases the computation time is 

of the order of magnitude of SCF caluclations, as originally suggested by 

Meyer, but the difference increases sharply with the number of electron 

pairs. This is, of course, due to the explicit inclusion of inter-pair 
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effects. 3 The less than N dependence of computation time with basis set 

size makes the method quite attractive for extended basis set calculations. 

As a final demonstration of the potential applications of the SCEP method, 

we report in Table V pair energies for formaldehyde. The calculations 

19 were done with a Dunning-contracted double zeta basis set for all atoms. 

Carbon and oxygen Is orbitals were frozen to excitation, and the geometry 

35 was the experimental structure giv~n by' Herzberg. 

. 
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Summary and Outlook 

The increasing value of theoretical electronic structure calcul-a:tions 

to fundamental physical chemistry research has made the search for· efficient, 

accurate theoretical methods of major impcirt"ance. As a resuft,'R wide 

v~rietyof variational and perturbatlon method~ have been proposed." Nonethe-

less, the standard configuration interaction approach is the most persistently 

used and serves as a basis of compariSon"for new methods.C1 calculations, 

, 12 14 however, even including the promising new formulations by Roos or Bender, 

are still difficult and require extensive numerical' effort. Essentially all 

C1 meth~ds, for instance, rely on an integrals ttansformation36 and-any 

improvement in orbitals requires another transformation. 
. . 

Perturbation techniques show some promise for being computationally more 

efficient than C1, but may be more difficult to a'pplyre1iab1y,as evidenced 

by the few systems which have beel). studied with these methods. In addition, 

the energy values are, of course, not variational which may limit the use of 

such results where smail energy differences are important. These methods, 

generally, also require an integrals transformation and calculation of many 

matrix elements. 

An overview of' the many correlation energy methods seems to point to a 

"convergence" in methods. ' The idea of pair contributions to the total energy 

has been an interesting concept for a long period of time; ·the direct, 

determination of the wavefunction wit.hciut construction ofa Hamiltonian 

matrix is clearly an efficient scheme; and perturbation theory may be, an 

ideal way to improve a wavefunction. All of these are a part of>the SCEP 

method. SCEP uses first-order perturbation theory, but does so· iteratively 

to achieve a self-consistent variational result. It never constructs a 
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complete Hamiltonian matrix and avoids the manipulation of individual matrix 

elements. As such, it determines the wavefunction in a most direct fashion 

and since it requires no configuration list, there is in principle no limit to 

the dimensionality of the configuration Hilbert space. SCEP includes pair-pair 

interaction explicitly arid thus, gives truly variationally additive pair 

~orrelation energies. 

In conventional CI or in any perturbation scheme, it is difficult to 

establish a clear-cut optimum set of molecular orbitals. Iterative natural 

orbital methods (INO) have been perhaps the most successful, but often require 

several or even many expensive CI calculations. The SCEP formalism yields 

the optimum set of orbitals within the space of single and double excitations. 

Finally, SCEP does not require any explicit integrals transformation. This 

accounts for its less than N3 computation time dependence (when the number 

of electrons is fixed), while an integrals transformation is at best N5 • 

The advantages of SCEP and its formal structure suggest that it could 

possibly be the "converged result" of the'many correlation energy methods. 

Supporting this assertion, however, will require substantial effort. First, 

the method must be extended to higher order excitations to be competitive 

with both CI and perturbation methods. The treatment of higher order 

excitations may be much more complex than singles and doubles, but should 

present no limitation to the method. Extension of SCEP to open shell systems 

is a more immediate, but fortunately, straightforward problem. Reservations 

about applying SCEP to open shells are primarily due to possible convergence 

difficulties. However, we have experimented with the method enough to believe 

any convergence difficulties can be overcome. In the BeH+ calculations, the method 

+ was tested on a dissociating (to Be + H) system and proved successful. In a CI 

... 
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treatment, the dominant configurat:i:6n at the dissociation limit maybe 

expressed as a singly-excited configuration from the SCF closed shell 

state. Thus we have, in effect, treated an open shell state with this 

method,though not in an optimum fashion. 

If SCEP is successfully extended, we believe it will be a most powerful 

method and possibly the most efficient approach to the correlation energy 

problem. In the meantime, it will serve as an excellent closed shell 

method, capable of treating large systems and equivalent to CI techniques 

including several thousand configurations, for instance. Our tests already 

show the capability for such large scale calculations and show computational 
. ~.,. ; 

efficiency competitive with existing variational methods. Theory and 

program developments, such as taking molecular symmetry into account, 

should increase the advantages of the SCEP method. 

;-;': 
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Ap~endix 

Treatment of Single Excitations 

The wavefunctiori, including single excitation configurations, is' 

(AI) 

Notice that unlike the treatment of the doubles, e~plicit expansion 

coefficients are being used. The optimal coefficients are those for 

which the single excitation configurations have a zero Hamiltonian 

matrix element witn tjJS. The following matrix elements 'are calculated. 

(A2) 

,(A3) 

The i,terative soll.}tion is given by an expres.sion analogous to equation 

(6) for double excitations. 

-L: 
i,a 

tjJ~ R~/E~ 
111 

For the first iteration,for which'tjJS = l/J, R~ 
'1 

Expressions for T~ have been given by Meyer. 16 
1 

(A4) 

T~ as in (8). 

i' To find the matrix elements:'of (A2) and (A3) a set of operators F J 
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0 .. F + 2K
ij 

1J 0 
(AS) 

are constructed. Slater-Condon formuale37 then give the following result 

<1jJ~IH-EI1jJ~> 
1 J 

ij 
<alF Ib> - (E-E ) 0 .. &ab 

o 1J 

To perform the iteration of (A4) the following expression is used 

to determine the expansion coefficients of (AI). 

(A6) 

Ca(n+l) 
i 

= Ca(n) 
i 

I 

E~ 
'!T~ - (E-E ) C

a 
(n) + '" <a I Fij I b>C~ (n)fCA7) 

1 0 i L.J J 
jb 

1 

From (A6) and (A7) it is clear that the values <a I F
ij I b> need to be 

calculated only once. Convergence is achieved when the change in C~'s 

is within some specified limit. 

a After the converged set of C.'s is determined, the total variational 
1 

energy is calculated starting with the expectation value expression 

(AB) . 

Rearranging using (AI) gives 

<1jJIHI1jJs> + ~ C~ <1jJ~IHI1jJs> (A9) 
la 

E<1jJI1jJ> (AIO) 

The last term in (AIO) is just R~, which is zero after the singly excited 
1 

configurations have converged. Therefore, separating the first term in 
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(AiD) gives 

E<l/J I l/J> (All) 

Using (8), this leaves 

(A12) 

The first term is just the energy from the last doubles iteration and 

the second term is the energy improvement from the singly excited configurations. 

The final step is absorbing the single excitation configurations into 

the closed shell reference determinant. 

Ii'> = Ii> +~ ~c~la> (A13) 

The wavefunction then has the form given in (1). However, because the 

orbitals have changed, double excitations will no longer have zero matrix 

elements with l/J and thus, another set of doubles iterations may be performed. 
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Table I. Methylene electron pair correlation energies in hartrees. The sum of the pair energies and E f 
re 

(the one-configuration energy in the final orbital basis) is the molecular energy, E 1 E 
tota. corr 

is the difference between the total energy and the SCFenergy and is, therefore, the correlation 

energy. The pairs are ordered by orbital energy, and p indicates singlet (p=l) or triplet (p=-l) 

coupling. Sets A and B are double-zeta calculations and the remaining basis sets are discussed 

in the text. In all calculations except A, the lowest occupied orbital (la1 , essentially the 

carbon 1s orbital) was frozen with respect to both single and double excitations. 

Pair = (i j P ) A (14 fens.) B (14 fens.) C (32 fens.) D (42 fens.) 

1a1 
la

1 
1 -0.011 107 

1a1 
2a

1 1 -0.001 071 

1a1 2a , 1 -1 -0.000 038 

1a
1 1b2 1 -0.000 011 

1a
1 

1b2 -1 -0.000 102 

1a
1 3a1 

1 -0.000 323 

1a
1 

3a1 -1 -0.000 106 

2a1 
'2a 

1 
1 -0.012 120 -0.012 104, -:-0.016 662 -0.017347 

2a
1 

1b2 1 -0.011 385 -0.011 369 -0.022 224 -0.023 344 

2a1 1b2 -1 -0.002 473 -0.002 462 -0.005 327 -0.005 858 

2a1 3a1 1 -0.008 768 -0.008 758, -0.014 802 -0.016 293 

2a1 3a1 -1 -0.002 923 -0.002 910 -0.006 052 -0.006 868 

1b2 1b2 1 -0.014 355 -0.014 338 -0.020 471 -0.021 024 

1b2 3a1 1 -0.008 701 -0.008 704 -0.012 657 -0.013 391 

1b2 3a1 -1 -0.004 789 -0.004 784 -0.012 714 -0.014 740 

3a1 3a1 1 -0.017 048 -0.017 245 -0.026 626 -0.029 274 

E ref -38.861 274 -38.861 268 -38.888 751 -38.891 361 

E total -38.956 595 -38.943942 -39.026 286 -39.039 501 

ESCF -38.861 533 -38.861 533 -38.889 788 -38.892 387 

E -0.095 062 -0.082 409 -0.136 498 -0.147 114 corr 

0 

0 

(:~, 

$.., . ..... , 
(J" , 

C 

t;, 

..t, 
I 
w 

(Xi, I-' 
I 

(.c~ 



Table II. Correlation energies of LiH, BeH+, BH, H20, and HCCH 

Basis Number of E E . ESCF E Functions Pairs ref corr total 

LiH 30a 4 - 7.983 152 -0.055 692 - 7.983 771 - 8.039 463 

BeH+ 13b 4 -14.845 489 -0.038 586 -14.846 249 -14.884 835 

BH 19c 9 -25.106 831 -0.094 796 -25.107 545 -25.202 341 

H2O 14d 16 -76.008 483 -0.125 711 -76.009 294 -76.135 005 

HCCH 24e 25 -76.796 256 -0.176 620 -76.797 686 -76.974 306 

a R = 3.015 bohrs. Huzinaga's Li lOs and H 5s sets were used (ref. 21). The Li 4p set of Williams 

(ref. 30) was added along with a set of H p functions with exponent of 1.0. None of the functions 

were contracted. 

b The Be-H distance was 2.557 bohrs, which was determined to be the potential minimum. The basis 

set was a double-zeta set using Dunning's contractions (ref. 19) with an additional s function 

released (see ref. 31). 

c R = 2.33 bohrs. Guassian lobe function basis set, 13 functions for Band 6 for H (ref. 32). 

d Dunning contracted (9s 5p/4s 2p) oxygen basis and (4s/2s) hydrogen basis (ref. 19). Geometry 

was that used by Schaefer and Bender (ref. 29). The lowest orbital was frozen with respect 

to excitation, giving 16 instead of 25 pairs. 

e Same type of basis as in d above; experimental geometry is from reference 35. 

I 
w 
N 
I 
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Table III. Convergence of the LiH Calculation. In this calculation, the sets of doubles 

iterations have each been carried to the same convergence limit to show the 

nature of the iterative technique. However, the same final result is obtained 

by using a larger convergence limit for all but the last set(s) of doubles 

iterations. Thus, with a limit of 10-3 au for the first set, and 10-5 au for­

the second set, iterations 4, 5, 9 are not carried out resulting in a savings 

of about 20% of the total computation time. 

Doubles Iteration Energy 

lb -7.983 770 8 

2 -8.038 043 5 

3 -8.038 885 5 

4 -8.038 901 9 

5 -8.038 902 8 

Singles Iterationsc -8.039 400 0 

6 

7 

8 

9 

Singles Iterations 

10 

11 

12 

Singles Iterations 

13 

, -8.039 404 8 

-8.039 440' 6 

-8.039 442 7 

-8.039 442 9 

,..8.039 4593 

-8.039 457 7 

-8.039 461 l' 

-8.039 461 3 

-8.039 463 0 

-8.039 463 0 

Energy Change <1/111/1> Variancea 

1.0 0.022 614 4 

-0.054 272 7 1. 022 614 0.000 411 7 

-0.000 842 0 1.022 778 0.000 013 4 

-0.000 016 4 1.023 332 0.000 000 9 

-0.000 000 9 1.023 335 0.000 000 1 

-0.000 497 2 

-0.000 004 8 1. 023 378 0.000 036 9 

, -0.000 035 8 1.024 421 0.000 001 9 

-0.000 002 1 1.024 596 0.000 000 2 

-0.000'000 2 1.024 668 0.0 

-0.000 016 4 

+0.000 001 6 1.024 685 0.000 003 8 

-0.0'00 003 4 1.024 917 -Q.OOO 000 2 

-0.000 000 2 1.024 971 0.0 

-0.000 001 7 

0.0 1. 025 058 0.0 

0 

c.-: 
-,. 

Ci 

.l'<_ 

Vi 

C . 
; " 

~'-I 
W 

J::-J VJ 
I 

C©> 

~ 



Table III continued. 

a The variance is the sum of the square of the T;b matrix elements divided by the square 

of E;b. It represents the sum of the squares of the changes in expansion coefficients. 

b The first iteration requires substantially less computational effort than following 

iterations since ~p = 0 and matrix elements are being calculated only with ~O. As 

such, this iteration amounts to a starting guess for the ~p's and the energy is the 

SCF energy. 

c The energy expression for the wavefunction including singly excited configurations is 

given in the appendix. The values in the table are obtained after several singles 

iterations, when convergence is achieved. 

'C 

I 
w 
-'='" 
I 
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Table IV. Convergence tests on H2O. Convergence of the iterative perturbation improvement in 
0 

the wavefunction was tested by either multiplying Hamiltonian matrix elements, ~b, by 
C 

some factor less than 1.0 or by adding a small constant to the energy denominato;, ~b. 

The singles elements, T~and E~, were adjusted in the same.way. r .. ·· "-' 
l. l. 

ab ab ab 
:;:" 

ab -f:b t:,b x 0.7 
.fi.U... 

Normal Ep + 0.03 Ep + 0.06 Ep + 0.09 Tp x 0.9 x 0.8 p 
O"l 

C 
Doubles 

Iterations 8 8 7 7 7 8 9 t' " . 
"- I J:~-Singles w 

\Jl 
Iterations 13 12 10 10 13 13 13 I 

CO 

Doubles c.r: 
Iterations 3 3 3 3 3 3 3 

Singles 
Iterations 12 10 9 8 11 12 10 

... " 

Doubles 
Iterations 2 2 2 2 2 2 2 

" 
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Tah1e V. Variational pair correlation energies €p (see equation (4) 

of text) of formaldehyde. The reference or SCF configuration 

is 2 2 2 2 1h2 2 2 2 1a1 2a1 3a1 4a1 2 Sal 1h1 2h2 · 

Pair = (i j p) 

3a
1 

3a
1 

1 -0.006 001 

3a1 
4a

1 
1 -0.001 736 

3a
1 

4a
1 

..,.1 -0.000 718 

3a1 1h2 1 -0.002 863 

3a1 1h2 -1 -0.001 302 

3a
1 Sal 1 -0.005 590 

3a
1 Sal -1 --0.002 100 

3a
1 1h1 1 -0.009 839 

3a
1 1h1 -1 -0.004 522 

3a1 2h2 1 -0.004 002 

3a1 2h2 -1 -0.002 303 

4a1 4a1 1 -0.008 182 

4a1 1h2 1 -0.007 118 

4a1 1h2 -1 -0.002 058 

4a1 Sal 1 -0.005 851 

4a1 Sal -1 -0.001 474 

4a1 1h1 1 -0.005 379 

4a
1 1h1 -1 -0.003 588 

4a
1 2h2 1 -0.005 452 

4a1 2h2 -1 -0.001 293 

1h2 1h2 1 -0.006 419 
'" 1h2 Sal 1 -0.003 759 

1h2 Sal -1 -0.003 289 

1b2 
1b

1 
1 -0.004 212 

1b2 1b
1 

-1 -0.004 218 

1b2 2b
2 

1 -0.008 457 

1b2 2b 2 
-1 -0.000 588 



0 0 -< '] , 
) ~~ , 

Table V continued 

Pair = 

s J,,: 
• 

(i 

Sal 

Sal 

Sal 

Sal 

Sal 

1b
1 

1b
1 

1b
1 

2b2 

E ref 

E tot 

ESCF 

E carr 

U ;) ~i 8 " 0 
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j p) 

Sal 1 -0.008 816 

Ib
1 

1 -0.008 502 

1b1 
-1 -0.013 350 

2b 2 
1 -0.005 162 

2b2 
-1 -0.005 183 

1b
1 

1 -0.031 206 

2b 2 
1 -0.005 316 

2b2 
-1 -0.008 453 

2b2 
1 -0.008 717 

-113.826 318 

-114.033 335 

-113.829 539 

-0.203 796, 
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