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Abstract

High-Aperture Optical Microscopy Methods
for Super-Resolution Deep Imaging and Quantitative Phase Imaging

by

Jeongmin Kim

Doctor of Philosophy in Engineering – Mechanical Engineering
and the Designated Emphasis in

Nanoscale Science and Engineering

University of California, Berkeley

Professor Xiang Zhang, Chair

Optical microscopy, thanks to the noninvasive nature of its measurement, takes a crucial
role across science and engineering, and is particularly important in biological and medical
fields. To meet ever increasing needs on its capability for advanced scientific research, even
more diverse microscopic imaging techniques and their upgraded versions have been inten-
sively developed over the past two decades. However, advanced microscopy development
faces major challenges including super-resolution (beating the diffraction limit), imaging
penetration depth, imaging speed, and label-free imaging. This dissertation aims to study
high numerical aperture (NA) imaging methods proposed to tackle these imaging challenges.

The dissertation first details advanced optical imaging theory needed to analyze the
proposed high NA imaging methods. Starting from the classical scalar theory of optical
diffraction and (partially coherent) image formation, the rigorous vectorial theory that han-
dles the vector nature of light, i.e., polarization, is introduced. New sign conventions for
polarization ray tracing based on a generalized Jones matrix formalism are established to
facilitate the vectorial light propagation with physically consistent outcomes.

The first high NA microscopic imaging of interest is wide-field oblique plane microscopy
(OPM) for high-speed deep imaging. It is a simple, real-time imaging technique recently
developed to access any inclined cross-section of a thick sample. Despite its experimental
demonstration implemented by tilted remote focusing, the optical resolution of the method
has not been fully understood. The anisotropic resolving power in high NA OPM is rigor-
ously investigated and interpreted by deriving the vectorial point spread function (PSF) and
vectorial optical transfer function (OTF). Next, OPM is combined with stochastic optical
reconstruction microscopy (STORM) to achieve super-resolution deep imaging. The pro-
posed method, termed obliqueSTORM, together with oblique lightsheet illumination paves
the way for deeper penetration readily available in localization-based super-resolution mi-
croscopy. The key performance metrics of obliqueSTORM, quantitative super-resolution and
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axial depth of field, are studied. obliqueSTORM could achieve sub-50-nm resolution with a
penetration depth of tens of microns for biological samples.

The last part of the thesis covers the development of nonparaxial imaging theory of
high NA differential phase contrast (DPC) microscopy for high resolution quantitative phase
imaging. The phase retrieval in conventional optical DPC microscopy relies on the paraxial
transmission cross-coefficient (TCC) model. However, this paraxial model becomes invalid
in high NA DPC imaging. Formulated here is a more advanced nonparaxial TCC model
that considers the nonparaxial nature of light propagation, apodization in high NA imaging
systems, and illumination source properties. The derived nonparaxial TCC is numerically
compared with the paraxial TCC to demonstrate its added features. The practical forms
of the TCC for high resolution phase reconstruction are discussed for two special types of
objects, weak objects and slowly varying phase objects.

The theoretical studies conducted here can help to bring such high NA microscopy tech-
niques into the real world to solve imaging challenges.
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Chapter 1

Introduction

1.1 Optical Imaging: Microscopy

Optical imaging vitally assists studies across many fields in science and engineering. To-
day diverse microscopy tools are available, such as x-ray, atomic force, electron, and optical
microscopes, to study nano-/micro-scale science in biology, physics, material science, etc.
Among these varied imaging instruments, optical microscopy is a preferred choice in biolog-
ical and medical fields thanks to its non-invasive, or minimally invasive, nature. As shown
in Fig. 1.1, optical microscopy covers biological imaging over broad scales from sub-cellular

Nucleotides                        Chromatin                    Cell body width                Arteriole lumen Human hair     

ATOMS                          MOLECULES                     ORGANELLES                      CELLS                           TISSUES                            ANIMAL

Optical microscopy/nanoscopy
Optical coherence tomography (OCT)

MRI,
Ultrasound

Widefield and TIRF microscopy

Confocal microscopy

4Pi microscopy & Structured illumination microscopy (SIM) 

Stimulated emission depletion microscopy (STED)

Single molecule localization microscopy (PALM, STORM), SPM (NSOM)

← Optical diffraction limit

Electron microscopy (SEM, TEM),
AFM, X-Ray microscopy

Atoms                              DNA helix                        Cell nucleus                    Red blood cell          Capillaries                      Blood vessels 

Figure 1.1: Coverage of various microscopy techniques for biological entities1 at different
scales. Super-resolution optical microscopy methods can access sub-cellular features.

1Source: http://www.nature.com/scitable
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to animal levels. Comparatively, electron microscopy (EM) certainly provides excellent res-
olution but is incompatible with living samples. EM requires an electrically conductive,
thin sample as well as a vacuum operating environment to lower ambient electron scatter-
ing. Recently graphene-assisted electron microscopy allows live cell imaging [1], but it may
have limited access to near-surface areas of samples. On the other hand, optical microscopy
has less stringent sample preparation and sample environment restrictions, and thus is live-
cell compatible in general. In fact, labeling a living sample with fluorescent dyes, or other
exogenous contrast agents, is a common microscopy procedure with favorable or at least
minimally harmful sample buffers in fluorescence microscopy. This routine staining process
can be even eliminated in applications where no target specificity is required. Then imaging
contrast is rather endogenously achieved by label-free optical microscopy techniques such as
phase contrast imaging, interferometric imaging, or nonlinear imaging.

1.2 Challenges in optical microscopy

Since the invention of a light compound microscope by Hans Janssen in 16th century, optical
microscopy has been continually advanced. The advent of lasers in 1960 further acceler-
ated developments in scanning optical microscopes. These days various types of optical
microscopes are commercially available from bright/dark field/phase contrast microscopes,
scanning microscopes to super-resolution microscopes. Yet even more diverse microscopy
techniques are emerging from many research groups. This implies, despite its advantage
of non-invasiveness over non-optical means, optical microscopy still faces many other chal-
lenges. The following section describes current major challenges in optical microscopy and
how researchers try to overcome such obstacles.

The optical resolution in microscopes is limited by light diffraction to roughly a half the
wavelength, λ/2, of the light used. This so-called Abbe diffraction limit, λ

2NA
, discovered by

Ernst Abbe in 1873, where NA is a numerical aperture of the imaging system, indicates that
in conventional optical microscopes a resolving power below 150 nm is physically impossible.
Nonetheless, biologists have dreamed of having super-resolution microscopes that can resolve
sub-100 nm details or even better resolution down to sub-10 nm to observe molecular features
such as protein-protein interactions. Scientists have been proposing many interesting ideas
on how to break the diffraction limit. Superlens [2, 3], hyperlens [4, 5], and metalenses [6]
were devised to properly handle evanescent waves originating from fine structures of the sam-
ples. Their limited field of view and biocompatibility remain unresolved. Superoscillations
[7] implemented by a special phase modulation were also demonstrated as a super-resolution
imaging technique [8]. This nascent method needs to overcome many hurdles to be practi-
cally available. Scanning probe microscopy (SPM) is more practical for achieving sub-100
nm resolution, but with topographic-limited imaging and no affinity to biological samples
in liquid buffers. Structured illumination microscopy (SIM) [9] was initially proposed to
double optical resolution, but further advancement was made to attain around 50 nm reso-
lution or even better for techniques named lattice light-sheet microscopy [10], nonlinear SIM
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[11], plasmonic SIM [12, 13], and hyperstructured illumination [14]. Stimulated emission
depletion microscopy (STED) [15] is also a well-established method to achieve sub-100 nm
resolution in scanning microscopy, for which imaging speed was much improved by multi-
STED beams [16]. Another remarkable far-field super-resolution method was achieved by a
single molecule localization technique: PALM (photoactivated localization microscopy) [17],
FPALM (fluorescence photoactivation localization microscopy) [18], and STORM (stochastic
optical reconstruction microscopy) [19]. These three methods published in 2006 are the same
in principle, but the first two used photoswitchable fluorescent proteins while the last used
synthetic dyes. This localization approach generally enables 20 nm lateral and 50 nm axial
resolutions at relaxed temporal resolution, having a potential to realize sub-10 nm resolution
with brighter fluorescent dyes [20–22].

While many target objects of interest are located inside samples, penetration depth in
conventional microscopes is typically limited to a few tens of microns, which is a ballistic
limit of photon scattering. The major barriers in deep tissue imaging are optical aberrations
by inhomogeneous refractive index for transparent samples (plus their dynamic motions if
alive), and light scattering for opaque samples. Adaptive optics (AO) [23] that corrects
sample-induced and/or system-induced aberrations has improved penetration depth, when
combined with two-photon fluorescence microscopy, up to 400 µm for transparent biological
samples such as zebrafish [24, 25] and C. elegans [10]. For non-transparent samples, imaging
depth is deemed possible up to around 10 times the ballistic mean free path of photon
scattering in samples [26]. This depth is called transport mean free path (TMFP), which is
the onset of random scattering of photons, and is around 1-2 mm for typical animal tissues.
Within this range, two-photon and three-photon microscopy demonstrated an imaging depth
of up to around 2 mm for mouse brains with near-infrared (NIR) femtosecond lasers [27,
28]. Imaging research for turbid, or highly scattering, media above one TMFP, relying on
diffusive photons, is still in its nascent stage. The main concentration in this modern AO
approach still stays at light focusing both spatially and temporally by mapping the media’s
transmission matrix in a high-speed, non-invasive way [29–35]. Recently speckle correlation
imaging [36, 37] has gained attention as a potential approach in this field. Alternatively,
though it is a non-optical method, photoacoustic microscopy (PAM) [38] and tomography
(PAT) [39] are also widely being studied, promising an imaging depth on the order of a
few centimeters at the expense of imaging resolution of around a few microns or worse [40–
42]. Another consideration in optical deep tissue imaging is a limited optical window (or
spectrum) available to use, depending on the light absorption property in animal tissues by
endogenous chromophores and according autofluorescence induced [43, 44].

Imaging speed matters in studies on dynamics of living samples. For example, action
potentials in neurons change in ms time scale [45], and brain rhythms in the cortex oscillate as
fast as 100 Hz [46]. Certain cells like single-cell protozoanTetrahymena thermophila [47] are in
rapid motion. Nevertheless, there exist no optical imaging tools that faithfully capture these
signals over broader areas or in three dimensions. Given that the signals are strong enough
with brighter illumination, the imaging rate is typically clamped by detector speeds. The
readout rate of state-of-the-art scientific CMOS (complementary metal oxide semiconductor)
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cameras for microscopy applications is around 500M pixels/s, allowing 100 frames/s (fps) at
full-array readout or higher at sub-array readout. This way at the expense of downsizing field
of view (FOV), a volumetric imaging rate at around 20 volumes/s has been demonstrated [48,
49]. There are ultra-high speed CMOS-based cameras, Phantom series by Vision Research
Inc., at 25G pixels/s, or 25,000 fps or even as high as 1Mfps at reduced array readout.
These high-priced cameras are being used mainly for cinema applications and for some
scientific research, but have not been fully proven yet for their feasibility in high-speed
microscopy applications. Digital holographic imaging, recording 3D information of samples
as modulated interferograms into 2D sensors, is inherently fast (1500 volumes/s [50]) but
has its own challenges such as coherence-related noise. Light-field microscopy [51] allows
synthetic reconstruction of 3D images at lower NA, at a rate of 20 volumes/s [52]. Optical
microscopy with a single pixel camera [53], adapting a new undersampling paradigm of
compressed sensing [54, 55], would potentially improve imaging speeds up to 1 Mfps [56, 57].
Rather than using aerial sensors, a fast and sensitive photomultiplier tube (PMT) combined
with a frequency domain signal multiplexing was also proposed in microscopy to achieve a
4.4 kfps rate [58].

Photodamage on samples is an important aspect not to be neglected. Although compar-
atively much safer than non-optical illumination sources such as x-ray and electron beams,
modern advanced optical microscopes operating at multi-sun regimes [59] negatively influ-
ence both living samples (phototoxicity) and fluorescent dyes (photobleaching). These un-
desirable effects limit long-term observations of the physiological state of live-cells. A design
optimization on the efficiency of signal transmission and source/detector synchronization
certainly minimizes photodamage [60]. Alternatively, quantum imaging [61, 62] that allows
lower photon flux illumination thanks to its sub-shot-noise imaging capability has begun to
draw attention recently.

Last but not least, an ultimate goal of biological imaging, especially at the cellular level,
would be label-free imaging that is truly non-invasive. A variety of phase imaging methods
have been proposed for this purpose: phase contrast microscopy [63], knife-edge microscopy
[64], digital holographic microscopy [65], differential interference contrast microscopy [66],
optical coherent tomography (OCT) [67], etc. Other approaches utilizing the intrinsic con-
trast of samples include photoacoustic microscopy/tomography [40] and nonlinear optical
(NLO) microscopy [68, 69]. NLO microscopy is in general tightly-focused 3D scanning mi-
croscopy that detects various types of nonlinear signals from samples in different modality
[70]: second harmonic generation (SHG), third harmonic generation (THG), four-wave mix-
ing (FWM), coherent anti-Stokes Raman scattering (CARS), and nonlinear absorption [71].
Modern label-free imaging also employs computational approaches, such as Fourier ptycho-
graphic microscopy [72] and LED array microscopy [73], that either enable new capabilities
or improve imaging performance.

A few challenges addressed above are mutually opposing. An improvement in one chal-
lenge can result in aggravating the other challenges. For example, localization-based mi-
croscopy attains super-resolution at the expense of temporal resolution. Super-resolution
STED microscopy performs a finer raster scanning, which generally reduces imaging rates
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or field of view (FOV) or both. Deep imaging often requires stronger illumination or longer
dwell time of the detector at deeper penetration depth due to a reduced photon efficiency, and
this causes more severe photodamage or slows down imaging speed. In high-speed imaging,
maintaining a reasonable signal-to-noise ratio at shorter dwell time also demands brighter
illumination.

1.3 Motivation and objective

In order to tackle the aforementioned challenges of optical imaging, theoretical and ex-
perimental studies on three high NA imaging methods were conducted and are described
throughout this dissertation.

As a way to achieve high speed, deep imaging along any arbitrary plane of interest in 3D
samples, oblique plane microscopy is studied. Whereas the concept of oblique plane micro-
scopes [74–78] was already proposed, their performance has not been clearly explained. In
this dissertation, vectorial diffraction theory is employed to accurately predict and interpret
imaging performance in high NA oblique plane microscopy.

Next, a super-resolution deep imaging approach, termed obliqueSTORM is investigated.
This is single molecule localization microscopy combined with oblique plane microscopy,
targeting more than one-order deeper penetration depth than is possible with current far-field
super-resolution microscopy. The proposed method can help to answer biological questions
at sub-cellular and tissue levels associated with inner parts of living samples.

For more accurate quantitative, high-resolution phase imaging, nonparaxial differential
phase contrast (DPC) microscopy is studied. The classical DPC theory used for phase recon-
struction is based on the paraxial diffraction theory, which is invalid in higher NA system.
Here, non-paraxial diffraction theory, together with properties of light sources considered, is
harnessed to derive transfer functions necessary for more precise phase retrieval.

The following chapters are outlined below:

• Chapter 2 covers advanced imaging theory as a theoretical tool for rigorous treatment
of the novel high NA imaging systems under consideration. After the fundamental wave
nature of light and its propagation are introduced, classical two-dimensional (and three-
dimensional) image formation theory, including partially coherent imaging theory, are
first reviewed. Then a transition to vectorial imaging theory is made. As a necessary
step of a vectorial analysis of imaging systems, polarization ray tracing with new sign
conventions in generalized Jones matrices is proposed to obtain physically consistent
results, including some case examples. Numerical simulations are also performed to
show the effectiveness of the vectorial theory over the classical scalar theory.

• Chapter 3 concentrates on a theoretical study of oblique plane microscopy (OPM).
OPM attempts to capture a wide-field image along an inclined plane with respect to the
microscope’s focal plane for a three-dimensional object. Experimental demonstrations
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have been reported but the optical resolution of the method is still unclear. From
the rigorous vectorial theory introduced in Chapter 2, optical resolution of OPM is
predicted in terms of the vectorial point spread function (PSF) and the optical transfer
function (OTF), including interpretations of the results. An experimental study is
briefly introduced.

• Chapter 4 deals with oblique plane super-resolution microscopy (obliqueSTORM), for
super-resolution deep imaging. The proposed method is theoretically studied to predict
key performance metrics: the anisotropic PSF in fluorescence imaging, quantitative
super-resolution, and achievable penetration depth. Preliminary experimental results
are also presented.

• Chapter 5 describes nonparaxial DPC microscopy. Imaging equations are formulated
using the nonparaxial diffraction theory for varied system configurations. The non-
paraxial transmission cross-coefficient (TCC) of the high NA DPC imaging system is
derived and numerically compared with the paraxial TCC. The practical forms of the
derived TCC are discussed for two special types of objects, weak objects and slowly
varying phase objects. A few considerations for experimental corroboration of the
derived theory are also discussed.

• Chapter 6 includes a summary and conclusion of the dissertation research and intro-
duces future work and possible research directions.
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Chapter 2

Advanced Imaging Theory

Classical imaging theory has been a solid foundation to accurately predict imaging resolution
of early stage’s low-aperture optical microscopes. Its small-angle (or paraxial) approximation
[79] simplified an image formation as a linear process in the realm of the Fourier optics. The
development of high NA microscope objectives (NA > 0.7), however, made such a linear
theory no longer valid [80, 81]. The major disagreement results from the three factors: a
vectorial nature of light, i.e., polarization, non-paraxial light propagation, and apodization
in high aperture system. These are not conceptually difficult but considered mathematically
too complicated. In fact, there exist no precise analytical equations for high NA image
formations. This chapter revisits optical diffraction theory and image formation theory. The
key physical concepts and mathematical formulation behind the optical diffraction and the
image formation are briefly summarized for low NA imaging systems. Then high NA image
formation is conceptually introduced with an emphasis on the role of the vectorial approach.
New sign conventions for the Jones matrix formalism are proposed to trace polarization
changes over light propagation through optical systems. The sign conventions suggested
here produce physically consistent results, as opposed to previous studies [82–85]. In the
end, numerical simulations are provided to help better understanding of the vectorial theory
and to show its effectiveness. This complicated but rigorous approach will correctly answer
imaging performance of many emerging high NA microscopy methods.

2.1 Optical diffraction theory

Vectorial diffraction theory

Light is an electromagnetic wave, consisting of transverse electric ~E and magnetic ~B fields,
obeying the macroscopic Maxwell’s equations in a sourceless (no charges), non-magnetic
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medium, in differential form in SI units [86] as

∇ · ~D(~x, t) = 0

∇ · ~B(~x, t) = 0

∇× ~E(~x, t) = −∂
~B(~x, t)

∂t

∇× ~H(~x, t) =
∂ ~D(~x, t)

∂t
,

(2.1)

where ∇ denotes the Laplace operator, ~D the electric displacement, ~H the magnetic displace-
ment, ~x the position in space, and t the time. A mathematical manipulation with vector
identities and constitutive relations ~D = ε~E and ~H = µ−1 ~B for linear, isotropic, homogeneous
and nondispersive medium leads to the wave equation that electric fields must follow as

∇2~E − µε∂
2~E(~x, t)

∂2t2
= 0, (2.2)

where µ is magnetic permeability and ε is electric permittivity. For a monochromatic light
oscillating at an angular frequency of ω, i.e., ~E(~x, t)=Re( ~E(~x)e−iωt), the wave equation can
be reduced to the time-independent Helmholtz wave equation for the complex amplitude
~E(~x) as

(∇2 + k2) ~E(~x) = 0, (2.3)

where k = ω
√
µε is wave number in medium.

A general integral solution for the Helmholtz equation using the Green’s method is derived
[86–88] as

~E(~x) =
1

4π

¨
S

[
iω( ~N× ~BS)G+ ( ~N× ~ES)×∇′G+ ( ~N · ~ES)∇′G

]
d2~x′, (2.4)

where S denotes a wavefront surface typically over the reference sphere of the exit pupil
in an imaging system, ~N the inwardly facing surface normal unit vector to the wavefront,
~ES, ~BS electric and magnetic fields at the exit pupil, and G= eik|

~R|/|~R| the Green function
representing a diverging spherical wave. See Fig. 2.1 for details. Using the Gauss’s law and
vector identities, Eq. (2.4) can be converted to vectorial Kirchhoff diffraction integral at
far-field (R� k−1):

~E(~x) = − ik
4π

¨
S

G
[
~ES − ( ~ES · R̂) ~N + ( ~N · R̂) ~ES

]
d2~x′, (2.5)

where the hat on R indicates a unit vector. Thus an electric field at a position ~x can be
calculated if the fields across the aperture are given. There is no contribution from the
outside of the aperture by the Sommerfeld radiation condition [86]. The same derivation

steps apply to magnetic fields. The calculation of ~E · ~E∗ gives the time-averaged electric
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Figure 2.1: Diffraction geometry. O: geometrical focus, P : an observation point (~x), Q: a

point (~x′) on the wavefront where the diffraction integral is evaluated, ~R=~x−~x′.

energy density (or intensity), to which most optical detectors used in optical microscopes
respond.

The Debye approximation [89, 90] is usually employed for further simplicity, valid at a
high Fresnel number (NF = fNA2/λ � 1) [91–93] which is practically true in microscopic
imaging. This assumes an observation point (~x′) very close to the geometrical focus such

that ~R = ~x− ~x′ ≈ (~x · ~N) ~N − ~x′, reducing Eq. (2.5) into the vectorial Debye integral as

~E(~x) = − ik
2π

eikf

f

¨
S

~ES(~x′)eik
~N ·~x d2~x′. (2.6)

This implies that the electric field near focal regions is seen as 1) a Fourier transformation of

the field strength ~ES(~x′) and/or 2) a superposition of plane waves all pointing to the Gaussian
focus, thereby generating axially symmetric intensity distribution. This approximation also
modifies the physical picture of the Huygens-Fresnel principle for light propagation, as a
superposition of planar secondary wavelets, not spherical secondary wavelets. Either Eq.
(2.5) or (2.6) requires a prior knowledge on ~ES which can be estimated from polarization
ray tracing through the optical system from the source to the exit pupil, together with any
apodization factor if exists. The ~ES may include an additional factor of e−ikf

f
due to its its

spherically converging nature at the exit pupil typically supported by a lens. This changes
eikf

f

˜
S
d2~x′ into

˜
S
dΩ, where dΩ denotes an solid angle for d2~x′.

Scalar diffraction theory

For a scalar Helmholtz wave equation, the same Green’s method with Kirchhoff boundary
conditions (valid for aperture sizes much larger than the wavelength), leads to the Kirchhoff
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diffraction integral at far-field [86] as

E(~x) = − 1

4π

¨
S

G ~N ·
[
∇′ES(~x′) + ikR̂ES(~x′)

]
d2~x′. (2.7)

The integral geometry can be any curved surface where both E(~x′) and its gradient ∇′ES(~x′)
are known. These two Kirchhoff boundary conditions (or Cauchy boundary conditions) are
known to be mathematically inconsistent [79]. An alternative choice of the Green function
as GD(~x, ~x′) = eikR/R − eikR

′
/R′ eliminates the inconsistency, yielding the first Rayleigh-

Sommerfeld diffraction formula [79]:

E(~x) = − ik
2π

¨
S

ES(~x′)
eikR

R
~N ·R̂ d2~x′. (2.8)

This formula needs boundary information on only E(~x′) (Dirichlet boundary condition) over
a planar geometry [86], yet is also widely employed for a non-planar diffraction geometry.
This is perhaps thanks to its direct mathematical description of the Huygens-Fresnel principle
compared to other diffraction integrals, yet no superior results in optical frequencies [79, 90].
An alternative diffraction integral [94] was also proposed not only to avoid the inconsistency
but also to satisfy the reciprocity theorem.

The Fresnel (or paraxial) approximation, R ≈ (z−z′) + (x−x′)2+(y−y′)2

2(z−z′) , together with a

uniform inclination factor ~N ·R̂≈1 is commonly employed in the scalar diffraction theory. If
(z−z′)2 � (x−x′)2 + (y−y′)2 [79], it provides the Fresnel diffraction formula as

E(~x) =
eik(z−z′)

iλ(z−z′)
e

ik
2(z−z′) (x2+y2)

¨
S

ES(x′, y′)e
− ik

(z−z′) (xx′+yy′)
e

ik
2(z−z′) (x′2+y′2)

dx′dy′. (2.9)

For a smaller Fresnel number (NF � 1), the Fraunhofer approximation neglects the quadratic
phase factor in the integrand, leading to the field at the observation space simply as a Fourier
transformation of the field at the diffraction aperture.

The Debye approximation can be also made in the scalar theory for high aperture systems,
which may be called the scalar Debye integral as

E(~x) = − ik
2π

eikf

f

¨
S

ES(~x′)eik
~N ·~x d2~x′. (2.10)

Extension to nonmonochromatic waves

The diffraction formulas introduced so far base on a monochromatic wave at a particular ω.
For nonmonochromatic waves, the same theory using the time-independent complex ampli-
tude still holds for each ω, and the total field could be numerically obtained by integrating
over an overall spectral response from a source to a detector. This strategy was analytically
demonstrated for imaging systems with a ultrashort pulsed beam [90]. Otherwise, more rig-
orous treatment on time-varying phasor amplitude has to be made. Based on the paraxial
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diffraction theory, Eq. (2.8), the scalar field for nonmonochromatic and narrowband waves
in air was derived at a far distance (R� λ) in [95]. Similarly, if the vectorial Kirchhoff
diffraction integral, Eq. (2.5), is used, the vectorial field for nonmonochromatic waves at
far-field may be given by

~E(~x, t) =

¨
S

1

4πcR

d

dt

[
~E(~x′, t−tr)−

(
~E(~x′, t−tr)· ~R

)
~N + ( ~N · ~R)~E(~x′, t−tr)

]
d2~x′, (2.11)

where tr =R/c is a retardation time taken for a light propagation. For a narrowband light
whose bandwidth is much smaller than the central frequency, ∆ω/ω̄ � 1, the field at R� λ̄
could be approximated as

~E(~x, t) =

¨
S

1

2iλ̄R

(
~E(~x′, t−tr)−

(
~E(~x′, t−tr)· ~R

)
~N + ( ~N · ~R)~E(~x′, t−tr)

)
d2~x′. (2.12)

2.2 Two-dimensional scalar image formation theory

This section covers image formation theory derived from the scalar diffraction integral, Eq.
(2.8). As a basic step, two-dimensional (2D) coherent and incoherent imaging for a thin
object is first reviewed, then partially coherent imaging comes after as a general case.

Coherent image formation

As illustrated in Fig. 2.2, let us consider the simplest case of 2D coherent image formation
for a thin, monochromatic object, Eo(xo, yo), with a paraxial lens whose transmittance is

P (ξ, η)e−
ik
2f

(ξ2+η2) [79], where P (ξ, η) denotes the pupil function defined over the aperture
Σ and f the focal length. Applying the Fresnel diffraction formula twice gives the fields at
the paraxial lens and then at the image space sequentially. At an image distance of di by

𝑑𝑜 𝑑𝑖

𝑥𝑖
𝑦𝑖

𝑥𝑜
𝑦𝑜

𝐸𝑜(𝑥𝑜, 𝑦𝑜) 𝐸𝑖(𝑥𝑖 , 𝑦𝑖)

𝜉
𝜂

𝑃(𝜉, 𝜂)

𝑧𝑖𝑧𝑜

𝑎

Figure 2.2: Image formation by a thin lens (focal length: f , aperture radius: a). A
monochromatic object field Eo forms an image field Ei in the image space with a lens law
of 1/do + 1/di = 1/f .
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the thin lens law 1/do + 1/di = 1/f with a lateral magnification of M =−di/do, the field is
derived as

Ei(xi, yi) =
ieik(do+di)

λ2dodi
e
ik
2di

(x2
i+y

2
i )
¨
So

¨
Σ

Eo(xo, yo)P (ξ, η)e
ik

2do
(x2
o+y

2
o)

× e−
ik
do

[
ξ(xo−xi/M)+η(yo−yi/M)

]
dξdη dxodyo.

(2.13)

In general, the pupil function of imaging systems can be defined at the exit pupil and
becomes complex if aberrations exist: P(ξ, η)=P (ξ, η)eikW (ξ,η) where W (ξ, η) is a wavefront
error. For an ideal on-axis point object, Eo(xo, yo) = δ(xo)δ(yo), the resulting image field is
known as 2D amplitude point spread function (PSF), if scaled down to the object coordinate
(x, y) ≡ (xi/M, yi/M) and in the flipped pupil coordinate (ξr, ηr) ≡ (−ξ,−η), as

h(x, y) =
ieik(do+di)

λ2dodi
e−

ikM
2do

(x2+y2)

¨
Σ

P(−ξr,−ηr)e−
ik
do

(xξr+yηr) dξrdηr, (2.14)

which is, if the quadratic phase factor is neglected, a 2D Fourier transform of the (reflected)
pupil function of the imaging system. For a circularly uniform aperture with a radius of a, the
shape of PSF is a jinc function: 2J1(r)/r where J1(r) is a Bessel function of the first kind of
order one and r=ka

√
x2 + y2/do; the first zero-crossing occurs at 0.61λ/(a/do) ≈ 0.61λ/NA.

This implies that an imaging system with a larger aperture (or a higher NA) and a shorter
wavelength results in a narrower PSF, thereby better resolution. Hence an optical resolution
of an aberration-free system is pupil diffraction-limited.

For objects smaller than one-fourth the aperture dimension of the lens [79] or a PSF
falling off quickly [90], the field is approximated as

Ei(x, y) = e
ik

2do
(x2+y2)

¨
Σ

Eo(xo, yo)h(x− xo, y − yo) dxodyo. (2.15)

The image field of a thin object is thus calculated by the 2D convolution of the object field
with the amplitude PSF of the imaging system, meaning linear in the complex amplitude.
This physically suggests an object model as a set of coherent point sources, and then the
image field results from a superposition of all amplitude PSFs displaced on each geometrical
image points. This linear systems approach, however, is credible only when the PSF is space-
invariant. Strictly speaking, for off-axis point objects, either the two quadratic phase factors
inside Eq. (2.13) or an aberrated pupil function could cause space-varying PSFs, which then
needs a careful consideration in using it. In such the case, the calculated image field would
only be accurate near the on-axis area of the object.

Once the field is calculated, the image intensity is given by its modulus squared as

Ii(x, y) =
∣∣∣¨

Σ

Eo(xo, yo)h(x− xo, y − yo) dxodyo
∣∣∣2. (2.16)

Linear imaging systems are often analyzed in spatial frequency domain. By taking a
Fourier transform in Eq. (2.15) with spatial frequencies fx=x/(λdo) and fy =y/(λdo) for x
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and y directions respectively, if the prephase factor is neglected, the frequency spectrum of
the image field, Ẽi(fx, fy) ≡ F{Ei(xi, yi)}, is given by the convolution theorem of Fourier
transform [79] as

Ẽi(fx, fy) = Ẽo(fx, fy)H(fx, fy), (2.17)

where H(fx, fy) = F{h(x, y)} = P(λdofx, λdofy) is known as the coherent transfer function
(CTF). The CTF can be shown to be exactly a scaled pupil function if the prefactor in Eq.
(2.14) and a multiplicative constant on the results of F{h(x, y)} are neglected. The object
spectrum is circularly filtered by the CTF at a frequency cutoff of fc=a/(λdo)≈NA/λ for a
circular aperture, and the remaining frequency content only contributes to image formation.
A frequency spectrum of image intensity in coherent imaging system, the Fourier transform
of Eq. (2.16), is expressed from the autocorrelation theorem of Fourier transform [79] as

Ĩi(fx, fy) =

¨
Ẽo(f

′
x, f

′
y)H(f ′x, f

′
y)Ẽ

∗
o(f

′
x−fx, f ′y−fy)H∗(f ′x−fx, f ′y−fy) df ′xdf ′y. (2.18)

Incoherent image formation

If an object field is perfectly incoherent (no phase correlations between any two points on
it), amplitude PSFs are not coherently summed; rather intensity PSFs, |h(x, y)|2 a.k.a. the
Airy disk, are linearly superposed as

Ii(x, y) =

¨
Σ

Io(xo, yo)|h(xo − x, yo − y)|2 dxodyo. (2.19)

The Fourier transform of this intensity convolution integral gives an intuition on image
formation in spatial frequency point of view, which leads to

Ĩi,n(fx, fy) = Ĩo,n(fx, fy)H(fx, fy), (2.20)

where the subscript n denotes a normalized Fourier spectrum by its own maximum at Ĩ(0, 0),
as a maximum spectral power for real and non-negative signals like intensity occurs at the
zero frequency. The H(fx, fy) is well known as the optical transfer function (OTF) which is
also conventionally normalized as

H(fx, fy) =

˜
|h(x, y)|2e−i2π(fxx+fyy) dxdy˜

|h(x, y)|2 dxdy
. (2.21)

Again from the autocorrelation theorem and Parseval’s theorem [79], one can find out that
the OTF is a normalized autocorrelation function of the CTF [96] as

H(fx, fy) =

˜
H(f ′x, f

′
y)H

∗(f ′x − fx, f ′y − fy) df ′xdf ′y˜
|H(f ′x, f

′
y)|2 df ′xdf ′y

, (2.22)
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or in terms of the generalized complex pupil function as

H(fx, fy) =

˜
P(ξ, η)P∗(ξ − λdofx, η − λdofy) dξdη˜

|P(ξ, η)|2 dξdη
. (2.23)

Geometrically, the OTF is interpreted as an area overlap of the complex pupil and its dis-
placed, conjugated pupil, normalized by the pupil area (or a 2D convolution of the pupil with
its inversed conjugate pupil). Thus, the quantity is real and non-negative in aberration-free
systems with a doubled absolute cutoff frequency compared with the coherent imaging cutoff.
A presence of aberrations always negatively influences on the OTF by lowering its modula-
tion MTF = |OTF | than the diffraction-limit, but engineering the pupil apodization could
improve the upper limit of the conventional diffraction-limited MTF curve set by a uniform
pupil [79].

2.3 Partially coherent image formation theory

Most imaging systems are neither perfectly coherent nor perfectly incoherent mainly due to
a statistical nature of source radiations. Optical sources emit light by spontaneous and/or
stimulated emissions that randomly fluctuate in time. Also their emission area is finite,
any two radiating points of which may be statistically correlated. It is a mutual coherence
function, Γ(~x1, ~x2; τ) ≡ 〈E(~x1, t+τ)E∗(~x2, t)〉 [95], that properly treats such a random process
with a concept of temporal and spatial coherence. Many imaging systems practically satisfy
the quasimonochromatic conditions [95]: 1) narrowband light source (∆λ� λ̄) and 2) optical
path-length difference much shorter than the source’s coherence length in all possible light
propagation of interest. In such a case, the spatial coherence is only a primary concern,
which is then described by mutual intensity J(~x1, ~x2) = Γ(~x1, ~x2; 0).

A general imaging system may be illustrated as shown in Fig. 2.3. If a source is perfectly
incoherent, the coherent imaging theory may still be applied for each source point to obtain

Light
source

Detector

Ԧ𝑥𝑠

Object plane Image plane

Illumination
optics

Imaging
optics

Source plane

Ԧ𝑥𝑜 Ԧ𝑥𝑖
𝑃𝑐( Ԧ𝜉𝑐) 𝑃( Ԧ𝜉)

𝑡( Ԧ𝑥𝑜)

𝑧𝑠
𝑔𝑐( Ԧ𝑥𝑜, Ԧ𝑥𝑠) 𝑔( Ԧ𝑥𝑖 , Ԧ𝑥𝑜)

𝑑𝑜 𝑑𝑖𝑧𝑜

Figure 2.3: Schematic of a general partially coherent imaging system. gc(~xo, ~xs): amplitude
spread function for a point source at ~xs into the object plane ~xo, g(~xi, ~xo): amplitude spread

function between the object and the final image plane. Pc(~ξc) and P (~ξ) are effective pupil
functions of illumination and imaging optics respectively.
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individual image intensity, followed by an incoherent sum of all to get overall image intensity.
This is feasible in such a special case only. Many light sources, however, are partially coherent
to a certain degree, characterized by the mutual intensity. As light propagates through space,
the mutual intensity does change. The key concept in partially coherent imaging theory is
to trace the mutual intensity from the source to the final image plane.

In general, the propagation of the mutual intensity is governed by a pair of the scalar
Helmholtz wave equations in scalar theory [95]. More intuitive way is to plug the scalar
diffraction integral from the Huygens-Fresnel principle, the scalar version of Eq. (2.12), into
the definition of mutual intensity to discover

J(~x1, ~x2) =

¨
Σ

¨
Σ

J(~x′1, ~x
′
2)e−ik̄(R2−R1)

~N1 · ~R1

λ̄R1

~N2 · ~R2

λ̄R2

dS1dS2, (2.24)

which describes how a mutual intensity between ~x′1 and ~x′2 on a surface Σ evolves after a
propagation to ~x1 and ~x2 respectively on another surface of interest. This four-dimensional
(4D) process could be repeatedly applied up to the image plane. During the propagation,
if intervened by a thin object whose amplitude transmittance is t(~x), the mutual intensity
is altered as Jout(~x1, ~x2) = t(~x1)t∗(~x2)Jin(~x1, ~x2) at the quasimonochromatic conditions [95].
Once the final mutual intensity function is obtained, image intensity is obtained by merging
~x1 =~x2, so that I(~x) = J(~x, ~x).

Utilizing this procedure, as a check, to the image formation by a thin lens in Fig. 2.2
with the paraxial approximation (or this may also be viewed as the right half of the whole
imaging system in Fig. 2.3), image intensity is derived to be

Ii(~xi) = Ji(~xi, ~xi) =

˘
Jo(~xo1, ~xo2)g(~xi, ~xo1)g∗(~xi, ~xo2) d2~xo1d

2~xo2, (2.25)

where Jo(~xo1, ~xo2) is mutual intensity at the object plane and g(~xi, ~xo) is the amplitude
spread function (an amplitude response at the ~xi coordinate to a point object located to ~xo)
defined as

g(~xi, ~xo) =
e
ik̄
2di
|~xi|2e

ik̄
2do
|~xo|2

λ̄2dido

¨
Σ

P(−~ξr)e−
ik̄
do

(−~xo+ ~xi
M

)·~ξr d2~ξr, (2.26)

where ~ξr = (−ξ,−η) is the flipped pupil coordinate. The four integrals imply that partially
coherent imaging is a 4D process. This result can be exactly reduced to the two extremes of
the 2D imaging processes: coherent imaging, Eq. (2.16), and incoherent imaging, Eq. (2.19),
by putting Jo(~xo1, ~xo2)= |Eo(~xo1)|2 and Jo(~xo1, ~xo2)=Io(~xo1)δ2D(~xo1 − ~xo2), respectively.

Next, object illumination, the left half of the system in Fig. 2.3, needs to be examined.
In principle, the same strategy as before can be implemented to obtain illumination mutual
intensity Jill(~xo1, ~xo2) from the known source coherence Js(~xs1, ~xs2) and the amplitude spread
function gc(~xo, ~xs) of the illumination optics. Then, considering an object of t(~xo), the mutual
intensity right after the object is given as Jo(~xo1, ~xo2) = t(~xo1)t∗(~xo2)Jill(~xo1, ~xo2). Plugging
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this into Eq. (2.25), the image intensity for the object in partial coherent imaging can be
calculated from the eight-dimensional process as

Ii(~xi) =

˘
Σo

˘
Σs

Js(~xs1, ~xs2) gc(~xo1, ~xs1)g∗c (~xo2, ~xs2) t(~xo1)t∗(~xo2)

× g(~xi, ~xo1)g∗(~xi, ~xo2) d2~xs1d
2~xs2 d

2~xo1d
2~xo2.

(2.27)

The mutual intensity of light sources could be approximated several ways. For a partially
coherent source as the most general case, Js(~xs1, ~xs2) =

√
Is(~xs1)Is(~xs2)µs(~xs2−~xs1), where

µs is normalized mutual intensity known as the complex coherence factor [95]. If the source
area is much smaller than the coherent area (AS�Acoh) and the source structure is slowly
varying compared to Acoh, Js(~xs1, ~xs2) ≈ Is(x̄s)µs(~xs2−~xs1), where x̄s = (~xs1 +~xs2)/2 [95].
For an incoherent source used practically in many wide-field optical microscope systems,
the source mutual intensity could be modeled as Js(~xs1, ~xs2) = Is(~xs1)δ2D(~xs1−~xs2). The
δ-function introduced here reduces partially coherent imaging to a six-dimensional process.

Also, many microscopes implement uniform intensity illumination, so-called the Köhler
illumination, with typically non-uniform, incoherent sources. This illumination conceptually
adopts the 1fc-1fc configuration on which the source is imaged at infinity by the condenser
optics (with an effective focal length of fc). Then the amplitude spread function for the
illumination optics is derived as

gc(~xo, ~xs) =
e
ik̄

2fc
|~xo|2e

ik̄
2fc
|~xs|2

λ̄2f 2
c

¨
Σc

Pc(~ξc)e−
ik̄
fc

(~xo+~xs)·~ξc d2~ξc. (2.28)

Alternatively, as introduced in [95] the illumination mutual intensity Jill(~xo1, ~xo2) may be
further simplified in practice. The propagation of mutual intensity from an incoherent source
to the entrance pupil of the condenser optics, known as the Van Cittert-Zernike theorem [97],
leads to

Js(~ξ1, ~ξ2) ∝ 1

(λ̄zs)2

¨
Σs

I(~xs)e
ik̄
zs

(~ξ2−~ξ1)·~xsd2~xs, (2.29)

which is a 2D Fourier transform of the source intensity distribution into the difference co-
ordinate ~ξ2−~ξ1 at the entrance pupil. Hence the coherence area at the pupil is inversely
proportional to the source area, or more accurately Acoh=(λ̄zs)

2/AS [95]. Assuming a larger
source whose resulting coherence area at the pupil is extremely smaller than the pupil area
(Ap), i.e., ApAs� (λ̄zs)

2, the pupil itself may be approximated as an effective incoherent
source. Then the mutual intensity incident on the sample can be specified as

Jill(~xo1, ~xo2) =
e
ik̄

2zo

(
|~xo2|2−|~xo1|2

)
λ̄2z2

o

¨
Σc

∣∣Pc(~ξc)∣∣2e ik̄zo (~xo2−~xo1)·~ξc d2~ξc, (2.30)

which is now simply a 2D Fourier transform of the squared modulus of the condenser pupil
function. Even if the partial coherence at the pupil is considered, from the generalized Van
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Cittert-Zernike theorem [98], the same conclusion results given that AS(zo/zs)
2 � Ao, where

Ao is an object area [95].
On the other hand, a linear systems approach can be employed in partially coherent

imaging as well, provided that amplitude spread functions are space-invariant. This would
be roughly the case for smaller areas in the object and image planes where pre-phase factors
at the amplitude spread functions could be neglected. Then, rescaling the image plane
coordinate to the object plane coordinate as ~xi/M = ~x entitles a spatial invariance on the
impulse response: g(~x, ~xo1)g∗(~x, ~xo2) = g(~x − ~xo1)g∗(~x − ~xo2). This converts the 4D integral
relation of mutual intensity between two planes, Eq. (2.25), to a 4D convolution integral as

Ji(~x1, ~x2) =

˘
Jo(~xo1, ~xo2)g(~x1 − ~xo1)g∗(~x2 − ~xo2) d2~xo1d

2~xo2. (2.31)

As was done at Eq. (2.16), taking the Fourier transform on Eq. (2.31) yields the 4D Fourier
spectra of the object and image mutual intensities related as

J̃i(~f1, ~f2) = G(~f1)G∗(−~f2) J̃o(~f1, ~f2), (2.32)

where G(~f) ≡ F{g(~x − ~xo)} with spatial frequencies from the coordinate difference as ~f =

(~x−~xo)/(λ̄do), and G(~f1)G∗(−~f2) is a 4D transfer function, or in terms of the pupil function

as P(λ̄do ~f1)P∗(−λ̄do ~f2). The mutual intensity spectrum in the image plane is drawn [95] as

J̃i(~f1, ~f2) = G(~f1)G∗(−~f2)

¨
T (~f ′+ ~f1)T ∗(~f ′− ~f2)J̃ill(~f

′) d2 ~f ′, (2.33)

where T (~f) ≡ F{t(~xo)}. Further mathematical elaboration leads to the frequency content
of the image intensity [95] as

Ĩi(~fi) =

¨
T (~f ′′)T ∗(~f ′′ − ~fi)C(~fi, ~f

′′) d2 ~f ′′, (2.34)

where ~fi ≡ ~x/(λ̄do), C(~f ′′, ~fi) is the transmission cross-coefficient (TCC) [99–101] defined as

C(~fi, ~f
′′) =

¨
G(~f ′′− ~f ′)G∗(~f ′′− ~fi− ~f ′) J̃ill(~f ′) d2 ~f ′, (2.35)

which describes the unique property of the imaging system alone, excluding the object.
Once the TCC is identified, the image intensity for an object can be predicted by the inverse
Fourier transform of Ĩi(~fi) calculated from Eq. (2.34). If the simplified mutual intensity for
illumination, Eq. (2.30) is borrowed, the TCC can be expressed in terms of imaging and
condenser pupil functions:

C(~f ′′, ~fi) =

¨
P
(
−λ̄do(~f ′− ~f ′′)

)
P∗
(
λ̄do(~f

′− ~f ′′+ ~fi)
) ∣∣Pc(λ̄zo ~f ′)∣∣2 d2 ~f ′. (2.36)
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Figure 2.4: Geometrical interpretation of TCC (transmission cross-coefficient) in partial
coherent imaging as an overlap of three scaled pupils in spatial frequency domain. The
scaled pupil radii of imaging and condenser optics are a/(λ̄do) and ac/(λ̄zo), respectively.

This is geometrically an overlap of the three pupils, as illustrated in Fig. 2.4. The TCC
may be normalized by C(~0,~0). Also, it is worth noting that Eq. (2.34) can be reduced

to either the perfect coherent imaging, Eq. (2.18) by setting J̃ill(~f
′) = 1, or the perfect

incoherent imaging, Eq. (2.20) by setting J̃ill(~f
′)=δ2D(~f ′) with a proper normalization.

As a degree of partial coherence on image formation, often used is the partial coherence
factor (σ=NAc/NA) [102], which is a ratio of illumination NA to imaging NA. If σ≈0 (or
NAc�NA), the imaging system follows the coherent imaging theory. Incoherent imaging
requires a larger condenser pupil so that the resulting coherence area at the object plane
calculated from the Van Cittert-Zernike theorem is much smaller than the optical resolution
(Airy disk area). From the TCC point of view in Fig. 2.4, if ac ≥ a+ λ̄do|~f ′′| [95], where

|~f ′′| may be the maximum spatial frequency of interest in the object, the condenser pupil
no longer impacts on the net pupil overlap, thereby entering the incoherent imaging regime.
This argument leads to σ ≥ 1 + |~f ′′|λ̄/NA.

Partial coherence imaging theory is mathematically quite complicated. As stated in the
beginning of this section, if the source is incoherent, the image intensity could be alternatively
obtained by an intensity superposition for each source point, that is

Ii(~xi) =

¨
Is(~xs)

˘
g(~xi, ~xo1)g∗(~xi, ~xo2) t(~xo1)t∗(~xo2)

× gc(~xo1, ~xs)g∗c (~xo2, ~xs) d2~xo1d
2~xo2 d

2~xs.

(2.37)

Here the concept of mutual intensity propagation is omitted, yet the quasimonochomatic
assumption still has to be satisfied.
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Before closing, it is worth noting that the partial coherent imaging theory introduced
here may not totally cover the imaging theory of wide-field fluorescence microscopy. In fluo-
rescence imaging, dye molecules incoherently emit spherically uniform light, if free to rotate,
on a time-averaged basis. As long as the excitation power density is below a saturation
threshold of the dyes, the incoherent imaging theory can be applied, together with the exci-
tation intensity distribution multiplied to the object intensity transmittance (or fluorescence
strength).

2.4 Three-dimensional scalar image formation theory

Three-dimensional imaging theory takes care of a thick object whose transmittance is t( ~xo) =
t(xo, yo, zo) under the first Born approximation [100]. This weakly scattering assumption is
valid if the object is semi-transparent and has negligible secondary diffraction [90]. Then
each xy-section on the object is independently considered as a thin object t(xo, yo, zo=zo1),
and the image field would be a superposition of all image fields from each sections. To do
this, one needs to consider small defocus perturbations on object and image distances in the
thin lens imaging situation in Fig. 2.2: do = dO−zo and di = dI+zi where 1/dO+1/dI = 1/f
and M = −dI/dO. With these in mind, a similar approach to the 2D image formation in
Section 2.2 is carried out using the Fresnel diffraction integral.

In coherent imaging case, the 3D image field could be derived as

Ei(xi, yi, zi) =
ieik(dO+dI)

λ2dodi
e
ik
2di

(x2
i+y

2
i )
eikzi
˚

So

¨
Σ

Eo(xo, yo, zo)e
−ikzoP(ξ, η)e

ik
2do

(x2
o+y

2
o)

× e
ik

2d2
O

(
zo− zi

M2

)
(ξ2+η2)

e
− ik
dO

[
ξ(xo−xi/M)+η(yo−yi/M)

]
dξdη dxodyodzo.

(2.38)

By defining a 3D amplitude PSF as

h(x, y, z) =
ieik(dO+dI)

λ2dodi
e
− ikM

2dO
(x2+y2)

¨
Σ

P(−ξr,−ηr)e
− ik

2d2
O

z(ξ2
r+η2

r)
e
− ik
dO

(xξr+yηr) dξrdηr, (2.39)

which is a 2D Fourier transform of the defocused pupil function P(−ξr,−ηr)e
− ik

2d2
O

z(ξ2+η2)
,

the field for a 3D object in a new image coordinate scaled down to the object coordinate of
interest in microscopy, (x, y, z) ≡ (xi/M, yi/M, zi/M

2), is given approximately as

Ei(x, y, z) = eikM
2ze

ik
2do

(x2+y2)

¨
Σ

Eo(xo, yo, zo)e
−ikzoh(x−xo, y−yo, z−zo) dxodyodzo, (2.40)

which is a 3D convolution integral of an effective object function [90], Eo(xo, yo, zo)e
−ikzo ,

with the 3D amplitude PSF. The added factor e−ikzo reflects the reduced optical path length
for a defocused object location by zo. Assuming the space-invariant PSF, the linear systems
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approach can be equally applied in three-dimensional image formation as well. The image
intensity for a coherent object Eo(~xo) is expressed as

Ii(~x) =
∣∣∣¨

Σ

Eo( ~xo)e
−ikzoh(~x− ~xo) d3~xo

∣∣∣2, (2.41)

which exactly returns |h(~x)|2 for a point object δ3D(~xo). The axial response h(0, 0, z) of the
PSF for a uniform circular aperture system is proportional to sinc

(
kz
4
a2

d2
I

)
. The radius of its

mainlobe is 2λ(dI/a)2 or roughly 2λ/NA2. The 3D PSF is thus an axially elongated ellipsoid
whose ellipticity (=PSFz/PSFxy) scales with NA−1.

In spatial frequency domain, the Fourier transform of Eq. (2.40), if the pre-phase factor
is neglected, yields Ẽi(fx, fy, fz) = Ẽo(fx, fy, fz+1/λ)H(fx, fy, fz). Setting the origin of the
frequency coordinate based on the object spectrum, it can be modified to

Ẽi(fx, fy, fz−1/λ) = Ẽo(fx, fy, fz)H(fx, fy, fz−1/λ), (2.42)

where H(~f) is a 3D coherent transfer function (CTF) defined as the 3D Fourier transform
of the 3D amplitude PSF:

H(~f) = F{h(~x)} = P(λdOfx, λdOfy)δ
(
fz +

λ(f 2
x + f 2

y )

2

)
. (2.43)

There is an axial frequency shift by 1/λ originated from the phase factor e−ikzo . Thus in
frequency domain, the image field is calculated by an inverse Fourier transform of the object
spectrum multiplied by the axially shifted 3D CTF. The shape of the 3D CTF, inferred from
Eq. (2.43), is a cap of a paraboloid due to the quadratic phase term of the defocus in the
paraxial approximation. For a circular aperture system, the paraboloid extends laterally to
a/(λdO) ≈ NA/λ and axially to a2/(2λd2

O) ≈ NA2/(2λ).
For convenience, the physical spatial frequency may be normalized with a medium wave-

length such that ~m ≡ λ~f where ~m = (m,n, s) and |~m| = 1. The dimensionless spatial
frequency ~m is physically related to the directional cosine of the propagating wave origi-
nated from an object containing a structural frequency of ~f . In the normalized frequency,
the 3D CTF for the circular aperture is given by

H(~m) = H(l, s) = P(dOl)δ(s+ l2/2), (2.44)

where l=
√
m2 + n2 is a normalized radial frequency. Thus, 0≤ l≤NA and 0≤|s|≤NA2/2.

In incoherent imaging case, the image intensity is expressed as

Ii(~x) =

¨
Σ

Io(~xo)|h(~x− ~xo)|2 d3~xo, (2.45)

which is an 3D convolution integral of the object intensity with the 3D intensity PSF |h(~x)|2.
There is no phase relation among any points in the incoherent object, and thus the phase
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factor e−ikzo that appeared in coherent imaging vanishes here. Thus in the frequency domain,
the frequency content of the image intensity is Ĩi(~m) = Ĩo(~m)H(~m), where the 3D optical
transfer function (OTF) is defined as the 3D Fourier transform of the 3D intensity PSF, or
an autocorrelation of the 3D CTF, as

H(~m) = F{|h(~x)|2} = H(~m) ?
3D
H(~m). (2.46)

This can be also thought as a 3D convolution of the 3D CTF,H(~m), with its inverse conjugate
function, H∗(−~m). For a circular aperture and aberration-free system, the 3D OTF is
geometrically an overlap of the system’s pupil (a paraboloidal cap) with its axially flipped
pupil. The overlap occurs mostly as an arc within the frequency support whereas as an area
at the zero pupil shift, implying much higher magnitude at the origin. In fact, the 3D OTF
has a singularity at the zero frequency (see Fig. 2.5). This physically means that there is
no imaging for a thick planner object (l = 0).

A thick object, if not varying along the z direction, has only lateral frequency contents,
and thus interacts with a slice of the 3D OTF, i.e., H(m,n, 0). Contrarily, an in-focus
thin object assumed in the 2D imaging theory contains all the axial frequency components
uniformly, thereby being affected over the whole axial depth of the 3D OTF. For such a
conventional thin object, the 3D CTF and OTF are reduced to the 2D CTF and OTF if
projected along the axial frequency direction upon the projection-slice theorem of the Fourier
transform [90], e.g., H(l) =

´
H(l, s) ds.

The PSF plays a key role on image formation, and thus it is critical to have a better
PSF model of an imaging system. Compared to the paraxial approximation, the scalar
Debye approximation yields a more accurate PSF at high NA as it considers the apodization
properly. High NA microscope objective lenses, designed to meet the Abbe’s sine condition
[100], induces an energy projection factor of

√
ninc/nf cos θ [104, 105] upon focusing of the

Figure 2.5: Scalar 3D OTF for a circular aperture imaging system: (left) paraxial approxi-
mation and (right) Debye approximation (α=71.8° for 0.95 NA, aplanatic). Here, spatial fre-
quencies are normalized as (l̃, s̃)=

(√
f 2
x + f 2

y /(NA/λ), fz/(NA
2/λ)

)
. Analytical expressions

of H(l̃, s̃) are available at [103], with doughnut-shaped passbands: (left) |s̃| ≤ |l̃|(1− |l̃|/2),
(right) l̃2 + s̃2 ≤ 2(|l̃| sinα− |s̃| cosα).
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field, where θ is an angle of light rays w.r.t. the optical axis, and ninc/nf is a refractive
index ratio of media before and after the lens. Addressing the definition of coherent transfer
function (CTF) as the Fourier transform of the amplitude PSF, the non-paraxial 3D CTF
can be formulated [90] as

H(~m) = H(l, s) =
P(fol)√

1− l2
δ(s+

√
1− l2), (2.47)

where fo may be a focal length of the aplanatic objective lens. The apodization factor is
reflected here in the denominator as

√
1− l2. The shape of 3D CTF is no longer a cap of a

paraboloid; rather it is a cap of the Ewald sphere [106], with the axial bandwidth changed.
The 3D OTF can be predicted from the autocorrelation of the 3D CTF. No analytical
expressions for the nonparaxial 2D CTF and OTF were found, but they can be numerically
calculated from the axial projection of these 3D transfer functions.

2.5 Vectorial image formation theory

The beauty of the paraxial approximation in scalar diffraction theory may be that for a given
object field it enables relatively easier tracing of the field throughout the optical system up to
the image plane. And as a result, it tells you that (coherent or incoherent) image formation is
linear; the image equation is derived simply as a convolution of the object with the system’s
PSF (which is space-invariant practically in microscopy). However, with the scalar Debye
theory or the vectorial diffraction theory, it is possible to numerically trace the diffracted
field, but may be hard (or probably impossible) to analytically draw a conclusion on whether
the image formation is linear, primarily because of mathematical complexity associated with
these rigorous theories. When it comes to partially coherent imaging, for the same reason
these advanced theories would be much more challenging to apply, although their physics are
not conceptually difficult. Fortunately, if fluorescent nano-beads are imaged by a microscope
with a decent high NA objective lens, they typically look identical within the field of view.
Therefore, empirically one may assume the space invariance of the PSF, and consider the
image formation still roughly as a linear process. Then the only important information to
know is narrowed down to a knowledge of the PSF of the imaging system.

A prediction of an accurate PSF is essential not only in the design phase of microscopy
development but also in post-image processing stage. For example, the optical resolution
of STED microscopy is very sensitive to PSF (especially for the depletion beam) which
certainly requires a design optimization. Also, image deconvolution (or any other inverse
image problems) for resolution improvement relies hugely on the accuracy of the PSF model
used. The PSF of a microscopy method provides useful information on a resolving power
in terms of one-point or two-point resolution, as well as in spatial frequency perspective the
MTF and cutoff frequency from the transfer function (the Fourier transform of the PSF).

The vectorial diffraction theory plays a key role in accurately predicting the PSF. In
applying it to imaging systems, it is not necessary to trace the diffracted field plane by plane
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since the optical diffraction is exclusively dominated at the physical stop, or equivalently
the exit pupil, of the image system. Thus one needs to figure out the field distribution at
the exit pupil for an on-axis point source, and apply the vectorial diffraction integral only
once there. Many studies demonstrate how to calculate the light field near focal regions
[81, 105, 107, 108] at high-aperture systems based on the vector diffraction theory, includ-
ing effects of aberrations [109–112] and index-mismatches in stratified media [113]. As it
handles the polarization state of the field correctly, the prediction agrees with experimental
results much better than when predicted with the scalar (Debye) theory. While a light prop-
agates through the system, its polarization state changes upon optical components such as
polarizers, retarders, phase modulators, and lenses. A mathematical procedure, called polar-
ization ray tracing [114, 115] using the generalized Jones matrix formalism (see the following
section), tracks down these changes in geometrical optics point of view, to obtain three or-
thogonal components (x, y, z) of electric fields at the exit pupil. Then they are plugged into
to the vector diffraction integral to yield three independent PSFs (called vectorial PSF).
Thus, effectively there exist three effective pupil functions for electric fields (another three
for magnetic fields). These are termed as vectorial pupil functions [116], and their Fourier
transform results in the vectorial PSF as implied by the vectorial Debye integral. Analytical
expressions for vectorial PSFs for a circular aperture with a few simple polarization states
were already well studied. Borrowing the concept of OTF in the scalar theory as a Fourier
transform of the space-invariant PSF, the vectorial OTF could be also introduced from the
Fourier transform of the vectorial PSFs in a broader sense [117]. Or it can be also obtained
by summing three autocorrelations of the vectorial pupils [116, 117]. No known analytical
expressions for the vectorial OTF were found. However, there is a subtle issue using these
concepts as a generalized analysis tool in high NA imaging, because depolarizations at the
object need to be incorporated in the image formation [116] which is nontrivial. Yet, these
concepts offer better insight on what is happening on the imaging system under development
and thus are still useful.

2.6 Polarization ray tracing

In order to address the vectorial nature of light in an imaging system, electric fields at the
system’s pupil have to be identified prior to evaluations of the vectorial diffraction integrals.
Similar to a ray tracing technique in geometrical optics, polarization ray tracing using the
generalized Jones matrix formalism traces the polarization state of light from the source
to the the pupil in a three-dimensional way. Prior works [82, 118, 119] introduce several
matrices for the systematic polarization tracing, but the signs of the traced fields seem
physically inconsistent in some cases. Here, new sign conventions for those matrices are
proposed as follows.

First, it is convenient to rotate the Cartesian coordinate (x, y, z), where the field is
defined, with respect to the optical axis (z) so that a ray vector of consideration lies on the
meridional plane. A default Cartesian coordinate in this dissertation, as illustrated in Fig.
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2.2, is set: the x is horizontal (heading into the paper), the y is vertical, and the z is optical
axis (to the right). Then, a coordinate rotation matrix R is given by

R(φ) =

 cosφ sinφ 0
− sinφ cosφ 0

0 0 1

 , (2.48)

where φ is an angle from the default x axis to the meridional plane (positive when re-
volved counterclockwise (CCW) about the z axis). Then the rotated xz-plane becomes the
meridional plane for the ray, and the field is also separated into meridional and sagittal
components.

Second, upon a refraction of a ray within the meridional plane, applied is a ray bending
matrix L(θ) for the refraction angle θ (positive if clockwise (CW) bending about the rotated
y axis):

L(θ) = A(θ)

 cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

 . (2.49)

This operation properly manages the depolarization in the meridional field upon the re-
fraction, while maintaining the sagittal field unaffected. This matrix is typically for a lens
and neglects any minor phase change and transmission loss inside the lens material. The
apodization factor, A(θ), can be added to the matrix.

Third, in order to consider the Fresnel reflection/transmission at an interface (such as
dielectric media and metallic mirror), another coordinate rotation matrix D that converts
the field into p- and s-components is used as

D(θ) =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 , (2.50)

where θ is positive when rotated clockwise (CW) about the y axis. If properly converted from

(x, y, z) to (p, s, ζ), the field is normal to ~ζ (transverse) and contains the zero ζ component.
For the same θ, D−1(θ) = L(θ).

Fourth, once the field is transformed into the (p, s, ζ) basis, any reflection/transmission
can be accounted by applying

RF =

 rp 0 0
0 rs 0
0 0 rp

 and TF =

 tp 0 0
0 ts 0
0 0 tp

 , (2.51)

where the Fresnel coefficients (rp, rs, tp, ts) are found in [120]. Please note that some reference
[121] defines these coefficients under different coordinate definition and thus requires a proper
handedness inversion.
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In addition, the generalized Jones matrix for a linear polarizer whose transmission axis
is at an angle of γ from the horizontal x axis is represented [82] as

P(γ) =

 cos2 γ sin γ cos γ 0
sin γ cos γ sin2 γ 0

0 0 1

 , (2.52)

while the generalized Jones matrix for a phase retardation plate is denoted [82, 122] as

W(γ) =

 cos δ
2

+ i cos(2γ) sin δ
2

i sin(2γ) sin δ
2

0
i sin(2γ) sin δ

2
cos δ

2
− i cos(2γ) sin δ

2
0

0 0 1

 , (2.53)

where δ is the relative retardation between the fast and slow axes and γ is the azimuthal
angle of the fast axis from the x axis.

Compared to the prior research [82, 118, 119], the L(θ) and the P(θ) have opposite sign
conventions here. Using the matrices above, several case examples of the polarization ray
tracing follow.

Example of light focusing and collimation

In case of light focusing by a lens (neglecting its apodization) in Fig. 2.6(left), the the initial

field ~Ei and the focused field ~Ef in the Cartesian coordinate are related by

~Ef = R−1(φ)L(θ)R(φ) ~Ei. (2.54)

For a ray ~ki=k0[0; 0; 1] with a field ~Ei=E0[0; 1; 0] at φ=π/2 (the yz meridional plane), the

field at focus is ~Ef =E0[0; cos θ; sin θ]. The physical signs of this results are correct because,
for the initial field with positive Ey only, the final field should have positive Ey and positive Ez
components as inferred in Fig. 2.6. The ray vector at focus is ~kf =R−1(π/2)L(θ)R(π/2)~ki=

𝑘𝑖

𝑘𝑓

𝜃

𝐸𝑖

𝐸𝑓
𝑦

𝑧
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Figure 2.6: Simple examples of polarization ray tracing: (left) light focusing and (right) light
collimation cases. The fields refracts at a lens modeled as a spherical surface.
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k0[0;− sin θ; cos θ], whose physical direction is also correct. If the lens satisfies the sine
condition, A(θ)=

√
cos θ (with the same media before and after the lens) can be multiplied

to L(θ). For dissimilar media, a constant factor of
√
ninc/nf is added as explained in Section

2.4.
For the collimation case (neglecting the apodization) as shown in Fig. 2.6(right), the

collimated field is calculated also as

~Ef = R−1(φ)L(θ)R(φ) ~Ei. (2.55)

For a ray ~ki = k0[0; sin θ; cos θ] with an initial field ~Ei =E0[0; cos θ;−sin θ] at φ= π/2 (the

yz meridional plane), the field becomes ~Ef =E0[0; 1; 0] which is again physically right. The

collimated ray vector yields ~kf =R−1(π/2)L(θ)R(π/2)~ki=k0[0; 0; 1] which is also true. Here

the apodization factor can be similarly added as
√
nf/ncol cos−

1
2 θ for an aplanatic lens where

ncol denotes the refractive index of the medium at the collimated space. Also, one can check
that D(−φ)R(φ) ~Ei leads to Eζ =0 as anticipated.

Example of imaging

In an image case with a dipole point source, ~p, located at the origin of the object space in
Fig. 2.7, the far-field radiation field is ~Ei =−~ki×(~ki×~p) [86], where a general ray vector

is ~ki=ko[sin θ cosφ; sin θ sinφ; cos θ] in the spherical object coordinate. Then the collimated
field after the first aplanatic lens is calculated as

~Ec =
1√

cos θ1

R−1(φ)L(θ1)R(φ) ~Ei

=
1√

cos θ1

 cos θ1 cos2 φ+ sin2 φ (cos θ1−1) cosφ sinφ −sin θ1 cosφ
(cos θ1−1) cosφ sinφ cos θ1 sin2 φ+ cos2 φ −sin θ1 sinφ

0 0 0

 ~p, (2.56)
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𝑧

𝑥
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Figure 2.7: Example of polarization ray tracing for a simplified imaging system comprising
an objective lens (left) and a tube lens (right) in air.
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which is a collimated wave (no z component) as expected. And the field at the image space
can be evaluated as

~Ef =

√
cos θ2

cos θ1

R−1(φ)L(θ2)L(θ1)R(φ) ~Ei

=
√

cos θ2
cos θ1

 cos θ1 cos θ2 cos2 φ+ sin2 φ (cos θ1 cos θ2−1) cosφ sinφ −sin θ1 cos θ2 cosφ
(cos θ1 cos θ2−1) cosφ sinφ cos θ1 cos θ2 sin2 φ+ cos2 φ −sin θ1 cos θ2 sinφ

cos θ1 sin θ2 cosφ cos θ1 sin θ2 sinφ − sin θ1 sin θ2

 ~p. (2.57)

As a verification, if θ1 = θ2 = θ as a unit magnification system, the ray vector at the image
space becomes ~kf = ko[− sin θ cosφ;− sin θ sinφ; cos θ] whose signs physically make sense.

Also, it can be shown that ~Ef = (Eix, Eiy,−Eiz) which is geometrically correct.
All of the case studies above clearly shows that the polarization ray tracing with the

sign convention defined here leads to correct output fields without any physical/geometrical
inconsistency. The field calculated here is used to evaluate the vectorial diffraction integrals.

2.7 Numerical comparison: vector vs. scalar theory

This section shows an effectiveness of the vectorial theory in high aperture optical systems
over the scalar theory. As an example, consider light focusing by a lens (NA≈ a/f) in air
with a uniform, vertically polarized field. In scalar paraxial theory, from Eq. (2.9) the field
around the focus in a cylindrical coordinate is derived, with a help of the formula1 [107] or
in [118], as

E(ρ, φ′, z) =
2πa2

iλf

ˆ 1

0

e
− ika

2

2f2 zρ
2
ξJ0

( ka

f + z
ρρξ

)
ρξdρξ. (2.58)

The scalar Debye theory, on the other hand, from Eq. (2.10) yields

E(ρ, φ′, z) =
2π

iλ

ˆ α

0

√
cos θ eikz cos θJ0(kρ sin θ) sin θdθ, (2.59)

where α= sin−1(NA/n) and
√

cos θ is the apodization. In vectorial diffraction theory, the

field over the exit pupil is traced as ~Es = e−ikf/f
√

cos θ[(cos θ−1) sinφ cosφ; cos θ sin2 φ +
cos2 φ; sin θ sinφ], and if plugged into Eq. (2.6), the focus field is derived as

~E(ρ, φ′, z)=
π

iλ

ˆ α

0

√
cos θ

 sin(2φ′)(1−cos θ)J2(kρ sin θ)
(1+cos θ)J0(kρ sin θ)− (1−cos θ)J2(kρ sin θ) cos(2φ′)

−2i sinφ′ sin θJ1(kρ sin θ)

eikz cos θ sin θdθ.

(2.60)
The derived equations indicate that the scalar theory leads to a radially symmetric inten-

sity distribution while the vectorial theory produces laterally anisotropic distribution, i.e., a

1

ˆ 2π

0

[
cos(nφ)
sin(nφ)

]
eit cos(φ−φ

′) dφ = 2πinJn(t)

[
cos(nφ′)
sin(nφ′)

]
, where n is an integer.
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function of φ′, for the linearly polarized input. Figure 2.8 shows the in-focus intensity PSF
at 0.95 NA with λ=0.5µm. Compared to the paraxial theory, adding the apodization in the
scalar Debye theory minorly decreases PSF by about 4%. The vectorial PSF is elongated
along the input polarization direction mainly due to the remarkable contribution from Ez
(see Fig. 2.8). The full-width at half-maximum (FWHM) is around 33% broader along z
and around 8% narrower along x than the paraxial FWHMs, respectively. Further analysis
(not shown here) reveals that a portion of light power to Iz increases to 24.3% at 0.95 NA.
Also, a deviation of the vectorial FWHMy from the paraxial FWHM starts to exceed 10%
at 0.67 NA.

As for the axial response of E(0, 0, z), from Eq. (2.60) the depolarized fields (Ex and Ez)
by the lens cancel out and the on-axis vectorial PSF is solely determined by the Ey field.
The reduced integral has an additional correction of (1+cos θ)/2 compared to the scalar
Debye version, Eq. (2.59). This on-axis result is with the vertically polarized wave but
remains unchanged for any type of input polarization states. The different appearance of
the paraxial defocus term in Eq. (2.58) together with an approximation of a/f≈NA leads to
an overestimation of the axial PSF by 46% in FWHM (see Fig. 2.9). This huge discrepancy
may be corrected by pseudo-paraxial approximation [81], i.e., a/f=2 sin(α/2), and then the

Scalar paraxial PSF Scalar Debye PSF Vectorial Debye PSF

PSF cross-sectionsComponents of the vectorial Debye PSF

𝐼𝑥 𝐼𝑦 𝐼𝑧

Figure 2.8: Comparison of intensity distribution at focus between scalar and vectorial diffrac-
tion theory. A collimated, uniform, vertically polarized field (λ= 0.5µm) is assumed to be
focused by an aplanatic objective lens of 0.95 NA in air.



CHAPTER 2. ADVANCED IMAGING THEORY 29

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Axial coordinate, z (µm)

0

0.2

0.4

0.6

0.8

1
Scalar paraxial
Scalar pesudo-paraxial
Scalar Debye
Vectorial Debye

Figure 2.9: Comparison of axial intensity response between diffraction theories. Assumed is
a collimated, uniform, vertically polarized field (λ=0.5µm) incident on a 0.95 NA objective
in air.

pseudoparaxial FWHMz has now only 4% discrepancy compared with the vectorial FWHM.
If the scalar paraxial theory is still used, a 10% overestimation in the axial FWHM begins
to arise at 0.6 NA.

The simulation results clearly show the role of the vectorial approach that properly treats
the polarization of the light unlike in the scalar theory. This methodology can be applied
to any type of polarization states including the unpolarized state (see Chapter 4). For a
broadband source, a PSF at each wavelength is first considered and the overall PSF could
be obtained by summing all contributions over the spectral weighting.



30

Chapter 3

Oblique Plane Microscopy

While many cell-/tissue-level samples for biological study are three-dimensional, conventional
wide-field optical microscopes offer only two-dimensional imaging. Scanning microscopes are
capable of three-dimensional imaging but at a very slow speed. Many biological phenomena
in questions occur in real-time and in three dimensions, but interestingly some of them have
a principal plane of interest that is not usually aligned with the microscope’s focal plane.
Oblique plane microscopy (OPM) affords a cost-effective way of real-time 2D deep imaging
along any plane of orientation in a 3D sample. Whereas the performance of scanning-
type OPM has been studied, that of wide-field OPM has not been clearly understood yet.
This chapter studies theoretical performance of wide-field oblique plane microscopy and
experimentally demonstrates axial plane microscopy as a special case.

3.1 Introduction to wide-field OPM

Unlike conventional optical microscopy that images part of a specimen at the microscope’s
focal plane, oblique plane microscopy (OPM) [74–78, 123, 124] attempts to image an inclined
section rather than the focal plane. OPM is obviously advantageous when a principal plane
of the prepared sample is not in parallel with the coverslip or the focal plane [74, 77, 78], or
when a living sample rapidly changes/evolves its structural orientation [78]. An extraction
of oblique planar information from 3D scanning microscopy is possible but too slow due to
lengthy 3D stack measurements. OPM offers a high-speed and cost-effective solution.

Commercial aplanatic objective lenses that allow only a shallow depth of field ( λ/NA2)
may not seem compatible with the idea of OPM. However, an optical technique called remote
focusing [125, 126] that relays two objective lenses back-to-back enables almost aberration-
free 3D imaging for thick samples at the remote space. Then by putting another microscope
at a tilted angle with respect to this 3D intermediate image, oblique plane imaging becomes
feasible at the expense of partial usage of the pupil, thus lowering optical resolution.

Dunsby [75] roughly predicted imaging resolution of OPM from an effective NA concept,
which however is not precise nor provides an analytical evidence on anisotropic lateral reso-
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lution. Anselmi et al. [76] demonstrated wide-field OPM by remote tilting technique, which
has a simpler layout than Dunsbys. They pointed out two reasons of resolution degradation:
a light clipping (vignetting in a broader sense) and an inclined detection PSF. In their ex-
periment an oblique angle was adjusted only up to 14° where such causes are negligible, and
no theoretical analysis on resolution was addressed. On the other hand, Smith et al. [77,
78] proposed point-scanning OPM using a remote scanning technique. They investigated
anisotropic lateral resolution for all oblique angles in terms of spatial cutoff frequencies ob-
tained from the 3D OTF. However, their approach does not apply to wide-field OPM as the
scanning OPM undergoes no light clipping and its overall PSF is different. Hence accurate
theoretical resolution of wide-field OPM is still open to question.

3.2 Schematic of direct oblique plane microscopy

A layout of oblique plane imaging system [76, 127] is illustrated in Fig. 3.1. The back focal
planes of the two aplanatic objective lenses are connected by the L1-L2 relay optics to have

(a) Object space  (b) Remote space             (c) Image space Pupil shape (2D)

Available pupil “Effective”

Rotationally
asymmetric

Detector

OBJ1  BS1    BS1’    L1 L2  BS2  OBJ2

L3

Illumination

Pupil

Object
space

Image space

𝛼

Remote
space

Tilted
mirror

𝛼
𝑦

𝑦𝛼

𝑥𝛼𝑧

M

𝛼 𝑦1
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𝑥1𝑧1
′

2

𝑦2 𝑥2

𝑧2

Figure 3.1: Conceptual arrangement of oblique plane imaging. OBJ: objective lens; BS:
beam splitter; L: lens; M: mirror. The beam path for an on-axis point object is drawn in
green, while the clipped beam at OBJ2 is shown in pink. Coordinates at (a) object space: an
xαyα oblique plane tilted by α about the xy focal plane of OBJ1, (b) remote space: the x1y1

intermediate image plane is rotated to the x′1y
′
1 plane (OBJ2’s focal plane) by the α/2-tilted

mirror, and (c) image space: the x2y2 lateral plane is conjugate with the xαyα object plane.
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a 3D isotropic magnification as a ratio of object/remote medium indices. This configuration
compensates for aberrated optical wavefronts originated from the defocused object positions
by the pupil’s odd parity condition [125, 126], thus extending the depth of field [126]. A 3D
object lying within the extended range forms a diffraction-limited 3D image in the remote
space. The OBJ2-L3 comprises another microscope to take an oblique plane image supported
by the tilted remote mirror. Figure 3.1(a-c) elucidates that the α-tilted plane in the object
space is optically conjugate with the image plane on a detector. The beam in pink in Fig.
3.1 illustrates how part of the light at the remote space is clipped at the OBJ2 caused by
the tilted mirror. Such a one-dimensional light clipping that makes an effective pupil of the
OBJ2 (the blue arc) rotationally asymmetric leads to an anisotropic resolution. To avoid
a full light loss by the clipping, the OBJ2 should have a maximum half-cone angle or NA
greater than the mirror tilt angle of α/2. For instance, an axial plane imaging (α = 90°)
demands NA> 0.71 in air medium. Preferred is to use a higher NA objective to minimize
both signal loss and optical resolution.

It should be noted that the optical configuration in Fig. 3.1 allows 2D imaging of any
oblique plane if a tip-tilt of the small mirror M is properly controlled. Also, to shift an image
plane of interest, the remote mirror could be instead translated in a three-dimensional way
at no specimen agitation. Besides, the PSF formulated here for direct oblique plane imaging
may be regarded as a detection PSF in other types of OPM that use either beam scanning
or selective-plane illumination as long as the same light clipping occurs. Such illumination
could be coupled through either BS1 or BS1’ or other optical paths not illustrated in Fig.
3.1. The overall PSF of the imaging system may then be a multiplication of the according
illumination and detection PSFs.

3.3 Formulation of vectorial PSF

Here a theoretical resolving power of the wide-field OPM is accurately calculated. A general
3D pupil function affected by the light clipping is mathematically derived for any oblique
angle between 0° to 90°. From this, vectorial 2D intensity PSF is estimated to characterize
lateral resolution. To examine the spatial cutoff frequency influenced by oblique angles,
vectorial OTF was also evaluated by the Fourier transform of the PSF.

Effective pupil function

Assuming the remote NA equal to the object NA, the 3D normalized pupil function P (θ, φ)
at the pupil of the object space in a spherical coordinate is derived as follows. (In case of a
remote NA larger than the object NA, see Chapter 4.) As shown in Fig. 3.2(a), an overlap
of the original spherical pupil of the objective lens with its reflected pupil via a tilted virtual
mirror constructs an effective pupil surface. If cut by the xy plane on the point C, the pupil
surface can be divided into a rotationally symmetric part (Σ1) and the rest asymmetric part
(Σ2). This separation is for mathematical convenience in evaluating the vectorial diffraction
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Figure 3.2: (a) 2D and (b) 3D effective pupil function in direct oblique plane imaging in
a normalized object space. An areal overlap between the spherical cap of the objective’s
original pupil surface and its mirror image by the α/2-tilted virtual mirror (red dashed line)
forms an effective pupil. (c) Pupil functions at different oblique angles (θmax =67°).

integrals. The Σ1 ceases to exist at a higher α regime where the y-coordinate of the point C
is positive (yC > 0). Hence, the general pupil function for both Σ1 and Σ2 can be defined as

PΣ1(θ, φ) =

{
1, θ ∈ [0, θC ], φ ∈ [0, 2π], and yC<0

0, otherwise
,

PΣ2(θ, φ) =

{
1, θ ∈ [θC , θmax] and φ ∈ [φ1(θ), φ2(θ)], and yC>0

0, otherwise
,

(3.1)

where the pupil boundaries of θC , θmax, φ1(θ), and φ2(θ) are discovered as follows.
First, the coordinate of the point C in Fig. 3.2(a) is found, by plugging a plane ABC

equation (y−z cotα−
√

1−(NA/n)2 cscα=0) into the unit sphere equation (x2 +y2 +z2 =1)
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at x=0, as

(xC , yC , zC) =

(
0,−NA

n
cosα+

√
1−
(NA
n

)2

sinα,−NA
n

sinα−
√

1−
(NA
n

)2

cosα

)
. (3.2)

By setting a Cartesian-to-spherical coordinate relation to (x, y, z) ≡ (sin θ cosφ, sin θ sinφ,
−cos θ), the bounds of the pupil surface are derived as

θC = cos−1 |zC | = cos−1

∣∣∣∣NAn sinα +

√
1−

(NA
n

)2

cosα

∣∣∣∣,
θmax = sin−1

(NA
n

)
,

φ1(θ) = sin−1
( y

sin θ

)
= sin−1

∣∣∣∣−cotα cot θ +

√
1−
(NA
n

)2

cscα csc θ

∣∣∣∣,
φ2(θ) = π − φ1(θ),

(3.3)

where the bounds of θ, φ are expressed as a function of α, NA, and n. As shown in Fig.
3.2(c), the derived mathematical expressions well represent pupil functions in any oblique
angle.

Vectorial PSF for a linearly polarized wave

It was clearly shown in Section 2.7 that the depolarization in a high aperture system creates
a broader mainlobe of the vectorial PSF especially along the incident polarization direction
than the scalar (Debye) PSF. To accurately predict optical resolution of OPM for any oblique
angle and NA regime, the vectorial Debye theory is adopted here. This is simpler than the
vectorial Kirchhoff integral, while still equally accurate because most of the commercial
microscope objectives of any NA meet NF >100. It was confirmed that when this criterion
is satisfied, the vectorial PSF obtained from between the vectorial Kirchhoff integral Eq.
(2.5) and the vectorial Debye integral Eq. (2.6) has almost no discrepancy (especially in the
mainlobe of PSF).

In calculating the PSF, assumed is that a uniform electric field from a quasimonochro-
matic point source at infinity is incident on the exit pupil of OPM. Additional assumption
made here is that this field is linearly polarized at an azimuthal angle of φ0 with reference
to the x-axis, thus ~Ei = E0[cosφ0; sinφ0; 0]. Then the electric field at the exit pupil for
the aplanatic oblique plane imaging system is calculated, using the polarization ray tracing
(introduced in Chapter 2), as

~ES =
√

cos θR−1(φ)L(θ)R(φ) ~Ei = E0

cos θ cos(φ−φ0) cosφ+ sin(φ−φ0) sin(φ)
cos θ cos(φ−φ0) sinφ− sin(φ−φ0) cos(φ)

sin θ cos(φ−φ0)

 , (3.4)
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where a constant ratio of the dissimilar medium indices is neglected. Substituting this field
to the vectorial Debye integral, one can calculate the electric field near focal regions in the
Cartesian coordinate (x, y, z), if the prefactor is ignored, as

~Eφ0(x, y, z) =

‹
Σ

~ES
√

cos θ
[
PΣ1(θ, φ)+PΣ2(θ, φ)

]
eik(−x sin θ cosφ−y sin θ sinφ+z cos θ) sin θ dθdφ.

(3.5)
Since the xαyα oblique plane is related to the (x, y, z) coordinate as (x, y)=(xα,yα cosα−zα sinα),
the two-dimensional, in-focus intensity PSF on the oblique plane is derived as

~Iφ0(xα, yα) = I0

∣∣∣∣∣∣∣∣∣∣∣∣

‹
Σ

cos θ cos(φ−φ0) cosφ+ sin(φ−φ0) sin(φ)
cos θ cos(φ−φ0) sinφ− sin(φ−φ0) cos(φ)

sin θ cos(φ−φ0)


×
√

cos θ
[
PΣ1(θ, φ)+PΣ2(θ, φ)

]
× eik

(
−xα sin θ cosφ−yα(cosα sin θ sinφ−sinα cos θ)

)
sin θ dθdφ

∣∣∣∣∣∣∣∣∣∣∣∣

2

, (3.6)

where I0 = |E0|2.

Vectorial PSF for a unpolarized wave

For a unpolarized field, the above result can be still used to calculate the 2D vectorial
intensity PSF [107] as

~I =
1

2π

ˆ 2π

0

~E∗φ0
· ~Eφ0 dφ0 =

1

2

(∣∣~IC∣∣2 +
∣∣~IS∣∣2), (3.7)

where ~IC and ~IS are expressed as

~IC = I0

‹

Σ1+Σ2

√
cos θ

 cos θ cos2 φ+ sin2 φ
cos θ cosφ sinφ−cosφ sinφ

sin θ cosφ

eik(−xα sin θ cosφ−yα(cosα sin θ sinφ−sinα cos θ)
)

sin θ dθdφ,

(3.8)

~IS = I0

‹

Σ1+Σ2

√
cos θ

cos θ cosφ sinφ−cosφ sinφ
cos θ sin2 φ+ cos2 φ

sin θ sinφ

eik(−xα sin θ cosφ−yα(cosα sin θ sinφ−sinα cos θ)
)

sin θ dθdφ.

(3.9)
As both Eq. (3.6) and Eq. (3.7) show even symmetry about xα and yα, a numerical

evaluation of any one quadrant is sufficient. The Eq. (3.7) can be further manipulated
for faster numerical calculations as derived in Appendix B in [127]. It reduces the double
integrals for the rotationally symmetric pupil (Σ1) to the single integral regarding θ by
introducing the Bessel functions for the integral over φ. For the asymmetric pupil (Σ2), it
uses the half of the symmetric integral bound for φ as [φ(θ), π−φ(θ)]→ [φ(θ), π] and double
the result.
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3.4 Numerical PSF and OTF in OPM

The two same oil-immersion (n = 1.52) objective lenses were considered for several NAs
of 1.30, 1.40, and 1.49, together with a unity magnification for the L1-L2 optics. As the
Fresnel numbers of these NAs well exceed 1000, the Debye approximation is validated. A
unpolarized and quasimonochromatic source at a vacuum wavelength (λ0) of 519 nm was
considered.

Vectorial PSF

The 2D intensity PSF from Eq. (3.7) was calculated as shown in Fig. 3.3. The PSF at
α=0° is the conventional PSF in circular aperture systems with isotropic lateral resolution.

Figure 3.3: 2D vectorial intensity PSF of oblique plane imaging at different oblique angles
(α) and NAs. λ0 = 519 nm (unpolarized), n = 1.52 (oil immersion). The axis unit is µm.
The PSF stretches vertically where the serious light clipping occurs in OPM. A higher NA
improves the undesirable anisotropic resolving power.
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At higher oblique angles, the mainlobe of the PSF stretches to the yα direction more obvi-
ously because of more reduced pupils, resulting in anisotropic lateral resolving power. The
simulation results also exhibit a slight PSF stretch along the xα direction which is expected
due to the minor collateral pupil loss existing along that direction as seen in Fig. 3.2(c).

The FWHM was calculated in Fig. 3.4 to quantitatively interpret the calculated PSFs.
The optical resolution decreases as the oblique angle increases from α = 0° (conventional
lateral imaging) to α = 90° (axial plane imaging) owing to the narrowed effective NA. The
FWHM ratio at such two extremes with NA 1.30 (1.40, 1.49) is 1.33 (1.16, 1.06) and 4.39
(2.92, 2.09) along xα and yα, respectively.

Moreover, the FWHM in oblique plane imaging was compared with that obtained from
the inclined PSF as illustrated in the inset in Fig. 3.4. Here, the 3D vectorial PSF in a
conventional circular aperture system was rotated by α with respect to the x-axis to calculate
FWHMs along that slice (which may be done misleadingly in oblique plane imaging). This
way remains the FWHM along the xα-axis unchanged (green dotted curve), while deteriorates
FWHM along the yα-axis (green line curve) stemming from the well-known “ellipsoidal” PSF.
Hence the inclined PSF slows down the slope of the FWHMy curve near 90° and the FWHM
along the yα-axis converges to the FWHMz of the 3D PSF of the circular aperture. This
behavior is certainly dissimilar from 1) the sharp rise of FWHM along the yα direction
near 90° and 2) its value not limited to the FWHMz of the conventional PSF (it can be
worse than that). Also the rotation of the conventional PSF fails to predict the collateral
resolution loss along the xα direction over oblique angles. It is clear that the inclined slice of
the conventional 3D PSF is thus different from the light-clipped 2D PSF in wide-field OPM.
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Figure 3.4: FWHM of the vectorial PSF at different NA over the oblique angle. The FWHMs
from the inclined 3D vectorial PSF in a circular aperture (the inset in the middle) are plotted
for comparison, which fails to explain the anisotropic resolution in wide-field OPM.



CHAPTER 3. OBLIQUE PLANE MICROSCOPY 38

Vectorial OTF

As explained in Section 2.5, no known explicit forms of 2D or 3D vectorial OTFs were
found. Yet vectorial OTFs can be numerically calculated by either the Fourier transform
of the vectorial PSF or an autocorrelation of the vectorial pupil functions. Here the former
method was chosen.

In order to verify an accuracy of the FFT method, the Fourier transform was performed
for the scalar Debye intensity PSF for a circular aperture system (α = 0°). Alternatively,
the 2D scalar Debye OTF was also calculated by the 2D projection of the analytical scalar
Debye 3D OTF with a normalization with 4 sin2(0.5 sin−1(NA/n)). The OTFs from such
two different methods were compared as shown in Fig. 3.5. It turned out that in the FFT
approach PSF data with a plenty number of sidelobes is critical for exact results: although
outer sidelobes have several orders lower intensity than the peak of the mainlobe, they still
influence much on OTF curves particularly at low-to-middle spatial frequency regimes. A
FFT-based OTF from the 2D PSF data including up to 25 sidelobes agreed well with the
analytical (2D projected) OTF, with a relative error in MTF value smaller than 0.013 over
the entire frequency range. An almost perfect match resulted if more than 60-sideslobes were
used at the expense of 6 times or longer computational time.

(a)                                                                               (b)

Figure 3.5: (a) Scalar Debye intensity PSF utilized to calculate a FFT-based OTF (NA=1.4,
n= 1.52, λ0 = 519 nm, and α= 0°). The green, blue, and red rectangles embrace 5, 15, and
25 sidelobes respectively. (b) Comparison between FFT-based and analytical scalar Debye
OTFs in the spatial frequency normalized by n/λ0. The PSF data with sufficient sidelobes
is vital for accurate OTF calculations. The inset shows details at the low frequency regions.

After confirming the accuracy of 2D OTF from the FFT method, the vectorial OTF
in oblique plane imaging was identically calculated. The Eq. (3.7) was first evaluated in
MATLAB’s parallel computing environment to acquire the vectorial PSF with 25-sidelobes
along the xα and yα directions, followed by the FFT operation. The results are plotted in
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Figure 3.6: 2D vectorial OTF of oblique plane imaging over oblique angle (α) and NA
(λ0 =519 nm, n=1.52) at frequencies normalized by n/λ0. Red contours are MTF cutoffs.

Fig. 3.6. The bandwidth (or cutoff frequency) along the m̃y direction (corresponding to
the yα-axis in real space) reduces much faster than along the m̃x direction at higher oblique
angles, which is self-evident from the anisotropic PSF trend in Fig. 3.3. Cross-sections of
these OTFs were compared in Fig. 3.7. The vectorial OTF has lower modulations over the
whole frequency extent than the scalar Debye OTF (α=0°). This lower MTF results mainly
from the depolarized field along the optical axis that broadens the vectorial PSF, which is
ignored in the scalar theory. The cutoff frequency in the scalar Debye theory is 2NA/n, i.e.,
1.71 (1.84, 1.96) at the NA of 1.30 (1.40, 1.49), corresponding to 5.0 (5.4, 5.7) cycles/µm
in physical frequency. The numerical cutoff frequency of the vectorial OTF was determined
at a threshold MTF of 0.01% to neglect minor MTF oscillations near and above the cutoff
frequency (numerical artifacts). The estimated vectorial cutoff frequencies for α=0° agreed
with the analytical 2NA/n within 1% error.

The OTF cross-sections for α = 60, 90° in Fig. 3.7 clearly show a downward trend in
both MTF curves and cutoff frequencies at higher oblique angle, which is plotted in Fig. 3.8.
The m̃x cutoff is lowered by 21% (10%, 5%) at the NA of 1.30 (1.40, 1.49) as the oblique
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angle increases from 0° to 90°. Likewise, the cutoff frequency along the m̃y axis reduces up
to 80% (71%, 60%). The degradation of the MTF cutoff is relatively smaller at higher NA.

1.30 NA                                         1.40 NA                                          1.49 NA

Figure 3.7: Vectorial OTF cross-sections along the m̃x and m̃y directions for α = 0, 60, and
90°, at spatial frequencies normalized by n/λ0 (λ0 = 519 nm, n= 1.52). The scalar Debye
OTF for α=0° is added for comparison.
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Figure 3.8: Spatial cutoff frequency of the vectorial OTF over oblique angles.

From the numerical results discussed so far, one could neglect the light clipping at the
lower oblique angle regime. The simulation indicates a FWHM increase less than 10% along
the mirror-tilt direction for an oblique angle up to 16° (20°, 27°) at the NA of 1.30 (1.40, 1.49)
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in oil medium with λ0 =519 nm. This conclusion is from the assumed uniform, unpolarized
electric field incident on the exit pupil.

3.5 Axial depth of field in remote focusing

The remote focusing eliminates only the lowest-order primary aberrations, and thus the
depth of field is limited. From the paraxial scalar theory with the residual aberration function
considered, this depth range was analytically derived by inspecting the Strehl ratio (S) [126]
as

S = 1− 4n2
2k

2
0z

4
1(3 + 16 cosα2 + cos(2α2)) sin8(α2/2)

75f 2
2 (3 + 8 cosα2 + cos(2α2))

, (3.10)

where f and α2 denote focal length and half-cone angle of the two identical objectives in
the symmetric remote focusing geometry (|MR|=1 in Fig. 3.9). Also, it was predicted that
there occurs a high NA diffraction defocus (δz) from the higher-order residual aberration
that breaks a constant transformation of ~x2 = (n1/n2)~x1. Again in the symmetric remote
focusing, this defocus is given as [126]

δz =
12z2

1 cos2(α2/2)(3 + 6 cosα2 + cos(2α2))

5f(3 + 8 cosα2 + cos 2α2)
. (3.11)

This section more rigorously investigates the axial working depth in a general non-
symmetric remote focusing using the advanced diffraction theory. The aberration function,
or optical path difference, associated with a defocused point object (~x1) being imaged to a
remote image point (~x2), valid in smaller displacements only, is expressed as

W (~x1, ~x2) = n1

(∣∣~f1 − ~x1

∣∣− f1

)
+ n2

(∣∣~f2 + ~x2

∣∣− f2

)
= n1

(√
f 2

1 + x2
1 − 2~f1 ·~x1 − f1

)
+ n2

(√
f 2

2 + x2
2 + 2~f2 ·~x2 − f2

)
,

(3.12)

which cancels out up to the first-order approximation of the root terms by the Taylor series
expansion if f1 � |~x1| and f2 � |~x2|. Then the residual higher-order aberrations left are
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Figure 3.9: A remote focusing geometry for an extended depth of field. The pupils of the
two objectives are matched by a relay optics of |MR|=n2f2/(n1f1) to satisfy ~x2 = (n1/n2)~x1.
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given, for on-axis objects for simplicity without losing generality, by

W (ρ2, φ2; z1, z2) =
sin2 α

2

(ρ2

a2

)2
{
n1z

2
1

f1

+
n2z

2
2

f2

+
[
1− 5

4

(ρ2

a2

)2

sin2 α
](n1z

4
1

f 3
1

+
n2z

4
2

f 3
2

)
+ . . .

}
, (3.13)

where ρ denotes a radial pupil coordinate, a a pupil radius, |~f | a focal length, n a medium
refractive index, z a defocus from the focal plane, and α=α1 =α2 the half-cone angle. In
the remote focusing condition, if z2 = (n1/n2)z1, every z2-related terms in the parenthesis
are paired with the according z1 terms, reducing to W (ρ2, φ2; z1). The magnitude of the
residual aberrations is dominantly proportional to nf−1z2 sin2 α, aggravating aberrations to
the squares of the defocus and the half-cone angle, and to the inverse of the focal length.
This radially symmetric aberration function can be plugged into the scalar Debye integral
to evaluate the Strehl ratio derived as

S ≡
I(z2; z1)

∣∣
max

I(0; 0)
∣∣
W=0

=

∣∣ ´ α
0
eik0(W (θ,φ;z1)+n2z2 cos θ) sin θ dθ

∣∣2
max∣∣1−cosα

∣∣2 , (3.14)

where θ = ρ2/(n2f2) = ρ1/(n1f1). Here an isotropic point source is assumed to locate at z1.
The

√
cos θ apodization of the two objectives are inversely related and thus removed.

On the other hand, strictly speaking, the vectorial approach is nontrivial here because
the polarization ray tracing for defocused object points in high NA aplanatic objectives may
be a new ray bending matrix. For smaller defocus displacements, however, the Eq. (2.60)
may still be approximately used with

√
cos θ deleted for the same reason. Since the axial

response keeps unchanged for any input polarization state as studied in Section 2.7, the
vectorial Strehl ratio, if the aberrations are considered, may be derived as

S ≡
I(z2; z1)

∣∣
max

I(0; 0)
∣∣
W=0

=

∣∣ ´ α
0

(1 + cos θ)eik0(W (θ,φ;z1)+n2z2 cos θ) sin θ dθ
∣∣2
max∣∣5/4− cosα− 1/4 cos(2α)

∣∣2 . (3.15)

Numerical simulation was conducted for the derived equations in Fig. 3.10. The scalar
Debye and the vectorial Debye theory yield almost identical axial responses. The peak
intensity at each object defocus, z1, indicates the Strehl ratio and its shifted position is an
amount of the diffraction defocus. As expected, as the object defocus increases, the Strehl
ratio drops and the diffraction defocus occurs towards the positive z2 direction (farther away
from the remote objective lens). As shown in Fig. 3.11, the scalar and the vectorial Debye
theories predict less severe drops in the Strehl ratio at |z1| > 40µm. The range of axial field
depth, based on the conventional diffraction-limited cutoff at S= 0.81, is around 80 µm in
all cases. The diffraction defocus predicted is almost the same among the three theories,
while the vectorial Debye defocus resides between the paraxial defocus and the scalar Debye
defocus.

Similar arguments could be made for off-axis object points, which may further limit the
lateral and axial working range.
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Figure 3.10: Axial responses in the remote focusing from (left) scalar Debye theory (right)
vectorial Debye theory. Objective NA: 1.4 (f=1.8 mm), n=1.52, λ0 =519 nm.

Figure 3.11: Strehl ratio and diffraction defocus in the remote focusing with different diffrac-
tion theories. Objective NA: 1.4 (f=1.8 mm), n=1.52, λ0 =519 nm.

3.6 Experimental demonstration

After the theoretical study of oblique plane imaging, an experimental demonstration of the
method was performed. Here an optical setup for an oblique angle of 90°, termed axial plane
microscopy (APM), was built. The two apochromatic objective lenses (1.4 NA, oil immersion,
100x, Carl Zeiss) with all other lenses with f = 150 mm were chosen. Two imaging modes
were considered. First, a conventional lateral imaging (XY plane) was achieved by putting a
tube lens above the BS2 (50:50 unpolarized beam splitter) in Fig. 3.1 together with a white
light illumination via the BS1. Second, an axial plane imaging (XZ) was implemented by
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(a) Lateral plane (XY) image (b) Axial plane (XZ) image 

b c

(c) Axial plane (XZ) image 

Figure 3.12: Autofluorescence imaging of a pine pollen grain in axial plane microscopy. (a)
conventional lateral plane (XY) imaging with a wide-field illumination. (b, c) axial plane
(XZ) imaging at the section b and c respectively with an axial lightsheet illumination. The
scale bar is 20 µm.

putting the 45° mirror (made with a piece of a cleaved Si wafer with Al deposition on it) at
the remote space. In this mode, a pair of cylindrical lens with a laser beam was employed
to provide an axial lightsheet illumination [128] along the axial plane. The lightsheet was
around 2 µm in thickness at focus.

It was experimentally proved in [129] that APM has around one-micron resolution along
the axial direction over a 70 µm depth. One imaging example is shown in Fig. 3.12. It
is clear that the axial image with the lightsheet illumination (enabling optical sectioning)
provides a higher contrast and thus an improved signal-to-background noise ratio than the
lateral image with the conventional wide-field illumination.

The APM demonstrated here is an innovative imaging tool that works in real-time to
image any plane of a 3D sample without beam scanning. If combined with conventional
microscopy, APM simultaneously provides two orthogonal plane images of a 3D sample.
Using the light-sheet illumination, it enables fast, high-contrast, and convenient 3D imaging
of structures that are hundreds of microns beneath the surfaces of large biological tissues.
The potential application may include 1) high speed in vivo 3D diagnosis of early stage
tissue-related diseases such as noninvasive detection of skin caner, 2) live cell/tissue study
[130] such as neuronal activity [131], quantitative monitoring of blood flow in vascular tubes,
and 3) flow cytometry with at least one order improved throughput.
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Chapter 4

Super-Resolution Oblique Plane
Microscopy

The existing far-field super-resolution technique (such as STORM, PALM, and FPALM),
here called STORM from now on for convenience, has been successful to boost new biological
study in nano-scale [132–134]. A typical STORM setup is somewhat similar to total internal
reflection fluorescence (TIRF) microscopy. The TIR illumination via high NA objective lens
is good to minimize background fluorescence noises by confining the evanescent illumination
fields only near the glass-to-sample boundary over a depth of around a couple of 100 nm.
This illumination method works well with STORM where a fluorescence signal from each
single molecule is extremely weak, but also limits an available imaging depth only to the
sample’s surface. By adjusting an illumination angle just below the critical angle (where
the TIR begins to occur), a penetration depth can be increased by a few microns from the
surface. Yet this may not be sufficient at whole cell or tissue-level study. In addition, the TIR
based illumination inherently requires an index-mismatch between the coverslip and sample
media, which thus induces detrimental optical aberrations. This could be compensated by
adaptive optics (AO) [135] with a complicated optical setup, but accessing a few microns
depth from the sample’s surface is still nontrivial.

In order for STORM to achieve super-resolution deep imaging, oblique plane super-
resolution microscopy, termed obliqueSTORM, is proposed. obliqueSTORM combines wide-
field oblique plane microscopy (in Chapter 3) with conventional STORM. Oblique lightsheet
illumination is employed to minimize background fluorescence noise, which is free from the
index-mismatch requirement present in TIRF microscopy. Thus by using objectives (such
as water-, silicon-, or glycerol-immersion) that are best matched with the sample index,
penetration depth can be easily extended to tens of microns without adaptive optics.

This chapter covers an analytical study of obliqueSTORM. The PSF in oblique plane
fluorescence microscopy is first formulated by the vectorial diffraction theory, to figure out
the best way to configure the optical setup. Then, the achievable super-resolution with the
proposed method is estimated over all possible oblique angles. Also, axial working depth
associated with tilted remote focusing in fluorescence microscopy is studied. Furthermore, an
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experimental setup to demonstrate the proposed method is introduced with several factors
to consider in building the setup for the best performance. Several experimental results that
support the theoretical prediction are included. Preliminary test results associated with
super-resolution imaging are summarized, followed by listing future work.

4.1 Schematic of obliqueSTORM

The proposed schematic of obliqueSTORM is illustrated in Fig. 4.1. As for illumination, a
single laser could be enough for direct STORM (dSTORM [136]), but here multiple lasers
could be employed for multi-color excitations and/or for an efficient activation. As an ex-
ample, the commonly used wavelengths are written on the laser heads. A weak activation
laser could be at UV (ultraviolet) or near 405 nm light. Further laser heads could be also
added in parallel upon a preference on selections of fluorescent dyes. Each laser may have a
variable neutral density filter to properly tune optical power and a beam expander to match
the beam sizes as required upon the illumination design. After coupled into a single circular
Gaussian beam by a dichroic beam splitter in free space, they may be shrunken as a slit
beam by a pair of cylindrical lenses. This slit beam is demagnified by the L1-OBJ1 optics to
the sample space with an oblique angle steered by the oblique angle adjuster mirror. This
is how the oblique lightsheet illumination is implemented. The beam expanders mentioned
could be used as compensators for chromatic aberrations among laser lines if exist, to make
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Figure 4.1: Schematic of obliqueSTORM (top view). ND: neutral density attenuator, DBS:
dichroic beam splitter, CYL: cylindrical lens, L: lens, OBJ: objective lens, PBS: polarizing
beam splitter, QWP: quarter wave plate, M: mirror, EF: emission filter, EMCCD: electron
multiplying charge coupled device. An oblique lightsheet illumination to a sample is provided
by steering a field angle of a slit beam formed by a pair of cylindrical lenses. The STORM
signals on the oblique plane are recorded by EMCCD1 through the oblique mirror M.
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sure that all the lightsheets for each color are formed at the same object depth. The OBJ1
and OBJ2 are remotely connected by the L2-L3 relay optics with a total magnification of
n1/n2 (refractive index ratio). A remote mirror rotates the intermediate image of the 3D
object such that an oblique plane image (Oblique mode) is formed at the EMCCD1 camera
via the L4 tube lens. The PBS and the QWP were used to minimize signal loss compared
with when a non-polarizing BS is used. The other half of the signal coming out from PBS is
used for conventional lateral plane imaging (XY mode) via the L5 tube lens. The image at
the EMCCD2 could be used for many purposes. It may allow simultaneous super-resolution
imaging at both the oblique and lateral planes. It can be also used to compensate image drifts
during the STORM data acquisition. The DBS and emission filters (EF) could be multi-
bands to accommodate various fluorophores across the visible spectrum. To easily switch
the lightsheet illumination to wide-field epi-illumination and vice versa, the pair of cylinder
lenses could be mounted on a magnetic base to easily take them out without impairing the
alignment. In that case, a Gaussian-to-TopHat beam shaper could be optionally placed on
the magnetic base to provide a uniform square illumination for conventional wide-field flu-
orescence microscopy. It is recommended to mount the sample and the remote mirror on
precision stages with a motion control capability, to correct any undesirable motion drifts in
real-time while recording STORM data.

4.2 PSF formulation in XY imaging mode

The XY imaging mode can be simplified for PSF calculation as shown in Fig. 4.2. Only the
s-polarized (or vertically polarized) field from the PBS contributes to the XY mode, and
thus a linear polarizer at 90° (vertical) is put equivalently in the model. The total lateral
magnification is determined by M

XY
=(f2/fOBJ1)·(f5/f3) where fj is a focal length of the jth

lens. The numerical aperture of the OBJ1 is denoted as NA1 =n1 sinα1.
The fluorescence emission from a fluorophore molecule could be modeled as an electric

dipole radiation with an emission dipole moment of ~p. Its strength partly depends on the
angle between the absorption dipole moment and the field vector of illumination. Typically
dye molecules in fluorescence microscopy are in solution, where they rapidly reorient by a
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Figure 4.2: A simplified model of XY imaging mode in obliqueSTORM. All the lenses are
assumed to be aplanatic. The PBS is replaced by a polarizer. The object and image cone
angles are related by n1 sin θ1 =M

XY
n2 sin θ2 with n2 =1 (in air).
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rotational diffusion. In this case the dipole moment ~p is assumed free to rotate in calcu-
lating PSF. If fluorophores are fixed, a certain orientation of ~p needs to be considered. For
obliqueSTORM the former situation can be used. The electric dipole field is analytically
expressed [86] as

~E =
1

4πε0

{
k2(~n× ~p)× ~ne

ikr

r
+ [3~n(~n · ~p)− ~p]

( 1

r3
− ik

r2

)
eikr
}
, (4.1)

where ~n denotes the unit vector from the dipole center to a observation point. Since far-
field radiations are of interest, the radiation field from an on-axis fluorophore could be
approximated as

~Eo = −~ko × (~ko × ~p), (4.2)

where ~ko = [sin θ1 cosφ1, sin θ1 cosφ1, cos θ1] is a unit propagation vector in the object spher-
ical coordinate (r1, θ1, φ1). Here, assuming the field is a narrowband (λ̄�∆λ), the prefactor
associated with the wavelength is neglected. This would be justified as a typical fluorescence
emission band after an emission filter is only several tens of nm.

From the polarization ray tracing introduced in Section 2.6, the field right before the
polarizer in Fig. 4.2 is calculated as

~Ec2 =

√
1

cos θ1

R−1(π+φ1)L(θr)R(π+φ1)R−1(φ1)L(θr)L(θ1)R(φ1) ~Eo

=

√
1

cos θ1

 cos θ1 cos2φ1+sin2φ1 −(1−cos θ1) cosφ1 sinφ1 − sin θ1 cosφ1

−(1−cos θ1) cosφ1 sinφ1 cos θ1 sin2φ1+cos2φ1 − sin θ1 sinφ1

0 0 0

 ~p,
(4.3)

which is a transverse field equal to ~Ec1. After passing the vertical polarizer (only the y-

component of ~Ec2 survives), the final field strength at the exit pupil right after the L5 lens
is given by

~Ei =
√

cos θ2R−1(π+φ1)L(θ2)R(π+φ1)P(90◦) ~Ec2

=
√

cos θ2

cos θ1

 (1−cos θ1)(1−cos θ2) cos2φ1 sin2φ1 −(1−cos θ2) cosφ1 sinφ1(cos θ1 sin2φ1+cos2φ1) (1−cos θ2) sin θ1 cosφ1 sin2φ1

−(1−cos θ1) cosφ1 sinφ1(cos θ2 sin2φ1+cos2φ1) (cos θ1 sin2φ1+cos2φ1)(cos θ2 sin2φ1+cos2φ1) − sin θ1 sinφ1(cos θ2 sin2φ1+cos2φ1)
(1−cos θ1) sin θ2 cosφ1 sin2φ1 − sin θ2 sinφ1(cos θ1 sin2φ1+cos2φ1) sin θ1 sin θ2 sin2φ1

 ~p,
(4.4)

where θ2 denotes the polar angle at the image space. The medium index of the object space
is neglected in the apodization factor. One can also check that the same series of the tracing
matrices yield the final wave vector ~ki = [sin θ2 cosφ1; sin θ2 sinφ1; cos θ2] as expected. A
converging wave feature at the exit pupil by the L5 lens can be reflected by multiplying
e−ikf5
f5

to ~Ei. The PSF is calculated by plugging this field strength to the vectorial Debye

integral Eq. (2.6) with N̂=[sin θ cosφ1; sin θ sinφ1; cos θ] where θ=π−θ2. The pupil for the
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XY mode is circular and thus the amplitude PSF in the cylindrical image coordinate (ρ, φ, z)
can be derived as

~E =
1

iλ̄

π

4

 A2
0−A1

4 cos(4φ) A3
2 sin(2φ)−A1

4 sin(4φ) iA2
1 cosφ+iA1

3 cos(3φ)
A2

2 sin(2φ)−A1
4 sin(4φ) A1

0−A1
2 cos(2φ)+A1

4 cos(4φ) −iA1
1 sinφ+iA1

3 sin(3φ)
iA4

1 cosφ+iA2
3 cos(3φ) −iA3

1 sinφ+iA2
3 sin(3φ) A3

0+A4
2 cos(2φ)

 ~p,
(4.5)

where

Aqp =

ˆ α2

0

√
cos θ2

cos θ1

F q
p (θ1, θ2) Jp(kρ sin θ2) eik̄z cos θ2 sin θ2 dθ2, (4.6)

where α2 = sin−1
(
NA1

MXY

)
with

F 1
0 (θ1, θ2) = (3+cos θ1+cos θ2+3 cos θ1 cos θ2), F 2

0 (θ1, θ2) = (1−cos θ1)(1−cos θ2),

F 3
0 (θ1, θ2) = 4 sin θ1 sin θ2, F 1

1 (θ1, θ2) = 2 sin θ1(1+3 cos θ2),

F 2
1 (θ1, θ2) = 2 sin θ1(1−cos θ2), F 3

1 (θ1, θ2) = 2(1+3 cos θ1) sin θ2,

F 4
1 (θ1, θ2) = 2(1−cos θ1) sin θ2, F 1

2 (θ1, θ2) = 4(1−cos θ1 cos θ2),

F 2
2 (θ1, θ2) = 2(1−cos θ1)(1+cos θ2), F 3

2 (θ1, θ2) = 2(1+cos θ1)(1−cos θ2),

F 4
2 (θ1, θ2) = 4 sin θ1 sin θ2, F 1

3 (θ1, θ2) = 2 sin θ1(1−cos θ2),

F 2
3 (θ1, θ2) = 2(1−cos θ1) sin θ2, F 1

4 (θ1, θ2) = (1−cos θ1)(1−cos θ2).

The averaged intensity PSF for a fluorophore in solution (free to rotate) is then calculated
from Eq. (4.5) by

I =
∑
x,y,z

‹
~E · ~E∗ sin θpdθpdφp =

4π

3

3,3∑
u=1,v=1

|Euv|2, (4.7)

where ~p = sin θp cosφpx̂ + sin θp sinφpŷ + cos θpẑ (non-zero contributions result only from˜
p2
j sin θpdθpdφp=4π/3 where j=x, y, z), Euv is each component of ~E in Eq. (4.5). This is

an incoherent summation of all possible dipole orientations over the 4π solid angle.

Experimental verification

The derived PSF was first numerically calculated at the following parameter setting: λ̄ = 683
nm, objective lens: Olympus 100x, 1.4 NA (oil index: 1.512), tube lens focal length: 150 mm.
As shown in Fig. 4.3, the x- and z-component of the intensity PSF are negligible compared
to the y-component (primary polarization), mainly due to insignificant depolarizations at
the low NA tube lens. The vertically elongated PSF results from a rotationally asymmetric
pupil distribution by the P(90◦) polarizer that selectively chooses the dipole field only for
the vertical and near-vertical dipole orientations whose angular emission across x-axis is
uniform and the strongest (while angularly decays along the y-axis as cos2 θ). This reason
is different from the depolarization during the light focusing that results in an anisotropic
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Figure 4.3: Theoretical intensity PSF (each component and overall) in XY imaging mode
(NA1 =1.4, λ̄=683 nm). The axis unit is µm. Due to the negligible depolarization at the low
NA tube lens, the PSF is governed by the pupil distribution of the Ey field. The vertically
elongated PSF is predicted. FWHMx: 235.6 nm, FWHMy: 330.5 nm.

PSF in Section 2.7. In that case, by putting a QWP or HWP (half wave plate) right before
the focusing lens, the PSF could be manipulated to be isotropic if desired. However, here it
is not the depolarization but the pupil distribution itself that determines the shape of PSF.
Placing such wave-plates still keeps the field distribution at the exit pupil unchanged, thus
yielding the same anisotropic PSF. If a horizontal polarizer is used in Fig. 4.2, the intensity
PSF should be the same but rotated by 90° (due to the geometrical symmetry).

An experimental PSF was measured using 46-nm-diameter dark red fluorescent beads
(F8789, Molecular Probes™) at a peak emission at 683 nm. A drop of 20 µL of a 105x
diluted bead solution in deionized water was dried on an oxygen plasma-etched coverslip.
Then the coverslip was put on a microscope slide glass with 10 µL antifade mounting medium
(Vectashield, H-1000, Vector Laboratories) and shielded by a nail polish. An optical setup
was built with the Olympus UPLSAPO objective (100XO, 1.4 NA), the L2-L3 relay optics
(f = 200 mm, AC254-200-A-ML, Thorlabs), the L5 tube lens (f = 150 mm, AC254-150-
A-ML, Thorlabs), and a visible PBS (CM1-PBS251, Thorlabs). The prepared sample was
excited by a 641 nm laser (OBIS 640LX-40, Coherent) via a quanband dichroic beam splitter
(Di03-R405/488/532/635-t1-25x36, Semrock), and fluorescent signals were filtered by a quad-
band emission filter over 659-748 nm (FF01-446/510/581/703-25, Semrock). The XY image
was captured by a sCMOS camera (pixel: 3.75 µm, CM3-U3-13S2M-CS, Point Grey) and
analyzed in Fig. 4.4.

The experimental PSF well agrees with the theoretical prediction with FWHM errors of
6.0% (x) and 1.3% (y), respectively. The PSF was also measured for reference right after the
L2 lens in Fig. 4.1 where unpolarized fluorescence signals form a circular PSF. The average
FWHM measured there was 291 nm, which is 5.0% larger than the theoretical FWHM. It
appears that there are no noticeable size effects of the beads (20% the FWHMx in size) on
PSF measurement here. From this experiment, it turned out that the vectorial analysis is a
precise method on estimating a PSF of high NA imaging systems. On the other hand, the
paraxial scalar theory, leading to an isotropic FWHM of 251.7 nm, does not predict such an
anisotropic behavior on PSF.
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An image of beads (XY mode)

PSF cross-sections

2 μm

Cross-section

235.6 nm (theory) 330.5 nm (theory)

Figure 4.4: Measurement of PSF using 46 nm fluorescent beads (1.4 NA at λ̄ = 683 nm).
The average FWHMs for 18 beads (pink circles) from Gaussian fittings are 249.8 nm (x) and
334.9 nm (y), which are larger than the theoretical FWHMs by 6.0% and 1.3%, respectively.

4.3 PSF formulation in oblique imaging mode

Now that an effectiveness of the vectorial diffraction theory was experimentally confirmed
in previous section, the same methodology could be applied to the oblique imaging mode
simplified as shown in Fig. 4.5 . The PBS this time is replaced by two linear polarizers: hor-
izontal for forward propagation and vertical for backward propagation. There is an oblique
remote mirror at the OBJ2 space that reflects the beam back to the OBJ2 (dashed blue ray).
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Figure 4.5: A simplified model of oblique imaging mode in obliqueSTORM. All the lenses
are assumed to be aplanatic. The PBS is replaced by two polarizers (one for forward path,
the other for backward path).



CHAPTER 4. SUPER-RESOLUTION OBLIQUE PLANE MICROSCOPY 52

The reflected beam travels backwardly through the L4 tube lens and forms an oblique image
at the dashed pink xy-coordinate. The polar angle between the remote space and the imag-
ing space (in air) is related by n2 sin θ2 = M sin θ4, where M=(f4/fOBJ2)=(n2 sinα2)/ sinα4

is the lateral magnification of the detection microscope (the OBJ2-L4 optics). The total
lateral magnification from the sample to the final image is determined by MO =(n1/n2)M .

Effective pupil function

The effective pupil function in oblique imaging mode is not rotationally symmetric about
the optical axis. In Chapter 3, the pupil function was derived when the object NA and the
remote NA were identical. Here the similar process is applied to derive an effective pupil
function when the remote NA (NA2) is larger than the objective NA (NA1), since a higher
remote NA is preferred to maximize the transmission efficiency, thus enhancing a localization
precision of the STORM.

From Fig. 4.6, the effective pupil in oblique imaging mode would be an areal overlap
between the NA2 spherical cap (dark blue) and the reflected NA1 cap (light blue) by the
remote mirror tilted by α/2. As illustrated, there is an additional pupil area by choos-
ing a higher remote numerical aperture. The line AC equation is given by z + x tanα +
secα

√
1−(NA1/n1)2 = 0 from its slope of tanα and the coordinate of the point A, i.e.,

(xA, zA)=(− tan(α/2)
√

1−(NA1/n1)2,−
√

1−(NA1/n1)2). Plugging this into a unit circle
equation (x2 + z2 = 1) provides the coordinate of point C as

(xC , zC) =

(
NA1

n1

cosα−sinα

√
1−
(NA1

n1

)2

,−NA1

n1

sinα−cosα

√
1−
(NA1

n1

)2
)
. (4.8)
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Figure 4.6: Effective pupil function in oblique imaging mode in the normalized remote space.
A higher remote NA (NA2>NA1) enlarges the effective pupil area determined by an overlap
of the reflected NA1 spherical cap by the tilted remote mirror with the NA2 spherical cap.
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Then the separated pupil functions, for mathematical convenience, are defined as

PΣ1(θ2, φ2) =

{
1, θ2∈ [0, θC ], φ2∈ [0, 2π], and xC>0

0, otherwise
,

PΣ2(θ2, φ2) =

{
1, θ2∈ [θC , θmax] and φ2∈ [φ2,min(θ2), φ2,max(θ2)], and xC<0

0, otherwise
,

(4.9)

where Σ1 is a rotationally symmetric part, Σ2 is an asymmetric part, and (θ2, φ2) is the nor-
malized spherical remote coordinate. At a higher oblique angle where xC<0, the symmetric
Σ1 no longer exists and only PΣ2(θ2, φ2) remains. The pupil boundaries are derived, using
(x, y, z) ≡ (sin θ cosφ,sin θ sinφ,−cos θ), as

θC = cos−1 |zC | = cos−1

∣∣∣∣NA1

n1

sinα +

√
1−

(NA1

n1

)2

cosα

∣∣∣∣,
θmax = sin−1

(NA2

n2

)
,

φ2,min(θ2) = cos−1
( y

sin θ2

)
= cos−1

∣∣∣∣ cotα cot θ2−
√

1−
(NA1

n1

)2

cscα csc θ2

∣∣∣∣,
φ2,max(θ2) = 2π − φ2,min(θ2).

(4.10)

Since a vectorial PSF calculation requires a pupil function at the exit pupil, the bounds
obtained above could be converted to those based on the exit pupil spherical coordinate by
(θ4, φ4) = (sin−1(n2/M sin θ2), φ2), leading to

θ4,C = sin−1

[
n2

M
sin

(
cos−1

∣∣∣∣NA1

n1

sinα +

√
1−

(NA1

n1

)2

cosα

∣∣∣∣)],
θ4,max = sin−1

(NA2

M

)
,

φ4,min(θ4) = cos−1

∣∣∣∣ cotα cot
(

sin−1
(
M
n2

sin θ4

))
−
√

1−
(
NA1

n1

)2

cscα csc
(

sin−1
(
M
n2

sin θ4

))∣∣∣∣,
φ4,max(θ4) = 2π − φ4,min(θ4).

(4.11)

PSF formulation

The polarization ray tracing at the oblique mirror would be challenging, for it involves
a new coordinate rotation to correctly decompose the field incident on the mirror into
p- and s-components. The D(θ) matrix, that works only for an interface normal to the

z-axis, is not applicable to the oblique mirror with a surface normal vector of ~MN =
[−sin(α/2); 0;−cos(α/2)]. Thus, an additional coordinate rotation about the propagation

vector, ~k, has to be operated, of which matrix may be known as the Rodrigues’s rotation
matrix [137] given by

DR(θR) = I + sin θRK + (1−cos θR)K2, (4.12)



CHAPTER 4. SUPER-RESOLUTION OBLIQUE PLANE MICROSCOPY 54

where I denotes an identity matrix, K= [0 −k3 k2; k3 0 −k1; −k2 k1 0] with ~k = (k1, k2, k3),
and θR a rotation angle. The θR can be mathematically derived from the definition of the
inner product between the ~s vector (the direction of the s-component found with tracing
matrices up to the D(θ) applied) and the desired ~sR vector created by the requirements

that ~sR⊥~k and ~sR⊥ ~MN in the Fresnel reflection geometry. Moreover, another Rodrigues’s
rotation has to be applied to return the reflected field to the default Cartesian coordinate
(x, y, z) basis to proceed further polarization ray tracing. This whole process is in principle
possible but mathematically too complicated. This section avoids such an effort with certain
assumptions that do not harm PSF prediction.

The two critical questions to be answered in this section are as follows. First, the oblique
mirror in the remote space distorts the amplitude and phase of the intermediate image due
to the large cone-angle there. Whether this Fresnel reflection over a large range of inci-
dent angles significantly degrades image quality has to be examined. Second, a rotationally
asymmetric pupil function results in anisotropic PSF, while the use of PBS and QWP also
induces another anisotropy in PSF. Whether it is a p- or s-component to be used for the
optimal PSF in the oblique imaging mode needs to be determined.

In order to see the effect of the Fresnel reflection at the remote mirror on imaging quality,
PSF is first formulated for a flat mirror at zero oblique angle (α= 0◦). This situation may
be the worst case because the range of incidence angles to the mirror is maximized. In Fig.
4.5, the field ~E1 contains only the x-component due to the horizontal polarizer, given as

~E1 =

√
1

cos θ1

P(0◦)R−1(π+φ1)L(θr)R(π+φ1)R−1(φ1)L(θr)L(θ1)R(φ1) ~Eo

=

√
1

cos θ1

cos θ1 cos2φ1+sin2φ1 −(1−cos θ1) cosφ1 sinφ1 − sin θ1 cosφ1

0 0 0
0 0 0

 ~p. (4.13)

The generalized Jones matrix for a QWP at an azimuthal angle of 45° is expressed from Eq.
(2.53) as

W(45◦) =
1√
2

1 i 0
i 1 0

0 0
√

2

 . (4.14)

The recollimated ~E3 field after the reflection from the oblique mirror is then calculated as

~E3 =W(45◦)R−1(φ2)L(−θ2)D(π−θ2)RFD(−θ2)R(φ2)R−1(π+φ2)L(θ2)R(π+φ1)W(45◦) ~E1

= 1

2
√

cos θ1

−(rp+rs)(cosφ1+i sinφ1)2(cos θ1 cos2 φ1+sin2 φ1) (rp+rs)(cosφ1+i sinφ1)2(1−cos θ1) cosφ1 sinφ1 (rp+rs)(cosφ1+i sinφ1)2 sin θ1 cosφ1

−i(rp−rs)(cos θ1 cos2 φ1+sin2 φ1) i(rp−rs)(1−cos θ1) cosφ1 sinφ1 i(rp−rs) sin θ1 cosφ1

0 0 0

 ~p,
(4.15)

where θ1 = θ2 (in the remote focusing), φ1 =φ2, and the Fresnel reflection coefficients for a
metallic mirror [120], whose complex refractive index is N=n+iκ, are

rp =
N2 cos θ1−n2

√
N2−n2

2 sin2 θ1

N2 cos θ1+n2

√
N2−n2

2 sin2 θ1

and rs =
n2 cos θ1−

√
N2−n2

2 sin2 θ1

n2 cos θ1+
√
N2−n2

2 sin2 θ1

. (4.16)
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Two things can be noticed here by comparing ~E3 with ~E1. First, for a perfect metallic mirror
where rp+rs=0, the x-component of ~E3 completely vanishes. For a real metallic mirror the
field strength would be very close to zero. This field is blocked anyway by the horizontal
polarizer afterward in the following beam path. Second, after the double passes through
the QWP the initial direction of linear polarization rotates by 90° (changed into vertical
polarization), but its field distribution keeps unchanged up to the additional apodization
factor, −(rp−rs)/2. For a perfect metallic mirror, this factor becomes a constant of -1. The
depolarization by the low NA L4 tube lens is negligible, and thus an anisotropy of PSF is
governed by the pupil distribution. This means that for a perfect metallic mirror with a
circular pupil, the normalized intensity PSF here is exactly the same with the 90°-rotated
intensity PSF in XY imaging mode.

The final field at the exit pupil is given by

~E4 =
√

cos θ4R−1(φ1)L(−θ4)R(φ1)P(90◦) ~E3

=i(rs−rp)
2

√
cos θ4

cos θ1

−(cos θ1 cos2 φ1+sin2 φ)(1−cos θ4) cosφ1 sinφ1 (1−cos θ1)(1−cos θ4) cos2 φ1 sin2 φ1 (1−cos θ4) sin θ1 cos2 φ1 sinφ1

(cos θ1 cos2 φ1+sin2 φ1)(cos θ4 sin2 φ1+cos2 φ1) −(1−cos θ1) cosφ1 sinφ1(cos θ4 sin2 φ1+cos2 φ1) − sin θ1 cosφ1(cos θ4 sin2 φ1+cos2 φ1)
−(cos θ1 cos2 φ1+sin2 φ1) sin θ4 sinφ1 (1−cos θ1) sin θ4 cosφ1 sin2 φ1 sin θ1 sin θ4 cosφ1 sinφ1

 ~p.
(4.17)

It can be found that the final wave vector with the same tracing matrices results in ~k4 =
[− sin θ4 cosφ1;− sin θ4 sinφ1;− cos θ4] as anticipated. Multiplying a converging wave feature

at the exit pupil of e−ikf4
f4

to ~E4, followed by an evaluation of the vectorial Debye integral Eq.

(2.6) with N̂ = [− sin θ4 cosφ1;− sin θ4 sinφ1;− cos θ4] over the circular exit pupil, yields the
amplitude PSF in the cylindrical image coordinate (ρ, φ, z) as

~E =
1

iλ̄

π

4

 A3
2 sin(2φ)+A1

4 sin(4φ) A2
0−A1

4 cos(4φ) −iA2
1 sinφ+iA1

3 sin(3φ)
A1

0−A2
2 cos(2φ)−A1

4 cos(4φ) A1
2 sin(2φ)−A1

4 sin(4φ) iA1
1 cosφ−iA1

3 cos(3φ)
iA4

1 sinφ+iA2
3 sin(3φ) −iA3

1 cosφ−iA2
3 cos(3φ) −A4

2 sin(2φ)

 ~p,
(4.18)

where

Aqp =

ˆ α4

0

√
cos θ4

cos θ1

i(rs−rp)
2

F q
p (θ1, θ4) Jp(kρ sin θ4) e−ik̄z cos θ4 sin θ4 dθ4, (4.19)

where α4 = sin−1
(
NA2

M

)
with

F 1
0 (θ1, θ4) = (1+3 cos θ1+3 cos θ4+cos θ1 cos θ4), F 2

0 (θ1, θ4) = (1−cos θ1)(1−cos θ4),

F 1
1 (θ1, θ4) = 2 sin θ1(3+cos θ4), F 2

1 (θ1, θ4) = 2 sin θ1(1−cos θ4),

F 3
1 (θ1, θ4) = 2(1−cos θ1) sin θ4, F 4

1 (θ1, θ4) = 2(3+cos θ1) sin θ4,

F 1
2 (θ1, θ4) = 2(1−cos θ1)(1+cos θ4), F 2

2 (θ1, θ4) = 4(cos θ1−cos θ4),

F 3
2 (θ1, θ4) = 2(1+cos θ1)(1−cos θ4), F 4

2 (θ1, θ4) = 4 sin θ1 sin θ4,

F 1
3 (θ1, θ4) = 2 sin θ1(1−cos θ4), F 2

3 (θ1, θ4) = 2(1−cos θ1) sin θ4,

F 1
4 (θ1, θ4) = (1−cos θ1)(1−cos θ4).
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The averaged intensity PSF can be calculated by incoherently summing the above intensity
for ~p over the 4π solid angle, Eq. (4.7).

The derived PSF was numerically evaluated to see how critical is to consider the Fresnel
reflection in PSF formulation. The simulation parameters for the optical setup were set
as follows: two identical oil-immersion objective lenses with n = 1.516 at λ̄ = 572 nm (for
two NA cases: 1.40 and 1.49), and the L4 focal length of 200 mm. Three different metals
as potential oblique mirrors were considered: gold (Au) with its complex refractive index of
0.24904+i2.8974, silver (Ag) with 0.14802+i3.3563, and aluminium (Al) with 1.0424+i6.6303
at around 572 nm [138]. As shown in Fig. 4.7, the metallic mirrors slightly stretch the PSF
compared to the perfect mirror case. More stretch occurs along the narrower PSF direction
(y), at the higher NA, and for metals: Au> Ag> Al. The FWHM is a key parameter in

NA 1.4 NA 1.4

NA 1.49 NA 1.49

Figure 4.7: Cross-sections of theoretical PSFs at α=0◦: (top row) 1.4 NA, FWHMx: 275.1,
275.4 (+0.1%), 276.3 (+0.4%), 276.5 nm (+0.5%) for the perfect, Al, Ag, Au mirrors (λ̄=
572 nm), respectively. FWHMy: 196.8, 198.6 (+0.9%), 201.4 (+2.3%), 202.1 nm (+2.7%).
(bottom row) 1.49 NA, FWHMx: 277.8, 278.0 (+0.1%), 278.3 (+0.2%), 279.1 nm (+0.5%),
FWHMy: 180.1, 184.3 (+2.3%), 189.0 (+4.9%), 190.0 nm (+5.5%). The metallic mirror
increases the FWHM to a negligible degree.
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STORM that determines a localization precision. The largest FWHM deviation compared
with the perfect mirror case is at 1.49 NA with a gold mirror by 5.5% (y) and 0.47% (x),
respectively. At 1.4 NA, it is smaller: 2.7% (y) and 0.5% (x) with the Au mirror. These
FWHM increases are still negligibly small and the oblique mirror could be considered as
a perfect mirror. (If such metallic mirrors have any protection coatings or oxidized layers,
their effects need to be investigated.)

Interestingly, while the first minimum of PSFx (highly related to the OTF cutoff frequency
or the pupil size) occurs earlier at 1.49 NA than at 1.40 NA as expected, the FWHMx at 1.49
NA is rather slightly larger. To unravel this more closer examination on pupil distributions
would be necessary.

Another viewpoint of indirectly looking at the influence of the oblique mirror on PSF is
to inspect the added complex apodization term: (rs−rp)/2 (see Fig. 4.8). At α=0◦ this term

may be approximated as the
√

cos θ apodization. The phase change is much smaller than
the conventional diffraction-limited criteria (RMS wavefront error <0.071λ) and thus could
be neglected. If so, it was already found in Chapter 2 that such the apodization minorly
influences on PSF. Moreover, as an oblique angle increases, the average AOI over the pupil
is lowered except at the two corners around θmax (see the AOI maps). Hence, the PSF would
be less affected by this complex amplitude term to a negligible extent.

AOImax = 78.9⁰ AOImax = 74.7⁰

Figure 4.8: Interpretation of the complex amplitude term (rs−rp)/2 added on PSF formu-
lation. (left) the magnitude and relative phase of the term over an incident angle (AOI)
with an Ag mirror (n= 1.516). (right) maximum AOI calculated over oblique angles. The
term may be approximated as a constant for NA<1.40 (AOI< 67.4°) or roughly the

√
cos θ

apodization near 1.49 NA, either of which negligibly changes the mainlobe of PSF.
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Based on these considerations, the actual intensity PSF in oblique mode could be evalu-
ated using the vectorial Debye integral over the oblique pupil, Eq. (4.9), with an approximate
field strength at the exit pupil as Eq. (4.17) with (rs−rp)/2≈−1. This field is correct for a
perfect oblique mirror even when NA2>NA1. Then, of course, the half-cone angle θ1 has to
be replaced by θ2 in the equations. Another case of interest is when the incoming light right
after the L3 lens in Fig. 4.5 is vertically polarized. This can be realized by axially rotating
the PBS by 90°, in the model equivalently being a vertical polarizer for the forward beam
path and a horizontal polarizer for the backward beam path. In that case, the field at the
exit pupil can be approximately found as

~E4 = i

√
cos θ4

cos θ1

(1−cos θ1) cosφ1 sinφ1(cos θ4 cos2 φ1+sin2 φ1) −(cos θ1 sin2 φ1+cos2 φ1)(cos θ4 cos2 φ1+sin2 φ1) sin θ1 sinφ1(cos θ4 cos2 φ1+sin2 φ1)
−(1−cos θ1)(1−cos θ4) cos2 φ1 sin2 φ1 (cos θ1 sin2 φ1+cos2 φ)(1−cos θ4) cosφ1 sinφ1 −(1−cos θ4) sin θ1 cosφ1 sin2 φ1

−(1−cos θ1) sin θ4 cos2 φ1 sinφ1 (cos θ1 sin2 φ1+cos2 φ1) sin θ4 cosφ1 − sin θ1 sin θ4 cosφ1 sinφ1

 ~p.
(4.20)

Alternatively, one could keep the field as Eq. (4.17) while rotating the boundary of φ2(θ2)
by 90° in Eq. (4.9).

The intensity PSF was simulated for the two different directions of input polarization at
the extreme oblique angle of 90° as shown in Fig. 4.9. It was previously found from the XY
mode analysis that the field distribution over a circular aperture for the horizontal input
polarization elongates PSFx. On top of that, in oblique mode the narrower pupil along the

NA1: 1.40, NA2:1.40 NA1: 1.49, NA2:1.49 NA1: 1.40, NA2:1.49

FWHMx: 703.0 nm
FWHMy: 247.6 nm

FWHMx: 674.8 nm
FWHMy: 303.5 nm

FWHMx: 488.2 nm
FWHMy: 204.5 nm

FWHMx: 446.6 nm
FWHMy: 291.5 nm

FWHMx: 635.1 nm
FWHMy: 227.4 nm

FWHMx: 598.2 nm
FWHMy: 299.9 nm

𝛼 = 90° 𝛼 = 90° 𝛼 = 90°

𝛼 = 90° 𝛼 = 90° 𝛼 = 90°

Figure 4.9: Theoretical in-focus intensity PSF in oblique mode (α=90◦) with horizontal or
vertical directions (red arrows) of input polarization (n = 1.516 at λ̄ = 581nm). The axis
unit is µm. Vertical input polarization helps to relax the anisotropy of the PSF.
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FWHMx: 304.6 nm
FWHMy: 208.3 nm

FWHMx: 247.4 nm
FWHMy: 280.8 nm

FWHMx: 359.8 nm
FWHMy: 216.4 nm

FWHMx: 312.4 nm
FWHMy: 284.4 nm

FWHMx: 472.7 nm
FWHMy: 228.1 nm

FWHMx: 432.8 nm
FWHMy: 291.1 nm

𝛼 = 30° 𝛼 = 50° 𝛼 = 70°

𝛼 = 30° 𝛼 = 50° 𝛼 = 70°

Figure 4.10: Theoretical in-focus intensity PSF at different oblique angles with horizontal
and vertical directions of input polarization (NA1=NA2=1.40 with n=1.516 at λ̄=581 nm).
The axis unit is µm. Overall, a less elliptical PSF results with vertical input polarization.

horizontal direction due to the pupil loss even further stretches the resulting PSF (top row).
The double stretches could be avoided by applying vertical input polarization. The bottom
row in Fig. 4.9 shows such a situation. At α=90◦, however, the FWHMx is enhanced only by
less than 10% at the expense of FWHMy degradation more than 20%. Thus horizontal input
polarization may still be better considering the localization precision that results in STORM.
At other smaller oblique angles, vertical input polarization certainly improves the ellipticity
of PSF (see Fig. 4.10). At α= 30◦, the PSF elongation along x direction due to the pupil
loss occurs in a less degree than its vertical stretch due to the pupil distribution from vertical
input polarization. At α= 50◦, the pupil loss slightly exceeds the pupil distribution effects,
resulting in the horizontally stretched PSF. A ratio of FWHMy to FWHMx is calculated in
Fig. 4.11. As discussed in Chapter 3, the major and minor pupil loss occurs along the x and
y direction respectively, and thus the change in the FWHMx is more sensitive to the oblique
angle. With the vertically polarized input wave, the initial FWHMy at α=0◦ starts at above
the FWHMx. Thus a balanced oblique angle where the PSF becomes isotropic exists: 42° at
1.4 NA and 60° at 1.49 NA.

It is concluded that the layout of the PBS in Fig. 4.1 which affects the PSF’s anisotropy
in oblique imaging mode needs to be carefully designed. In general microscopy applications
where an isotropic resolution is preferred, the s-polarized (vertical) input wave should be
configured perpendicular to the narrower pupil direction caused by the oblique mirror.
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NA1: 1.4, NA2: 1.4 NA1: 1.49, NA2: 1.49

Figure 4.11: A FWHMy/FWHMx ratio over oblique angles with vertical input polarization
(n=1.516 at λ̄=581 nm). An isotropic PSF occurs at 42° (1.4 NA) and 60° (1.49 NA).

4.4 Analysis on super-resolution

Spatial resolution in localization microscopy is determined by both a labeling density and
a localization precision. If a sample has enough dye molecules labeled above the Nyquist
sampling criteria (at least 2x denser labeling than the required resolution, for example, >104

dyes/µm2 for 20 nm resolution), then the resolution is mainly related with the 2D localization
precision (σ) approximately given [139] by

σ ≈

√
σPSF2

NP

+
p2/12

NP

+
8πσ4

PSFσ
2
bg

p2N2
P

, (4.21)

where σPSF denotes typically the size (1σ) of PSF, NP the number of photons collected, p the
size of the sampling pixel (p<σPSF), σbg background noise. The three terms inside the root
consider shot noise, pixelation noise, and background noise, respectively. Or simply the shot-
noise limited precision is widely used as a quick estimate: σ≥σPSF/

√
NP [140]. The FWHM-

based localization precision is often considered as STORM resolution: FWHM=2
√

2 ln(2)σ
for a Gaussian PSF.

For more practical estimation of resolution in obliqueSTORM, not only σPSF and NP but
also an empirical constant that connects the simplified inequality above would be necessary.
For this purpose, three representative STORM studies [134, 141, 142] were referenced. On
average, the lateral localization precision of around 8.5 nm was reported with the average
5200 photons/switching over typically 40-50 ms dwell time. In their experimental condition
(1.4 NA with Alexa Fluor 647 dyes, λ̄ ≈ 671nm), theoretically σPSF ≈ 115nm. This may
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Figure 4.12: Overall transmission in obliqueSTORM at different objective NA (noil =1.516,
nwater =1.333 at λ̄=581nm). For comparison, conventional STORM shows typically η=10%.

lead to an approximate empirical relation: σ = C ·σPSF/
√
NP with C=5.33 for organic dye

molecules. Typical overall transmission of these systems is around 10% (1.4 NA) from the
multiplication of a spatial efficiency (objective’s solid angle and each optical component’s
transmission) and a spectral efficiency (pass bands of emission filters and the EMCCD’s
quantum yield) (the detailed calculation is excluded here). The efficiency in obliqueSTORM
is lower than the conventional STORM setup due to the use of additional remote objective
lens (usually 85% per pass) and its pupil loss as well as the PBS loss (50%). Taking these
and other minor transmission losses into account, the overall efficiency is roughly estimated
as shown in Fig. 4.12. If a relative transmission value of the pupil loss is considered ge-
ometrically compared with the circular pupil (α = 0◦) area, it decreases from 1 (α = 0◦)
to 0.269 (α = 90◦) with almost a linear slope of -0.008154/α. Compared with the typical
STORM efficiency of 10%, the proposed method shows approximately 3-10x lower efficiency
depending on the oblique angle.

The resolution of obliqueSTORM is finally estimated for both an oil-immersion system
(Fig. 4.13) and a water-immersion system (Fig. 4.14). The PSF was calculated at the
preferred system geometry about polarization (concluded in the previous section) at a wave-
length of 581 nm (which is an average emission wavelength of Cy3B organic dyes.) The same
5200 reference photon counts at 10% efficiency was used here for Cy3B dyes whose photon
yields could be adjusted to the similar level by controlling illumination density [143]. For the
oil immersion system, the resolution is superior thanks to the smaller PSF from the higher
immersion index. At α=42◦, isotropic sub-50-nm resolution (46 nm) with a widely used 1.4
NA objective is attainable. It was reported that 3.5x more photons can be easily extracted
with the conventional STORM buffer with the cyclooctatetraene (COT) added in organic
dyes thanks to the direct quenching mechanism [144]. If used, sub-25-nm resolution at 42°
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Figure 4.13: Predicted resolution of oil-immersion obliqueSTORM (xo: oblique axis (horizon-
tal), y: vertical axis) over oblique angles. The PSF was evaluated at λ̄=581 nm. Improved
resolution curves with 3.5x more photons are also estimated.

Figure 4.14: Predicted resolution of water-immersion obliqueSTORM (xo: oblique axis (hor-
izontal), y: vertical axis) over oblique angles. The PSF was evaluated at λ̄ = 581 nm.
Improved resolution curves with 3.5x more photons are also estimated.

and sub-100-nm resolution over all possible oblique angles would be possible. At 1.49 NA
(which is less practical), an isotropic resolution of 42 nm (or 23 nm with COT) is predicted
at α = 61◦. A reduced oblique angle to 42° lowers resolution to 38 nm (or 20 nm with
COT). Since a maximum oblique angle for lightsheet illumination is limited by the objective
NA, an available oblique angle should be larger than 24° (11°) at 1.40 NA (1.49 NA). The
actual operating angle may depend on many requirements such as resolution, penetration
depth, sample orientation, etc. In general lower oblique angles offer better resolution but
less penetration depth. For the resolution point of view an operating angle smaller than
45° may be preferred, while for larger penetration depth an oblique angle larger than 45° is
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recommended. Given that the number of pixels available in EMCCD is finite (typically 1000
pixels for each dimension) and the best pixel size [139] is about equal to σPSF = 122 nm at
1.4 NA (α=45◦), penetration depth would be more or less 86 µm along the axial direction.
In a subpixel readout (in practice), penetration depth could still be maintained by keeping
the whole pixels on along that direction.

For biological samples, water immersion system could be used with an isotropic resolution
of 55 nm (or 29 nm with COT) at α = 38◦ with 1.2 NA. The 1.2 NA is widely used and
sub-100-nm resolution with COT would be achievable. The 1.25 NA is also available, which
slightly enhances resolution to 50 nm (or 27 nm with COT). A larger PSF in water immersion
system may allow larger spatial sampling resolution and thus further extend penetration
depth by around 10%.

If only one oblique angle has to be chosen in obliqueSTORM, the best angle would be
around 42° which gives an isotropic resolution between oil and water immersion systems if
switched back and forth.

4.5 Penetration depth in obliqueSTORM

In previous section, penetration depth in the aspect of a camera’s field of view was around 80
µm. However, actual working depth would be limited by the residual aberration associated
with the remote focusing. As was done in Section 3.5, the working range in obliqueSTORM
is similarly investigated here.

The vectorial Strehl ratio in fluorescence imaging (with a freely rotating dipole point
source) would have a sightly different form from Eq. (3.15). In fact, for the suggested
PBS/QWP layout, the electric field (or axial response) at the remote space along the optical
axis at α=0◦ can be derived as

~E(z1; z2) =
π

iλ̄4
√

2

ˆ
α2

o

−i(1−cos θ)2 i(1+6 cos θ+cos2 θ) 0
i(1−cos θ)2 (3+2 cos θ+3 cos2 θ) 0

0 0 −4 sin2 θ

~p
× eik̄(W (θ;z1,z2)+n2z2 cos θ) sin θ dθdφ,

(4.22)

where α2 = sin−1(NA2/n2) and W (θ; z1, z2) denotes the aberration function in the remote
focusing given in Eq. (3.12). If the polarizer/QWP is replaced by a nonpolarizing beam
splitter, the axial response is calculated as

~E(z1; z2) =
π

iλ̄

ˆ
α2

o

1+cos2 θ 0 0
0 1+cos2 θ 0
0 0 −2 sin2 θ

~p eik̄(W (θ;z1,z2)+n2z2 cos θ) sin θ dθdφ.

(4.23)
The normalized intensity axial response for fluorophores free to rotate is obtained by

∑
uv |Euv|2,

Eq. (4.7), normalized by the maximum intensity when z1 = z2 = 0. Considering the Strehl
ratio primarily governed by the exponential term in the above equations rather than the
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Figure 4.15: Simulation of Strehl ratio and diffraction defocus in obliqueSTORM at α=0◦.
Objective NA: 1.4 (f=1.8 mm, n=1.516 at λ̄=572 nm).

apodization matrix, the two different derivations would result in very similar behavior, even
similar with the scalar Debye Strehl ratio in Eq. (refeqn:ScalarDebyeStrehlRatio). In fact,
as calculated in Fig. 4.15 for 1.4 NA (oil immersion), they all produce almost the same
Strehl ratio and diffraction defocus within a few % tolerance, except the paraxial Strehl ra-
tio. Based on the diffraction-limit cutoff (S=0.81), an axial working range is predicted to be
84 µm which is as deep as the maximum available FOV estimated in previous section. There
occurs a diffraction defocus of a few microns which would need to be compensated during
post processing of localization data. Penetration depth in a water-immersion system would
be deeper thanks to less residual aberration in Eq. (3.13) as water-immersion objectives
typically have smaller numerical aperture and longer focal length.

In order to experimentally verify working range, on top of the optical setup described in
Section 4.2 for PSF measurement in XY mode, additional optical components were aligned
to have a complete configuration of the oblique imaging mode: another Olympus UPLSAPO
objective (100XO, 1.4 NA) in the remote space, a protected Ag remote mirror (PF10-03-P01,
Thorlabs) at α = 0, L4 tube lens (AC254-200-A-ML), achromatic QWP (AQWP05M-600,
Thorlabs). The 200-nm-diameter orange fluorescent beads (F8809, Molecular Probes™) were
prepared with the similar steps detailed in Section 4.2 with a 300x dilution. An average
emission wavelength was 572 nm based on the spectra of the bead fluorescence and the
emission filter used. A solid state green laser (532 nm) was added for sample excitation.

To measure Strehl ratio and diffraction defocus, a PZT (piezoelectric transducer) actuator
on the sample stage (z1 axis) was stepped by 10 µm through focus and another PZT actuator
on the remote mirror (z2 axis) was tuned to yield the best (well focused) PSF seen by an
oblique mode camera (Luca R, Andor). The bead images were recorded at each stepping
and post processed to obtain an experimental Strehl ratio as obtained in Fig. 4.16. The data
from the six beads were used to extract Strehl ratio. The fluorescence signal was faded away
as the measurement goes on, and thus the peak intensity of each bead was normalized by
its beam power (estimated from 2D Gaussian beam fittings). Experimental working depth
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Figure 4.16: Measurement of Strehl ratio and z1−z2 relation in oblique imaging mode (α=0◦)
using 200-nm-diameter orange fluorescent beads. For the beads located at different z1, the
position of the remote mirror (z2) was tuned to find the best PSF as shown in the top three
bead images. The experimental Strehl ratio and the coordinate relation corroborate the
theory. Working depth is found to be around 80 µm.

turned out to be around 80 µm which agrees well with the theoretical prediction. The stretch
of the z2 coordinate due to the diffraction defocus also greatly follows the theory.

At higher oblique angles, it is expected that working depth would be at least maintained
or even extended due to the reduced pupil area, i.e., smaller RMS wavefront error, of which
argument may still need experimental confirmation. Throughout this section, any non-
ideal effects of samples (scattering and autofluorescence, etc) that may potentially further
limit actual penetration depth have not been included. These would also need experimental
validation.

4.6 Preliminary super-resolution experiment

Experimental setup of obliqueSTORM

Figure 4.17 shows an experimental setup of obliqueSTORM on an anti-vibration table. The
typical up-right or inverted microscope configuration was avoided to minimize mechanical
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Figure 4.17: Experimental setup of obliqueSTORM. A pair of cylinder lenses that can be
mounted on the magnetic base is not shown here. The PBS was placed to direct the s-
polarized light (XY mode) downward to the table and the p-polarized light upward (oblique
mode). The inset shows photos of a knife edge prism mirror for α=90◦. The whole setup is
closed by an optical enclosure (not fully shown) excluding laser heads and EMCCD cameras.

vibrations and drifts.
There are several important considerations needed to build obliqueSTORM. The flatness

of the dichroic beam splitter (DBS) and its thickness can be critical. For a quality lightsheet
profile (diffraction-limited performance), the DBS’s flatness should be at least better than 1/2
wave P-V per inch. The remote focusing involves non-collimated beams passing through the
DBS and thus its thickness should be as thin as possible to minimize undesirable aberrations
induced. A marginal thickness was estimated around 1 mm according to geometrical ray
tracing in ZEMAX software. Many commercial DBS has very good flatness (<λ/10) at 3 mm
thickness, but this would be unsatisfactory. A 1-mm thickness DBS should be chosen with
as good flatness as available. A thickness of another DBS in the laser source side (collimated
beams) can be thick as long as its flatness is satisfactory. Also, typical STORM setups
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introduce a single mode (or multi-mode) fiber to combine multiple laser sources which then
no longer requires optical alignment color by color. In obliqueSTORM, this schematic may
not be practically a good idea if multiple lasers are to be simultaneously used for illumination.
Unless the whole illumination optics are super-achromatized, a lightsheet alignment done at
one wavelength would not remain as good in other wavelengths. Thus coupling lasers in free
space is recommended. Each laser may have a beam expander to individually tune thickness
and focus of lightsheet illumination as desired. Moreover, objective lenses should be carefully
chosen. These days many objective lenses are designed with infinity corrections yet still
partly rely on a particular tube lens for LCA (lateral chromatic aberration) correction. Thus
the internally corrected objective lenses (for example, Olympus) are required to guarantee
performance of remote focusing. Besides, for minimal image drifts, the mechanical stages
for a sample and the remote mirror should be carefully chosen, especially if real-time drift
compensation is not available. A commercial stainless steel, precision XYZ positioning stage
(562-XYZ, Newport Corporation) showed a drift of less than 20 nm for 10 minutes in all
dimensions.

Super-resolution test using SiO2 nanowire

To test STORM, monodispersed silicone nanowires (diameter: 40 nm) were oxidized in a fur-
nace (in air) at 800°C for two hours for transparency (also to ensure that wire surfaces have
-OH). The oxidized nanowires were then aminosilanated by 3-Aminopropyltriethoxysilane
(APTS, 440140, Sigma-Aldrich), followed by labeling with Alexa Fluor 647 NHS ester
(A20006, Molecular Probes™) dissolved in DMSO (D12345, Molecular Probes™). A simple
STORM buffer (Vectashield, H-1000, Vector Laboratories) [145] was utilized as a mounting
medium. The prepared sample was excited by the 641 nm laser alone at an illumination den-
sity at around 2 kW/cm2 and fluorescence signals were captured by the Olympus UPLSAPO
objective (100XO, 1.4 NA) with two bandpass emission filters (FF01-446/510/581/703-25,
Semrock). STORM video were recorded at 20 Hz (frame transfer mode) by an EMCCD
camera (Luca R, Andor), and then processed with home-built MATLAB codes for both lo-
calization and image reconstruction. Figure 4.18 shows a fluorescence image of a nanowire
at lower illumination intensity (<0.1 kW/cm2) and its super-resolution image reconstructed.
The diameter of the nanowire was measured to be 50-60 nm in STORM. This would be a
correct dimension due to the increased diameter after the oxidization step of the 40 nm Si
nanowires.

Future work

The fundamental analysis necessary to design and build obliqueSTORM and corresponding
experimental corroboration were conducted in this chapter. A whole cycle of super-resolution
imaging from sample preparation, optical setup to data processing was learned. Using the
optical setup, more experimental characterization on the super-resolution over oblique angles
is required at both oil-immersion and water-immersion systems. More assessment on the me-
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Figure 4.18: Super-resolution test with Si nanowire (40 nm diameter before oxidization)
labeled with Alexa Fluor 647. (left) conventional fluorescence image (right) super-resolution
image reconstructed in STORM.

chanical drifts of the system would be prerequisite and if necessary proper drift compensation
means would have to be implemented prior to an actual use of the setup for super-resolution
imaging. A demonstration of deep-tissue super-resolution imaging would complete the feasi-
bility study of the proposed method. Then this tool could be used to answer any interesting
biological questions at the whole cell or tissue level.
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Chapter 5

Nonparaxial DPC Microscopy

Since the invention of phase contrast optical microscopy by Zernike [63], phase contrast
imaging techniques have been revolutionized. Among many approaches developed so far,
differential phase contrast (DPC) imaging may be the simplest method which was first pro-
posed in scanning transmission electron microscopy in 1974 [146]. A decade later, optical
DPC microscopy was proposed in scanning microscopy with a split detector, which relates
phase gradients of a sample to differential intensity [147, 148]. The X-Ray DPC microscopy
was proposed in 1897 [149]. Electron DPC microscopy has been advanced towards atomic
resolution capability for studies on materials and biological molecules [150]. For optical
DPC microscopy, other DPC formats were proposed such as asymmetric illumination con-
trast [151], tomographic DPC for 3D imaging [152] and wide-field DPC [153]. These days,
conventional microscope illumination sources are being replaced by LED sources, or by an
LED array with coded illumination capability. The latter enabled many emerging computa-
tional imaging techniques [154, 155].

Optical DPC microscopy could be the best candidate for live biological samples, but the
existing paraxial DPC image formation theory only covers a lower NA regime. For high
resolution DPC microscopy, however, a more advanced DPC imaging theory is necessary for
accurate phase retrieval but has not been studied. Motivated by such a situation, this chap-
ter develops nonparaxial scalar DPC theory for high resolution quantitative phase imaging.
More specifically, the transmission cross-coefficient (TCC) that is used for phase reconstruc-
tion of samples is derived for the high NA DPC system. The formulation considers the
apodization in the high NA objective lens, nonparaxial light propagation, and varied layouts
of LED array sources with different angular distributions. The nonparaxial TCC derived was
numerically compared with the conventional paraxial TCC to investigate major differences.
Two possible simplifications of the nonparaxial TCC for practical use in high NA DPC image
formation are introduced. Challenges associated with developing a vectorial DPC imaging
theory are briefly explained. Also, the experimental verification of the proposed nonparaxial
DPC theory as future work is discussed.
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5.1 Wide-field DPC system

Schematic of direct DPC microscopy

A wide-field DPC system with a split source is considered as illustrated in Fig. 5.1. The
split source may be implemented by a programmable LED array [154]. The existing paraxial
DPC theory was derived from the Type 1 scanning DPC system [147], which is a reciprocal
equivalent of the wide-field DPC system due to the reciprocity theory of Helmholtz [153].
Similarly, here nonparaxial theory is formulated for the scanning DPC imaging (whose beam
path is from left to right) in Fig. 5.1 without losing generality. For the split source/detector,
both planar and spherical surfaces are taken into account.

Point detector array

𝑡(𝑥, 𝑦)𝑃(𝜉, 𝜂) 𝑃𝑑(𝑥𝑑 , 𝑦𝑑)
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(Point source array)
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planar 
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+
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Figure 5.1: Schematic of a wide-field DPC imaging system from a split source to a point de-
tector array (right-to-left). Its reciprocal equivalent is a scanning DPC system from a point
source to a split detector (left-to-right). Phase gradients in a sample yields differential inten-
sity. The split source/detector geometry may be planar or spherical. Pupils for an objective
lens and the split source/detector are denoted as P (ξ, η) and Pd(xd, yd), respectively.

In scanning DPC microscopy, an on-axis point source is illuminated on a sample in
scanning motion. While the field passes through the sample, it redirects the propagation
direction upon the sample’s local phase gradient. The split detector senses this laterally
shifted field in a differential way for all scanning positions sequentially. Thus a phase gradient
of the sample is directly related to the differential intensity in DPC microscopy. The wide-
field DPC microscopy works exactly in the reverse way. Each pixel in the point detector array
(typically 2D image sensors) senses differential intensity at its conjugated sample location,
enabling a direct 2D DPC imaging without scanning.

High NA point spread function

A proper model of the point spread function (PSF), h(x, y) from the point source array to
the sample plane in Fig. 5.1 is prerequisite to formulate a DPC imaging equation. This
PSF model is obtained by considering light propagation from an on-axis point source to
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the tube lens and the objective lens in order. Assuming an “isotropic” quasimonochromatic
point source collimated by a low NA tube lens (typically NAtube <0.03), the field amplitude
incident to the objective lens would still be almost uniform across the aperture. This assump-
tion conversely means that each pixel of the detector, such as CCD/CMOS cameras, has a
uniform angular sensitivity over a few degrees, which is generally true. The field near the
geometrical focus of the aplanatic objective lens may be given by the scalar Debye integral
(valid at the Fresnel number NF�1) as

E(~x) = − ik
2π

‹
Σ

√
cos θ P (θ, φ) eikN̂ ·~x sin θ dθdφ, (5.1)

where P (θ, φ) is a uniform spherical pupil of the objective lens and N̂ is a surface normal
unit vector to the pupil surface pointing to the geometrical focus. Transforming the inte-
gral geometry from the spherical coordinate to a Cartesian pupil coordinate, Eq. (5.1) is
converted to

E(~x) = − ik

2πf 2
o

‹
Σ

(
1− ξ2 + η2

f 2
o

)− 1
4

P (ξ, η) e−
ik
fo

(
ξx+ηy−

√
f2
o−ξ2−η2z

)
dξdη, (5.2)

where fo denotes the focal length of the objective lens. Hence, the field at focus (z= 0) is
calculated simply by a 2D Fourier transform of an effective pupil function, if the prefactor
is neglected, defined as

Peff (ξ, η) =

(
1− ξ2 + η2

f 2
o

)− 1
4

P (ξ, η), (5.3)

where P (ξ, η) denotes a conventional paraxial pupil function that is a circular function.
The effective pupil function includes the apodization factor transformed to the Cartesian
coordinate, which has a stronger pupil weighting at the rim of the pupil.

Nonparaxial light propagation

As a high NA objective lens is considered here, the light propagation thereafter from the
sample to the detector should be treated nonparaxially. Here a Debye-like approximation is
made for two different detector geometries: planar vs. spherical as shown in Fig. 5.1.

For a planar detector, as the sample-to-detector distance (d as a constant) is much larger
than the wavelength, the scalar field at the detector, E(~xd), could be given by the first
Rayleigh-Sommerfeld diffraction integral, Eq. (2.8), as

E(~xd) = − ik
2π

‹
ΣS

E(~x)
eikR

R
N̂ ·R̂ d2~x, (5.4)

where E(~x) denotes the field right after the sample defined over a planar diffraction geometry
ΣS, N̂ = ~z the surface normal vector, and R=

√
d2+(xd−x)2+(yd−y)2 a distance from a

sample position to a detector position.
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Then, assuming a much smaller sample than either the split detector dimension or the
sample-to-detector distance (in other words, ~x is very close to the origin similar to the

Debye approximation), ~R could be approximated as ~R = ~xd − ~x ≈ ~M(Rd−M̂ ·~x) where
~M = (xd/Rd, yd/Rd, d/Rd) is a unit vector from the origin to a detector point with Rd =√
d2 + x2

d + y2
d. Alternatively, as the assumption implies R2

d�2(xxd + yyd), the same result
follows simply from the first-order Taylor series approximation of R, i.e., R ≈ Rd−(xdx+

ydy)/Rd. Additional approximations, 1/R≈1/Rd and N̂ ·R̂ ≈ ~z· ~M = d/Rd, reduce Eq. (5.4)
to

E(~xd) = − ik
2π

eikRd

Rd

d

Rd

‹
ΣS

E(~x) e−ikM̂ ·~x d2~x. (5.5)

Both the inverse square law (1/Rd) and the inclination factor (d/Rd) in the Fresnel-Huygens
principle are properly reflected in the nonparaxial approximations made above. Compara-
tively, there are neglected in the classical paraxial approximation where R ≈ d+ [(xd−x)2 +
(yd−y)2]/(2d2), 1/R ≈ 1/d, and N̂ ·R̂ ≈ 1.

For a spherical detector whose radius is rd, the similar argument could be made. For
a smaller sample (or ~x is very close to the origin), ~R = ~xd−~x ≈ M̂(rd− M̂ · ~x) where
M̂ = (sin θd cosφd, sin θd sinφd, cos θd). Since N̂ ·R̂ ≈ ~z ·M̂ = cos θd, the field arriving at the
spherical observation surface is calculated by

E(rd, θd, φd) = − ik
2π

eikrd

rd
cos θd

‹
ΣS

E(~x) e−ikM̂ ·~x d2~x. (5.6)

The inverse square law vanishes here as the spherical detector maintains almost the equal
propagation length. The inclination factor still remains.

LED array source modeling

The LED (light-emitting diode) has an angular emission pattern depending mainly on a
shape of the lens encompassing the LED chip. Typically a spherical lens yields an isotropic
distribution while a planar lens does a Lambertian pattern. As illustrated in Fig. 5.2, such
an emission distribution of the LED source may be modeled as

I(θ, g) = IS cos g θ, (5.7)

where θ represents a polar angle and g determines a type of source. In the schematic of the
DPC imaging system under consideration, the g factor could be important in a planar LED
array source as all the laterally displaced LEDs illuminate a sample’s position with different
angular strength. If the system includes a condenser optics thanks to an availability of much
more compact LED arrays than now, then the condenser’s apodization function would be
much more influential than the LED’s angular radiation spectrum. On the other hand, a
spherical LED array would not be affected by the g factor, because all the LEDs point to
the origin in the sample with equal intensity.
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Figure 5.2: Angular radiation patterns of LED sources modeled as I(θ, g) = cos g θ. Isotropic
(g = 0), Lambertian (g = 1).

In addition, each LED could be modeled as a quasi-monochromatic point source, and
there would be no spatial coherence between any two LEDs, which means an incoherent
point array source.

As a reciprocal detector point of view in the scanning DPC system, similar to the g factor
in an LED source, an equivalent g factor that explains angular detection sensitivity could
be introduced.

5.2 Nonparaxial DPC image formation with a planar

detector

DPC imaging equation

For a scanning position (xs, ys) of a thin sample at focus (z = 0) of which transmittance is
denoted as t(x, y), the electric field right after the sample is h(x, y)t(xs−x, ys−y). Then the
nonparaxial diffraction formula, Eq. (5.5), provides the field in the flat detector as

E(xd, yd) = − ik
2π

deikRd

R2
d

‹
ΣS

h(x, y)t(xs−x, ys−y) e
− ik
Rd

(xdx+ydy)
dxdy (5.8)

Taking the LED’s angular emission model, Eq. (5.7), into account, detector sensitivity
may be expressed as

D(xd, yd) =

∣∣∣∣( d

Rd

)g
2
Pd(xd, yd)

∣∣∣∣2, (5.9)

where Pd(xd, yd) denotes a detector pupil function (or geometry). In DPC imaging, |Pd(xd, yd)|2
is practically a uniform, circular function weighted by a sign function, such as sgn(x) or
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sgn(y), for differential detection. Its diameter is often set by a desired partial coherence
factor (σ) typically to one or above. For an LED array, a two-dimensional Dirac comb func-
tion,

∑
j δ2D(~xd−~xj) with each LED located at ~xj, could be multiplied to consider a discrete

detection nature of the array.
If the detector is perfectly incoherent (practically true for the LED array), the total

detected intensity for a sample location (xs, ys) is calculated as

I(xs, ys) =

‹ ∣∣E(xd, yd)
∣∣2D(xd, yd) dxddyd. (5.10)

In order to derive a transmission cross-coefficient (TCC) described in spatial frequency
domain, one may introduce the Fourier representation of the sample and the PSF respectively
as

t(~x)=

¨
T (~f) ei2π

~f ·~x d2 ~f, h(~x)=
1

iλf 2
o

¨
Peff (~ξ) e−i

2π
λfo

~ξ·~x d2~ξ, (5.11)

where ~x=(x, y), ~f=(fx, fy), and ~ξ=(ξ, η) for compactness. Substituting these two equations
to Eq. (5.10) with further mathematical manipulation leads to a DPC intensity equation
expressed as

I(~xs)=

˘
C(~f1; ~f2)T (~f1)T ∗(~f2) ei2π(~f1−~f2)·~xs d2~f1 d

2~f2, (5.12)

where C(~f1; ~f2) is the four-dimensional TCC (or transfer function) derived as

C(~f1; ~f2)=

‹
d2

R4
d

( d

Rd

)g∣∣∣Pd(~xd)∣∣∣2 Peff

(
− fo
Rd

~xd−λfo ~f1

)
P ∗eff

(
− fo
Rd

~xd−λfo ~f2

)
d2~xd, (5.13)

where Rd=
√
d2+|~xd|2 and the effective pupil function of the objective lens is given by Eq.

(5.3). In wide-field DPC imaging, the scanning position ~xs is simply replaced by the object
coordinate ~x.

Thus, the DPC intensity is determined by a 4D bilinear partially coherent process. Com-
pared to the paraxial TCC governed only by pupils of the objective and the detector, the

nonparaxial TCC includes three additional factors. These are
(
1−|~xd/Rd+λ~f |2

)−1/4
, which

is the apodization factor in high NA aplanatic objective, d2/R4
d, which comes from non-

paraxial wave propagation from the sample to the detector, where the inverse square law of
intensity and the inclination factor in light diffraction are no longer negligible, and (d/Rd)

g,
which is due to the angular dependence of detector responses as modeled.

Normalizing the pupils and spatial frequencies in the TCC

It is often convenient to have TCC defined in a normalized pupil as ~ξ′ = ~ξ/a (where a is a

pupil radius) and a normalized spatial frequency as ~m = ~f/
(
NA
λ

)
. To do so, one may relate

the detector coordinate to the objective pupil coordinate by

~xd
Rd

=
a

fo
~ξ′. (5.14)
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The Jacobian, J(~ξ′), associated with such a change of variables (or a coordinate transforma-
tion) is a2R4

d/(f
2
o d

2), thereby

δ2~xd =
( a
fo

)2R4
d

d2
δ2~ξ′. (5.15)

Also, plugging Eq. (5.14) to Rd =
√
d2 + |~xd|2 yields R−1

d = d−1

√
1−(a/fo)2|~ξ′|2, where

a/fo=NA for an aplanatic objective lens. From all of these relations, one could convert Eq.
(5.13), as a 2D integral over the normalized objective pupil coordinate, to

C(~m1; ~m2) = NA2

‹ (
1−NA2|~ξ′|2

)g
2
∣∣∣Pd(~xd(~ξ′))∣∣∣2×

Peff

(
−a(~ξ′ + ~m1)

)
P ∗eff

(
−a(~ξ′ + ~m2)

)
d2~ξ′,

(5.16)

where ~xd(~ξ
′) = ~ξ′NAd/

√
1−NA2|~ξ′|2. The split detector can be assumed to be circular for

a practical reason with a radius of b. The partial coherent factor, a detection NA divided
by an objective NA, could then be defined as σ = (b/

√
d2 + b2)/NA. One can show that

|~xd| = b 7−→ |~ξ′| = σ, implying that the circular detector boundary (radius b) in the ~xd
coordinate is mapped into a circular boundary (radius σ) in the transformed ~ξ′ coordinate.

Also, as
∣∣Pd(~xd)∣∣2 is a sign function (two semicircles with 1 and -1), the mapped

∣∣Pd(~ξ′)∣∣2
is also the same sign function. Hence, it may be simplified as∣∣∣Pd(~xd(~ξ′))∣∣∣2 ≡ ∣∣∣Pd( ~ξ′NAd√

1−NA2|~ξ′|2

)∣∣∣2 =
∣∣∣Pd( b

σ
~ξ′
)∣∣∣2. (5.17)

For the rotationally symmetric objective pupil, i.e., P (~ξ′)=P (−~ξ′), the TCC has a form of

C(~m1; ~m2) = NA2

‹ (
1−NA2|~ξ′|2

)g
2
∣∣∣Pd,n(~ξ′

σ

)∣∣∣2Peff,n(~ξ′ + ~m1)P ∗eff,n(~ξ′ + ~m2) d2~ξ′, (5.18)

where the subscript of ‘,n’ in each pupil function means the normalized pupil to the unit
circle. As discussed in Section 2.3, the TCC is geometrically an overlap of three pupils. Unlike
the paraxial TCC constructed from uniform pupils, the nonparaxial TCC is from weighted

pupils. The sensitivity of the detector pupil radially decreases due to
(
1−NA2|~ξ′|2

)g/2
, while

the objective pupil has a radially increasing weighting as
(
1−NA2|~ξ′|2

)−1/4
. As expected,

the derived TCC shows a dependence on NA, and converges to the paraxial TCC when NA
approaches to zero (if the prefactor of NA2 is neglected). Strictly speaking, the paraxial
TCC referred here was derived from other DPC imaging schematic comprising a collector
lens between the sample and the detector (or reciprocally a condenser lens between the source
and the sample) [156]. This collector lens cancels out a quadratic phase term from the Fresnel
diffraction integral in the sample plane, thus yielding the paraxial TCC as such. However,
as the quadratic phase term can be neglected over smaller FOV near the optical aixs, the
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identical paraxial TCC could still be used in the current DPC schematic for comparison. If an
isotropic detector (g=0) is used, or reciprocally an isotropic LED source in wide-field DPC
imaging, no detector weighting results. The TCC represented in the normalized objective
pupil coordinate from Eq. (5.14) does not explicitly show the contribution of nonparaxial
wave propagation.

In DPC imaging, C(~0;~0)=0 due to its differential nature, and thus it is not clear at which
spatial frequency to normalize the TCC. Alternatively, a bright-field TCC value at the zero
spatial frequency, CBF(~0;~0) with uniform detector sensitivity (not differential), could be used
to obtain the normalized TCC as

CN(~m1; ~m2) =
1

CBF(~0;~0)

‹ (
1−NA2|~ξ′|2

)g
2
∣∣∣Pd,n(~ξ′

σ

)∣∣∣2Peff,n(~ξ′ + ~m1)P ∗eff,n(~ξ′ + ~m2) d2~ξ′,

(5.19)
where the normalization factor is analytically derived as

CBF(~0;~0) =


2π

1− (1−NA2)
g+1

2

(g + 1)
, σ ≥ 1

2π
1− (1−σ2NA2)

g+1
2

(g + 1)
, σ < 1

. (5.20)

The same normalization factor can be found directly from Eq. (5.13), and thus Eq. (5.20)

can be shared for normalizing both C(~m1; ~m2) and C(~f1; ~f2).
If the point array detector as a Dirac comb is considered, the TCC is calculated by

C(~m1; ~m2) = NA2
∑
j

(
1−NA2|~ξ′j|2

)g
2
∣∣∣Pd,n(~ξ′j

σ

)∣∣∣2Peff,n

(
~ξ′j + ~m1

)
P ∗eff,n

(
~ξ′j + ~m2

)
, (5.21)

where ~ξ′j =
~xj

(NA
√
d2+|~xj |2)

denotes the jth location of the point detector.

5.3 Nonparaxial DPC image formation with a

spherical detector

DPC imaging equation

For a spherical detector/source, the nonparaxial diffraction integral, Eq. (5.6), provides the
electric field on the spherical detector as

E(rd, θd, φd) = − ik
2π

eikrd

rd
cos θd

‹
ΣS

h(~x) t(~xs − ~x) e−ikM̂ ·~x d2~x, (5.22)

where ~xs is a scanning position of the sample. No angular selectivity may exist for the dome

geometry, and thus the detector sensitivity would be simply D(θd, φd) =
∣∣Pd(θd, φd)∣∣2, where
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Pd(θd, φd) describes a detector pupil geometry in spherical coordinate. Then assuming the
perfectly incoherent detector (again practically true for the LED array), the total detected
intensity is evaluated by

I(~xs) =

‹ ∣∣E(rd, θd, φd)
∣∣2D(θd, φd) r

2
d dΩd, (5.23)

where dΩd=sin θddθddφd. By plugging Eq. (5.11) with dΩd = d2~xd/(r
2
d cos θd) here, the TCC

with a spherical detector can be finally derived as

C(~f1; ~f2) =
1

r2
d

‹ √
1−|~xd|

2

r2
d

∣∣∣Pd(~xd)∣∣∣2Peff

(
− fo
rd
~xd − λfo ~f1

)
P ∗eff

(
− fo
rd
~xd − λfo ~f2

)
d2~xd,

(5.24)
where ~xd = (xd, yd) is the z-projected planar detector coordinate. The detector sensitivity
stays unchanged upon its projection from Pd(θd, φd) to Pd(~xd).

Normalizing the pupils and spatial frequencies in the TCC

To transform the integral domain of the TCC into the objective pupil space, one can relate

a~ξ′

fo
=
~xd
rd
, (5.25)

with the constant Jacobian of J(~ξ′) = a2r2
d/f

2
o . Normalizing the objective pupil as ~ξ′= ~ξ/a

and the spatial frequency as ~m= ~f/(NA
λ

), the TCC can be expressed as

C(~m1; ~m2) = NA2

‹ (
1−NA2|~ξ′|2

)1
2
∣∣∣Pd(rdNA ~ξ′)∣∣∣2×

Peff

(
−a(~ξ′ + ~m1)

)
P ∗eff

(
−a(~ξ′ + ~m2)

)
d2~ξ′,

(5.26)

where NA = a/fo for the aplanatic objective lens. For a circular split detector (radius: b)
with a partial coherence factor σ = (b/rd)/NA and for a rotationally symmetric objective

pupil P (−~ξ′)=P (~ξ′), the TCC is finally obtained as

C(~m1; ~m2) = NA2

‹ (
1−NA2|~ξ′|2

)1
2
∣∣∣Pd,n(~ξ′

σ

)∣∣∣2Peff,n(~ξ′ + ~m1)P ∗eff,n(~ξ′ + ~m2) d2~ξ′, (5.27)

where the subscript ‘, n’ means the normalized pupil to the unit circle. Here, the factor of(
1−NA2|~ξ′|2

)
is attributed to the inclination factor associated with the sample-to-detector

wave propagation. This weighting factor appears to be the only difference between the planar
and spherical geometries. The derived nonparaxial TCC also converges to the paraxial TCC
as NA goes to zero (if the prefactor of NA2 is neglected).

The TCC could be normalized by the bright-field TCC value at the zero frequency,
CBF(~0;~0), whose value is already found in Eq. (5.20) with g=1. Also, considering the array
detector (or reciprocal LED array), the TCC similar to Eq. (5.21) can be obtained with the

jth array location at ~ξ′j =
~xj

rdNA
.
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5.4 Simplification of DPC image formation

It can be immediately found from Eq. (5.12) that 2D DPC imaging is a four-dimensional
process which is too complicated to practically handle. Two common simplifications [147,
148] made to samples could reduce such a 4D process into 2D, which are briefly introduced
here.

Weak object approximation

The weak object approximation assumes an object transmittance as t(~x) = 1 + tw(~x) where
|tw(~x)| � 1. The tw(~x) can be real or imaginary or both, upon amplitude or phase or

combined objects. By substituting its Fourier transform, T (~f)=δ(~f)+Tw(~f), to Eq. (5.12),
the DPC intensity is expressed as

I(~x) =C(~0;~0) +

¨
C(~f1;~0)Tw(~f1)ei2π

~f1·~xd2 ~f1 +

¨
C(~0; ~f2)T ∗w(~f2)e−i2π

~f2·~xd2 ~f2

+

˘
C(~f1; ~f2)Tw(~f1)T ∗w(~f2)ei2π(~f1−~f2)·~x d2 ~f1d

2 ~f2.

(5.28)

Since intensity is a real quantity (or measurable), i.e., I(~x) = I∗(~x), one can find from

Eq. (5.12) that C(~f1; ~f2) = C∗(~f2; ~f1). Also assured from the weak object: |Tw|� |Tw T ∗w|
(negligible cross-product term), the above equation could be approximated as

I(~x) ≈ C(~0;~0) + 2 Re
{¨

C(~f ;~0)Tw(~f) ei2π
~f ·~xd2 ~f

}
. (5.29)

In DPC imaging, C(~0;~0) = 0 due to the differential nature. Now 2D image formation is
reduced to a two-dimensional linear process, where image intensity is directly linked to an
inverse Fourier transform of the product of the weak object frequency spectrum and the 2D
weak object transfer function (WOTF): C(~f ;~0).

Typically the DPC intensity is defined in a normalized format (divided by its bright field
intensity) as

IDPC(~x) =
IT (~x)−IB(~x)

IT (~x)+IB(~x)
, (5.30)

where the subscripts ‘T’ and ‘B’ indicate intensity detected from the top and bottom of the
split detectors in Fig. 5.1. By plugging Eq. (5.29) to here, one can obtain

IDPC,TB(~x) =
2 Re

{˜
CTB(~f ;~0)Tw(~f) ei2π

~f ·~xd2 ~f
}

CBF(~0;~0) + 2 Re
{˜

CBF(~f ;~0)Tw(~f) ei2π ~f ·~xd2 ~f
}

≈ 2 Re
{¨

CN,TB(~f ;~0)Tw(~f) ei2π
~f ·~xd2 ~f

}
,

(5.31)

where CN,TB(~f ;~0) = CTB(~f ;~0)/CBF(~0;~0), as introduced in Eq. (5.19), is a normalized 2D
WOTF in the ‘TB’ configuration. Once the DPC image is acquired with the known WOTF,
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the original object information can be inversely calculated. However, IDPC,TB(~x) alone fails
to measure major horizontal frequency contents (fx) of the object, and thus in practice
IDPC,LR(~x) (or further DPC images along other azimuthal orientations) is also measured for
accurate phase imaging [73]. In computational phase retrieval, these multi-orientation 2D
WOTFs are incorporated in the algorithms.

The weak object approximation, t(~x) = eiφ(~x) ≈ 1+iφ(~x), in quantitative phase imaging
may have less than 5% error if |φ(~x)|≤0.355 radian.

Slowly varying phase gradient

If an object’s phase profile changes slower than imaging resolution (the PSF) (as well as
pixel resolution), the object could be approximated as t(~x) = ei∇φ(~x)·~x. The ∇φ(~x) is a local

phase gradient which corresponds to a particular spatial frequency as T (~f) = δ(~f − ∇φ(~x)
2π

),
thereby reducing the DPC imaging equation, Eq. (5.12), merely to

I(~x) = C
(∇φ(~x)

2π
;
∇φ(~x)

2π

)
, (5.32)

where C
(∇φ(~x)

2π
; ∇φ(~x)

2π

)
is called a 2D phase gradient transfer function (PGTF). This approx-

imation also reduces the 4D imaging process into 2D, but it is different from typical linear
imaging. Instead, the 2D PGTF itself directly connects the DPC intensity measured with
knowledge on a sample’s local phase gradients.

From the typical DPC intensity definition, Eq. (5.30), it can be shown

IDPC,TB(~x) =
CTB

(∇φ(~x)
2π

; ∇φ(~x)
2π

)
CBF

(∇φ(~x)
2π

; ∇φ(~x)
2π

) , (5.33)

where CBF(~f1; ~f2) is a bright-field TCC in Eq. (5.13) with uniform detector sensitivity. The

normalized 2D PGTF is thus defined by CN,TB(~f ; ~f) = CTB(~f ; ~f)/CBF(~f ; ~f).
For 1D DPC imaging, for example, where a sample contains only fy frequency contents,

the 1D PGTF, CN,TB(0, ∇φy
2π

; 0, ∇φy
2π

), plays as a lookup table which directly returns the local
phase gradient details of the sample. From this, a (quantitative) phase profile of the sample
is then numerically reconstructed directly from φ(y)=

´ y
0
∇φ(y′)·dy′ or from more robust least

square algorithms [157]. However, it should be noted that in 2D DPC imaging the 2D PGTF
may not work as a simple lookup table anymore. This is mainly because although IDPC,TB is
primarily a measure of vertical phase gradients, it also contains subsidiary horizontal phase
gradient information coupled together, which can be implied from the 2D PGTF equation.
Thus the vertical phase gradients can not be accurately extracted from the ‘TB’ measurement
alone. Together with the ‘LR’ measurement, a proper gradient search algorithm may be
necessary to successfully decouple horizontal/vertical phase gradients from both the 2D LR
and TB PGTFs. Moreover, if the total number of LEDs in the array used for DPC imaging is
insufficient, the TCC shows staircase patterns [73]. This adds a uncertainty in determining
the local phase gradient, which hence requires an attention in building an optical setup
compatible with the PGTF approach.
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5.5 Numerical study: paraxial vs. nonparaxial TCC

Numerical simulations were conducted to compare the nonparaxial TCC with the paraxial
TCC for the wide-field DPC imaging system with a planar ‘L(left)/R(right)’ split source at
λ= 0.5µm. The partial coherence factor was fixed to one. The results for a spherical split
source would be the same with those obtained here with g = 1. The array nature was not
accounted.

The normalized 2D WOTF, CN,LR(~m;~0), was evaluated in Fig. 5.3, together with its
horizontal slice (my = 0) in Fig. 5.4. The TCC is anti-symmetric about mx = 0 (y-axis)
due to the source’s LR asymmetry. The maximum TCC occurs near mx = ±1 where the
displaced objective pupil has a maximum overlap with only one of the half source/detector.
In this case, less than 50% of the shifted objective pupil area falls within the semicircle, and
thus a maximum TCC value is below 0.5 (more accurately around 0.4). For an isotropic
source (g=1), the nonparaxial effects that arise only from the objective’s apodization seem
to lower the TCC’s maximum. The stronger weighting near the rim of the objective pupils
reduces an effective overlap for 0 < mx < 1.2 compared with the paraxial overlap, while
helps to increase an effective overlap at mx > 1.2. For a Lambertian source (g = 1), the
angularly decreasing strength in source/detector sensitivity together with the objective’s
apodization yields lower TCC values over mx<0.9 than the paraxial WOTF. The maximum
TCC, however, stays almost fixed at around 0.408 in any NA regime. For a source emission
model with g ≥ 2, the nonparaxial WOTF begins to deviate from the paraxial WOTF
more obviously as NA increases. Also, it results in a negative WOTF value (or WOTF

Paraxial                      0.4 NA                      0.65 NA                      0.8 NA                      0.95 NA

Normalized
2D WOTF
(𝑔 = 1)

Normalized
2D WOTF
(𝑔 = 0)

Normalized
2D WOTF
(𝑔 = 2)

Figure 5.3: Normalized 2D nonparaxial WOTF in ‘LR’ DPC imaging with different g factors.
The axis label omitted is the normalized spatial frequency ~m over [-2, 2], with λ= 0.5µm.
The paraxial WOTFs are shown in the first column for comparison.
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Figure 5.4: Cross-sections of the normalized 2D nonparaxial WOTF in ‘LR’ DPC imaging
(λ = 0.5µm) with varied g factors. A negative WOTF value (i.e., WOTF reversal) near
mx=0.05 appears at g=2.

reversal) around a normalized spatial frequency of 0.05 (the physical explanation follows
later.) Overall, the paraxial WOTF appears to be still a good model for NA below 0.4 in
optical DPC imaging.

Next, the normalized 2D PGTF, CN,LR(~m; ~m), was calculated (see Fig. 5.5). The PGTF
is also anti-symmetric and saturates to either -1 or 1 when the objective pupil is completely

Paraxial                 0.4 NA        0.65 NA        0.8 NA       0.95 NA

Normalized
2D PGTF
(𝑔 = 1)

Normalized
2D PGTF
(𝑔 = 2)

Normalized
2D PGTF
(𝑔 = 0)

Figure 5.5: The normalized 2D nonparaxial PGTF in ‘LR’ DPC imaging with different g
factors. The axis label omitted is the normalized spatial frequency ~m over [-2, 2], with
λ = 0.5µm. The paraxial PGTFs are shown in the first column for comparison.
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Figure 5.6: Cross-sections of the normalized 2D nonparaxial PGTF in ‘LR’ DPC imaging
(λ = 0.5µm) with different g factors. A PGTF reversal is predicted at higher NA.

shifted towards one of the source/detector’s semicircles. Thus such a clipping occurs at
the normalized frequency of around one, and any phase gradient greater than that in the
sample is not captured by the DPC imaging system. The normalized PGTF may only be
defined within the |~m| ≤ 2 circle, where the denominator of the PGTF (the TCC value for
incoherent bright-field imaging) is non-zero. As NA increases, the PGTF deviates from the
paraxial PGTF more apparently especially at higher g factors. The horizontal cross-section
at my = 0 is plotted in Fig. 5.6, which shows the PGTF saturation occurring exactly at
mx =±1. Also, a PGTF reversal is predicted in high NA DPC imaging caused primarily
by the objective apodization. To see the reversal in geometrical point of view, the pupils
for the PGTF(0.2,0;0,0.2) at 0.95 NA with g= 2 were examined as shown in Fig. 5.7. The
net geometrical overlap for the positive detector sensitivity area (the left semicircle) at the

Figure 5.7: Mechanism of the PGTF reversal in nonparaxial DPC imaging. Effective pupils
and their overlap in a unity coordinate (g = 2, NA = 0.95). The geometrical overlap is
larger on the left positive semicircle, but due to the nonuniform objective pupil weighting
the effective overlap on the right negative semicircle is rather larger, leading to negative
differential intensity (a negative TCC value).
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-0.2 shifted objective pupils is certainly larger than that for the right semicircle. Yet, the
stronger rims of the two apodized objective pupils selectively influence the negative detector
sensitivity area (right semicircle), yielding a negative differential intensity that is a negative
TCC value. The PGTF is defined with two identically shifted objective pupils compared
with only one objective pupil shifted in the WOTF, and thus undergoes a more severe
reversal. The TCC reversal at higher NA may cause problems in the slowly varying phase
gradient approximation. The reversal near the zero spatial frequency would make local
phase gradients indeterminate (as the identical TCC intensity could result from different
phase gradients). More advanced algorithm would be required to make the gradient search
protocol determinate probably by incorporating the additional knowledge on phase gradients
in the neighborhood of the indeterminate point.

As the g factor increases, the non-uniform detector sensitivity falls off much faster, which
decreases an effective detector dimension. The effective partial coherent factor, σ, drops
accordingly. It was found that the TCC at higher g factor with σ=1 resembles the TCC at
lower g factor with σ<1 (although the results are not included here).

Besides, as shortly discussed in the previous section, strictly speaking the 2D PGTF may
not play as a lookup table because the ‘LR’ measurement includes not only horizontal but
also vertical phase gradient information. The cross-sections of the 2D PGTF in Fig. 5.5 were
examined as shown in Fig. 5.8. In the paraxial PGTF (left plot), the vertical phase gradients
smaller than 0.5 (in terms of a normalized frequency my) induce minor TCC modifications
(< 10%) in the measurement of horizontal phase gradients. However, in the nonparaxial
PGTF (for example, at NA= 0.8, g= 1 on the right plot), the contribution of the vertical
phase gradient on the measurement of the horizontal phase gradients is significant. This is
especially when the y-phase gradient at the point of measurement is larger than the x-phase
gradient to be measured.

5.6 Further discussion

Compared to the paraxial DPC theory, the nonparaxial theory formulated here together with
the source’s angular emission model certainly predicts a different TCC. It is expected that
the proposed nonparaxial DPC model could be used for more accurate optical quantitative
phase imaging. Yet, it should be mentioned that this scalar model is still incomplete because
it does not consider the vectorial nature of light. Considering a light-sample interaction to
accurately trace changes in light polarization is nontrivial. Perhaps by assuming that the
dipoles consisting of the object in the first Born approximation orient in parallel to the input
electric field, the vectorial pupils for each point of an incoherent source could be defined and
used to construct a vectorial TCC.

In order to experimentally corroborate the nonparaxial DPC theory, a proper phase
sample has to be carefully chosen or prepared. Unfortunately there are no common standard
phase samples (like standard USAF resolution charts in amplitude imaging). There may be
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Figure 5.8: Horizontal cross-sections of the 2D ‘LR’ PGTF at different my. (left) the paraxial
2D PGTF (right) the nonparaxial PGTF at 0.8 NA (g= 1). The ‘LR’ PGTF value is also
influenced by an amount of my (vertical phase gradient).

two approaches to prove the nonparaxial TCC given that a test sample with known phase
profiles can be well approximated as either a weak object or a slowly varying phase object.

In the former case, a thin micro-lens could be tried. For example, there is a commercial
quartz microlens array (MLA150-7AR, Thorlabs Inc.) with a sag of 0.87 µm (over a 150 µm
lens diameter) which is as thin as the typical sub-µm depth of field in high NA objective
lenses. For the known phase profile of the lens, DPC intensity can be theoretically calculated
using Eq. (5.31) and can be compared with experimental DPC images. With this lens, the
weak object approximation would be valid within a FOV of roughly 40 µm around the
lens center. The FOV could be further extended by putting an immersion oil between
the top surface of the lens and a coverslip, which then requires an objective lens with a
coverglass correction. Alternatively, a glass phase object with any weak phase profiles could
be fabricated by focused ion beam (FIB) as done in [158]. This approach, however, may
also have its own challenges because the maximum object height allowed as a weak object is
only around 70 nm, which is probably too thin to fabricate a desired phase pattern. On the
other hand, many biological samples are good phase objects but can be challenging here too,
because even thin cells typically are not good weak objects let alone their unknown phases.

If the PGTF approach is chosen as a proof, a good phase gradient object may be even
harder to obtain for high NA DPC imaging. Previous studies have used an optical fiber or a
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polystyrene micro-bead, immersed in liquid, as a known phase object whose phase gradient
continuously changes across the diameter [153, 155]. In this case, the effective phase profile
of the circular object (radius: R) may be

φ(x) =
2π

λ
2∆n
√
R2 − x2, (5.34)

where ∆n is the refractive index difference between the object and the surrounding medium.
Then the normalized phase gradient across the object may be given by

mx = −2∆n

NA

x√
R2 − x2

. (5.35)

This could be a good phase gradient object that covers all spatial frequency range of interest
at smaller NA, but a careful examination is needed for the validity in higher NA. First of all,
the bead diameter is at least a few microns which is thicker than the sub-µm DOF of the
high NA objective lens. The theoretical PGTF itself keeps unchanged throughout focus, but
the effective phase profile for such thick objects may not be as simple as Eq. (5.34). This
may distort the PGTF measured. Also, any significant index-mismatch of either the bead or
the surrounding medium with respect to the coverslip index may induce significant optical
aberrations at high NA, making an accurate PGTF measurement challenging. Even the
thickness of the coverslip can be very critical. A sub-µm bead may be available instead, but
it will be too small to assume as a slowly varying phase object. On the other hand, the micro-
lens mentioned above is thin enough, but the phase gradient across the lens stays almost
zero due to too large R. Or micro-/nano-fabrication techniques again could be considered
to fabricate a sub-µm pyramid object that represents a particular constant phase gradient.
For example, anisotropic web etching of crystalline silicon wafers gives micro-pyramid dips
that could be used as a nano-imprinting mask. A laser-assisted multi-photon polymerization
process could also provide small polymer pyramids that can be potentially used for PGTF
characterization.

Most microscope samples are sitting on microscope slide glasses or immersed in liquid
medium in thin petri dishes, of which effects were neglected here in the nonparaxial DPC
formulation. The light refraction at the air-glass (or air-liquid) boundary before the sample
may reduce illumination NA in the wide-field DPC system, perturbing the partial coherent
sigma. Also, the glass (or liquid) medium may add spherical aberrations which then may
modify DPC intensity. In high NA DPC imaging, this effect may also have to be considered.
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Chapter 6

Conclusion

6.1 Conclusion and Outlook

To overcome the biggest challenges in optical microscopy such as super-resolution, imaging
speed, penetration depth, novel high NA microscopy methods were studied.

Oblique plane microscopy (OPM), in Chapter 3, achieves high-speed deep imaging over
any oblique plane of interest in a thick sample. Microscopy samples are not always prepared
such that the principal plane of the sample is aligned in parallel to the microscope coverglass
and/or slide glass. Also some samples such as living neuronal dendrites in brains are arranged
perpendicular to sample surfaces. OPM can be a simple, cost-effective method suitable for
such applications as well as diagnostic purposes such as skin cancer detections. As OPM takes
an image at an inclined angle with a secondary microscope, there occurs anisotropic pupil
loss that lowers optical resolution. This dissertation analytically studied such an anisotropic
resolving power and its physical interpretation to improve the general understanding on
wide-field OPM.

Current single molecule super-resolution microscopy (STORM), typically combined with
a total internal reflection (TIR) or near-TIR illumination schematic for higher signal-to-
background ratio (SBR) required in STORM, limits its imaging depth near the surface of
samples. It is mainly because its shallower illumination depth and an index-mismatch present
for TIR illumination. Here in Chapter 4, using oblique lightsheet illumination (alternative
way to get a high SBR), super-resolution oblique plane microscopy, obliqueSTORM, was
proposed for super-resolution deep imaging. The achievable imaging resolution and pene-
tration depth were analytically investigated. It is expected that sub-50-nm resolution over
a depth of around 80 µm would be feasible. The resolution could be further improved by
several times if obliqueSTORM is implemented with much brighter dyes [159] or in cryogenic
environment [160, 161]. As for potential applications, like STED, the other super-resolution
technique applied to image actin dynamics in synapses of living brains [162], obliqueSTORM
can be utilized for similar tissue level studies without sample agitation. Or it could be ap-
plied to intracellular studies, for example, single-molecule tracking of transcription factors
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in the nucleus of mammalian cells [163].
Label-free imaging would be an ultimate goal in (live) biological imaging, if the target

specificity is solved. To attain this goal, optical differential phase contrast (DPC) microscopy
can be a good potential approach. The current DPC imaging theory, more specifically
the transmission cross-coefficient (TCC), explains how the phase information of samples is
converted to the DPC intensity that is measured, with a good accuracy only at a lower
NA regime. Thus the reconstruction of quantitative phase information of samples using the
paraxial TCC is inaccurate at high NA DPC imaging. In Chapter 5, a scalar nonparaxial
TCC for high NA DPC imaging was developed. It considered the nonparaxial nature of light
propagation, the apodization of the aplanatic objective lens, and light source properties. The
nonparaxial TCC derived was compared with the paraxial TCC, and the practical forms of
the TCC simplified for two special types of objects, weak objects and slowly varying phase
objects, were discussed for high NA phase imaging. It is expected that the nonparaxial TCC
developed here can be a general model that covers all NA regimes for accurate phase retrieval
in high resolution quantitative phase imaging of biological samples or any other phase object
of interest. Moreover, the scalar nonparaxial image formation theory formulated here can
be directly applied to any type of partially coherent imaging systems in general, such as
conventional high NA brightfield imaging.

The theoretical studies carried out here can assist to establish the high NA microscopy
methods discussed into the real world to overcome imaging challenges. On the other hand,
the new sign conventions for vectorial ray tracing were proposed in this dissertation, which
produce physically consistent tracing results of light polarization (which did not with the sign
conventions used in previous studies). The sign convention for the coordinate in evaluating
the vectorial diffraction integral could be also unified as done throughout this dissertation.
Such systematic conventions can help to avoid any physically wrong interpretation during a
vectorial analysis on any high-aperture optical systems.

6.2 Future work

The future work and possible research directions arising from the studies presented in this
dissertation are as follows:

For obliqueSTORM, the point spread function (PSF) predicted in the oblique imaging
mode may need to be experimentally proven over oblique angles. This can confirm the pre-
liminary conclusion made on the best system layout in the oblique imaging mode based on
the theoretical grounds. As the mechanical drifts matter in STORM, a good compensation
strategy would need to come up with especially when STORM data is acquired over a pro-
longed time span. After this, real demonstration of super-resolution deep imaging of biolog-
ical samples can be performed, which then complete the feasibility study of obliqueSTORM.
For scientific interests or more practical purposes, further study could be conducted on the
compatibility of obliqueSTORM with the existing 3D localization methods [140, 141, 164,
165] to achieve 3D obliqueSTORM.
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For high NA optical DPC imaging, an experimental proof of the nonparaxial TCC model
derived is essential. To do so, a proper artificial phase object would need to be fabricated
as addressed in Section 5.6. An effect of microscope slide glasses or a liquid buffer in petri
dishes, where samples are typically prepared, on high NA DPC intensity would need to be
verified and incorporated in the theory if it turned out to be necessary. Once the nonparaxial
TCC model is rigorously proven to be correct, then it could be easily extended and used
for three-dimensional quantitative phase imaging valid at any NA regime. Also, in practical
point of view, the development of a software algorithm that determines 2D or 3D local phase
gradients from high NA experimental DPC images based on the phase gradient transfer
function would be very useful. A study of the light-sample interaction to account for the
vectorial nature in high-aperture DPC imaging would be a prerequisite to develop an accurate
vectorial DPC imaging theory.
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STORM microscopy. Biomedical Optics Express 4, 885–899 (2013).

146. Dekkers, N. H. & Lang, H. Differential Phase Contrast in a STEM. Optik 41, 452–456
(1974).

147. Hamilton, D. K. & Sheppard, C. J. R. Differential phase contrast in scanning optical
microscopy. Journal of Microscopy 133, 27–39 (1984).

148. Hamilton, D. K., Sheppard, C. J. R. & Wilson, T. Improved imaging of phase gradients
in scanning optical microscopy. Journal of Microscopy 135, 275–286 (1984).

149. Schmahl, G. & Rudolph, D. in X-ray Microscopy 231–238 (Springer Berlin Heidelberg,
1987).

150. Shibata, N. et al. Differential phase-contrast microscopy at atomic resolution. Nature
Physics 8, 611–615 (2012).

151. Kachar, B. Asymmetric illumination contrast: a method of image formation for video
light microscopy. Science 227, 766–768 (1985).



BIBLIOGRAPHY 98

152. Noda, T., Kawata, S. & Minami, S. Three-dimensional phase-contrast imaging by a
computed-tomography microscope. Applied Optics 31, 670 (1992).

153. Mehta, S. B. & Sheppard, C. J. R. Quantitative phase-gradient imaging at high reso-
lution with asymmetric illumination-based differential phase contrast. Optics Letters
34, 1924 (2009).

154. Tian, L., Wang, J. & Waller, L. 3D differential phase-contrast microscopy with com-
putational illumination using an LED array. Optics Letters 39, 1326–1329 (2014).

155. Lee, D., Ryu, S., Kim, U., Jung, D. & Joo, C. Color-coded LED microscopy for multi-
contrast and quantitative phase-gradient imaging. Biomedical Optics Express 6, 4912
(2015).

156. Sheppard, C. & Choudhury, A. Image Formation in the Scanning Microscope. Optica
Acta: International Journal of Optics 24, 1051–1073 (1977).

157. Harker, M. & O’leary, P. Least squares surface reconstruction from gradients: Direct al-
gebraic methods with spectral, Tikhonov, and constrained regularization in Proceedings
of the IEEE Computer Society Conference on Computer Vision and Pattern Recogni-
tion (IEEE, 2011), 2529–2536.

158. Ni, X. et al. An ultrathin invisibility skin cloak for visible light. Science 349, 1310–
1314 (2015).

159. Vaughan, J. C., Jia, S. & Zhuang, X. Ultrabright photoactivatable fluorophores created
by reductive caging. Nature methods 9, 1181–1184 (2012).

160. Weisenburger, S. et al. Cryogenic Colocalization Microscopy for Nanometer-Distance
Measurements. ChemPhysChem 15, 763–770 (2014).

161. Kaufmann, R. et al. Super-Resolution Microscopy Using Standard Fluorescent Pro-
teins in Intact Cells under Cryo-Conditions. Nano Letters 14, 4171–4175 (2014).

162. Urban, N. T., Willig, K. I., Hell, S. W. & Nägerl, U. V. STED nanoscopy of actin
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