Lawrence Berkeley National Laboratory
Recent Work

Title
A THEORY OF SELF-CONSISTENT ELECTRON PAIRS. COMPUTATIONAL METHODS AND
PRELIMINARY APPLICATIONS

Permalink

https://escholarship.org/uc/item/8c84z9xq

Author
Schaefer lii., Henry F.

Publication Date
1976-04-01

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/8c84z9xq
https://escholarship.org
http://www.cdlib.org/

Submitted to Journal of Chemical LBL-5110 ‘
Physics . - Preprint ©

A THEORY OF SELF-CONSISTENT ELECTRON PAIRS.
COMPUTATIONAL METHODS AND PRELIMINARY APPLICATIONS

Clifford E. Dykstra, Henry F. Schaefer III, and

Wilfried Meyer R_ECEIVED.

LAWREMCE
BERKE4TY LABORATORY

LIBRARY AND
DOCUMENTS SECTION

Prepared for the U. S. Energy-Research and
Development Administration under Contract W-7405-ENG-48

r T

For Reference

Not to be taken from this room

_ )

|2

0TIG=TdT



DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.



OU 20450 < a 4 -
. ‘J‘~ Uaou w46 / LBL-5110

-A Theory of Self-Consistent Electron Pairs.

Computational Methods and Preliminary Applications

*
Clifford E. Dykstra and Henry F. Schaefer III

Department of Chemistry and Materlals and Molecular Research Division,
Lawrence Berkeley Laboratory, Unlver51ty of Callfornla
Berkeley, California 94720

and

Wilfried Meyer

Institut fur Physikalische Chemie -
Johannes Gutenberg-Universitat
Mainz, Germany

. .
University of California Regents Fellow, 1975-1976.
fok
This work was done with support from the U.S. Energy Research and Development
Administration. Any conclusions or opinions expressed in this report represent
solely those of the author(s) and not necessarily those of the Lawrence Berkeley
Laboratory nor of the U.S. Energy Research and Development Administrationm.

i



O U 04580454568

Abstract

The recently deveiopéd theory of Self-Consistent Electron Pairs (SCEP)
is an iterative variational method of obtainihg correlated Wavéfﬁnctidns.
The computational applic;tién of the theory has been ful}y implemented and
testea for a vériety'éf_chemical systems. Some theoretical»refinemenﬁs
whiéhreéulted from these tests are presented. The chemical systems selected
for this first SCEP study of molecular electronic stfucture test most of.

' the antiéipated‘diffiCulties in using the theory and inciude‘Hz, LiH, BeH+,
.BH, Be2, CHZ’ HZO’vHZCO and,HCCH. Some of the'advantages of SCEP over
convenéional configuration interaction (CI) appear to be computational

_ efficiency, variationélly additive pair correiation energies and the capability
to treaﬁ systems nearly aé large as can bé stu&ied with one—configuration
_self—coﬁsistent field (SCF) theory. The method's effiéiehcy results largely
froﬁ the avbidance.of any integrals transformation or cohstfuctioh and
diagonalization of a large CI matrik. Because SCEP theory is formulatea
using Hartree—Foék—like operators, with the same,dimensionality as the Fock
operator,.large basis sets arenhandled nearly as easily as with SCF-calcula-
tions. The largest calcuiation reborted here'iﬁvolved 42 céntracted‘gaussiah
fthtions and accounts for v 887 of the Qalence shell éorreiation energy of
singlet methyléné. The equivalent CI wavéfunction.would-include 2926

symmetry-adapted singlet configuratiohs.



Introduction

As ab initio electronic structure calculations are used to study
increasingly critical properties of a wide range of chemical systems
(see; for example, reference.l),vthe need for easily obfaining correlated:
wavefunctions has intensified. A large number of:different corrélation
energy methods have been.developed ovér a long periqd'of time, though
the majority have appeared quite receﬁtly. Sévetal review articlesl—
have recently set forfh tﬁe'"state of the‘art" of ‘electronic structure
calculations; é§ dnly a brief, and certainly.not_iﬁclusive, discﬁssion
of correlation methods is given here. |

The most conceptuallybstraightforward method is configuration
interaction (CI) which, of course, is the diagonalization of -the
‘Hamiltonian matrix in. the space of ‘some selecte& set of configurations
(linear'combinationé of Slatér.dete:minants)ﬁ The matrix is typically
quite large so that its construction and diagonalization are not
trivial. Early ideas to get afound the problems of CI were founded on
perturbation.theory.4-6. Notable among these was the Independent.Electron
Pair Approximation7 (IEPA) which gave independent pair contributions to
the correlation energy. However, since the'interaction between pairs
was neglected, the resulting correlation energy was no£ variational and
gave potentially disastroué results. A similar idea, but with a different
formalism and using groups of electrons rather than just pairs, was McWeeny's
theory of self-consistent group functions.8 The ideas which grew out éf
perturbation theory suggested a cluster development of the wavefunction

as opposed to the individual configuration treatment of CI.
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The recogni%ed faiiure éf IEPA left CI as the most reliable‘method,
andksubstantial eff6rt has been made at improving it. Bender, David.sron.9
and Schaeferlo ha;e done extensive work with thé iterative natural orBitél
(INO) method; This method in#olves determining optimum orbital férms fy
diagonalizing the first-order density matrix betﬁeen iterations and each
stép is a.completé Cl calculation. Anéther major development ﬁaé the
©  Pair Natufal Orbital (PNO—CI)/methbd of Meyef.ll This method was highly
sﬁccessful in 1argé scale calculations because it gréatl& reduéed the :
ﬁumbefnbf configurations in the CI through the use of non-orthogonal
orbitals, éhe PNO's; fhe method intrbduced by Roos12 improves the céméutafional
efficiency of CI by'detéfmining expansion coefficients directly from two-
electron’intégralé. The only wéakness’of this method is the rather complex
logic requiréd to do more than single and double excitations ffom.clqsed
shell singlet states. | | | |

.Among thé newest correlation energy methods is the tréatment-of two-
eléétroh systéﬁs by Driessler and Ahlrichs.13 They calculated fhe wévefunction
iteratively using anséberator férmélism somewhét related to that of.Mcﬁeeny‘s
self—cénsistent groups. Beyond two-electron systems, tﬁeir'method iS
useful for selecting pair nagural orbitals to_dé PNO-CI. The Vector Method
(VM) of Bender14 repreéents another iﬁportaﬁf.déVelopmenf in CI techniques,
VM‘uses‘the sécond quantized form of the Hamiltonian operétor aﬁd éqlvesv
for the wavefunction iterati&ely. In consfruction of maﬁrix elements it haé
some similarit&_fo Roos' méthod, but i§ totally generaljwith respect to .
excitation.levél, types of states and selection of higher roots. |

Other recent developments have ocqurréd in the area of perturbation

theory. Perhaps most important is the work of Pople's group3 on third-order



Mdller—Plesset theory. As another example,vFreeman and Kérplus15 have
recently used Goldstone diagrams in calculations on a few small molecular
systems, providiﬁg‘én iﬁteresting comparison of‘variational an4 pertﬁfbati§n
correiation energy.approacheé. Tﬁe generai trend among‘many of fhe néwer
methodsiz-14 has been to make use of perturbétion fh;ory | .

to somé extent. It is interesting to note, for example? that Bender‘s
Vector Method had its histérical.deveiopmen£ from nqclear'shell modgl%,
which of céurse have utilized maﬁ&—body perturbation éheor&. The |
distinction betweeﬁ ﬁany of the vafious correlation>énérgy methods seems
to be whetﬁer t§ usé higher order ﬁerturbation theory ér‘tq use first- or
second-order perturbation»thedfy in an iterative‘manner to achieve a
vagiational resul;. The variéﬁional methods are in thé endvgquiyalent

to a CI calculation‘of some typé.

Perhaps the most recent new method is the theory’of Self;Consisfent
Electron Pairs (SCEP) due to Meyer.16 This method, which is the.subject
of the present paper, uses a highly efficient operator formalism to obtain t
necéésary matrix eleﬁénts. As such; it avéi&s an‘intégrals transformatioﬁ;
It'utilizeé firstforAér perturbation theory in an iterative Vgriational |
scheme. Currently, the method is limifed to single and dqublé excitations
aﬂd closed shelllreference states, but thé tﬂeofetical formulation éhould
not limit its extension. We also point oﬁt that the coﬁpled elecfron paif
approximgtipn (CEPA) of‘Meyerl7 is egsily incorporatea'into SCEP, if

desired, so that unlinked cluster effects may be approximately incorporated.
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" Theory

Though the theory of Self-Consistent Electron Pairs has been presented
elsewhere,1§ it is useful to briefly mention theoretical details which

relate to work presented here. The SCEP wavefunction is given by

w=woﬁg% (1)

_wo is a closed shell reference determinant and wP is a-doubly substituted
pair function; P = (ij,p) where i and j are internal orbitals (occupied

in the reference determinant) and p is +1 or -1 for singlet or triplet
spin coupled pairs, féspeétively.-.For the specific substitution of the
internal pair P by an external pair,lsay (ab,p), a cqefficient matrix

is defined using the orbital vectoré |a>

y~1/2

ab-_
= (2 +
C (2. Zéab

~

[la><b] + plo><al] C®

vA'linear cOmBination of all g;b fbr a given P, mﬁltipligdﬂby\éppropriate
expansion coefficients is designated g and is a representation of Wp'

(SP’ boldface, is termed the external pair coefficient matrix for pair

P = (ij,p): CP;vhowever; is the internal pair coefficient for the pair

P = (ij,p) and is given by (2), if i and j are substituted for a and b.)
The expansion coefficients are not carried explicitiy‘so thafvg‘ is
directly in terms of basis ‘functions rather than orbitals. The variational

energy expression is

<]
]

| E, + Zep | (3)

P

m
It

p = <y + VlH - Egfup>/<vly> | (4)



E, is the energy of the reference determinant and €_ is the_pth,pair

0

. contribution to the correlation energy.

P

_ . ab :
Calculation of the wavefunction proceeds via matrix elements Tp » which
for the double excitation ij = ab is of the form

Tab -

2% = <2®|m-Ey> (5)

‘The wave function is then improved according to first-order perturbation

theory.

w(n'l'?.) - U)(n) _ Z wib T;b/Elan )
P,cd :

ab ab ab . '
= < - ) : ' -
E, = <, |B-E|y,™> | (N

Iterating with (5) and (6) yields a self-consistent solution when each

b
T; is zero. The calculation of the matrix elements in (5) and (6)

requires primarily matrix addition and multiplication of easily comstructed

ab

operators. Furthermore, all TP

for a given pair P are obtained at -the
same time. Imporfant in the iteration scheme is that different; non-
orthogonal sets of external orbitals may.be used for each infernal pair.
Clearly, these orbitals may be selected to optiﬁize convergence.

Single excitations are treated apart from the double excitation iteratioms.

Again, matrix elements are calculated from simple operators.

Ti = <¢i|n|w> (excitation |i> - |a>) (8)
a = a - a
E] <1pi|H E'_“’f (9)



The wavefunction mdy then be improved~by'first:order perturbation theory. -
a ., a
Vo= - v e o (10)
i.,a * . :

<

" In préctice, it has been found that a more accurate treatment of the single
excitations is aéhieved by iterating uﬁtil the singles_ha?e_zero>Hémiltonian
matrix elements with thé'total wavefunction. The original presentation of
the theory did not include a discussion of this treatment, so an appendix
ﬁas been iﬁcludéd which'gives explicit forms of the operators used in the
singles iteratioms.

The sinély—excited configurations are absorbed into wo by improving

the internal orbitals using

‘ 1 . a,.a '
11> = |[i> - 7= |a> TS/ES (11)
- The Ti are either the matrix elements of (8) or an iterative result (see

the appendix). The orbitals are then symmetrically reorthogonalized. A projection
opefator is then used to insure ortﬁogonality Qf the set of 9 's with wo
in the new internal orbital basis. This is the only orthpgonality constraint
in SCEP.
The general SCEP procedure, then, begins with.a closed shell reference
determinanﬁ and a set of-intérnal and external (virgual) orbitals, presumably
from an SCF calculation. Different sets of optimum exterﬁal orbitals are
found for each internal two—elecfron pair. Sets of doubles and singles
iterations are performed until all single and double excitations have zero

Hamiltonian matrix elements with the wavefunction. New sets of externals



and various operators are set up after each set of singles

.because the orbitals have been changed.

iterations

.



‘Computational Aspects

. The SCEP procedure begins with the construction of internal pair i

Coulomb and exchange 6perators_from the two?eleétrén‘integrals; (aBlyé).

['Jiilst-é Z |i>u <j|v (st|pv)
Y _ .
e, - % o, <l Gl an

-If there are N oécupied orbitals in the reference determinant, exclusive .
- of those which are frozen to excitation, then thére are only N(N+l)/2
J and K operators, sincé jij = in and Kij:=w(K i)T. The J and K
operators can be formed in effectiveiy.one pass through the two-

electron integral list and are then stored on disk. The closed-shell

Fock operator in terms of these operators is given as

_ ~ o dd o dd . |
F, = +iZ(2J_ -k o a3) )
with H0 being the matrix of one—electroﬁ integrals over basis functions..

_Pair Fock'operators, designated FPf and FP (see ref. 16), are now set

Q
up. FfQ représents the interaction between the internal cores of two
doubly subsﬁituted-pairs. F_. is used to find optimum external orbitals.

PP
If there are M internal pairs, then there are M(M+l)/2 pair Fock operétors,
-‘-

because FPQ = FQP . 1In the current'pfogram version, these operators are
constructed and then stored on disk. (They are, of course, unchanged throughout
an entire set of doubles iterations.) However, the simple form of the

operators suggests that it may be more efficient to obtain them directly

from the J and K lists during each doubles iteratibﬁ.
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The only other use of two-electron integrals is in the construction

of external exchange operators,

[K(C1, = ;;; [Cpl,, (sulev) D

of which there are N2. This is done at each doubles iterationvexcept the

first, where CP = 0. Simple matrix manipulation of all the.operators is

for each pair{ G, is used

used to construct a total pair operator, G P

P,

to calculate matrix elements according to

T?b = <w;blH—E|¢> = Trace {[p|a><b] +'|b><a|]GP}
: ab : '
= p Trace {C GP} (15)
and |
<wP]H—E|¢> = p Trace {SPGP} | (16)

The calculation is performed pair by paif and by using a "double
transformation" of‘GP16 each 9 can be improved directly without the
intermediate step of (15). This has been found to be very efficient.

The form of the wévefunction here is a set of N2 coefficient matrices,
the EP'S. - For cdnvenience, the wavefunction is not explicitly renormalized

at any point. Instead, one begins with <w0|wo> = 1 and then <w|w> is

calculated using

<plv> = <y, lv,> +};:p Trace {C_SC_ S} (17)
where S is the basis function overlap matrix.

Treatment of the single excitations follows convergence of the doubles.

An operator is constructed‘immediately following the last doubles iteration
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which gi&es matriﬁ elements,‘Ti,'of the singles with {. Then, N(N+1)/2
operatoré are constructed (see appendix);which are used to get matrix
eleﬁents between tﬁe singly—exéitéd'cdnfiguratiéns. The.singles itera-
tions are very fast since the two-electron integrals are not dsed and

the ﬁumber of matrix élémeﬁts is small. .Typically, the entire treatment

‘of the éingles; from éoﬁstructing operators to improving the orbitals,
_requires lesé time thén one doﬁbles iteration. The symmetric reorthogonali-
zation of orbitals after (11) is a three—step}process. The internal
orbitals ére orthogonaiized using Lawdin's.procedt%rel8 and a five-term

o S ' -1
series expansion is used to find A 2

where A is the-dveflap matrix qf
_the_impfévéd orbitals. Schmidtforthogonalization_is used to zero out

the overlap of the exterﬁals With the internal orbitals. This is necessary
because the optimum form of the internal orbitals_is fixed after the first
step. ?inally, the Lowdin orthogonalization is Applied to.the externals
'aloﬁe.

Since the iterative SCEP method uses first-order perturbation théory
to achieve self-consistency, it should be clear that ‘the choice of energy
dendminators,-E;b:and Ei,affects convergéncé but not the final result.
Several of the systems studied were selected‘becaﬁse.of poténtially small
energy denominatprs. ‘A very small energy denominator, say less than 0.1,
may causé the first-order perturbation ekpreséion to greatly overshoot the

:corréct'result. ‘Indeed, it was not diffiéult-té.find cases where this
effect completely ﬁrevented convergence. To overcome this difficulty, two
- modifications have been tested fof'the energyvdenbminatoré; The first is

ab

the addition of a small quantity to each EP

a . , .
or E., while the second is a -

multiplicatiye factor. The results of these tests, discussed below, showed
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‘convergence was possible in all of the difficult cases. Clearly, some
experience will be helpful in properly correcting energy denominators and
some programmedocriterion is anticipated.

A unique feature of SCEP is the ability to "restart" a calculation. -
Just as in conventional SCF methods, where an orbital_vector or density
matrix determined at one geometry provides a starting guess for a calcula-
tion at a new geometry, the SCEP list of EPfs_can be uoed as a guess“in a
calculation at a new geometry. To do this, the old set of SP'S is ortho-
gonalized with respect to the molecular ofbitals at the new geométry using
a projection operator (see fef. 16). This reotar; featu;e has been implemented
in the progrém-aﬁd tests show that it saves at leaét a fewvdoubles itorations
and as much as 1/3 of the total computation time.

. SCEP is a particularly attractive method for use onumini—comqugrs.
This is because the maximum number of elements used in any arréy is the
square of the number of basis functions; there are obviously no large CI
matrices to deal with. Only a few such arrays are needed in core at one
time. In the present version of the SCEP program we'havé éelected a generous
limit of six arrays. For the Harris Corporation Series 100 system (32K of
48-bit words), the program limit is 54 functions, compared to an - SCF (POLYATOM)
limit of 72 functions. We anticipate reducing the number of arrays in core
to‘four which will increase the SCEP limit to 66 functions. (The program does
take advantage of the total available memory in the construction of most of
the operators, even when the number of functions is less than the limit.)
Since there is no configuration list and no configurationglimip? almost any

problem which can be studied with SCF can be studied with SCEP.
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Finally, it should be pointed out that the SCEP program is still in
somewhat of a'preliminary form. For e#ample, all systems are treated
assuming no symmetry. Meyer16 has shown there is definite advan;age |
to including symmetry in the treatment, thoﬁgh the savings from symmetry
will ﬁot be as great for SCEP as for CI. Iﬁ the largest QHZ calculation
reﬁorted here (42 basis functions), the numﬁer of symmetry-adapted configura-
tions requifed for a calculation equivalent to the SCEP.result is 2926.
Without symmetry, this number rises to 6669, a much more difficult prpblem
'for CI. SCEP is thus.a very competitive method for éystemé;without symmetry,
and we plan to incorporate the advantages of symmetry, alopg with other |

improvements, in later versions of the program,
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Results and Discussion

Pair Correlation Energies

An ekciting result which is obtained from’SCEP theofy'is the
set of pair correlation energies which can be added to the feferéhée one-
configuration energy to give the total energy of the system. We expect
that this will add a new level of understanding and intérpretation to
corfelated wavefunctions. An example of pair correlation enérgies'is given
for methylene in Table I. The first two calculations were Qith’thé'sténdard
double-zeta basis set of DUnning19 contracted Gauésian functions. The
third calculation used a much larger basis set‘bf 32 contracted functions,
the same as previously ﬁsed by Bender, Schaefer and McLéughlin.zo' A
comparison of the first two columns of pair correlation energies shows the
effect of freezing the carbon 1s orbital.‘ While excitations from the carbon
1ls orbital can contribute more than 0.0l au to the total correlation énergy,

the contribution of pairs which do not include the ls are nearly identical in

both calculations. Since the SCEP method is strictly variational and explicitly

accounts for inter-pair effects, this result demonstrates quantitatively the
validity of freezing the carbon ls orbital. That is, the carbon 1ls orbital
interacts little With other pairs, or more precisély, thé wP involving the
lal internal orbital are almost completely independent from the correlation
corrections for the remaining electrons. The failure of IEPA
indicates that this will not be true for all other orbitals. What SCEP
has provided is a clear-cut quantitative argument for freezing orbitals with
respect to excitation.

The capability to do large scale calculations with the SCEP method is

shown by the results in the final column of Table I. This computation employed

\

-
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a basis set of 42 functionms. Huzinaga's21 (10s 6p) carbon basis was
contfacted to (6s 4p) using Dunning'szz'COntraction scheme. For hydrogen
the Huzinaga (5s) set was conéracted to (3s) following Dunning. A set of
p functions was added to ﬁydrogén with'exponent 1.0, and two sets of d
functions with exponents 1.3088 and 0.38768 weré added to carbon,'as was
done in the methylene calculation of Bender 35_3;423 The geometry for all
singlet methylene calculatioﬁs.wasvl.ll Angstrom C-H bond length and an
H-C-H angle of 102.4 degtees.. To our knowledge, column D represents the
lafgest’methylene cgléulation performed to date, -and the energy is lower than
the previous best singlet methylene energy of.Pakiari and Handy.z4

For éomparison with the above ab initio results, we have attempted ﬁé predict
the “éxperimentél" correlation energy of singlet methylene. The lowest single
configuration SCF energy obtained to date is that of Meadows and Schaefer,25
ESCF = -38.8952 hartrees, and we estimate the Hartree-Fock limit to be ‘
-38.8972 hartrees. Obtaining an estimate of the exact nonrelativistic
energy is more difficult. .We begin with Bunge's exact nonrelativistic

energy26 for the C atom -37.8436 * 0.0015 hartrees, and add the energy

(-1.0 hartree) of two H atoms, plus the dissociation energy for the process

CH, ~ C + 2H | | (18)

The latter quantity is estimated to be 180.6 * 1 kcal from the JANAF
Thermochemical Tables,g7 and we have added an estimated 11.4 * 2 kcal

for the zero-point vibrational energy of CHZ' Thus we arrive at -39.1496 %

0.004 for the exact nonrelativistic energy of ground state (triplét) CHZ'

Adding to this the singlet-triplet separation28 of 19.5 % 0.7 kcal we finally
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.obtain —3941185 * 0.005 hartrees, corresponaing to a correlation enefgy‘
of 0.2213 hartrees. Our 42 basis function calculation yields a correlation
energy of 0.1471 hartrees or 66.5% of the "experimental"vresult. However,
we have made no attempt to account for the wP involving the carbon 1s
orbital may

1

Be crudely estimated as -0.0549 hartrees, the analogous quantity from

orbital. This part of the correlation energy due to the la

Bu'nge's.study26 of thg C atom. Thus we may roughly estimate the valence
shell correlation energy of CH2 as -0.1665 hartrees. Our 42 basis function
calqulation accounts for 88.47% of this valence shell correlation energy.
Comparison of pair corrélation energies for calculations with different
basis sets shows soﬁe interesting features. Typically, one assumes a
greater correlation energy contribution from a singlet coupled pair than
from a‘triplet coupled pair.lO This is true in the double-zeta methylene
calculations, but with largér basis sets, the (lb2, 3al) triplet coupled pair
has a larger pair correlation energy than the (lbz, 3al) siﬁglet_coupled pair.
Other pair energies, such as (2al, Zal) and (2al, 1b2), show qualitative
changes with different basis sets. These effects are probably due to the
changes in ﬁhe internal orbitals with different basis sets. However, the
précise.nature of the effects suggests additional study. It is clear at
this point, though, that SCEP péir correlation energies will aid in under-
stahding basis set effects on correlated wavefunctions.
| Table II gives a summary of results of test calculations on a few small
systemé. The BeH+ potential'curve was studied at a variety of internuclear

distances and the potential minimum was found to be at 2.557 bohrs. The
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result of the water calculation, -76.13501, compares well with the equivalent

INO result of Schaefer and Bender,,z9 -76.13497 hartrees. .

Convergence

: An example df the convergence of the SCEP method is shown in Table III
for the 30 basis function LiH célculation. After the second iteration,
chaﬁges in the wavefunction become rather‘small. The LiH Ealcdlatioﬁ‘and
mostlbf the other calculations repqrte& here seem to iﬁdicaté'that_the
singles treatment needs to be performed only twb or three times. The /
=éxceptions td this are cases where:singly—exciﬁed configuratiqns woula‘have
' a'large matrix element, in the CI sense, with the reference determinant.‘
This'impliés that the internal orbitals will change'éubstantially,affer_
the Singles iterations S0 fhat several sets of éingles itératibns are needed
to achieve self-consistency. Examples are formaldehjde,‘where the Eefereﬁce
determinant has been sﬁown to have a large CI matrix eiement with tﬁe.lowest

33

. X + : . . IR .
A, singlet, the dissociating BeH , and Be2 at large internuclear separations.

1
While these calculations did require more singlés iterations thah”LiH, the
number of required sets was about four, with only a few doubles iteratioms
required between sets.

Convergence is difficult for some systems. TFor'basis sets‘larger than
28 functions with Bez, SCEP, in its undamped mode, does not converge at
all. A general rule seems to bevthat with basis sets larger than double
zeta, the éhergy denqminators tend to be too small. 1In these cases,
additive or multiplicative scaling factors were required. As mentioned

earlier, these factors can be used to reduce the magnitude of the first-

order perturbation. correction to the wavefunction. As such, they can
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greatly influence convergence, though not the final result. While water,
with a double zeta basis, is not difficult to converge, it doeé show the
effects of these scaling factors. The results of seven water calculations
are given in Table IV. The fastest convergence was obtained with an
additive factor of 0.09. The multiplicative scaling has the potential
of overdamping as shown By the last columm.

Overall, our results on the test cases discussed here seem to
indicate that convergence of the doubles starting with C, = 0 can be
achieﬁed in 9 or less iterations. Two to three sets of singlesbiferations
are usually required with just a few doubles iterations between. Cohsiderable
savings can be accomplished by using a larger convergence limit for the first
one or two sets of doubles iterations (see Table III) or by using the restart
feature. Convergence of many systems is quite fast, but the important conclusion
is that even for systems that converge with difficulty, one can still depend on
convergence iﬁ 25 or less equivalent doubles iteretions (this counts set
up and éingles iteration times to the extent to which they are equivalent

to a doubles iteration).

Computation Time

Having considered some of the types of molecular systems which can be
studied by SCEP and having demonstrated the coﬂvergenee properties of the
method, it remains to show computational efficiency to establish SCEP as
a viable correlation method. The first and admittedly easy system to

consider is HZ' With a basis set of 22 gaussian functions,34

SCEP required
3 minutes, 48 seconds on the Harris 100. The calculated energy was -1.171140

hartrees at 1.4 bohrs, in exact agreement with the CI calculation of
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Bauschlicher_gg_gliBl In cdmparisoﬁ:ﬂthe'SCFvcaléulatidﬁ réqui;;&"éfminutes
18 séconds. - The SCEP calculation reqﬁirédf9’a¢tﬁ51.doubléé.iféfatiéhs and

the equivalent of 12 iteratioﬁs when'including the time for set-up, singles
trééﬁﬁéﬁt'and improvement of the brbitalgiu'EacH doubles iteration required

about 19 seconds and”each SCF iteration required about 18 seconds.” This

‘similarity is not surprising because the SCEP method is structured around

Hartree-Fock like operators, which for a two-electron system are no more

complex than the Fock opérator. Driessler  and Ahlrichs found similar
efficiency in their PNO-CI method for two-electron systems.

The results of a calculation on LiH have already been presented. The

time for the SCEP calculation was about 40 minutes (onithe Harris 100),

while the SCF calculation required 9 minutes. The time for an SCF iteration
was about 39 seconds while fhe time for one SCEPdoﬁbles iteration was 141

seconds. The ratio is nearly equal to the number of electron pairs, four.

" An additional calculatioﬁ done on LiH used 21 basis functions. The run

time for this calculation was about 970 seconds compared to 2526 seconds

with 30 basis functions and identical numbers of iterations. Solving

-(30/21)R = 2526/970 gives R = 2.7. That is, empirically, the process. goes as

less than N3 for N basis functions. Calculations on Be2 with 22, 28, .36,
40 and 44 basis functions and the methylene calculations gave about the
éame value of R.

Overall, it appears that SCEP may be a highly efficient method for many:
chemical problems. It is clear that in many cases the computation tiﬁe is
of the order of magnitude of SCF caluclations, as originallysuggeéted by.
Meyer, but the difference increases sharply with the number of electron

pairs. This is, of course, due to the explicit inclusion of inter-pair
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effects. The less than N3 dependence of cpmpufation time with basis set
size makes the method quite attractive for extended basis set calculations.
As a final demonstration of the potential applications of the SCEP method,
we report in Table V pair energies for‘formaldehyde. The calculations

were done with a Dunning-contracted double zéta basis set19 for all atoms.
Carbon and oxygen 1ls orbitals were frozen to excitation, and the geometry

was'the experimental structure given by'Herzberg.35
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Summary and Outlook

The increésiﬁg valué 6f theoretical electronic stfucture calculations
to fundamental physical chemistry research has made the ‘search fbriefficient,
accurate tﬁeoréfical méghods of major importance. As a result,-a wide
;ériety-OE variational and perturbation methods have been proposed. - Nonethe-
less, the standard configuration interaction approach is.thé most persistently
used and serves as abbaéis of compariéon"for new methods. 'CI' calculations,
however, evén includiﬁé the promiéing”new formulations by ROOSlz.or Bender,l4
aré still difficul; and require exéensive numerical’ effort. Esseﬁtially all
CI ﬁethqu, for-ihétanée, rely oﬁ an in£Egrals tfansformatibn36 and’ any
iﬁp;ovemént in orbi;als requiféé another” transformation.

vPertﬁrbation techniduesmshow some promise for being computationally more
éfficiéﬁt than CI, but may be more difficult to apply reliably, as evidenced
by the‘feﬁ.sysfems which haﬁe been stﬁdied“with these methods. In-addition,
thé énergy values are, of course, not variational which may'limit the use of
éuéﬁ fesults Qhefe small energy differences are important. These methods,
generally; also réquire an infegrals'trahsformatibn and calculation of many
ﬁétrix elements,

An overview of the many correlation energy methods seems to point to a
"convergence" in methods.‘ The idea of pair contributions to the total energy
’has been é; intergsting cénéept for avlongAperidd of time; -the direct.
-Aeterminétion of the wavefunction without construction of a Hamiltonian -
‘ matrix_i; clearly ah efficient schemé; and perturbation theory may be,aﬁ
idealfway to_improve a wavefunction. All of these are a part of.-the SCEP
method. SCEP uses first—ordér perturbation theory, but does so:iteratively

to achieve a self-consistent variational result. It never constructs a
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complete Hamiltonian matrix and avoi&s’the manipulation of individual matrix
elements. As such, it determines the wavefunction in a most direct fashion
and since it requires no configuration list, there is in principle no limit to
the dimensionality of the configuration Hilberﬁ épace. SCEP includes pair-pair
interaction explicitly and thus, gives truly variationally additive pair
correlation energies. |

In conventional CI or in any perturbation scheme, it is difficult to
establish a clear-cut optimum set of molecular orbitalé. Iterative natural
orbital methods (INO) ‘have been perhaps the most successful, but often require
several or even many expensive CI calculations. The SCEP formalism yieldé
the optimum set of orbitals within the space of single and double excitations.
Finally, SCEP does not require any explicit integrals transformation. 'This
accounts for its less than N3 computation time dependence (when the number
of electrons is fixed), while an integrals transformation is at best NS.

The advantages of SCEP and its formal structure suggest that it could
possibly be the "converged result" of the many correlation energy methods.
Supporting this assertion, however, will require substantiél effort. First,
the method must be extended to higher order excitations to be competitive
with both CI and perturbation methods. The treatment of higher order
excitations may be much more complex than singles and doubles, but should
present no limitation to fhe method. Extension of SCEP to open shell systems
is a more immediate, but fortunately, straightforward problem. Reservations
about applying SCEP to open shells are primarily due to possible convergence
difficulties. However, we have éxperimented with the method enough to believe

+
any convergence difficulties can be overcome. 1In the BeH calculations, the method

+ ‘ :
was tested on a dissociating (to Be + H) system and proved successful., In a CI
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treatment, the doﬁinant configuration at the dissociation limit may be

expressed as a 51ngly exc1ted conflguratlon from the SCF closed shell

R

state. Thus we have, in effect treated an onen shell state W1th thls
method'though not in an ontlmum fashlon. | |

If SCEP is successfully extended we belleve 1t will be a most'powerful
'method and‘posslbly the most eff1c1ent approachito the correlatlon energy
'problem. In the meantlme it w111 serve as an excellent closed shell
method, capahie Qt treating large systems and equivalent te‘CI techniques
ineiudrné severai thdnsand configurations,dfor instanee.: Our tests already
show the capablllty for such 1argensca1e calculatlons and show computatlonal
efficieney competitive with existingvvariataonal netheds. Theory and
_nrogram developments,‘snch as taklng molecular‘symmetrf 1nto account,A

should 1ncrease the advantages of the SCEP method
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Appendix 4

Treatment of Single Excitations

The wévefunétiod;'including single excitation configurations, is
e a _a :
b= v+ D cf v a1)
i,a :

Notice that unlike the treatment of the doubles, e%plicit expansion'
coefficients are being used. The optimal coefficients are those for
which the single excitation configurations have a zero Hamiltonian

matrix element with wS' The following matrix elements are calculated.

: a = a. po n o .. ' o . . * "

‘R, = <wilH Elws> , , o (A2)
a _ _,aj. a e (AT
E; = <V |H-E[y]> . (A3)

The iterative solution is given by an expression analogous to equation
(6) for double excitations.
(ntl) _  (n) Z a _a,.a ,
Vg T =¥ T m L by Ry/Ey o (A4)
i,a 2 e e
For the first iteratibn,“for which'ws =V, R? =fT§ as in (8).
Expressions for T? have been giveh by Meyer.l6

To find the matrix elements of (A2) and (A3) a set of operators FiJ
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Fdo=6,, F + 2k - g - os<dlr 5> (45)
ij "o o' .
are constructed. Slater—-Condon formuale37 then give the following result

,<¢i|H-E[¢}j’> = <-a|'FiJ'|b> - (E-.Eo) 6ij Sab : (A6)

To perform the iteration of (A4) the following expression is used

to determine the expansion coefficients of (Al).

i i a i

+ . 3 .
c2®l) _ calm) 1 da g gy 2@, E <a|F3 | p>c® N (a7)
. i o i - J
Ei ib

From (A6) and (A7) it is clear that fhe valués <a|Fij|b§ need to be
calculated only once. Convergence is achieved when the change in Ci's
is within some specifiéd limit.

After the converged set of C?'s is determined, the total variatiomal

energy is calculated starting with the expectation value expression
= < >/<y lw > -
E = <hglulyg/<vglvg (48)

- Rearranging using (Al) gives

) | _ _

E $<wlw> +EC§1 $ = <¢|H|ws> + Z c‘ai1 <¢"’i‘|u|¢s> (A9)
ia ia :

E<y|y> = <1p|H|1pS> + gc‘z <wiIH—Ellj)S> (A10)

The last term in (A10) is just Ri, which is zero after the singly excited

configurations have converged. Therefore, separating the first term in
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(A10) gives
E<p|y> = <p|H|y> + ;é;ci <¢|H|¢i> B (A11)
Using (8), this leaves
E = <¢|H|\p>/<¢|¢> + gé:ciT?Mwlw | (A12)

The first term is just the energy from the last doubles iteration and
the second term is the energy improvement from the singly excited configurations.
The final step is absorbing the single excitation configurations into

the closed shell reference determinant.
|it> = |i> + & :E:c?|a>  (A13)
V2 401 '

The wavefunction then has the form given in (1). However, because the
orbitals have changed, double excitations will no longer have zero matrix

elements with { and thus, another set of doubles iterations may be performed.
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Table I.

Methylene electron pair correlation energies in hartrees.

(the one-configuration energy in the final orbital basis) is the molecular energy, E

energy. The pairs are ordered by orbital energy, and p indicates singlet (p=1) or triplet (p=-1)
coupling. Sets A and B are double-zeta calculations and the remaining basis sets are discussed

in the text. In all calculations except A, the lowest occupied orbital (lal, essentially the

The sum of the pair energies and Ere

‘carbon 1s orbital) was frozen with respect to both single and double excitations.

B (14 fens.)

.012
.011
.002
.008
.002

.014
.008
.004

.017

.861
<943

104.

369

462
758"

910

338

704

784
245

268

942

total.
is the difference between the total energy and the SCF energy and is, therefore, the correlation

Pair = (i i p) A (14 fcns.)
la, ta, 1 -0.011 107
la, 2a; -0.001 071
la, 2a; -1 -0.000 038
la, 1b, 1 ~0.000 011
la, 1b, -1 ~0.000 102
la, 3al 1 ~0.000 323
la, © 3a; -1 -o.oqo 106
2a, 2a; 1 ~0.012 120
2a, 1b, -0.011 385
2a;,  1b, -1. -0.002 473
2al '3al 1 -0.008 768
2al ,3al -1 -0.002 923
b, 1b, 1 -0.014 355
b, 3a; 1 -0.008 701
1b, | 3a, -1 - -0.004 789
3a, 3a; 1 -0.017 048

' -38.861 274

ref _
Eioral -38.956 595
Egop -38.861 533
' -0.095 062

corr

.861
.082

533
409

C (32 fcms.) D (42 fcns.)
-0.016 662 -0.017 347
-0.022 224 -0.023 344
-0.005 327 -0.005 858
-0.014 802 ~0.016 293
-0.006 052 -0.006 868
-0.020 471 -0.021 024
-0.012 657 -0.013 391
-0.012 714 -0.014 740
-0.026 626 -0.029 274
-38.888 751 -38.891 361

-39.026 286 -39.039 501
-38.889 788 -38.892 387
-0.136 498 -0.147 114

_Ig—

00



LiH
BeH
BH

H,0

HCCH

a

(ref. 30) was added.along‘with a set of H p functions with exponent of 1.0. None of the functions

Table II. Correlation energiés of LiH, BeH+, BH,_HZO, and HCCH

Basis
Functions

302

13

19¢

144

24

were contracted.

set was a double-zeta set using Dunning's contractions (ref. 19) with an additional s function

Number of
Pairs

16

25

released (see ref. 31).

was that used by Schaefer and Bender (ref. 29).

to excitation, giving 16 instead of 25 pairs.

R = 2.33 bohrs.

ref

- 7.983
~14.845
-25.106
-76.008

-76.796

152
489
831
483

256

E
corr

-0.055 692
-0.038 586
~0.094 796

-0.125 711

-0.176 620

Egcp
- 7.983
~14.846

-25.107

~76.009

-76.797

771
249
545
294

686

Etotal

- 8.039 463

-14.884 835
-25.202 341

-76.135 005

-76.974 306

R = 3.015 bohrs. Huzinaga's Li 10s and H 5s sets were used (ref. 21). The Li 4p set of Williams

The Be-H distance was 2.557 bohrs, which was determined to be the potential>minimum. The basis

Guassian lobe function basis set, 13 functions fof B and 6 for H (ref. 32).

Dunning contracted (9s 5p/4s 2p) oxygen basis and (4s/2s) hydrogen basis (ref. 19). Geometry

The lowest orbital was frozen with respect

Same type of basis as in d above; experimental geometry is from reference 35.

1
w
v
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Table ITI. Convergence of the LiH Calculation. In this calculation, the sets of doubles
i iterations have each been carried to the same convergence limit to show the
nature of the iterative technique. However, the same final result is obtained
by using a larger convergence limit for all but the last set(s) of doubles
iterations. Thus, with a limit of 10—3 au for the first set, and lOI-.5 au for-
the second set, iterations 4, 5, 9 are not carried out reéulting in a savings
of about 207 of the total computation time.
Doubles Iteration Energy Energy Change <w|¢> Variancea
1P -7.983 770 8 1.0 0.022 614 4
2 -8.038 043 5 ~0.054 272 7 1.022 614 0.000 411 7
3 : ~-8.038 885 5 ~-0.000 842 0 1.022 778 0.000 013 4
4 : -8.038 901 9 -0.000 016 4 1.023 332 0.000 000 9
5 ~8.038 902 8 -0.000 000 9 1.023 335 0.000 000 1
Singles Tterations® -8.039 400 0 ~-=0.000 497 2
6 -, =8.039 404 8 -0.000 004 8 - 1.023 378 0.000 036 9
7 -8.039 4406 " -0.000 035 8 ©1.024 421 0.000 001 9
8 ‘ -8.039 442 7 -0.000 002 1 1.024 596 0.000 000 2
9  -8.039 442 9 -0.000 000 2 1.024 668 0.0
Singles Iterations  =8.039 459 .3  -0.000 016 4
'10 - -8.039 457 7 +0.000 001 6 1,024 685 0.000 003 8
1 -8.039 461 1° -0.000 003 4 1.024 917 . .0.000 000 2
12 -8.039 461 3 -0.000 000 2 1.024 971 0.0
Singles Tterations  -8.039 463 0 ~0.000 001 7

13 -8.039 463 0 0.0 1.025 058 0.0

_EE_



Table III continued.

ab

2 The variance is the sum of the sqﬁare of the TP matrix elements divided by the square

Cc

a . . . -
of EPb. It represents the sum of the squares of the changes in expansion coefficients.

The first iteration requires substantially less computational effort than following

iterations since C_ = 0 and matrix elements are being calculated only with wo. As

~P
such, this iteration amounts to a starting guess for the C,'s and the energy is the

SCF energy.
The energy expression for the wavefunction including singly excited configurations is
given in the appendix. The values in the table are obtained after several singles

iterations, when convergence is achieved.

_{78_



Table IV. Convergence tests on HZO' Convergence of the iterative perturbation improvement -in
the wavefunction was tested by either multiplying Hamiltonian matrix elements, T%b, by
some factor less than 1.0 or by adding a small constant to the energy denominatof, E;b.
The singles_elements, Ti“and Ei, were adjusted in the same.way.
ab | ab Cab ab b _ .. - .ab
Normal EP + 0.03 EP + 0.06 EP + 0709 TP x 0.9 T; x 0.8 T% x 0.7
Doubles
Iterations 8 8 7 7 7 8 9
™ 1
Singles ’ : b
Iterations 13 12 10 10 13 13 : 13 !
Doubles
Iterations 3 3 3 3 3 3 3
Singles :
Iterations 12 10 9 8 il 12 o 10
Doubles _
Iterations 2 2 2 2 2 2 2

o0

0

E-"rii
3

o8
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Table V. Variational pair correlation energies €p (see equation (4)

of text) of formaldehyde. The reference or SCF configuration

2,2 .2 ,2 .2 _2 .2 .2
is lgl_Zal 331 4a1 lb2 5al lb1 sz.
Pair = (i j P)

3;1 3a, 1 | - -0.006 001
3a, 4a1 1. -0.001 736
3a; 4a1 -1 -0.000 718

3a, 1b, 1 ~-0.002 863
3a; 1b, -1 -0.001 302
3a, 5a; 1 -0.005 590
3al Sal -1 --0.002 100
32, 1b, 1 -0.009 839
3a; 1bl -1 -0.004 522
3a; 2b, 1 " -0.004 002
3a, 2b, -1 | -0.002 303
4a1 4al i -0.008 182
4a; 1b, 1 -0.007 118
ba, 1b, -1 -0.002 058
ba, 5a1 1 -0.005 851
4al Sal -1 -0.001 474
ba, 1b, 1 -0.005 379
ha b, -1 -0.003 588
4ba; 26, 1 -0.005 452
ba, 2b2 -1 -0.001 293
1b, 1b, -0.006 419
b, 5a; -0.003 759
1b, 5a -1 -0.003 289
1b, 1b, 1 -0.004 212
b, 1b, -1 -0.004 218
1b, 2b2 1 1 -0.008 457
b, 2b, -1 -0.000 588
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Table V continued

Pair

8 &
..37...
(i 3 p)
Sal 5a1 -0.008 816
l pu—
Sal lbl 0.008 502
-1 -
Sal lbl 0.013 350
Sa, 2b, 1 -0.005 162
5a, 2b, -1 ~0.005 183
l —
1b1 lbl 0.031 206
lbl 2b2 -0.005 316
-1 -
lbl 2b2 0.008 453
) y
2b2 2b2 0.008 717
E -113.826 318
ref
E tot -114.033 335
ESCF -113.829 539
-0.203 796,

E
corr
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