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ARTICLE

Nonlinear shifts in infectious rust disease due
to climate change
Joan Dudney 1,2✉, Claire E. Willing 2,3, Adrian J. Das 4, Andrew M. Latimer 1, Jonathan C. B. Nesmith5 &

John J. Battles2

Range shifts of infectious plant disease are expected under climate change. As plant diseases

move, emergent abiotic-biotic interactions are predicted to modify their distributions, leading

to unexpected changes in disease risk. Evidence of these complex range shifts due to climate

change, however, remains largely speculative. Here, we combine a long-term study of

the infectious tree disease, white pine blister rust, with a six-year field assessment of

drought-disease interactions in the southern Sierra Nevada. We find that climate change

between 1996 and 2016 moved the climate optimum of the disease into higher elevations.

The nonlinear climate change-disease relationship contributed to an estimated 5.5 (4.4–6.6)

percentage points (p.p.) decline in disease prevalence in arid regions and an estimated 6.8

(5.8–7.9) p.p. increase in colder regions. Though climate change likely expanded the suitable

area for blister rust by 777.9 (1.0–1392.9) km2 into previously inhospitable regions, the

combination of host-pathogen and drought-disease interactions contributed to a substantial

decrease (32.79%) in mean disease prevalence between surveys. Specifically, declining

alternate host abundance suppressed infection probabilities at high elevations, even as

climatic conditions became more suitable. Further, drought-disease interactions varied in

strength and direction across an aridity gradient—likely decreasing infection risk at low

elevations while simultaneously increasing infection risk at high elevations. These results

highlight the critical role of aridity in modifying host-pathogen-drought interactions. Variation

in aridity across topographic gradients can strongly mediate plant disease range shifts in

response to climate change.

https://doi.org/10.1038/s41467-021-25182-6 OPEN

1 Department of Plant Sciences, UC Davis, Davis, CA, USA. 2Department of Environmental Science Policy and Management, University of California, Berkeley,
Berkeley, CA, USA. 3 Department of Biology, Stanford University, Stanford, CA, USA. 4 U.S. Geological Survey, Western Ecological Research Center,
Three Rivers, CA, USA. 5 Sierra Nevada Network Inventory & Monitoring Program, Three Rivers, CA, USA. ✉email: jdudney@berkeley.edu

NATURE COMMUNICATIONS |         (2021) 12:5102 | https://doi.org/10.1038/s41467-021-25182-6 | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-25182-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-25182-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-25182-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-25182-6&domain=pdf
http://orcid.org/0000-0003-3986-065X
http://orcid.org/0000-0003-3986-065X
http://orcid.org/0000-0003-3986-065X
http://orcid.org/0000-0003-3986-065X
http://orcid.org/0000-0003-3986-065X
http://orcid.org/0000-0002-7563-242X
http://orcid.org/0000-0002-7563-242X
http://orcid.org/0000-0002-7563-242X
http://orcid.org/0000-0002-7563-242X
http://orcid.org/0000-0002-7563-242X
http://orcid.org/0000-0002-3937-2616
http://orcid.org/0000-0002-3937-2616
http://orcid.org/0000-0002-3937-2616
http://orcid.org/0000-0002-3937-2616
http://orcid.org/0000-0002-3937-2616
http://orcid.org/0000-0001-8098-0448
http://orcid.org/0000-0001-8098-0448
http://orcid.org/0000-0001-8098-0448
http://orcid.org/0000-0001-8098-0448
http://orcid.org/0000-0001-8098-0448
mailto:jdudney@berkeley.edu
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Infectious plant diseases are reshaping ecosystems, disrupting
global food supplies, and threatening human health1–3. Range
expansions of maize lethal necrosis (MLN), for example,

threaten global corn production4, and both Dutch elm disease
and chestnut blight fundamentally altered forests in North
America5,6. Experimental and field studies have demonstrated
that infectious diseases can be highly responsive to changes in
temperature7 and moisture conditions8 and many studies predict
range expansions of infectious plant disease under climate
change9–13. Surprisingly little evidence, however, directly links
climate change to plant disease range expansions14,15 (though see
ref. 16). This may be a result of data limitations and the presence
of confounding factors, such as land-use change and species
translocations, that can often obfuscate the climate signal1,17.

As infectious diseases extend beyond the leading edge of
their range in response to climate change, contractions may also
occur at the trailing edge where conditions become too hot and
dry11,18. Infectious diseases have both high and low-temperature
tolerances and moisture requirements, or climate optima7,19,20.
This nonlinear, hump-shaped relationship indicates that climate
change can shift the location of climate optima in space, leading
to both increases and decreases in disease prevalence across the
geographic range21–23 (Fig. 1a,a.1). Recent studies demonstrating
climate change-induced increases in disease used observational
data spanning only a narrow portion of the climatic range21–23.

While the climate–disease relationship in these regions is more
likely monotonic, the relationship could become nonlinear under
future climate change scenarios, leading to disease declines in
some areas14. Though nonlinear disease range shifts (i.e., both
increases and decreases in prevalence across a pathogen’s range)
have long been predicted11,17, few studies have identified this
relationship in situ15.

Drought frequency and severity are often forecasted to increase
under climate change24, which could influence the prevalence of
plant pathogens as they shift in space. Drought impacts on plant
diseases are difficult to predict, however, as droughts can both
reduce atmospheric humidity necessary for pathogen infection
and reproduction25–27 (though not always28), and concurrently
increase host susceptibility25,29. In contrast, for plant pathogens
that infect through stomata, increasing aridity may reduce
infection rates by inducing stomatal closure, thereby decreasing
the access of hosts to pathogens2,30. Drought impacts on plant
pathosystems may also vary in magnitude across the aridity
gradient of the pathogen’s range. Thus predicted increases in
drought frequency could result in more skewed and/or variable
disease distributions under climate change (Fig. 1b, b.1).

Additionally, host–pathogen interactions could also mediate
climate change-induced range shifts31–33. As disease distributions
shift in space, biotic interactions with host populations may
cause increases or decreases in prevalence relative to climate
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Fig. 1 Conceptual figure of the biotic–abiotic factors that can interact with Cronartium ribicola as it moves into higher elevations in response to climate
change (sensu the biotic–abiotic-migration (BAM) framework15,109). These interactions can further modify the spatial position and shape of the white pine
blister rust distribution. Specifically, climate change is predicted to shift the pathogens’ climate optimum in space (a), which could lead to an upslope migration
(a.1) (shift in temperature denoted by change in color gradient, hot= red, cold= blue). As the pathogen shifts, emergent abiotic and abiotic interactions can
alter the disease distribution. Ongoing and/or climate change-induced increases in stochastic disturbances, like droughts (b), can interact with both the host
and the pathogen at different spatial scales. The probability of drought stress, for example, is likely higher at low elevations where water is more limiting,
potentially resulting in a skewed distribution (b.1). Additionally, host–pathogen interactions (c), including the varying density and susceptibility of different hosts
and/or alternate hosts, can also modify the size and shape of the distribution. Hosts and alternate hosts are also expected to shift at a slower pace than
pathogens in response to climate change, resulting in highly lagged impacts on disease prevalence. The combination of these spatially varying drought and
host–pathogen interactions can modify disease range shifts to increase or decrease prevalence depending on the direction of the interacting effects (c.1).
Mountain figure designed by Zuzanna Drozdz.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-25182-6

2 NATURE COMMUNICATIONS |         (2021) 12:5102 | https://doi.org/10.1038/s41467-021-25182-6 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


change impacts alone17,29 (Fig. 1c, c.1). Infectious diseases emerging
at higher altitudes or latitudes, for example, may encounter new
host–pathogen pairings that modify infection probabilities,
depending on the new host’s spatial distribution and
susceptibility15,32,34. Furthermore, if pathogen growth rates increase
with rising temperatures, higher pathogen loads could result in
elevated infection risk. Pathogen transmission could decline, how-
ever, if host survival rates also decrease under hotter, drier
temperatures35. These complex, host–pathogen interactions36 may
lead to highly variable disease range shifts (Fig. 1c), resulting in less
predictable climate change impacts on disease risk17,32.

Though plant diseases are purportedly responsive to changes in
temperature and moisture7,14,37, surprisingly little evidence
directly links climate change to geographic expansions (though
see ref. 13), and even less demonstrates nonlinear range shifts11

(Fig. 1a.1). This is likely due to data limitations and the presence
of confounding factors17,38. Measuring range shifts, for instance,
requires a strong climate gradient and long-term data that cap-
ture disease absence, both of which are rare, particularly in
regions where land-use change is not confounding14,15,39. Addi-
tionally, conclusive evidence that host–pathogen interactions and
stochastic disturbance events, like drought, can modify prevalence
as climate change shifts plant disease in space remains elusive,
due in part to the dearth of longitudinal data that capture mul-
tiple stressors40,41.

Here we test for a climate change signal on infectious tree
disease by leveraging a long-term observational dataset of white
pine blister rust (Cronartium ribicola Fisch., blister rust). The
prevalence data included two surveys that occurred ~20 years
apart, encompassing over 7800 individual hosts in Sequoia and
Kings Canyon National Parks (SEKI). Blister rust infects white
pines (Genus Pinus, Subgenus Strobus) across Europe and North
America. As a result of the severe impacts, blister rust ranks as
one of the worst tree pandemics in modern history42. To help
control for potentially confounding factors and enable stronger
causal inference43, we combined a panel modeling approach with
a mechanistic in situ test of drought impacts on physiological
processes of host trees. Specifically, we asked whether: (1) climate
change nonlinearly shifted disease prevalence, leading to geo-
graphic expansions and contractions within SEKI (Fig. 1a.1) and
(2) spatially varying drought and host interactions modified the
range shift, thereby changing the distribution and mean disease
prevalence (Fig. 1b.1-c.1).

We found evidence that climate change between 1996 and
2016 moved the climate optimum of blister rust into higher
elevations. This shift decreased prevalence by an estimated 5.5
percentage points (p.p.) with a 95% confidence interval of
4.4–6.6 p.p. in arid regions and increased prevalence by and
estimated 6.8 (5.8–7.9) p.p. in colder regions. Warmer condi-
tions also likely expanded the prevalence into higher elevations
by an estimated 777.9 (1.0–1392.9) km2 and contracted the
range at low elevations by 4.7 (0.04–17.2) km2. Forecasts under
Representative Concentration Pathway 4.5 (RCP4.5) projected
an even greater upward expansion from the counterfactual range
limit (i.e., a no climate change scenario) by 1024.9 (1.0–1504.4)
km2, which would expose the majority of high-elevation white
pines in SEKI. Though climate suitability for blister rust
increased under climate change, host–pathogen–drought inter-
actions contributed, in part, to a 32.79% decrease in observed
prevalence between surveys. Drought and higher rates of mor-
tality in arid regions, for example, likely accelerated disease
declines at low elevations, while lower alternate host occurrence
at high elevations dampened infection probabilities, even as the
climatic conditions become more hospitable. We provide some
of the first evidence that host–pathogen–drought interactions,
which shifted in strength and direction across an aridity

gradientcan modify disease range expansions in response to
climate change.

Detecting a nonlinear climate–disease relationship
Cronartium ribicola, the causal agent of blister rust, is a macro-
cyclic heteroecious rust that requires the presence of both the
pine hosts, as well as the alternate host species from the genera
Ribes, Castellja and Pedicularis44,45, to complete its life cycle
(Fig. 2a). Blister rust is considered a cool weather disease and
experimental studies have demonstrated thermal and moisture
tolerances for both spore stages46,47 (Supplementary Note 1). The
four abundant white pine hosts (Pinus subgenus Strobus) in SEKI
have overlapping ranges (Fig. 2a) and include sugar pine (P.
lambertiana Dougl.), western white pine (P. monticola Dougl.),
foxtail pine (P. balfourniana Grev. and Balf.), and whitebark pine
(P. albicaulis Engelm.). These four species are all highly suscep-
tible to impacts of blister rust. Here we define infection as an
individual white pine stem expressing blister rust symptoms and
prevalence as the percent of live infected individuals per plot48.

The blister rust pathosystem in Sequoia and Kings Canyon
National Parks (SEKI) was uniquely positioned for detecting a
nonlinear climate–disease relationship, as well as a climate change
fingerprint on infectious diseases, for five reasons. First, isolating
nonlinear relationships is facilitated by strong environmental
gradients and measures of disease absence17,49. The four white
pine blister rust hosts in our study system span a large elevational
gradient (1300–3500 m across some of the highest mountains in
the contiguous United States) where there are historic records of
disease absence (Fig. 2a). Second, because blister rust often occurs
in montane zones, it has greater exposure to extreme weather and
may respond more directly to changes in temperature and
humidity1,14,21. Third, SEKI is located at the expansion front or
current latitudinal range edge of blister rust invasion in California
that began in British Columbia over 100 years ago50. Many have
suggested that the climatic conditions are too hot and dry south
of SEKI for blister rust to successfully disperse and infect hosts9;
blister rust may be more strongly controlled by climate here than
in more northern latitudes where the disease is more abundant.
Fourth, studies of climate change effects on species distributions
are often confounded by land-use change51. SEKI is a national
park, however, and has experienced little land-use change in
recent decades. Fifth, because blister rust is an invasive pathogen,
frequencies of genetic resistance and associated mechanisms are
very low (≤0.06) across southern Sierra white pines and alternate
hosts52. Due to the long life expectancy of host white pines
(~300–1500 years) and ontogenetic resistance53, selection for
genetically resistant individuals likely acts on longer times scales
than our study captures (~20 years). Thus, changes in genetic
resistance are unlikely to confound the climate–disease relation-
ship in this study (see Supplementary Note 2 for more details).

Results
Nonlinear relationship between disease prevalence and VPD.
Between the first and second surveys (1996–2016), mean climatic
conditions became hotter and drier compared to the previous 21
years (1975–1995) (Fig. 2b–d). Specifically mean annual vapor
pressure deficit (VPD) increased from 9.74 ± 0.87 (mean ± standard
deviation) to 11.15 ± 1.0 (hPa) (Fig. 2b) and mean minimum
temperatures increased from −2.48 ± 0.68 °C to −1.24 ± 0.80 °C
(Fig. 2d). In contrast, mean annual precipitation declined from
953.45 ± 349.81mm to 870.82 ± 329.79mm (Fig. 2c).

We used VPD as our climate predictor variable because it
resulted in the most parsimonious model (Supplementary Table 1).
VPD’s statistical performance presumably reflects the biological
reality that it integrates the climate variables that are critical
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for blister rust reproduction—air moisture and temperature54–56.
Previous studies of various pathosystems have also concluded
that VPD can outperform other climate variables including
temperature57–59. VPD is an absolute measure of atmospheric
moisture state and is derived from the difference between the
saturation vapor content of air at a specific temperature point and
its actual vapor pressure60. In this study, high VPD values represent
hotter and drier conditions, or more arid conditions (Fig. 2b).

The fixed effects (FE) panel model demonstrated that rising
VPD between surveys was significantly and nonlinearly asso-
ciated with changes in blister rust prevalence (Fig. 3e, f;
Supplementary Table 2). Assessing how changes in VPD were
associated with changes in blister rust prevalence using the FE
panel model, we effectively controlled for time-invariant factors—
topographic, edaphic, microclimate, host species identity, and
unmeasured environmental variables—that might otherwise
complicate causal interpretation of the estimated relationship
between VPD and prevalence. The FE panel model therefore
provided a robust estimate of the causal link between changes in
VPD and changes in disease prevalence.

Additionally, both the positive and nonlinear relationship
between blister rust and VPD were corroborated by generalized
linear mixed effects models (GLMMs) estimating first and second
survey infections, underscoring the persistent nonlinear relationship
between VPD and disease prevalence (Fig. 3a–d; Supplementary
Table 3). The nonlinear relationship with VPD and maximum
temperature (Supplementary Table 4) suggested that there was an
optimal climatic range for blister rust with climatic suitability
declining beyond this optimal range, both in hotter, drier (more
arid) regions, as well as colder, high-elevation systems (Fig. 3a, c).
Additionally, these GLMMs provided insight into other environ-
mental correlates of blister rust infections (a contrast to the FE
panel model results, which controlled for the time-invariant

variables to isolate the effect of VPD). Alternate host occurrence,
for example, was significantly correlated with both first and second
survey infections (Fig. 3b, d), highlighting that close proximity of
Ribes spp. was consistently important for blister rust infections in
white pines through time.

The climatic gradient in SEKI likely did not capture the full
climatic niche of blister rust, however. Peak infections occurred
near the highest VPD ranges in the first survey (Fig. 4b),
suggesting that the arid range limit existed south of SEKI, where
blister rust has not been observed, but may have occurred at low
frequencies. Additionally, replacing VPD with temperature in
both the GLMMs (Supplementary Table 4, Supplementary Fig. 1)
and FE panel models (Supplementary Table 6) resulted in similar
estimates of the climate–disease relationship, but the models were
less parsimonious and the second survey GLMM and FE model
with temperature explained less of the variation. Finally, when we
compared the performance of models with more flexible
functional forms of VPD (e.g., quadratic vs. cubic terms), we
found the quadratic to return the lowest AIC. Nevertheless,
this difference was marginal and inconsistent across surveys
(Supplementary Table 5). Therefore, we reproduced our primary
results using a cubic VPD term and include these results in the
supplement (Supplementary Fig. 2).

The consistency of the nonlinear relationship between the first
and second survey periods indicated that the fundamental
relationship between VPD and blister rust had not changed
significantly though time due to unmeasured, stochastic factors
(e.g., pathogen dispersal that was independent of climatic
conditions and/or pathogen adaptation to local climatic condi-
tions). Though there was a slight shift in the estimated peak
prevalence when visually comparing the marginal effects of VPD
between the first and second surveys (Supplementary Fig. 3), a
test of the interaction between time and VPD demonstrated that

First survey Second survey

8

10

12

1980 1990 2000 2010
Year

M
ax

. V
P

D
 (

hP
a)

a

0

500

1000

1500

1980 1990 2000 2010
Year

P
re

ci
p.

 (
m

m
)

b

0

5

10

1980 1990 2000 2010
Year

Te
m

pe
ra

tu
re

 (
°C

)

Maximum
Minimum

c

d

Fig. 2 Site description. aMap of Sequoia and Kings Canyon National Parks (SEKI) and the long-term monitoring plots. Includes plots with white pine blister
rust infections in the first survey (purple triangles), plots with new infections in the second survey (red triangles), and plots that remained uninfected (black
circles). Green shades on the map denote ranges of white pine hosts and stars illustrate plots with the presence of alternate hosts (Ribes spp.). b Mean
annual vapor pressure deficit (VPD) between 1975 to 2016; blue dashed lines denote the time period of the first and second survey. c Total annual
precipitation (blue bars; high precip.= light blue, low precip.= dark blue) across all plots. Drought years 2007 and 2012–2015 highlighted in gray
rectangles. d Mean annual maximum (red line) and minimum (blue line) temperatures; dashed horizontal lines show the mean weather value across
all years.
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this shift was not statistically significant (VPD*time: Estimate =
−0.52, P = 0.231, VPD2*time: Estimate = 0.23, P = 0.169;
Supplementary Table 7). The stability of blister rust’s relationship
with VPD indicated that disease prevalence would track changes
in climatic conditions (i.e., changes in VPD would affect blister
rust prevalence), as the VPD optimum moved upslope into higher
elevations in response to climate change.

Estimated impact of climate change on disease prevalence. To
isolate the effect of rising VPD on prevalence and account for the
FE panel model uncertainty in this estimation, we used a Monte
Carlo (MC) simulation. Our results suggested that climate change
decreased prevalence by 5.5 (4.4–6.6) p.p. in arid regions (lower
elevation tercile) and increased prevalence by 6.8 (5.8–7.9) p.p. in
the coldest regions (upper elevation tercile) (Fig. 4d). Warmer
conditions resulted in a significant upward expansion into higher
elevations by an estimated 381.5 m, which corresponded to an
area expansion of 777.9 (1.0–1392.9) km2 beyond the counter-
factual range limit. At low elevations, disease prevalence con-
tracted by an estimated 50.6 m, which corresponded to a 4.7
(0.04–17.2) km2 area contraction in arid regions. Using a more
flexible VPD term (cubic) resulted in a similar increase at high
elevations and decrease at low elevations; however, the cubic
model estimated an even greater increase at high elevations and a
more moderate decrease at low elevations (Supplementary Fig. 2).
While the direction of the results was consistent between quad-
ratic and cubic models, the magnitude of the climate change effect
was sensitive to changes in functional form. Therefore, the
magnitude of the climate change effect should be interpreted
cautiously. Furthermore, the range contraction is likely an
underestimate of the contraction in the broader southern Sierra
Nevada region. As we previously noted, our plots within SEKI

likely did not capture the full blister rust or sugar pine niches,
both of which may have extended south of SEKI. Thus, the range
contraction in the southern Sierra region may be greater than we
measured within the geographic boundary of SEKI.

Future projections indicated that disease range shifts will
continue if average conditions become hotter and drier (Fig. 4a).
Incorporating the predicted uncertainty of 20 CMIP561 RCP4.5
(2056–2060) scenarios, as well as the FE model uncertainty, we
estimated blister rust could expand from the counterfactual
upper range limit by 1024.9 (1.0–1504.4) km2, which would
expose the majority of high-elevation white pine and alternate
host species (Fig. 4e). In contrast, at low elevations, blister rust
may continue to contract by an estimated 45.9 (0.04–236.8) km2

(subtracted from the counterfactual range limit) (Fig. 4e), which
could reduce disease prevalence in the hotter, drier regions of
the sugar pine population. Additionally, if climatic conditions
had warmed to the levels predicted under RCP4.5 (2020–2060),
the prevalence may have declined by 13.7 (3.7–3.7) p.p. at low
elevations and increased by only 3.9 (2.0–6.6) p.p. at high
elevations (Fig. 4d), suggesting that even as the disease spreads
into higher elevations, overall mean prevalence could decline
further under climate change.

These projected changes in prevalence under RCP4.5 2056-60
do not account for future potential changes in drought severity
and host distributional shifts that may also occur in response to
future climate change. Though host species’ recruitment rates
vary spatially and by species62, white pine demographic changes
will likely lag behind blister rust expansion, particularly at high
elevations where trees are very slow growing (pine hosts can live
for ~1500 years) and slow recruiting (~0.2 %/year)62. Thus,
using the past ~20 years of demographic change as a control in
our projection of the next ~30 years is likely a reasonable
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approach. In contrast, Ribes spp. often respond positively to
fire63. Predicted changes in fire activity64 may lead to greater
Ribes spp. recruitment; we did not account for potential fire- or
climate change-related Ribes spp. shifts in our future climate
change projections. Finally, climate change may shift the blister
rust pathosystem farther from equilibrium with the environ-
ment, which could lead to greater variability in disease
prevalence and shift the current estimated climate–disease
relationship. These combined effects, in addition to predicted
changes in drought frequency and severity24 (see below), could
modify disease prevalence in the future. Consequently, our
forecasts of climate change impacts on blister rust should be
interpreted very cautiously.

Drought and host interactions likely modified disease pre-
valence. Though climate change shifted the climate optimum of
blister rust into higher elevations, thereby increasing the number
of vulnerable hosts to infection (Fig. 4e), mean observed pre-
valence declined between surveys. Specifically, increases in new
infections at high elevations were more than offset by decreases
at low elevations (Fig. 4b). In aggregate, this resulted in a 32.79%
decrease in mean prevalence between surveys. Though many
factors likely contributed to this decline, here we focus on the
combination of host–pathogen interactions, a water availability
gradient across elevation, and spatially varying drought impacts.
We suggest that these abiotic-biotic interactions modified the
disease distribution through two pathways: A) fewer alternate
hosts at high elevations dampened infection probabilities, even
as warmer conditions ameliorated the historic climatic con-
straints on spread and B) greater water deficit in arid regions
decreased prevalence, an effect that was likely amplified by
drought (Figs. 5, 6c, d).

Pathway A: Fewer alternate hosts at high elevations dampened
infection probabilities. Host–pathogen interactions likely reduced
infection probabilities at high elevations (Fig. 6a). GLMMs esti-
mating blister rust infections, for instance, highlighted that Ribes
spp. are important for white pine infection in this system (Fig. 3b,
d), as it is necessary for blister rust to complete its life cycle45. Ribes
spp., however, occur less frequently in colder, higher elevation
regions in SEKI (Fig. 6a, Supplementary Table 8). Because fragile
basidiospores travel short distances from Ribes spp. to infect white
pines (meters to few kilometers)—which is a stark contrast
to aeciospores that can infect Ribes spp. up to 1,200 km away45—the
lower occurrence of Ribes spp. at high elevations may have sup-
pressed white pine infection rates. Consequently, even as climatic
conditions became more suitable for blister rust at high elevations,
the probability of infection remained lower (Supplementary Fig. 4c,
d). Infections at high elevations could increase in the future, how-
ever, if high-elevation Ribes populations densify and spread in
response to climate change.

Pathway B: Water deficit linked to declines in prevalence at low
elevations. Spatially varying abiotic interactions with drought and
water availability gradients also likely modified the blister rust
distribution as it shifted in response to climate change. To dis-
entangle these complex, interacting effects, we combined a
GLMM of infected host mortality (using data from our obser-
vational field study) with an in situ test of physiological responses
to drought in sugar pine hosts. Our results highlighted two
important mechanisms that contributed to faster declines in
disease prevalence in arid regions (low elevations) compared to
mesic regions (high elevations): 1) water deficit likely accelerated
the rate of infected host mortality in arid regions, and 2) water
deficit likely inhibited new infections in arid regions.

Fig. 4 Climate change impacts on blister rust in SEKI. a Distribution of mean vapor pressure deficit (VPD) between the two survey periods, 1975–1994
(blue) and 1995–2016 (red), as well as predicted VPD for 20 CMIP5 RCP4.5 (orange) scenarios. b Observed plot-level prevalence (proportion (prop.)
infected trees/plot) across elevation for the first (blue) and second (red) surveys. Points are the local y maxima for quasi-binomial smoothed lines and
95% C.I. bands. c Random sample of predicted blister rust prevalence values, n = 1000 (sampled from the full Monte Carlo (MC) simulation for the three
scenarios across elevation). Counterfactual is the no climate change scenario (blue), Climate change 2016 corresponds to the observed change in VPD
between surveys (red), and RCP4.5 2056-60 corresponds to the predicted future climate change scenario (orange). Points represent a random sample of
the MC simulation at the local y maxima for loess smoothed lines with 95% C.I. bands (P = predicted; prop. = proportion). d Estimated percentage point
(p.p.) difference (Δ) in predicted prevalence attributed to a change in VPD estimated by the MC simulation. Climate change 2016 (red) and RCP4.5 2056-
60 (orange) values were differenced from the counterfactual at the three elevation terciles (low = 1387–2655m, mid = 2656–3132m, and high =
3133–3486m). Boxplots show the 25–75% quantile range and the 50% quantile center line. Whiskers depict data points within 1.5 times the interquartile
range; includes jittered data points (n = 1000). e Estimated blister rust expansion (red and orange) and contraction (aqua) for the two climate change
scenarios compared to the counterfactual (blue) in Sequoia and Kings Canyon National Parks. First map shows estimated expansion into higher elevation
under observed climate change 2016 (red) compared to the estimated counterfactual (blue). Second map shows estimated expansion into higher
elevations (orange) under RCP4.5 2056-60 and estimated contraction at lower elevation (aqua). Green shading in both maps illustrates the remaining
uninfected host range. Gray gradient fill on both maps illustrates the digital elevation model (DEM; darker shading indicates higher elevation).
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Mechanism 1: water deficit likely accelerated the rate of infected
host mortality in arid regions. Specifically, the proportion of dead
to live infected trees increased with aridity (Supplementary Fig. 5).
Thus, infected trees were more likely to die in arid regions (Fig. 6b,
Supplementary Table 9). This elevated mortality led to faster
declines in disease prevalence in arid regions that was not offset by
new infections in arid or mesic regions (see Pathway A above).
Many factors contributed to this pattern of mortality. Sugar pines
growing in the most arid regions of SEKI likely experienced higher
levels of water deficit—both during drought and non-drought years
—that amplified physiological responses to infections. Our in situ
drought study, for example, demonstrated that growth and carbon
sequestration declined more in infected hosts than uninfected hosts
during the extreme drought between 2012–2015. The combination
of tighter stomatal regulation and greater changes in carbon
allocation during drought (Fig. 5) indicated that infected trees
experienced greater water stress at the cost of carbon acquisition65

(Supplementary Note 3). These physiological shifts were consistent
with mortality trends suggesting that infected hosts were more
likely to die (Estimate = 15.61, P = 0.065) (Supplementary Fig. 6)
than uninfected hosts following drought. Thus, greater water deficit
had more severe physiological consequences for infected trees
during drought. This water deficit may have contributed to higher
rates of mortality in arid regions, both during drought, as well as
non-drought years (i.e., infected host mortality was higher on
average in arid regions compared to more mesic regions (Fig. 6b)).

Though water deficit had more severe consequences for infected
hosts, the cause of death was likely a combination of factors related
to altered host physiology and increased vulnerability to biotic
attack66. Both mountain pine beetle (Dendroctonus ponderosae) and
bark weevils (Pissodes spp.) can preferentially select trees weakened
by blister rust and/or drought62,67; though during extreme drought,
bark beetles can kill trees indiscriminately68. Over the past ~20
years, these biotic attacks occurred more frequently at low
elevations in SEKI where aridity is higher and pests and pathogens

are more abundant62,68. Additionally, recent climate change may
have increased physiological stress in infected sugar pine growing
near their range limits, potentially increasing the probability of
mortality62 from blister rust infections or other biotic agents. Thus
trees growing in arid regions were more likely to die following
infection, and drought events may have accelerated mortality,
particularly in arid regions.

Importantly, our in situ drought study suggested that drought
impacts varied across elevation, negatively impacting growth in
arid regions but positively impacting growth at high elevations
(Fig. 6c, d). While sugar pines exhibited signs of drought stress
(Figs. 5, 6d) at low elevations, whitebark pine at high elevations
demonstrated increased needle expansion (Fig. 6c). Increased
growth may have been a result of an extended growing season
during drought that was driven, in part, by decreased snowpack
and warmer air temperature69. The drought-stress gradient in
SEKI was further corroborated by a recent study demonstrating
that the highest probability of mortality during the drought
occurred between 1000 and 2000 m70, which largely captures
the sugar pine range. Thus, the impacts of drought on host
physiology were spatially varying, likely increasing infection
probabilities at high elevations and amplifying disease declines in
arid regions (see Mechanism 2 below).

Mechanism 2: water deficit likely inhibited new infections in
arid regions. Two lines of evidence supported this mechanism.
First, faster rates of infected host mortality in arid regions likely
suppressed the number of new infections in Ribes spp. Blister rust
has an obligate sexual life cycle with white pine and alternate
hosts (e.g., Ribes spp.) that is dependent on infrequently
occurring wave years (i.e., climatic conditions that are suitable
for blister rust reproduction and spread, estimated to occur every
5–10 years48). Most alternate hosts are deciduous and drop their
foliage in fall, thereby shedding infections each year71. The
presence of live pine hosts when the next wave year occurs is
therefore critical for blister rust to spread from the pine host to

Fig. 5 Differential responses to drought between infected and uninfected sugar pine hosts. a Differences in δ13C between infected (yellow) and
uninfected (green) hosts across years (n = 212); showing 95% C.I. bands. Drought years = 2012–15, post-drought = 2016–17; points are jittered and bands
reflect 95% C.I. for respective treatments. b Boxplots showing differences in δ15N between uninfected (green) and infected (yellow) hosts across the study
period 2012–2017 (n = 212). c Boxplots showing difference in needle % N (n = 212). d Differences in needle shedding (fewer fascicles) (n = 216) and (e)
needle protraction (needle length) (n = 213) between infected and uninfected hosts. All boxplots show the 25–75% quantile range and the 50% quantile
center line. Whiskers depict data points within 1.5 times the interquartile range; includes outlier points in dark shades and jittered data points in light
shades. Infected trees highlighted by yellow and uninfected by green. All panels show F- and p-values estimated from repeated measures analysis of
variance (one-sided) models (see Supplementary Note 3).
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the alternate host to complete its life cycle45. Consequently,
higher rates of infected host mortality had cascading impacts on
disease risk and may have accelerated disease declines, both in
arid regions and regionally (within a 1,200 km radius45).

Second, water deficit that occurred more frequently in arid
regions likely reduced susceptibility in white pine hosts. Our in situ
drought study demonstrated that infected hosts exhibited tighter
stomatal regulation during drought (Fig. 5a), which has been shown
to reduce infection probabilities of pathogens, like Cronartium
ribicola, that enter hosts through stomatal pores on the needle30,72.
Thus, the probability of new infections at low elevations may have
also declined during drought14, as both infected and uninfected
hosts demonstrated signs of water deficit and tighter stomatal
regulation as the drought progressed (Fig. 5a). Furthermore, the
production of teliospores on Ribes spp. has been linked to periods of
high humidity. The drought-induced reductions in white pine host
exposure to blister rust (i.e., stomatal closure leading to less exposed
needle surface area), combined with the predicted decline in
teliospore abundance and spread during drought72 highlight how
disease likely declined both during drought, as well as in arid
regions of the blister rust’s range in non-drought years73.

Discussion
Here we demonstrated that observed climate change between
1996 and 2016 in SEKI shifted the climate optimum for blister
rust upslope. Although climate change likely expanded the geo-
graphic area suitable for blister rust infection in SEKI, the change

in disease prevalence was nonlinear, resulting in a decrease in
blister rust prevalence at low elevations and an increase at high
elevations (Fig. 4d). Even with small increases in mean VPD
between surveys, the impact on the blister rust pathosystem was
considerable—an effect that has long been predicted15,29. Under
future climate change scenarios, blister rust prevalence may
contract further at low elevations, where climatic conditions
become too hot and dry. In contrast, more hospitable climatic
conditions at high elevations may simultaneously expose the
majority of high-elevation white pine and alternate hosts in SEKI
(Fig. 4e). These results present a robust estimate of a climate
change-induced range shift in an infectious plant disease.

Though blister rust expanded its range into higher elevations in
SEKI, climate change contributed to a surprising decline
in mean infection risk due to complex, spatially varying
host–pathogen–drought interactions. These results highlighted
that the direct effect of climate change (e.g., a range expansion)
can be strongly mediated by indirect effects (e.g., complex
interactions). Host–pathogen interactions, for example, likely
suppressed infection probabilities at high elevations due to a
decline in alternate host species (Fig. 6a). These emergent biotic
interactions have long been anticipated1,17,41,74, and we provide
evidence supporting the prediction that host availability is critical
for forecasting shifts in endobiotic pathogen distributions32.
Additionally, drought events, as well as an aridity gradient,
interacted with white pine hosts and the pathogen, leading to
faster declines in infections in arid regions that were not offset by

Fig. 6 Spatially varying abiotic-biotic interactions that likely modified blister rust range shifts. a Predicted probability of Ribes spp. occurrence (blue
line) across elevation with 95% C.I. bands. Blue shade on mountain displays the corresponding declining abundance of Ribes spp. hosts with increasing
elevation. b Predicted mortality of infected hosts (black line) across elevation; showing 95% C.I. bands. c, d Boxplots show difference in needle expansion
(length) between high and low elevation regions during drought (yellow) and non-drought (green) years for whitebark pine (n = 193) and sugar pine (n =
107). Boxplots show the 25–75% quantile range and the 50% quantile center line. Whiskers depict data points within 1.5 times the interquartile range;
includes outlier points in dark gray and jittered data points in light shades. Yellow dots on the mountain show the predicted range in which drought led to
decreases in white pine host needle growth. e Observed blister rust prevalence (prop. = proportion) from the first (red) and second (blue) surveys across
elevation; includes quasi-binomial smoothed lines and 95% C.I. bands. Black vertical lines on the mountain illustrate the ranges of the susceptible white
pine hosts. Mountain figure designed by Zuzanna Drozdz.
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increases at high elevations (Fig. 6e). Arid regions, for instance,
experienced higher rates of infected host mortality and lower
probabilities of infection, particularly during drought (Fig. 6b–d).
Thus, the blister rust range shift was modified by abiotic-biotic
interactions that varied in strength and direction across an aridity
gradient. Furthermore, these interactions may become nonlinear
as global warming proceeds75,76. Investigating the context
dependencies of host–pathogen–drought interactions (e.g., aridity
gradients, forecasted shifts in drought frequencies, nonlinear
interactions, and spatially varying host species distributions) will
help disentangle the indirect effects of climate change on plant
disease risk.

Though climate change is often predicted to increase suscept-
ibility to pathogens at the host range edge, our results suggest the
opposite. The thermal mismatch hypothesis, for example, predicts
that host susceptibility increases as climate change shifts optimal
temperatures away from hosts29, which has been found in
infectious amphibian disease77. Drought has also been associated
with increased host susceptibility to infection. For example, root
rot pathogen genera, including Armillaria and Heterobasidion,
are predicted to expand their ranges during drought because they
successfully colonize stressed trees9,78. In contrast, climate
warming and drought impacts on pathogens that infect through
needle stomata likely have opposing effects on host susceptibility
across an aridity gradient. Specifically, hotter, drier conditions
during drought increased infection probabilities at the leading
range edge in SEKI, where the growing season was extended
(Fig. 6c), but decreased infection probabilities at the arid range
edge where growth declined (Fig. 6d). Identifying how host
infection surfaces (i.e., roots, leaves, stem tissue) respond to
warming and water deficit across aridity gradients will be critical
to forecast climate change-induced disease range shifts.

Blister rust expansion into the subalpine suggests that climate
change may pose grave risks to high-elevation forests. The low
diversity of tree species that can persist in extreme climatic
conditions have often evolved with low frequencies of major
biotic disturbances79,80. Though climate change has been linked
to increased growth and expansion of subalpine forests81, these
forests are also more vulnerable to endemic and novel
pathogens80,82. Increases in blister rust and mountain pine beetle
in western North America, for example, contributed to the
widespread decline of whitebark pine, recently proposed for
listing under the Endangered Species Act83. In contrast, white-
bark pine in the southern Sierra Nevada historically experienced
some of the lowest rates of white pine blister rust infection
compared to more northern regions of its range. The projected
expansion of blister rust under climate change, however, reduces
the likelihood that the southern Sierra Nevada remains a blister
rust refugium62 for whitebark pine. Additionally, while disease
risk is predicted to decline further in lower elevation white pines
(Fig. 4d, e), this may not result in a host population rebound, but
rather a shift in the forest community84. The compounding
effects of blister rust48 and predicted increases in drought
severity24 will likely continue to threaten the long-term sustain-
ability of host populations.

Methods
Isolating the climate–disease relationship
Long-term blister rust. We used tree and plot-level data from two surveys, con-
ducted between 1995–1999 and 2013–2017 that spanned 147 plots containing a
total of 7,809 white pine stems (Fig. 2a). Tree-level data measured in the field
included diameter at breast height (1.37 m, DBH), the occurrence of blister rust
symptoms (see Supplementary Note 4 for details), and mortality (alive = 0, dead =
1). Plot-level data measured in the field included elevation (m), slope (°), aspect (°;
south, southeast, and southwest facing = 1; north, northeast, and northwest facing
= 0), presence/absence of alternative host species (i.e., Ribes spp.), and white pine
host density (# trees/ha).

Climate data. We used downscaled 4 km resolution PRISM historical climate data85,
including monthly averages of daily maximum VPD (hPa), precipitation (mm), max
and min temperatures (°C), and mean dewpoint temperature (°C). To compare how
climate had changed over time, we averaged the climate variables across two time
periods of equal length: 1) the time period between the first and second surveys
(1996–2016) and the previous 21 years before the first surveys (1975–1995). These
averaged VPD values were used in all statistical models (see below).

We obtained predicted 4 km resolution VPD for the Representative
Concentration Pathway RCP4.5 2056–2060 from 20 Coupled Model Inter-
Comparison Project 5 (CMIP5) experiments, available through the Multivariate
Adaptive Constructed Analogs MACAv2-METDATA86. These datasets used the
gridMet87 daily dataset (4 km grid from 1979–2012) that is a combination of
PRISM and NLDAS-288 data. We calculated the mean predicted percent change for
each plot between the time periods 2016–2020 and 2056–2060 and used the
percent change for each plot to estimate the predicted percent change in maximum
VPD (Supplementary Fig. 7). We did not use historical VPD from MACAv2-
METDATA dataset because these estimated averages do not correspond to the
actual historical values; MACA data are not meant to be used as a hindcast of
weather. RCP4.5 was selected as a moderate, reasonably likely emissions pathway89;
the time period 2056–2060 was selected to be relatively consistent with the previous
sample period.

Estimating the relationship between climate and disease prevalence. We used
complementary analyses to rigorously quantify the impacts of climate change on
blister rust prevalence. To test whether blister rust was nonlinearly related to
climate, we fitted two generalized linear mixed models (GLMMs) explaining first
and second survey tree-level infections. These two disease models also helped
identify the important variables that explained the probability of an infection
occurring at both time periods. To better estimate the causal link between climate
and prevalence, we used a fixed effects (FE) panel model that allowed us to control
for potentially confounding, time-invariant factors. We then used the estimated FE
panel model to simulate the effect of climate change and compared these results to
a counterfactual of no climate change. All statistical analyses were conducted with
R software90.

First, to identify the climate variable that resulted in the most parsimonious
disease model, we fitted GLMMs that estimated blister rust infections as a function
of five climate variables and a null model without climate. Independent variables
included Ribes spp. occurrence (presence/absence), DBH (cm), tree density
(# trees/ha), slope (°), and aspect (°). We compared AIC values (Supplementary
Table 1) to select the most parsimonious model. The model with annual maximum
VPD had the lowest AIC score among all climate variables. This result presumably
reflects the biological reality that VPD integrates two climate variables that are
critical for blister rust reproduction—air moisture and temperature54–56. VPD is an
absolute measure of atmospheric moisture state and is derived from the difference
between the saturation vapor content of air at a specific temperature point and its
actual vapor pressure60; high VPD values represent hotter and drier conditions
(Fig. 2b).

To explain the probability of infection at the time of the first and second survey,
we developed two GLMMs that estimated: 1) probability that a tree was infected at
the time of the first survey using first-survey infection status of all live trees as the
(0/1) response variable (n = 7,031); and 2) probability that an uninfected tree
became infected between the first and second surveys using second survey infection
status of live, previously uninfected trees as the (0/1) response variable (n = 5,416).
For both GLMMs, the explanatory variables included a quadratic VPD term to
allow for potentially nonlinear disease response and the following independent
variables: Ribes spp. occurrence (presence/absence), DBH (cm), tree density (#
trees/ha), slope (°), and aspect (°). We included species and plot as crossed random
effects. All non-binary variables were standardized across both survey periods data
to have a mean of zero and a standard deviation of 1. We only included live trees
that were uninfected at the time of the first survey (t1) in the second survey models
(t2) in part to test whether unmeasured variables (e.g., stochastic dispersal
dynamics, pathogen climate adaptation, and/or changes in virulence) may have
affected the probability of infection following the first survey (Supplementary
Fig. 3). We also verified that models that included all trees (i.e., both live and dead
trees) gave similar coefficient estimates and p-values (Supplementary Table 10).

Additionally, we tested whether independent variables were highly correlated
(Pearson r > 0.5). Because elevation was highly correlated with other variables
(Supplementary Fig. 8), we followed previous blister rust modeling studies56,91 and
excluded elevation from the model to reduce multicollinearity92. We verified that
each model was not overdispersed following methods outlined by Kabacoff (2011).
Goodness of fit estimates were extracted for each model using conditional pseudo-
R squared93. Finally, though blister rust dispersal distances between white pine
hosts and alternate hosts were much greater than the spatial scale of this study (i.e.,
aeciospores can travel up to 1200 km45, which is a much greater distance than SEKI
encompasses: ~100 km × 70 km), we verified that plot random effects effectively
controlled for spatial-autocorrelation in our GLMMs following methods outlined
by Zuur et al.94.

We also estimated first and second survey blister rust infections using
maximum temperatures (Supplementary Fig. 1, Supplementary Table 4). These
results were consistent with our VPD analysis. However, the models were less
parsimonious and explained a lower proportion of the variation in the second
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survey model. To determine whether a quadratic VPD term or a more flexible
cubic term was preferable in this study, we fit first and second survey GLMMs
described above with a cubic VPD term and compared models using AIC
(Supplementary Table 5). We found that the quadratic term resulted in a slightly
more parsimonious model. Moreover, the overall interpretation of our model
results—that climate change led to both increases and decreases in prevalence
across elevation and a range expansion of disease—does not change between the
quadratic and cubic models (Supplementary Note 5, Supplementary Fig. 2).

Furthermore, we added a robustness check to test whether unmeasured
variables were potentially biasing our GLMM coefficient estimates. A significant
change in the relationship between VPD and blister rust through time, for example,
could suggest that unmeasured variables (e.g., stochastic dispersal dynamics,
changes in pathogen virulence, and/or pathogen climate adaptation), were biasing
our climate–disease relationship. Specifically, we tested whether the VPD-blister
rust relationship changed through time by fitting GLMMs that contained an
interaction between time period and the linear and quadratic VPD terms95

(Supplementary Note 6). Significant interactions with time would suggest that the
relationship between infection and VPD had changed, likely due to unmeasured
variables. We found that the interaction terms were not significant (Supplementary
Table 7), indicating that these unmeasured variables were not confounding our
VPD coefficient estimates. We also visually assessed the VPD-blister rust
relationship using the predicted marginal effects of VPD across the same
standardized VPD range (from R package ggeffects96, which varied VPD while
holding non-focal variables constant using a proportional average) (Supplementary
Fig. 3).

To isolate the relationship between VPD and prevalence, we used a fixed effects
(FE) panel model that can enable causal inference43. Though studies estimating
climate change impacts on disease have long-applied generalized linear modeling
(GLM) approaches23,51,95, these models have also been criticized, in part because
they often do not control for endogeneity bias (i.e., when a statistical model’s
explanatory variables are correlated with the error term)43,97. Endogeneity bias can
occur when correlated variables are omitted (i.e., omitted variables bias), there is
feedback between the outcome variable back to the explanatory variables (i.e.,
reverse causality), or measurement error in the outcome variable is correlated with
the explanatory variables98. Using a FE panel model, we effectively controlled for
time-invariant endogeneity bias from observable and unobservable variables.
Elevation (an observable variable), for example, was highly correlated with VPD
and blister rust. White pine and alternate host species were also correlated with
VPD and elevation, making it difficult to isolate the VPD-blister rust relationship
using GLMMs. The FE panel model, however, controlled for both unobservable
time-invariant variables (e.g., soil type, solar radiation) and observable variables,
including elevation, and white pine and alternate host species effects (i.e., Ribes
spp.), thereby better isolating the causal link between VPD and blister rust.

Specifically, the FE estimated the relationship between changes in VPD and
changes in blister rust between surveys43 (Fig. 3e, f). Our outcome variable was the
proportion of live trees in plot i at time t that were infected by blister rust (yit =
#infections/total live trees). We modeled this outcome as a function of plot-level
independent variables, including slope, aspect, tree density, VPD, VPD2, elevation,
Ribes spp., plot, white pine species, and DBH. We derived the FE equation as
follows98:

yit ¼ β1xit ¼ þ ai þ δt þ uit;t ¼ 1; 2 ð1Þ
for each plot (i), we averaged the equation over time (t), yielding:

�yi ¼ β1�xi ¼ þ δ þ ai þ �ui ð2Þ
Subtracting (2) from (1):

€yit ¼ β1€xit ¼ þ €δt þ €uit;t ¼ 1; 2 ð3Þ

where ÿi = yit - ȳi is the time-demeaned blister rust prevalence, €δt is the time fixed
effect, and β1ẍi = β1xit - β1x̄i … represent the time-demeaned fixed effects (e.g.,
plot, white pine species, VPD). Subtracting the mean value from each dependent
and independent variable mathematically subtracted out the observed time-
invariant variables (including plot, elevation, slope, white pine host, and Ribes
spp.), and the unobserved time-invariant variables (ai). In this way, the panel
model allowed us to control for time-invariant but unobservable variables which
might otherwise confound our analysis43 of the relationship between VPD and
blister rust. What remained in the model were the time-varying variables (i.e.,
changes in tree size (growth or DBH), changes in tree density (due to mortality),
and changes in VPD), as well as the exogenous time-varying error (üit) (Eq. 3).

We estimated the FE panel model using the feols function from the fixest
package99. To control for temporal serial correlation in the error terms within
plots, standard errors were clustered by the plot. We also estimated the FE panel
model using maximum temperatures instead of VPD to show that these results can
be interpreted in temperature space but that VPD explains more of the variation
(Supplementary Table 6). While FE panel model approaches allow strong control
of time-invariant unmeasured variables, we were unable to control for
unobservable time-variant variables. However, we believe that we adequately
addressed the unmeasured variables that would likely bias our results—stochastic
dispersal patterns, climate adaptation (Supplementary Note 6, Supplementary
Table 7), and changes in genetic resistance (Supplementary Note 2).

We simulated the effect of climate change on blister rust prevalence using the
estimated parameters from the FE panel model. Our approach predicted prevalence
for three different scenarios: 1) a counterfactual of no climate change over the past
~20 years using historic VPD between 1975–1995 (counterfactual), 2) observed
climate change over the past ~20 years using VPD between 1996–2016 (climate
change 2016), and 3) predicted climate change under RCP4.5 2056-60 using 20
CMIP5 experiments of VPD projections (RCP4.5 2056-60). The counterfactual
provided an estimate of prevalence if no climate change had occurred between
surveys, but other observed measured variables had changed, including tree density
and growth (i.e., we isolated the effect of VPD by controlling for changes in the
remaining time-varying variables). This counterfactual scenario was compared to
the climate change scenarios to produce estimates of the observed and future
climate change impacts.

Specifically, we used the R function predict from the R stats package rms100 to
obtain predicted prevalence values for the three scenarios. All predictions included
the same demographic changes in mean DBH and tree density but varied VPD by
the three scenarios, thereby isolating the effect of a change in VPD on blister rust
prevalence. The uncertainty of the panel model predictions was captured using a
Monte Carlo simulation. First, we randomly sampled 10,000 draws of the FE panel
model coefficients using their estimated mean values and variance-covariance
matrix. Then we predicted prevalence 10,000 times for the three different scenarios
using random draws of these coefficients.

To estimate the impact of climate change on disease prevalence (calculated as a
percentage point change (p.p.)) across elevation, we subtracted the predicted
prevalence for the climate change 2016 and RCP4.5 2056–60 scenarios from the
counterfactual 10,000 times. To capture the nonlinear effect of climate (i.e., both
increases and decreases in prevalence across elevation), we estimated the
percentage point change in prevalence across elevation terciles. From the 10,000
iterations, we extracted the mean and 95% C.I., which captured both the
uncertainty of the FE panel model and the RCP4.5 2056-60 predictions. We also
estimated the effect of observed climate change (climate change 2016) on blister
rust prevalence and the corresponding range shift using the estimated parameters
from a FE panel model that included a cubic term. We found the interpretation of
our observed climate change results was consistent between models but the
magnitude of the climate change effect varied (Supplementary Note 5,
Supplementary Fig. 2). Finally, to propagate uncertainty in the future climate
change predictions, we randomly sampled VPD from the 20 CMIP5 models
provided by MACA for each iteration of the MC simulation. Future predictions
used the changes in host size and tree density from the past 20 years as a proxy for
demographic changes in the future, and therefore should be interpreted with
caution.

We estimated the mean and 95% C.I. of the range expansion at high elevations
and contraction at low elevations by estimating the max/min elevation of the
counterfactual, observed, and future climate change scenarios 10,000 times.
Specifically, for each scenario, we calculated the range (min/max elevation) of plots
with predicted probabilities of prevalence >2% (or the equivalent of ~1 infected
tree/plot to reduce the likelihood of capturing random disease occurrences that are
unlikely to effectively reproduce and spread101,102). Extracting the area (km2) for
each 1 meter elevation band (from a raster that clipped a digital elevation model
(DEM) to the SEKI white pine range in QGIS103), we calculated the area between
the predicted max/min elevation of the counterfactual and both the observed and
future climate change scenarios. We used the 10,000 differenced area values to
calculate the mean and 95% C.I. of the estimated range expansion at high elevation
and range contraction at low elevation for the observed and future climate change
scenarios.

Mortality and Ribes spp. GLMMs. To test whether infected white pines were more
likely to die at higher levels of VPD, we fitted a mixed effects logistic regression of
mortality (1= dead, 0= alive) for all infected white pine species at the time of the
first survey, using R package lme4104. To control for biotic and abiotic factors
known to affect mortality in our system, we included slope, aspect, white pine basal
area, and tree size as explanatory variables105; we also included plot and species as
crossed random effects (Supplementary Table 9). We then estimated the exact same
model described above, but replaced VPD with elevation to show that predicted
mortality also shifted with elevation (Supplementary Table 9). To visualize the
changes in predicted probabilities of mortality across elevation, we estimated the
marginal effect of elevation while holding non-focal variables constant (Fig. 6b).

To test whether Ribes spp. occurrence shifted across the VPD-elevation
gradient, we developed two logistic regression GLMMs estimating plot-level Ribes
spp. (Supplementary Table 8). The first model predicted presence/absence (1=
present, 0= absent) of Ribes spp. with mean VPD between the first and second
survey, slope, and aspect as independent variables. The second model used exactly
the same independent and explanatory variables except replaced VPD with
elevation. No random effects were specified in this model because plot equaled the
number of observations (Supplementary Table 8). Elevation was excluded in the
first model because it led to unreliable coefficient estimates.

Testing for drought–disease interactions
Sampling design. To test the role of drought on infected host physiology, sugar pine
trees were sampled in summer 2017 and resurveyed in September 2018 to estimate
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mortality. Between June and September 2017, we identified blister rust infected
sugar pines within SEKI (between 36°33′10″N - 36°38′05″N and 118°45′42″W -
118°49′15″W). All infected trees had bole cankers and at least one branch canker,
indicating severe infections48. To control for the potential variation in micro-
climate and soil moisture that could affect tree physiological processes in response
to drought and blister rust, we implemented a case-control sampling design. We
collected 266 needle samples from 36 (18 uninfected and 18 infected) live trees with
similar DBH (mean and standard deviation difference among pairs: 4.77 ± 4.73
cm). To ensure sampling across the potential range of physiological responses, trees
were selected across a range of maturity, from saplings to mature individuals; the
DBH range across all sampled trees was 6.3–70 cm. Paired asymptomatic control
trees were selected within 40 m of diseased trees with consistent slope, aspect, and
distance to streams.

For each tree, we sampled needles produced in each year between 2012–2017
(Supplementary Note 7) from south-facing, sunlit branches. Mean VPD values for
the study period (2012–2017) were 17.67 (hPa) with a range of 16.82–18.79 (hPa).
We returned to the same trees in September 2018 to measure health (live or dead).
This study is unavoidably survivor biased because we only selected live trees (i.e.,
trees that had recently survived the extreme 2012–2015 drought). Consequently,
our results may underestimate the true mean drought effect on sugar pine
physiology and mortality.

While recent research and a report on high-elevation whitebark pine
demonstrated that both physiological stress106 and mortality71 decreased at higher
elevations in SEKI during the extreme drought, 2012–2015, we verified this result.
Specifically, to test whether needle expansion during and following the drought
varied between low and high-elevation regions (suggesting that drought did not
cause high physiological stress at high elevations), we measured 225 needles on 30
healthy whitebark pine following protocols outlined above (Supplementary
Note 7). Three areas near long-term monitoring plots used in this study were
selected to obtain a range of high-elevation climatic conditions (plot 1: 37°12′
52.49″N, 118°47′23.77″W; plot 2: 36°35′13 ″N, 118°39′60″W; and plot 3: 36°46′20″
N 118°24′80″W). Only healthy, uninfected trees were sampled because blister rust
infections occurred at very low density in whitebark pine (~1%) and foxtail pine
(~0%), and it was not feasible to exactly replicate the sampling design we
conducted in sugar pine.

Stable isotope analyses. To determine the variation in stable carbon and nitrogen
isotope compositions of the sugar pine needles between 2012–2017, 5–10 fascicles
were pulverized to a fine powder, weighed (8 mg), and encapsulated in tin. Samples
were analyzed for both carbon (δ13C and % C) and nitrogen (δ15N and % N).
Stable isotope ratios were determined for dried needle material at the University of
California, Berkeley Center for Stable Isotope Ecology. Isotope ratios were esti-
mated via continuous flow dual isotope analysis using a CHNOS Elemental Ana-
lyzer interfaced with an IsoPrime100 mass spectrometer. Long-term external
precision for C and N isotope determinations at this facility was ± 0.10 ‰ and ±
0.20 ‰, respectively.

Isotopic values were reported in a standard notation as delta:

δ ¼ Rsample � Rstandard

Rstandard
ð4Þ

where R represents the ratio of the heavy to light isotope in the sample and in the
standard. The δ13C results were reported in values relative to the Vienna Pee Dee
Belemnite standard, based on the anomalously high 13C:12C ratio (0.01118) of the
Cretaceous marine fossil, Belemnitella americana, from the Peedee Formation in
South Carolina; the fossil’s ratio is the zero standard for δ13C. The δ15N measure of
the ratio of the two stable isotopes of nitrogen, 15N:14N and the standard is
atmospheric N2 (0.3663 atom% ~ 15N).

Based on the delta values above, needle carbon isotope discrimination (Δ) was
calculated:

Δ ¼ δa � δp
1þ δp

ð5Þ

where δa is the δ13C of source CO2 (ca. −8.0‰), and δp is the δ13C of the foliar
samples. Time‐integrated intercellular CO2 concentrations (Ci) of foliar samples
were obtained by the following equation107:

Ci ¼
caðδa � δp � aÞ

b� a
ð6Þ

where ca is atmospheric CO2 concentration (380 ppm) (annual CO2 concentrations
were corrected for rising atmospheric CO2 using La Jolla Pier records, available:
https://scrippsco2.ucsd.edu/data/atmospheric_co2/ljo.html), a is the fractionation
caused by diffusion in air (4.4‰) and b is the net fractionation caused by
carboxylation (27‰).

Statistical analyses. To test blister rust effects on sugar pine physiological processes
during and two years following the extreme drought in California, we developed six
repeated measures analysis of variance models. Specifically, we tested whether
infected trees had (1) higher δ13C, (2) lower δ15N, (3) lower % C, (4) lower % N,
(5) shorter needle length, (6) and fewer fascicles than uninfected trees (Supple-
mentary Note 3). We included error terms for paired trees nested within years to

account for the non-independence (i.e., repeat measures) in our sampling design.
We confirmed homogeneity of variance and normality of residuals. Finally, to test
whether blister rust infections increased the probability of mortality, we fitted a
logistic regression model with blister rust and DBH (standardized with a mean of
zero and a standard deviation of one) as independent variables and paired trees as
random effects (Supplementary Fig. 6). To test for differences in the physiological
traits between tree pairs with mortality (ten trees, 57 observations), we used the
non-parametric Wilcoxon signed rank test to compare δ13C, δ15N, and the number
of fascicles (Supplementary Fig. 6).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All field data for this study can be found via the Open Science Framework at https://doi.org/
10.17605/OSF.IO/PC9FM108, https://github.com/WildEcology/DudneyNatCommSEKI or
upon request jdudney@berkeley.edu. PRISM downscaled historic climate data can be found
at https://prism.oregonstate.edu/ and MACA downscaled forecasted climate data can be
found at http://www.climatologylab.org/maca.html.

Code availability
All analyses and data carpentry were performed using R, with the exception of the area
estimate across SEKI and the maps from Figs. 2a and 4e, which used QGIS. The code
used to generate the results from this study are available through GitHub https://github.
com/WildEcology/DudneyNatCommSEKI, which is also mirrored on the Open Science
Framework at https://doi.org/10.17605/OSF.IO/PC9FM.
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